xref: /openbmc/linux/drivers/edac/skx_common.c (revision 08720988)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Shared code by both skx_edac and i10nm_edac. Originally split out
5  * from the skx_edac driver.
6  *
7  * This file is linked into both skx_edac and i10nm_edac drivers. In
8  * order to avoid link errors, this file must be like a pure library
9  * without including symbols and defines which would otherwise conflict,
10  * when linked once into a module and into a built-in object, at the
11  * same time. For example, __this_module symbol references when that
12  * file is being linked into a built-in object.
13  *
14  * Copyright (c) 2018, Intel Corporation.
15  */
16 
17 #include <linux/acpi.h>
18 #include <linux/dmi.h>
19 #include <linux/adxl.h>
20 #include <acpi/nfit.h>
21 #include <asm/mce.h>
22 #include "edac_module.h"
23 #include "skx_common.h"
24 
25 static const char * const component_names[] = {
26 	[INDEX_SOCKET]	= "ProcessorSocketId",
27 	[INDEX_MEMCTRL]	= "MemoryControllerId",
28 	[INDEX_CHANNEL]	= "ChannelId",
29 	[INDEX_DIMM]	= "DimmSlotId",
30 };
31 
32 static int component_indices[ARRAY_SIZE(component_names)];
33 static int adxl_component_count;
34 static const char * const *adxl_component_names;
35 static u64 *adxl_values;
36 static char *adxl_msg;
37 
38 static char skx_msg[MSG_SIZE];
39 static skx_decode_f skx_decode;
40 static skx_show_retry_log_f skx_show_retry_rd_err_log;
41 static u64 skx_tolm, skx_tohm;
42 static LIST_HEAD(dev_edac_list);
43 
44 int __init skx_adxl_get(void)
45 {
46 	const char * const *names;
47 	int i, j;
48 
49 	names = adxl_get_component_names();
50 	if (!names) {
51 		skx_printk(KERN_NOTICE, "No firmware support for address translation.\n");
52 		return -ENODEV;
53 	}
54 
55 	for (i = 0; i < INDEX_MAX; i++) {
56 		for (j = 0; names[j]; j++) {
57 			if (!strcmp(component_names[i], names[j])) {
58 				component_indices[i] = j;
59 				break;
60 			}
61 		}
62 
63 		if (!names[j])
64 			goto err;
65 	}
66 
67 	adxl_component_names = names;
68 	while (*names++)
69 		adxl_component_count++;
70 
71 	adxl_values = kcalloc(adxl_component_count, sizeof(*adxl_values),
72 			      GFP_KERNEL);
73 	if (!adxl_values) {
74 		adxl_component_count = 0;
75 		return -ENOMEM;
76 	}
77 
78 	adxl_msg = kzalloc(MSG_SIZE, GFP_KERNEL);
79 	if (!adxl_msg) {
80 		adxl_component_count = 0;
81 		kfree(adxl_values);
82 		return -ENOMEM;
83 	}
84 
85 	return 0;
86 err:
87 	skx_printk(KERN_ERR, "'%s' is not matched from DSM parameters: ",
88 		   component_names[i]);
89 	for (j = 0; names[j]; j++)
90 		skx_printk(KERN_CONT, "%s ", names[j]);
91 	skx_printk(KERN_CONT, "\n");
92 
93 	return -ENODEV;
94 }
95 
96 void __exit skx_adxl_put(void)
97 {
98 	kfree(adxl_values);
