xref: /openbmc/linux/drivers/edac/skx_base.c (revision be709d48)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * EDAC driver for Intel(R) Xeon(R) Skylake processors
4  * Copyright (c) 2016, Intel Corporation.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/processor.h>
9 #include <asm/cpu_device_id.h>
10 #include <asm/intel-family.h>
11 #include <asm/mce.h>
12 
13 #include "edac_module.h"
14 #include "skx_common.h"
15 
16 #define EDAC_MOD_STR    "skx_edac"
17 
18 /*
19  * Debug macros
20  */
21 #define skx_printk(level, fmt, arg...)			\
22 	edac_printk(level, "skx", fmt, ##arg)
23 
24 #define skx_mc_printk(mci, level, fmt, arg...)		\
25 	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
26 
27 static struct list_head *skx_edac_list;
28 
29 static u64 skx_tolm, skx_tohm;
30 static int skx_num_sockets;
31 static unsigned int nvdimm_count;
32 
33 #define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
34 #define MASK29	0x1FFFFFFF		/* Mask for 2^29 */
35 
36 static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
37 {
38 	struct skx_dev *d;
39 
40 	list_for_each_entry(d, skx_edac_list, list) {
41 		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
42 			return d;
43 	}
44 
45 	return NULL;
46 }
47 
48 enum munittype {
49 	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD
50 };
51 
52 struct munit {
53 	u16	did;
54 	u16	devfn[SKX_NUM_IMC];
55 	u8	busidx;
56 	u8	per_socket;
57 	enum munittype mtype;
58 };
59 
60 /*
61  * List of PCI device ids that we need together with some device
62  * number and function numbers to tell which memory controller the
63  * device belongs to.
64  */
65 static const struct munit skx_all_munits[] = {
66 	{ 0x2054, { }, 1, 1, SAD_ALL },
67 	{ 0x2055, { }, 1, 1, UTIL_ALL },
68 	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
69 	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
70 	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
71 	{ 0x208e, { }, 1, 0, SAD },
72 	{ }
73 };
74 
75 static int get_all_munits(const struct munit *m)
76 {
77 	struct pci_dev *pdev, *prev;
78 	struct skx_dev *d;
79 	u32 reg;
80 	int i = 0, ndev = 0;
81 
82 	prev = NULL;
83 	for (;;) {
84 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
85 		if (!pdev)
86 			break;
87 		ndev++;
88 		if (m->per_socket == SKX_NUM_IMC) {
89 			for (i = 0; i < SKX_NUM_IMC; i++)
90 				if (m->devfn[i] == pdev->devfn)
91 					break;
92 			if (i == SKX_NUM_IMC)
93 				goto fail;
94 		}
95 		d = get_skx_dev(pdev->bus, m->busidx);
96 		if (!d)
97 			goto fail;
98 
99 		/* Be sure that the device is enabled */
100 		if (unlikely(pci_enable_device(pdev) < 0)) {
101 			skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
102 				   PCI_VENDOR_ID_INTEL, m->did);
103 			goto fail;
104 		}
105 
106 		switch (m->mtype) {
107 		case CHAN0: case CHAN1: case CHAN2:
108 			pci_dev_get(pdev);
109 			d->imc[i].chan[m->mtype].cdev = pdev;
110 			break;
111 		case SAD_ALL:
112 			pci_dev_get(pdev);
113 			d->sad_all = pdev;
114 			break;
115 		case UTIL_ALL:
116 			pci_dev_get(pdev);
117 			d->util_all = pdev;
118 			break;
119 		case SAD:
120 			/*
121 			 * one of these devices per core, including cores
122 			 * that don't exist on this SKU. Ignore any that
123 			 * read a route table of zero, make sure all the
124 			 * non-zero values match.
