xref: /openbmc/linux/drivers/edac/skx_base.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * EDAC driver for Intel(R) Xeon(R) Skylake processors
4  * Copyright (c) 2016, Intel Corporation.
5  */
6 
7 #include <linux/kernel.h>
8 #include <linux/processor.h>
9 #include <asm/cpu_device_id.h>
10 #include <asm/intel-family.h>
11 #include <asm/mce.h>
12 
13 #include "edac_module.h"
14 #include "skx_common.h"
15 
16 #define EDAC_MOD_STR    "skx_edac"
17 
18 /*
19  * Debug macros
20  */
21 #define skx_printk(level, fmt, arg...)			\
22 	edac_printk(level, "skx", fmt, ##arg)
23 
24 #define skx_mc_printk(mci, level, fmt, arg...)		\
25 	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
26 
27 static struct list_head *skx_edac_list;
28 
29 static u64 skx_tolm, skx_tohm;
30 static int skx_num_sockets;
31 static unsigned int nvdimm_count;
32 
33 #define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
34 #define MASK29	0x1FFFFFFF		/* Mask for 2^29 */
35 
36 static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
37 {
38 	struct skx_dev *d;
39 
40 	list_for_each_entry(d, skx_edac_list, list) {
41 		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
42 			return d;
43 	}
44 
45 	return NULL;
46 }
47 
48 enum munittype {
49 	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD,
50 	ERRCHAN0, ERRCHAN1, ERRCHAN2,
51 };
52 
53 struct munit {
54 	u16	did;
55 	u16	devfn[SKX_NUM_IMC];
56 	u8	busidx;
57 	u8	per_socket;
58 	enum munittype mtype;
59 };
60 
61 /*
62  * List of PCI device ids that we need together with some device
63  * number and function numbers to tell which memory controller the
64  * device belongs to.
65  */
66 static const struct munit skx_all_munits[] = {
67 	{ 0x2054, { }, 1, 1, SAD_ALL },
68 	{ 0x2055, { }, 1, 1, UTIL_ALL },
69 	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
70 	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
71 	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
72 	{ 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0 },
73 	{ 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1 },
74 	{ 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2 },
75 	{ 0x208e, { }, 1, 0, SAD },
76 	{ }
77 };
78 
79 static int get_all_munits(const struct munit *m)
80 {
81 	struct pci_dev *pdev, *prev;
82 	struct skx_dev *d;
83 	u32 reg;
84 	int i = 0, ndev = 0;
85 
86 	prev = NULL;
87 	for (;;) {
88 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
89 		if (!pdev)
90 			break;
91 		ndev++;
92 		if (m->per_socket == SKX_NUM_IMC) {
93 			for (i = 0; i < SKX_NUM_IMC; i++)
94 				if (m->devfn[i] == pdev->devfn)
95 					break;
96 			if (i == SKX_NUM_IMC)
97 				goto fail;
98 		}
99 		d = get_skx_dev(pdev->bus, m->busidx);
100 		if (!d)
101 			goto fail;
102 
103 		/* Be sure that the device is enabled */
104 		if (unlikely(pci_enable_device(pdev) < 0)) {
105 			skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
106 				   PCI_VENDOR_ID_INTEL, m->did);
107 			goto fail;
108 		}
109 
110 		switch (m->mtype) {
111 		case CHAN0:
112 		case CHAN1:
113 		case CHAN2:
114 			pci_dev_get(pdev);
115 			d->imc[i].chan[m->mtype].cdev = pdev;
116 			break;
117 		case ERRCHAN0:
118 		case ERRCHAN1:
119 		case ERRCHAN2:
120 			pci_dev_get(pdev);
121 			d->imc[i].chan[m->mtype - ERRCHAN0].edev = pdev;
122 			break;
123 		case SAD_ALL:
124 			pci_dev_get(pdev);
125 			d->sad_all = pdev;
126 			break;
127 		case UTIL_ALL:
128 			pci_dev_get(pdev);
129 			d->util_all = pdev;
130 			break;
131 		case SAD:
132 			/*
133 			 * one of these devices per core, including cores
134 			 * that don't exist on this SKU. Ignore any that
135 			 * read a route table of zero, make sure all the
136 			 * non-zero values match.