99 	kfree(adxl_msg);
100 }
101 
102 static bool skx_adxl_decode(struct decoded_addr *res)
103 {
104 	struct skx_dev *d;
105 	int i, len = 0;
106 
107 	if (res->addr >= skx_tohm || (res->addr >= skx_tolm &&
108 				      res->addr < BIT_ULL(32))) {
109 		edac_dbg(0, "Address 0x%llx out of range\n", res->addr);
110 		return false;
111 	}
112 
113 	if (adxl_decode(res->addr, adxl_values)) {
114 		edac_dbg(0, "Failed to decode 0x%llx\n", res->addr);
115 		return false;
116 	}
117 
118 	res->socket  = (int)adxl_values[component_indices[INDEX_SOCKET]];
119 	res->imc     = (int)adxl_values[component_indices[INDEX_MEMCTRL]];
120 	res->channel = (int)adxl_values[component_indices[INDEX_CHANNEL]];
121 	res->dimm    = (int)adxl_values[component_indices[INDEX_DIMM]];
122 
123 	if (res->imc > NUM_IMC - 1) {
124 		skx_printk(KERN_ERR, "Bad imc %d\n", res->imc);
125 		return false;
126 	}
127 
128 	list_for_each_entry(d, &dev_edac_list, list) {
129 		if (d->imc[0].src_id == res->socket) {
130 			res->dev = d;
131 			break;
132 		}
133 	}
134 
135 	if (!res->dev) {
136 		skx_printk(KERN_ERR, "No device for src_id %d imc %d\n",
137 			   res->socket, res->imc);
138 		return false;
139 	}
140 
141 	for (i = 0; i < adxl_component_count; i++) {
142 		if (adxl_values[i] == ~0x0ull)
143 			continue;
144 
145 		len += snprintf(adxl_msg + len, MSG_SIZE - len, " %s:0x%llx",
146 				adxl_component_names[i], adxl_values[i]);
147 		if (MSG_SIZE - len <= 0)
148 			break;
149 	}
150 
151 	return true;
152 }
153 
154 void skx_set_decode(skx_decode_f decode, skx_show_retry_log_f show_retry_log)
155 {
156 	skx_decode = decode;
157 	skx_show_retry_rd_err_log = show_retry_log;
158 }
159 
160 int skx_get_src_id(struct skx_dev *d, int off, u8 *id)
161 {
162 	u32 reg;
163 
164 	if (pci_read_config_dword(d->util_all, off, &reg)) {
165 		skx_printk(KERN_ERR, "Failed to read src id\n");
166 		return -ENODEV;
167 	}
168 
169 	*id = GET_BITFIELD(reg, 12, 14);
170 	return 0;
171 }
172 
173 int skx_get_node_id(struct skx_dev *d, u8 *id)
174 {
175 	u32 reg;
176 
177 	if (pci_read_config_dword(d->util_all, 0xf4, &reg)) {
178 		skx_printk(KERN_ERR, "Failed to read node id\n");
179 		return -ENODEV;
180 	}
181 
182 	*id = GET_BITFIELD(reg, 0, 2);
183 	return 0;
184 }
185 
186 static int get_width(u32 mtr)
187 {
188 	switch (GET_BITFIELD(mtr, 8, 9)) {
189 	case 0:
190 		return DEV_X4;
191 	case 1:
192 		return DEV_X8;
193 	case 2:
194 		return DEV_X16;
195 	}
196 	return DEV_UNKNOWN;
197 }
198 
199 /*
200  * We use the per-socket device @did to count how many sockets are present,
201  * and to detemine which PCI buses are associated with each socket. Allocate
202  * and build the full list of all the skx_dev structures that we need here.