125 			 */
126 			pci_read_config_dword(pdev, 0xB4, &reg);
127 			if (reg != 0) {
128 				if (d->mcroute == 0) {
129 					d->mcroute = reg;
130 				} else if (d->mcroute != reg) {
131 					skx_printk(KERN_ERR, "mcroute mismatch\n");
132 					goto fail;
133 				}
134 			}
135 			ndev--;
136 			break;
137 		}
138 
139 		prev = pdev;
140 	}
141 
142 	return ndev;
143 fail:
144 	pci_dev_put(pdev);
145 	return -ENODEV;
146 }
147 
148 static const struct x86_cpu_id skx_cpuids[] = {
149 	{ X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 },
150 	{ }
151 };
152 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
153 
154 #define SKX_GET_MTMTR(dev, reg) \
155 	pci_read_config_dword((dev), 0x87c, &(reg))
156 
157 static bool skx_check_ecc(struct pci_dev *pdev)
158 {
159 	u32 mtmtr;
160 
161 	SKX_GET_MTMTR(pdev, mtmtr);
162 
163 	return !!GET_BITFIELD(mtmtr, 2, 2);
164 }
165 
166 static int skx_get_dimm_config(struct mem_ctl_info *mci)
167 {
168 	struct skx_pvt *pvt = mci->pvt_info;
169 	struct skx_imc *imc = pvt->imc;
170 	u32 mtr, amap, mcddrtcfg;
171 	struct dimm_info *dimm;
172 	int i, j;
173 	int ndimms;
174 
175 	for (i = 0; i < SKX_NUM_CHANNELS; i++) {
176 		ndimms = 0;
177 		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
178 		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
179 		for (j = 0; j < SKX_NUM_DIMMS; j++) {
180 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
181 					     mci->n_layers, i, j, 0);
182 			pci_read_config_dword(imc->chan[i].cdev,
183 					      0x80 + 4 * j, &mtr);
184 			if (IS_DIMM_PRESENT(mtr)) {
185 				ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j);
186 			} else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
187 				ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
188 							      EDAC_MOD_STR);
189 				nvdimm_count++;
190 			}
191 		}
192 		if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) {
193 			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
194 			return -ENODEV;
195 		}
196 	}
197 
198 	return 0;
199 }
200 
201 #define	SKX_MAX_SAD 24
202 
203 #define SKX_GET_SAD(d, i, reg)	\
204 	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
205 #define SKX_GET_ILV(d, i, reg)	\
206 	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
207 
208 #define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
209 #define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
210 #define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
211 #define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
212 #define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
213 #define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
214 #define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)
215 
216 #define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
217 #define SKX_ILV_TARGET(tgt)	((tgt) & 7)
218 
219 static bool skx_sad_decode(struct decoded_addr *res)
220 {
221 	struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
222 	u64 addr = res->addr;
223 	int i, idx, tgt, lchan, shift;
224 	u32 sad, ilv;
225 	u64 limit, prev_limit;
226 	int remote = 0;
227 
228 	/* Simple sanity check for I/O space or out of range */
229 	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
230 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
231 		return false;
232 	}
233 
234 restart:
235 	prev_limit = 0;
236 	for (i = 0; i < SKX_MAX_SAD; i++) {
237 		SKX_GET_SAD(d, i, sad);
238 		limit = SKX_SAD_LIMIT(sad);
239 		if (SKX_SAD_ENABLE(sad)) {
240 			if (addr >= prev_limit && addr <= limit)
241 				goto sad_found;
242 		}
243 		prev_limit = limit + 1;
244 	}
245 	edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
246 	return false;
247 
248 sad_found:
249 	SKX_GET_ILV(d, i, ilv);
250 
251 	switch (SKX_SAD_INTERLEAVE(sad)) {
252 	case 0:
253 		idx = GET_BITFIELD(addr, 6, 8);
254 		break;
255 	case 1:
256 		idx = GET_BITFIELD(addr, 8, 10);
257 		break;
258 	case 2:
259 		idx = GET_BITFIELD(addr, 12, 14);
260 		break;
261 	case 3:
262 		idx = GET_BITFIELD(addr, 30, 32);
263 		break;
264 	}
265 
266 	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
267 
268 	/* If point to another node, find it and start over */
269 	if (SKX_ILV_REMOTE(tgt)) {
270 		if (remote) {
271 			edac_dbg(0, "Double remote!\n");
272 			return false;
273 		}
274 		remote = 1;
275 		list_for_each_entry(d, skx_edac_list, list) {
276 			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
277 				goto restart;
278 		}
279 		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
280 		return false;
281 	}
282 
283 	if (SKX_SAD_MOD3(sad) == 0) {
284 		lchan = SKX_ILV_TARGET(tgt);
285 	} else {
286 		switch (SKX_SAD_MOD3MODE(sad)) {
287 		case 0:
288 			shift = 6;
289 			break;
290 		case 1:
291 			shift = 8;
292 			break;
293 		case 2:
294 			shift = 12;
295 			break;
296 		default:
297 			edac_dbg(0, "illegal mod3mode\n");
298 			return false;
299 		}
300 		switch (SKX_SAD_MOD3ASMOD2(sad)) {
301 		case 0:
302 			lchan = (addr >> shift) % 3;
303 			break;
304 		case 1:
305 			lchan = (addr >> shift) % 2;
306 			break;
307 		case 2:
308 			lchan = (addr >> shift) % 2;
309 			lchan = (lchan << 1) | !lchan;
310 			break;
311 		case 3:
312 			lchan = ((addr >> shift) % 2) << 1;
313 			break;
314 		}
