xref: /openbmc/linux/drivers/edac/skx_common.c (revision a5d46d9a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Shared code by both skx_edac and i10nm_edac. Originally split out
5  * from the skx_edac driver.
6  *
7  * This file is linked into both skx_edac and i10nm_edac drivers. In
8  * order to avoid link errors, this file must be like a pure library
9  * without including symbols and defines which would otherwise conflict,
10  * when linked once into a module and into a built-in object, at the
11  * same time. For example, __this_module symbol references when that
12  * file is being linked into a built-in object.
13  *
14  * Copyright (c) 2018, Intel Corporation.
15  */
16 
17 #include <linux/acpi.h>
18 #include <linux/dmi.h>
19 #include <linux/adxl.h>
20 #include <acpi/nfit.h>
21 #include <asm/mce.h>
22 #include "edac_module.h"
23 #include "skx_common.h"
24 
25 static const char * const component_names[] = {
26 	[INDEX_SOCKET]		= "ProcessorSocketId",
27 	[INDEX_MEMCTRL]		= "MemoryControllerId",
28 	[INDEX_CHANNEL]		= "ChannelId",
29 	[INDEX_DIMM]		= "DimmSlotId",
30 	[INDEX_NM_MEMCTRL]	= "NmMemoryControllerId",
31 	[INDEX_NM_CHANNEL]	= "NmChannelId",
32 	[INDEX_NM_DIMM]		= "NmDimmSlotId",
33 };
34 
35 static int component_indices[ARRAY_SIZE(component_names)];
36 static int adxl_component_count;
37 static const char * const *adxl_component_names;
38 static u64 *adxl_values;
39 static char *adxl_msg;
40 static unsigned long adxl_nm_bitmap;
41 
42 static char skx_msg[MSG_SIZE];
43 static skx_decode_f skx_decode;
44 static skx_show_retry_log_f skx_show_retry_rd_err_log;
45 static u64 skx_tolm, skx_tohm;
46 static LIST_HEAD(dev_edac_list);
47 static bool skx_mem_cfg_2lm;
48 
49 int __init skx_adxl_get(void)
50 {
51 	const char * const *names;
52 	int i, j;
53 
54 	names = adxl_get_component_names();
55 	if (!names) {
56 		skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
57 		return -ENODEV;
58 	}
59 
60 	for (i = 0; i < INDEX_MAX; i++) {
61 		for (j = 0; names[j]; j++) {
62 			if (!strcmp(component_names[i], names[j])) {
63 				component_indices[i] = j;
64 
65 				if (i >= INDEX_NM_FIRST)
66 					adxl_nm_bitmap |= 1 << i;
67 
68 				break;
69 			}
70 		}
71 
72 		if (!names[j] && i < INDEX_NM_FIRST)
73 			goto err;
74 	}
75 
76 	if (skx_mem_cfg_2lm) {
77 		if (!adxl_nm_bitmap)
78 			skx_printk(KERN_NOTICE, "Not enough ADXL components for 2-level memory.\n");
79 		else
80 			edac_dbg(2, "adxl_nm_bitmap: 0x%lx\n", adxl_nm_bitmap);
81 	}
82 
83 	adxl_component_names = names;
84 	while (*names++)
85 		adxl_component_count++;
86 
87 	adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
88 			      GFP_KERNEL);
89 	if (!adxl_values) {
90 		adxl_component_count = 0;
91 		return -ENOMEM;
92 	}
93 
94 	adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
95 	if (!adxl_msg) {
96 		adxl_component_count = 0;
97 		kfree(adxl_values);
98 		return -ENOMEM;
99 	}
100 
101 	return 0;
102 err:
103 	skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
104 		   component_names[i]);
105 	for (j = 0; names[j]; j++)
106 		skx_printk(KERN_CONT, "%s ", names[j]);
107 	skx_printk(KERN_CONT, "\n");
108 
109 	return -ENODEV;
110 }
111 
112 void __exit skx_adxl_put(void)
113 {
114 	kfree(adxl_values);
115 	kfree(adxl_msg);
116 }
117 
118 static bool skx_adxl_decode(struct decoded_addr *res, bool error_in_1st_level_mem)
119 {
120 	struct skx_dev *d;
121 	int i, len = 0;
122 
123 	if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
124 				      res->addr < BIT_ULL(32))) {
125 		edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
126 		return false;
127 	}
128 
129 	if (adxl_decode(res->addr, adxl_values)) {
130 		edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
131 		return false;
132 	}
133 
134 	res->socket  = (int)adxl_values[component_indices[INDEX_SOCKET]];
135 	if (error_in_1st_level_mem) {
136 		res->imc     = (adxl_nm_bitmap & BIT_NM_MEMCTRL) ?