203  */
204 int skx_get_all_bus_mappings(unsigned int did, int off, enum type type,
205 			     struct list_head **list)
206 {
207 	struct pci_dev *pdev, *prev;
208 	struct skx_dev *d;
209 	u32 reg;
210 	int ndev = 0;
211 
212 	prev = NULL;
213 	for (;;) {
214 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, prev);
215 		if (!pdev)
216 			break;
217 		ndev++;
218 		d = kzalloc(sizeof(*d), GFP_KERNEL);
219 		if (!d) {
220 			pci_dev_put(pdev);
221 			return -ENOMEM;
222 		}
223 
224 		if (pci_read_config_dword(pdev, off, &reg)) {
225 			kfree(d);
226 			pci_dev_put(pdev);
227 			skx_printk(KERN_ERR, "Failed to read bus idx\n");
228 			return -ENODEV;
229 		}
230 
231 		d->bus[0] = GET_BITFIELD(reg, 0, 7);
232 		d->bus[1] = GET_BITFIELD(reg, 8, 15);
233 		if (type == SKX) {
234 			d->seg = pci_domain_nr(pdev->bus);
235 			d->bus[2] = GET_BITFIELD(reg, 16, 23);
236 			d->bus[3] = GET_BITFIELD(reg, 24, 31);
237 		} else {
238 			d->seg = GET_BITFIELD(reg, 16, 23);
239 		}
240 
241 		edac_dbg(2, "busses: 0x%x, 0x%x, 0x%x, 0x%x\n",
242 			 d->bus[0], d->bus[1], d->bus[2], d->bus[3]);
243 		list_add_tail(&d->list, &dev_edac_list);
244 		prev = pdev;
245 	}
246 
247 	if (list)
248 		*list = &dev_edac_list;
249 	return ndev;
250 }
251 
252 int skx_get_hi_lo(unsigned int did, int off[], u64 *tolm, u64 *tohm)
253 {
254 	struct pci_dev *pdev;
255 	u32 reg;
256 
257 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, did, NULL);
258 	if (!pdev) {
259 		edac_dbg(2, "Can't get tolm/tohm\n");
260 		return -ENODEV;
261 	}
262 
263 	if (pci_read_config_dword(pdev, off[0], &reg)) {
264 		skx_printk(KERN_ERR, "Failed to read tolm\n");
265 		goto fail;
266 	}
267 	skx_tolm = reg;
268 
269 	if (pci_read_config_dword(pdev, off[1], &reg)) {
270 		skx_printk(KERN_ERR, "Failed to read lower tohm\n");
271 		goto fail;
272 	}
273 	skx_tohm = reg;
274 
275 	if (pci_read_config_dword(pdev, off[2], &reg)) {
276 		skx_printk(KERN_ERR, "Failed to read upper tohm\n");
277 		goto fail;
278 	}
279 	skx_tohm |= (u64)reg << 32;
280 
281 	pci_dev_put(pdev);
282 	*tolm = skx_tolm;
283 	*tohm = skx_tohm;
284 	edac_dbg(2, "tolm = 0x%llx tohm = 0x%llx\n", skx_tolm, skx_tohm);
285 	return 0;
286 fail:
287 	pci_dev_put(pdev);
288 	return -ENODEV;
289 }
290 
291 static int skx_get_dimm_attr(u32 reg, int lobit, int hibit, int add,
292 			     int minval, int maxval, const char *name)
293 {
294 	u32 val = GET_BITFIELD(reg, lobit, hibit);
295 
296 	if (val < minval || val > maxval) {
297 		edac_dbg(2, "bad %s = %d (raw=0x%x)\n", name, val, reg);
298 		return -EINVAL;
299 	}
300 	return val + add;
301 }
302 
303 #define numrank(reg)	skx_get_dimm_attr(reg, 12, 13, 0, 0, 2, "ranks")
304 #define numrow(reg)	skx_get_dimm_attr(reg, 2, 4, 12, 1, 6, "rows")
305 #define numcol(reg)	skx_get_dimm_attr(reg, 0, 1, 10, 0, 2, "cols")
306 
307 int skx_get_dimm_info(u32 mtr, u32 amap, struct dimm_info *dimm,
308 		      struct skx_imc *imc, int chan, int dimmno)
309 {
310 	int  banks = 16, ranks, rows, cols, npages;
311 	u64 size;
312 
313 	ranks = numrank(mtr);
314 	rows = numrow(mtr);
315 	cols = numcol(mtr);
316 
317 	/*
318 	 * Compute size in 8-byte (2^3) words, then shift to MiB (2^20)
319 	 */
320 	size = ((1ull << (rows + cols + ranks)) * banks) >> (20 - 3);
321 	npages = MiB_TO_PAGES(size);
322 
323 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: 0x%x, col: 0x%x\n",