315 		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
316 	}
317 
318 	res->dev = d;
319 	res->socket = d->imc[0].src_id;
320 	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
321 	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
322 
323 	edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
324 		 res->addr, res->socket, res->imc, res->channel);
325 	return true;
326 }
327 
328 #define	SKX_MAX_TAD 8
329 
330 #define SKX_GET_TADBASE(d, mc, i, reg)			\
331 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
332 #define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
333 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
334 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
335 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
336 
337 #define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
338 #define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
339 #define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
340 #define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
341 #define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
342 #define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
343 #define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)
344 
345 /* which bit used for both socket and channel interleave */
346 static int skx_granularity[] = { 6, 8, 12, 30 };
347 
348 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
349 {
350 	addr >>= shift;
351 	addr /= ways;
352 	addr <<= shift;
353 
354 	return addr | (lowbits & ((1ull << shift) - 1));
355 }
356 
357 static bool skx_tad_decode(struct decoded_addr *res)
358 {
359 	int i;
360 	u32 base, wayness, chnilvoffset;
361 	int skt_interleave_bit, chn_interleave_bit;
362 	u64 channel_addr;
363 
364 	for (i = 0; i < SKX_MAX_TAD; i++) {
365 		SKX_GET_TADBASE(res->dev, res->imc, i, base);
366 		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
367 		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
368 			goto tad_found;
369 	}
370 	edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
371 	return false;
372 
373 tad_found:
374 	res->sktways = SKX_TAD_SKTWAYS(wayness);
375 	res->chanways = SKX_TAD_CHNWAYS(wayness);
376 	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
377 	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
378 
379 	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
380 	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
381 
382 	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
383 		/* Must handle channel first, then socket */
384 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
385 						 res->chanways, channel_addr);
386 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
387 						 res->sktways, channel_addr);
388 	} else {
389 		/* Handle socket then channel. Preserve low bits from original address */
390 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
391 						 res->sktways, res->addr);
392 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
393 						 res->chanways, res->addr);
394 	}
395 
396 	res->chan_addr = channel_addr;
397 
398 	edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
399 		 res->addr, res->chan_addr, res->sktways, res->chanways);
400 	return true;
401 }
402 
403 #define SKX_MAX_RIR 4
404 
405 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
406 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
407 			      0x108 + 4 * (i), &(reg))
408 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
409 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
410 			      0x120 + 16 * (idx) + 4 * (i), &(reg))
411 
412 #define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
413 #define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
414 #define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
415 #define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
416 #define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
417 
418 static bool skx_rir_decode(struct decoded_addr *res)
419 {
420 	int i, idx, chan_rank;
421 	int shift;
422 	u32 rirway, rirlv;
423 	u64 rank_addr, prev_limit = 0, limit;
424 
425 	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
426 		shift = 6;
427 	else
428 		shift = 13;
429 
430 	for (i = 0; i < SKX_MAX_RIR; i++) {
431 		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
432 		limit = SKX_RIR_LIMIT(rirway);
433 		if (SKX_RIR_VALID(rirway)) {
434 			if (prev_limit <= res->chan_addr &&
435 			    res->chan_addr <= limit)
436 				goto rir_found;
437 		}
438 		prev_limit = limit;
439 	}
440 	edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
441 	return false;
442 
443 rir_found:
444 	rank_addr = res->chan_addr >> shift;
445 	rank_addr /= SKX_RIR_WAYS(rirway);
446 	rank_addr <<= shift;
447 	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
448 
449 	res->rank_address = rank_addr;
450 	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
451 
452 	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
453 	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
454 	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
455 	res->channel_rank = chan_rank;
456 	res->dimm = chan_rank / 4;
457 	res->rank = chan_rank % 4;
458 
459 	edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
460 		 res->addr, res->dimm, res->rank,