137 			       (int)adxl_values[component_indices[INDEX_NM_MEMCTRL]] : -1;
138 		res->channel = (adxl_nm_bitmap & BIT_NM_CHANNEL) ?
139 			       (int)adxl_values[component_indices[INDEX_NM_CHANNEL]] : -1;
140 		res->dimm    = (adxl_nm_bitmap & BIT_NM_DIMM) ?
141 			       (int)adxl_values[component_indices[INDEX_NM_DIMM]] : -1;
142 	} else {
143 		res->imc     = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
144 		res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
145 		res->dimm    = (int)adxl_values[component_indices[INDEX_DIMM]];
146 	}
147 
148 	if (res->imc > NUM_IMC - 1 || res->imc < 0) {
149 		skx_printk(KERN_ERR, "Bad imc %d\n", res->imc);
150 		return false;
151 	}
152 
153 	list_for_each_entry(d, &dev_edac_list, list) {
154 		if (d->imc[0].src_id == res->socket) {
155 			res->dev = d;
156 			break;
157 		}
158 	}
159 
160 	if (!res->dev) {
161 		skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
162 			   res->socket, res->imc);
163 		return false;
164 	}
165 
166 	for (i = 0; i < adxl_component_count; i++) {
167 		if (adxl_values[i] == ~0x0ull)
168 			continue;
169 
170 		len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
171 				adxl_component_names[i], adxl_values[i]);
172 		if (MSG_SIZE - len <= 0)
173 			break;
174 	}
175 
176 	return true;
177 }
178 
179 void skx_set_mem_cfg(bool mem_cfg_2lm)
180 {
181 	skx_mem_cfg_2lm = mem_cfg_2lm;
182 }
183 
184 void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log)
185 {
186 	skx_decode = decode;
187 	skx_show_retry_rd_err_log = show_retry_log;
188 }
189 
190 int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
191 {
192 	u32 reg;
193 
194 	if (pci_read_config_dword(d->util_all, off, &reg)) {
195 		skx_printk(KERN_ERR, "Failed to read src id\n");
196 		return -ENODEV;
197 	}
198 
199 	*id = GET_BITFIELD(reg, 12, 14);
200 	return 0;
201 }
202 
203 int skx_get_node_id(struct skx_dev *d, u8 *id)
204 {
205 	u32 reg;
206 
207 	if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
208 		skx_printk(KERN_ERR, "Failed to read node id\n");
209 		return -ENODEV;
210 	}
211 
212 	*id = GET_BITFIELD(reg, 0, 2);
213 	return 0;
214 }
215 
216 static int get_width(u32 mtr)
217 {
218 	switch (GET_BITFIELD(mtr, 8, 9)) {
219 	case 0:
220 		return DEV_X4;
221 	case 1:
222 		return DEV_X8;
223 	case 2:
224 		return DEV_X16;
225 	}
226 	return DEV_UNKNOWN;
227 }
228 
229 /*
230  * We use the per-socket device @cfg->did to count how many sockets are present,
231  * and to detemine which PCI buses are associated with each socket. Allocate
232  * and build the full list of all the skx_dev structures that we need here.