324 		 imc->mc, chan, dimmno, size, npages,
325 		 banks, 1 << ranks, rows, cols);
326 
327 	imc->chan[chan].dimms[dimmno].close_pg = GET_BITFIELD(mtr, 0, 0);
328 	imc->chan[chan].dimms[dimmno].bank_xor_enable = GET_BITFIELD(mtr, 9, 9);
329 	imc->chan[chan].dimms[dimmno].fine_grain_bank = GET_BITFIELD(amap, 0, 0);
330 	imc->chan[chan].dimms[dimmno].rowbits = rows;
331 	imc->chan[chan].dimms[dimmno].colbits = cols;
332 
333 	dimm->nr_pages = npages;
334 	dimm->grain = 32;
335 	dimm->dtype = get_width(mtr);
336 	dimm->mtype = MEM_DDR4;
337 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
338 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
339 		 imc->src_id, imc->lmc, chan, dimmno);
340 
341 	return 1;
342 }
343 
344 int skx_get_nvdimm_info(struct dimm_info *dimm, struct skx_imc *imc,
345 			int chan, int dimmno, const char *mod_str)
346 {
347 	int smbios_handle;
348 	u32 dev_handle;
349 	u16 flags;
350 	u64 size = 0;
351 
352 	dev_handle = ACPI_NFIT_BUILD_DEVICE_HANDLE(dimmno, chan, imc->lmc,
353 						   imc->src_id, 0);
354 
355 	smbios_handle = nfit_get_smbios_id(dev_handle, &flags);
356 	if (smbios_handle == -EOPNOTSUPP) {
357 		pr_warn_once("%s: Can't find size of NVDIMM. Try enabling CONFIG_ACPI_NFIT\n", mod_str);
358 		goto unknown_size;
359 	}
360 
361 	if (smbios_handle < 0) {
362 		skx_printk(KERN_ERR, "Can't find handle for NVDIMM ADR=0x%x\n", dev_handle);
363 		goto unknown_size;
364 	}
365 
366 	if (flags & ACPI_NFIT_MEM_MAP_FAILED) {
367 		skx_printk(KERN_ERR, "NVDIMM ADR=0x%x is not mapped\n", dev_handle);
368 		goto unknown_size;
369 	}
370 
371 	size = dmi_memdev_size(smbios_handle);
372 	if (size == ~0ull)
373 		skx_printk(KERN_ERR, "Can't find size for NVDIMM ADR=0x%x/SMBIOS=0x%x\n",
374 			   dev_handle, smbios_handle);
375 
376 unknown_size:
377 	dimm->nr_pages = size >> PAGE_SHIFT;
378 	dimm->grain = 32;
379 	dimm->dtype = DEV_UNKNOWN;
380 	dimm->mtype = MEM_NVDIMM;
381 	dimm->edac_mode = EDAC_SECDED; /* likely better than this */
382 
383 	edac_dbg(0, "mc#%d: channel %d, dimm %d, %llu MiB (%u pages)\n",
384 		 imc->mc, chan, dimmno, size >> 20, dimm->nr_pages);
385 
386 	snprintf(dimm->label, sizeof(dimm->label), "CPU_SrcID#%u_MC#%u_Chan#%u_DIMM#%u",
387 		 imc->src_id, imc->lmc, chan, dimmno);
388 
389 	return (size == 0 || size == ~0ull) ? 0 : 1;
390 }
391 
392 int skx_register_mci(struct skx_imc *imc, struct pci_dev *pdev,
393 		     const char *ctl_name, const char *mod_str,
394 		     get_dimm_config_f get_dimm_config)
395 {
396 	struct mem_ctl_info *mci;
397 	struct edac_mc_layer layers[2];
398 	struct skx_pvt *pvt;
399 	int rc;
400 
401 	/* Allocate a new MC control structure */
402 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
403 	layers[0].size = NUM_CHANNELS;
404 	layers[0].is_virt_csrow = false;
405 	layers[1].type = EDAC_MC_LAYER_SLOT;
406 	layers[1].size = NUM_DIMMS;
407 	layers[1].is_virt_csrow = true;
408 	mci = edac_mc_alloc(imc->mc, ARRAY_SIZE(layers), layers,
409 			    sizeof(struct skx_pvt));
410 
411 	if (unlikely(!mci))
412 		return -ENOMEM;
413 
414 	edac_dbg(0, "MC#%d: mci = %p\n", imc->mc, mci);
415 
416 	/* Associate skx_dev and mci for future usage */
417 	imc->mci = mci;
418 	pvt = mci->pvt_info;
419 	pvt->imc = imc;
420 
421 	mci->ctl_name = kasprintf(GFP_KERNEL, "%s#%d IMC#%d", ctl_name,
422 				  imc->node_id, imc->lmc);