461 		 res->channel_rank, res->rank_address);
462 	return true;
463 }
464 
465 static u8 skx_close_row[] = {
466 	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
467 };
468 
469 static u8 skx_close_column[] = {
470 	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
471 };
472 
473 static u8 skx_open_row[] = {
474 	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
475 };
476 
477 static u8 skx_open_column[] = {
478 	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
479 };
480 
481 static u8 skx_open_fine_column[] = {
482 	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
483 };
484 
485 static int skx_bits(u64 addr, int nbits, u8 *bits)
486 {
487 	int i, res = 0;
488 
489 	for (i = 0; i < nbits; i++)
490 		res |= ((addr >> bits[i]) & 1) << i;
491 	return res;
492 }
493 
494 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
495 {
496 	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
497 
498 	if (do_xor)
499 		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
500 
501 	return ret;
502 }
503 
504 static bool skx_mad_decode(struct decoded_addr *r)
505 {
506 	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
507 	int bg0 = dimm->fine_grain_bank ? 6 : 13;
508 
509 	if (dimm->close_pg) {
510 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
511 		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
512 		r->column |= 0x400; /* C10 is autoprecharge, always set */
513 		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
514 		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
515 	} else {
516 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
517 		if (dimm->fine_grain_bank)
518 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
519 		else
520 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
521 		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
522 		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
523 	}
524 	r->row &= (1u << dimm->rowbits) - 1;
525 
526 	edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
527 		 r->addr, r->row, r->column, r->bank_address,
528 		 r->bank_group);
529 	return true;
530 }
531 
532 static bool skx_decode(struct decoded_addr *res)
533 {
534 	return skx_sad_decode(res) && skx_tad_decode(res) &&
535 		skx_rir_decode(res) && skx_mad_decode(res);
536 }
537 
538 static struct notifier_block skx_mce_dec = {
539 	.notifier_call	= skx_mce_check_error,
540 	.priority	= MCE_PRIO_EDAC,
541 };
542 
543 /*
544  * skx_init:
545  *	make sure we are running on the correct cpu model
546  *	search for all the devices we need
547  *	check which DIMMs are present.
548  */
549 static int __init skx_init(void)
550 {
551 	const struct x86_cpu_id *id;
552 	const struct munit *m;
553 	const char *owner;
554 	int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
555 	u8 mc = 0, src_id, node_id;
556 	struct skx_dev *d;
557 
558 	edac_dbg(2, "\n");
559 
560 	owner = edac_get_owner();
561 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
562 		return -EBUSY;
563 
564 	id = x86_match_cpu(skx_cpuids);
565 	if (!id)
566 		return -ENODEV;
567 
568 	rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
569 	if (rc)
570 		return rc;
571 
572 	rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list);
573 	if (rc < 0)
574 		goto fail;
575 	if (rc == 0) {
576 		edac_dbg(2, "No memory controllers found\n");
577 		return -ENODEV;
578 	}
579 	skx_num_sockets = rc;
580 
581 	for (m = skx_all_munits; m->did; m++) {
582 		rc = get_all_munits(m);
583 		if (rc < 0)
584 			goto fail;
585 		if (rc != m->per_socket * skx_num_sockets) {
586 			edac_dbg(2, "Expected %d, got %d of 0x%x\n",
587 				 m->per_socket * skx_num_sockets, rc, m->did);
588 			rc = -ENODEV;
589 			goto fail;
590 		}
591 	}
592 
593 	list_for_each_entry(d, skx_edac_list, list) {
594 		rc = skx_get_src_id(d, &src_id);
595 		if (rc < 0)
596 			goto fail;
597 		rc = skx_get_node_id(d, &node_id);
598 		if (rc < 0)
599 			goto fail;
600 		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
601 		for (i = 0; i < SKX_NUM_IMC; i++) {
602 			d->imc[i].mc = mc++;
603 			d->imc[i].lmc = i;
604 			d->imc[i].src_id = src_id;
605 			d->imc[i].node_id = node_id;
606 			rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
607 					      "Skylake Socket", EDAC_MOD_STR,
608 					      skx_get_dimm_config);
609 			if (rc < 0)
610 				goto fail;
611 		}
612 	}
613 
614 	skx_set_decode(skx_decode);
615 
616 	if (nvdimm_count && skx_adxl_get() == -ENODEV)
617 		skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
618 
619 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
620 	opstate_init();
621 
622 	setup_skx_debug("skx_test");
623 
624 	mce_register_decode_chain(&skx_mce_dec);
625 
626 	return 0;
627 fail:
628 	skx_remove();
629 	return rc;
630 }
631 
632 static void __exit skx_exit(void)
633 {
634 	edac_dbg(2, "\n");
635 	mce_unregister_decode_chain(&skx_mce_dec);
636 	teardown_skx_debug();
637 	if (nvdimm_count)
638 		skx_adxl_put();
639 	skx_remove();
640 }
641 
642 module_init(skx_init);
643 module_exit(skx_exit);
644 
645 module_param(edac_op_state, int, 0444);
646 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
647 
648 MODULE_LICENSE("GPL v2");
649 MODULE_AUTHOR("Tony Luck");
650 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
651