233  */
234 int skx_get_all_bus_mappings(struct res_config *cfg, struct list_head **list)
235 {
236 	struct pci_dev *pdev, *prev;
237 	struct skx_dev *d;
238 	u32 reg;
239 	int ndev = 0;
240 
241 	prev = NULL;
242 	for (;;) {
243 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, cfg->decs_did, prev);
244 		if (!pdev)
245 			break;
246 		ndev++;
247 		d = kzalloc(sizeof(*d), GFP_KERNEL);
248 		if (!d) {
249 			pci_dev_put(pdev);
250 			return -ENOMEM;
251 		}
252 
253 		if (pci_read_config_dword(pdev, cfg->busno_cfg_offset, &reg)) {
254 			kfree(d);
255 			pci_dev_put(pdev);
256 			skx_printk(KERN_ERR, "Failed to read bus idx\n");
257 			return -ENODEV;
258 		}
259 
260 		d->bus[0] = GET_BITFIELD(reg, 0, 7);
261 		d->bus[1] = GET_BITFIELD(reg, 8, 15);
262 		if (cfg->type == SKX) {
263 			d->seg = pci_domain_nr(pdev->bus);
264 			d->bus[2] = GET_BITFIELD(reg, 16, 23);
265 			d->bus[3] = GET_BITFIELD(reg, 24, 31);
266 		} else {
267 			d->seg = GET_BITFIELD(reg, 16, 23);
268 		}
269 
270 		edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
271 			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
272 		list_add_tail(&d->list, &dev_edac_list);
273 		prev = pdev;
274 	}
275 
276 	if (list)
277 		*list = &dev_edac_list;
278 	return ndev;
279 }
280 
281 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
282 {
283 	struct pci_dev *pdev;
284 	u32 reg;
285 
286 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
287 	if (!pdev) {
288 		edac_dbg(2, "Can't get tolm/tohm\n");
289 		return -ENODEV;
290 	}
291 
292 	if (pci_read_config_dword(pdev, off[0], &reg)) {
293 		skx_printk(KERN_ERR, "Failed to read tolm\n");
294 		goto fail;
295 	}
296 	skx_tolm = reg;
297 
298 	if (pci_read_config_dword(pdev, off[1], &reg)) {
299 		skx_printk(KERN_ERR, "Failed to read lower tohm\n");
300 		goto fail;
301 	}
302 	skx_tohm = reg;
303 
304 	if (pci_read_config_dword(pdev, off[2], &reg)) {
305 		skx_printk(KERN_ERR, "Failed to read upper tohm\n");
306 		goto fail;
307 	}
308 	skx_tohm |= (u64)reg << 32;
309 
310 	pci_dev_put(pdev);
311 	*tolm = skx_tolm;
312 	*tohm = skx_tohm;
313 	edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
314 	return 0;
315 fail:
316 	pci_dev_put(pdev);
317 	return -ENODEV;
318 }
319 
320 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
321 			     int minval, int maxval, const char *name)
322 {
323 	u32 val = GET_BITFIELD(reg, lobit, hibit);
324 
325 	if (val < minval || val > maxval) {
326 		edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
327 		return -EINVAL;
328 	}
329 	return val + add;
330 }
331 
332 #define numrank(reg)	skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
333 #define numrow(reg)	skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
334 #define numcol(reg)	skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
335 
336 int skx_get_dimm_info(u32 mtr, u32 mcmtr, u32 amap, struct dimm_info *dimm,
337 		      struct skx_imc *imc, int chan, int dimmno,
338 		      struct res_config *cfg)
339 {
340 	int  banks, ranks, rows, cols, npages;
341 	enum mem_type mtype;
342 	u64 size;
343 
344 	ranks = numrank(mtr);
345 	rows = numrow(mtr);
346 	cols = imc->hbm_mc ? 6 : numcol(mtr);
347 
348 	if (cfg->support_ddr5 && ((amap & 0x8) || imc->hbm_mc)) {
349 		banks = 32;
350 		mtype = MEM_DDR5;
351 	} else {
352 		banks = 16;
353 		mtype = MEM_DDR4;
354 	}
355 
356 	/*
357 	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
358 	 */
359 	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
360 	npages = MiB_TO_PAGES(size);
361 
362 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
363 		 imc->mc, chan, dimmno, size, npages,
364 		 banks, 1 << ranks, rows, cols);
365 
366 	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mcmtr, 0, 0);
367 	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mcmtr, 9, 9);
368 	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
369 	imc->chan[chan].dimms[dimmno].rowbits = rows;
370 	imc->chan[chan].dimms[dimmno].colbits = cols;
371 
372 	dimm->nr_pages = npages;
373 	dimm->grain = 32;
374 	dimm->dtype = get_width(mtr);
375 	dimm->mtype = mtype;
376 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
377 
378 	if (imc->hbm_mc)
379 		snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_HBMC#%u_Chan#%u",
380 			 imc->src_id, imc->lmc, chan);
381 	else
382 		snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
383 			 imc->src_id, imc->lmc, chan, dimmno);
384 
385 	return 1;
386 }
387 
388 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
389 			int chan, int dimmno, const char *mod_str)
390 {
391 	int smbios_handle;
392 	u32 dev_handle;
393 	u16 flags;
394 	u64 size = 0;
395 