423 	if (!mci->ctl_name) {
424 		rc = -ENOMEM;
425 		goto fail0;
426 	}
427 
428 	mci->mtype_cap = MEM_FLAG_DDR4 | MEM_FLAG_NVDIMM;
429 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
430 	mci->edac_cap = EDAC_FLAG_NONE;
431 	mci->mod_name = mod_str;
432 	mci->dev_name = pci_name(pdev);
433 	mci->ctl_page_to_phys = NULL;
434 
435 	rc = get_dimm_config(mci);
436 	if (rc < 0)
437 		goto fail;
438 
439 	/* Record ptr to the generic device */
440 	mci->pdev = &pdev->dev;
441 
442 	/* Add this new MC control structure to EDAC's list of MCs */
443 	if (unlikely(edac_mc_add_mc(mci))) {
444 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
445 		rc = -EINVAL;
446 		goto fail;
447 	}
448 
449 	return 0;
450 
451 fail:
452 	kfree(mci->ctl_name);
453 fail0:
454 	edac_mc_free(mci);
455 	imc->mci = NULL;
456 	return rc;
457 }
458 
459 static void skx_unregister_mci(struct skx_imc *imc)
460 {
461 	struct mem_ctl_info *mci = imc->mci;
462 
463 	if (!mci)
464 		return;
465 
466 	edac_dbg(0, "MC%d: mci = %p\n", imc->mc, mci);
467 
468 	/* Remove MC sysfs nodes */
469 	edac_mc_del_mc(mci->pdev);
470 
471 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
472 	kfree(mci->ctl_name);
473 	edac_mc_free(mci);
474 }
475 
476 static void skx_mce_output_error(struct mem_ctl_info *mci,
477 				 const struct mce *m,
478 				 struct decoded_addr *res)
479 {
480 	enum hw_event_mc_err_type tp_event;
481 	char *optype;
482 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
483 	bool overflow = GET_BITFIELD(m->status, 62, 62);
484 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
485 	bool recoverable;
486 	int len;
487 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
488 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
489 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
490 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
491 
492 	recoverable = GET_BITFIELD(m->status, 56, 56);
493 
494 	if (uncorrected_error) {
495 		core_err_cnt = 1;
496 		if (ripv) {
497 			tp_event = HW_EVENT_ERR_FATAL;
498 		} else {
499 			tp_event = HW_EVENT_ERR_UNCORRECTED;
500 		}
501 	} else {
502 		tp_event = HW_EVENT_ERR_CORRECTED;
503 	}
504 
505 	/*
506 	 * According to Intel Architecture spec vol 3B,
507 	 * Table 15-10 "IA32_MCi_Status [15:0] Compound Error Code Encoding"
508 	 * memory errors should fit one of these masks:
509 	 *	000f 0000 1mmm cccc (binary)
510 	 *	000f 0010 1mmm cccc (binary)	[RAM used as cache]
511 	 * where:
512 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
513 	 *	    won't be shown
514 	 *	mmm = error type
515 	 *	cccc = channel
516 	 * If the mask doesn't match, report an error to the parsing logic
517 	 */
518 	if (!((errcode & 0xef80) == 0x80 || (errcode & 0xef80) == 0x280)) {
519 		optype = "Can't parse: it is not a mem";
520 	} else {
521 		switch (optypenum) {
522 		case 0:
523 			optype = "generic undef request error";
524 			break;
525 		case 1:
526 			optype = "memory read error";
527 			break;
528 		case 2:
529 			optype = "memory write error";
530 			break;
531 		case 3:
532 			optype = "addr/cmd error";
533 			break;
534 		case 4:
535 			optype = "memory scrubbing error";
536 			break;
537 		default:
538 			optype = "reserved";
539 			break;
540 		}
541 	}
542 	if (adxl_component_count) {
543 		len = snprintf(skx_msg, MSG_SIZE, "%s%s err_code:0x%04x:0x%04x %s",
544 			 overflow ? " OVERFLOW" : "",
545 			 (uncorrected_error && recoverable) ? " recoverable" : "",
546 			 mscod, errcode, adxl_msg);
547 	} else {
548 		len = snprintf(skx_msg, MSG_SIZE,
549 			 "%s%s err_code:0x%04x:0x%04x socket:%d imc:%d rank:%d bg:%d ba:%d row:0x%x col:0x%x",
550 			 overflow ? " OVERFLOW" : "",
551 			 (uncorrected_error && recoverable) ? " recoverable" : "",
552 			 mscod, errcode,
553 			 res->socket, res->imc, res->rank,
554 			 res->bank_group, res->bank_address, res->row, res->column);
555 	}
556 
557 	if (skx_show_retry_rd_err_log)
558 		skx_show_retry_rd_err_log(res, skx_msg + len, MSG_SIZE - len);
559 
560 	edac_dbg(0, "%s\n", skx_msg);
561 
562 	/* Call the helper to output message */
563 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
564 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
565 			     res->channel, res->dimm, -1,
566 			     optype, skx_msg);
567 }
568 
569 int skx_mce_check_error(struct notifier_block *nb, unsigned long val,
570 			void *data)
571 {
572 	struct mce *mce = (struct mce *)data;
573 	struct decoded_addr res;
574 	struct mem_ctl_info *mci;
575 	char *type;
576 
577 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
578 		return NOTIFY_DONE;
579 
580 	/* ignore unless this is memory related with an address */
581 	if ((mce->status & 0xefff) >> 7 != 1 || !(mce->status & MCI_STATUS_ADDRV))
582 		return NOTIFY_DONE;
583 
584 	memset(&res, 0, sizeof(res));
585 	res.addr = mce->addr;
586 
587 	if (adxl_component_count) {
588 		if (!skx_adxl_decode(&res))
589 			return NOTIFY_DONE;
590 	} else if (!skx_decode || !skx_decode(&res)) {
591 		return NOTIFY_DONE;
592 	}
593 
594 	mci = res.dev->imc[res.imc].mci;
595 
596 	if (!mci)
597 		return NOTIFY_DONE;
598 
599 	if (mce->mcgstatus & MCG_STATUS_MCIP)
600 		type = "Exception";
601 	else
602 		type = "Event";
603 
604 	skx_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
605 
606 	skx_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: 0x%llx "
607 			   "Bank %d: 0x%llx\n", mce->extcpu, type,
608 			   mce->mcgstatus, mce->bank, mce->status);
609 	skx_mc_printk(mci, KERN_DEBUG, "TSC 0x%llx ", mce->tsc);
610 	skx_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", mce->addr);
611 	skx_mc_printk(mci, KERN_DEBUG, "MISC 0x%llx ", mce->misc);
612 
613 	skx_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:0x%x TIME %llu SOCKET "
614 			   "%u APIC 0x%x\n", mce->cpuvendor, mce->cpuid,
615 			   mce->time, mce->socketid, mce->apicid);
616 
617 	skx_mce_output_error(mci, mce, &res);
618 
619 	return NOTIFY_DONE;
620 }
621 
622 void skx_remove(void)
623 {
624 	int i, j;
625 	struct skx_dev *d, *tmp;
626 
627 	edac_dbg(0, "\n");
628 
629 	list_for_each_entry_safe(d, tmp, &dev_edac_list, list) {
630 		list_del(&d->list);
631 		for (i = 0; i < NUM_IMC; i++) {
632 			if (d->imc[i].mci)
633 				skx_unregister_mci(&d->imc[i]);
634 
635 			if (d->imc[i].mdev)
636 				pci_dev_put(d->imc[i].mdev);
637 
638 			if (d->imc[i].mbase)
639 				iounmap(d->imc[i].mbase);
640 
641 			for (j = 0; j < NUM_CHANNELS; j++) {
642 				if (d->imc[i].chan[j].cdev)
643 					pci_dev_put(d->imc[i].chan[j].cdev);
644 			}
645 		}
646 		if (d->util_all)
647 			pci_dev_put(d->util_all);
648 		if (d->sad_all)
649 			pci_dev_put(d->sad_all);
650 		if (d->uracu)
651 			pci_dev_put(d->uracu);
652 
653 		kfree(d);
654 	}
655 }
656