396 	dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
397 						   imc->src_id, 0);
398 
399 	smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
400 	if (smbios_handle == -EOPNOTSUPP) {
401 		pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
402 		goto unknown_size;
403 	}
404 
405 	if (smbios_handle < 0) {
406 		skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
407 		goto unknown_size;
408 	}
409 
410 	if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
411 		skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
412 		goto unknown_size;
413 	}
414 
415 	size = dmi_memdev_size(smbios_handle);
416 	if (size == ~0ull)
417 		skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
418 			   dev_handle, smbios_handle);
419 
420 unknown_size:
421 	dimm->nr_pages = size >> PAGE_SHIFT;
422 	dimm->grain = 32;
423 	dimm->dtype = DEV_UNKNOWN;
424 	dimm->mtype = MEM_NVDIMM;
425 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
426 
427 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
428 		 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
429 
430 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
431 		 imc->src_id, imc->lmc, chan, dimmno);
432 
433 	return (size == 0 || size == ~0ull) ? 0 : 1;
434 }
435 
436 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
437 		     const char *ctl_name, const char *mod_str,
438 		     get_dimm_config_f get_dimm_config,
439 		     struct res_config *cfg)
440 {
441 	struct mem_ctl_info *mci;
442 	struct edac_mc_layer layers[2];
443 	struct skx_pvt *pvt;
444 	int rc;
445 
446 	/* Allocate a new MC control structure */
447 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
448 	layers[0].size = NUM_CHANNELS;
449 	layers[0].is_virt_csrow = false;
450 	layers[1].type = EDAC_MC_LAYER_SLOT;
451 	layers[1].size = NUM_DIMMS;
452 	layers[1].is_virt_csrow = true;
453 	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
454 			    sizeof(struct skx_pvt));
455 
456 	if (unlikely(!mci))
457 		return -ENOMEM;
458 
459 	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
460 
461 	/* Associate skx_dev and mci for future usage */
462 	imc->mci = mci;
463 	pvt = mci->pvt_info;
464 	pvt->imc = imc;
465 
466 	mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
467 				  imc->node_id, imc->lmc);
468 	if (!mci->ctl_name) {
469 		rc = -ENOMEM;
470 		goto fail0;
471 	}
472 
473 	mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
474 	if (cfg->support_ddr5)
475 		mci->mtype_cap |= MEM_FLAG_DDR5;
476 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
477 	mci->edac_cap = EDAC_FLAG_NONE;
478 	mci->mod_name = mod_str;
479 	mci->dev_name = pci_name(pdev);
480 	mci->ctl_page_to_phys = NULL;
481 
482 	rc = get_dimm_config(mci, cfg);
483 	if (rc < 0)
484 		goto fail;
485 
486 	/* Record ptr to the generic device */
487 	mci->pdev = &pdev->dev;
488 
489 	/* Add this new MC control structure to EDAC's list of MCs */
490 	if (unlikely(edac_mc_add_mc(mci))) {
491 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
492 		rc = -EINVAL;
493 		goto fail;
494 	}
495 
496 	return 0;
497 
498 fail:
499 	kfree(mci->ctl_name);
500 fail0:
501 	edac_mc_free(mci);
502 	imc->mci = NULL;
503 	return rc;
504 }
505 
506 static void skx_unregister_mci(struct skx_imc *imc)
507 {
508 	struct mem_ctl_info *mci = imc->mci;
509 
510 	if (!mci)
511 		return;
512 
513 	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
514 
515 	/* Remove MC sysfs nodes */
516 	edac_mc_del_mc(mci->pdev);
517 
518 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
519 	kfree(mci->ctl_name);
520 	edac_mc_free(mci);
521 }
522 
523 static void skx_mce_output_error(struct mem_ctl_info *mci,
524 				 const struct mce *m,
525 				 struct decoded_addr *res)
526 {
527 	enum hw_event_mc_err_type tp_event;
528 	char *optype;
529 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
530 	bool overflow = GET_BITFIELD(m->status, 62, 62);
531 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
532 	bool recoverable;
533 	int len;
534 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
535 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
536 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
537 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
538 
539 	recoverable = GET_BITFIELD(m->status, 56, 56);
540 
541 	if (uncorrected_error) {
542 		core_err_cnt = 1;
543 		if (ripv) {
544 			tp_event = HW_EVENT_ERR_UNCORRECTED;
545 		} else {
546 			tp_event = HW_EVENT_ERR_FATAL;
547 		}
548 	} else {
549 		tp_event = HW_EVENT_ERR_CORRECTED;
550 	}
551 
552 	/*
553 	 * According to Intel Architecture spec vol 3B,
554 	 * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
555 	 * memory errors should fit one of these masks:
556 	 *	000f 0000 1mmm cccc (binary)
557 	 *	000f 0010 1mmm cccc (binary)	[RAM used as cache]
558 	 * where:
559 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
560 	 *	    won't be shown
561 	 *	mmm = error type
562 	 *	cccc = channel
563 	 * If the mask doesn't match, report an error to the parsing logic
564 	 */
565 	if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
566 		optype = "Can't parse: it is not a mem";
567 	} else {
568 		switch (optypenum) {
569 		case 0:
570 			optype = "generic undef request error";
571 			break;
572 		case 1:
573 			optype = "memory read error";
574 			break;
575 		case 2:
576 			optype = "memory write error";
577 			break;
578 		case 3:
579 			optype = "addr/cmd error";
580 			break;
581 		case 4:
582 			optype = "memory scrubbing error";
583 			break;
584 		default:
585 			optype = "reserved";
586 			break;
587 		}
588 	}
589 	if (adxl_component_count) {
590 		len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
591 			 overflow ? " OVERFLOW" : "",
592 			 (uncorrected_error && recoverable) ? " recoverable" : "",
593 			 mscod, errcode, adxl_msg);
594 	} else {
595 		len = snprintf(skx_msg, MSG_SIZE,
596 			 "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
597 			 overflow ? " OVERFLOW" : "",
598 			 (uncorrected_error && recoverable) ? " recoverable" : "",
599 			 mscod, errcode,
600 			 res->socket, res->imc, res->rank,
601 			 res->bank_group, res->bank_address, res->row, res->column);
602 	}
603 
604 	if (skx_show_retry_rd_err_log)
605 		skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len);
606 
607 	edac_dbg(0, "%s\n", skx_msg);
608 
609 	/* Call the helper to output message */
610 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
611 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
612 			     res->channel, res->dimm, -1,
613 			     optype, skx_msg);
614 }
615 
616 static bool skx_error_in_1st_level_mem(const struct mce *m)
617 {
618 	u32 errcode;
619 
620 	if (!skx_mem_cfg_2lm)
621 		return false;
622 
623 	errcode = GET_BITFIELD(m->status, 0, 15);
624 
625 	if ((errcode & 0xef80) != 0x280)
626 		return false;
627 
628 	return true;
629 }
630 
631 int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
632 			void *data)
633 {
634 	struct mce *mce = (struct mce *)data;
635 	struct decoded_addr res;
636 	struct mem_ctl_info *mci;
637 	char *type;
638 
639 	if (mce->kflags & MCE_HANDLED_CEC)
640 		return NOTIFY_DONE;
641 
642 	/* ignore unless this is memory related with an address */
643 	if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
644 		return NOTIFY_DONE;
645 
646 	memset(&res, 0, sizeof(res));
647 	res.addr = mce->addr;
648 
649 	if (adxl_component_count) {
650 		if (!skx_adxl_decode(&res, skx_error_in_1st_level_mem(mce)))
651 			return NOTIFY_DONE;
652 	} else if (!skx_decode || !skx_decode(&res)) {
653 		return NOTIFY_DONE;
654 	}
655 
656 	mci = res.dev->imc[res.imc].mci;
657 
658 	if (!mci)
659 		return NOTIFY_DONE;
660 
661 	if (mce->mcgstatus & MCG_STATUS_MCIP)
662 		type = "Exception";
663 	else
664 		type = "Event";
665 
666 	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
667 
668 	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
669 			   "Bank %d: 0x%llx\n", mce->extcpu, type,
670 			   mce->mcgstatus, mce->bank, mce->status);
671 	skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
672 	skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
673 	skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
674 
675 	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
676 			   "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
677 			   mce->time, mce->socketid, mce->apicid);
678 
679 	skx_mce_output_error(mci, mce, &res);
680 
681 	mce->kflags |= MCE_HANDLED_EDAC;
682 	return NOTIFY_DONE;
683 }
684 
685 void skx_remove(void)
686 {
687 	int i, j;
688 	struct skx_dev *d, *tmp;
689 
690 	edac_dbg(0, "\n");
691 
692 	list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
693 		list_del(&d->list);
694 		for (i = 0; i < NUM_IMC; i++) {
695 			if (d->imc[i].mci)
696 				skx_unregister_mci(&d->imc[i]);
697 
698 			if (d->imc[i].mdev)
699 				pci_dev_put(d->imc[i].mdev);
700 
701 			if (d->imc[i].mbase)
702 				iounmap(d->imc[i].mbase);
703 
704 			for (j = 0; j < NUM_CHANNELS; j++) {
705 				if (d->imc[i].chan[j].cdev)
706 					pci_dev_put(d->imc[i].chan[j].cdev);
707 			}
708 		}
709 		if (d->util_all)
710 			pci_dev_put(d->util_all);
711 		if (d->pcu_cr3)
712 			pci_dev_put(d->pcu_cr3);
713 		if (d->sad_all)
714 			pci_dev_put(d->sad_all);
715 		if (d->uracu)
716 			pci_dev_put(d->uracu);
717 
718 		kfree(d);
719 	}
720 }
721