137 			 */
138 			pci_read_config_dword(pdev, 0xB4, &reg);
139 			if (reg != 0) {
140 				if (d->mcroute == 0) {
141 					d->mcroute = reg;
142 				} else if (d->mcroute != reg) {
143 					skx_printk(KERN_ERR, "mcroute mismatch\n");
144 					goto fail;
145 				}
146 			}
147 			ndev--;
148 			break;
149 		}
150 
151 		prev = pdev;
152 	}
153 
154 	return ndev;
155 fail:
156 	pci_dev_put(pdev);
157 	return -ENODEV;
158 }
159 
160 static struct res_config skx_cfg = {
161 	.type			= SKX,
162 	.decs_did		= 0x2016,
163 	.busno_cfg_offset	= 0xcc,
164 };
165 
166 static const struct x86_cpu_id skx_cpuids[] = {
167 	X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X,	&skx_cfg),
168 	{ }
169 };
170 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
171 
172 static bool skx_check_ecc(u32 mcmtr)
173 {
174 	return !!GET_BITFIELD(mcmtr, 2, 2);
175 }
176 
177 static int skx_get_dimm_config(struct mem_ctl_info *mci)
178 {
179 	struct skx_pvt *pvt = mci->pvt_info;
180 	u32 mtr, mcmtr, amap, mcddrtcfg;
181 	struct skx_imc *imc = pvt->imc;
182 	struct dimm_info *dimm;
183 	int i, j;
184 	int ndimms;
185 
186 	/* Only the mcmtr on the first channel is effective */
187 	pci_read_config_dword(imc->chan[0].cdev, 0x87c, &mcmtr);
188 
189 	for (i = 0; i < SKX_NUM_CHANNELS; i++) {
190 		ndimms = 0;
191 		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
192 		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
193 		for (j = 0; j < SKX_NUM_DIMMS; j++) {
194 			dimm = edac_get_dimm(mci, i, j, 0);
195 			pci_read_config_dword(imc->chan[i].cdev,
196 					      0x80 + 4 * j, &mtr);
197 			if (IS_DIMM_PRESENT(mtr)) {
198 				ndimms += skx_get_dimm_info(mtr, mcmtr, amap, dimm, imc, i, j);
199 			} else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
200 				ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
201 							      EDAC_MOD_STR);
202 				nvdimm_count++;
203 			}
204 		}
205 		if (ndimms && !skx_check_ecc(mcmtr)) {
206 			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
207 			return -ENODEV;
208 		}
209 	}
210 
211 	return 0;
212 }
213 
214 #define	SKX_MAX_SAD 24
215 
216 #define SKX_GET_SAD(d, i, reg)	\
217 	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
218 #define SKX_GET_ILV(d, i, reg)	\
219 	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
220 
221 #define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
222 #define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
223 #define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
224 #define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
225 #define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
226 #define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
227 #define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)
228 
229 #define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
230 #define SKX_ILV_TARGET(tgt)	((tgt) & 7)
231 
232 static void skx_show_retry_rd_err_log(struct decoded_addr *res,
233 				      char *msg, int len)
234 {
235 	u32 log0, log1, log2, log3, log4;
236 	u32 corr0, corr1, corr2, corr3;
237 	struct pci_dev *edev;
238 	int n;
239 
240 	edev = res->dev->imc[res->imc].chan[res->channel].edev;
241 
242 	pci_read_config_dword(edev, 0x154, &log0);
243 	pci_read_config_dword(edev, 0x148, &log1);
244 	pci_read_config_dword(edev, 0x150, &log2);
245 	pci_read_config_dword(edev, 0x15c, &log3);
246 	pci_read_config_dword(edev, 0x114, &log4);
247 
248 	n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
249 		     log0, log1, log2, log3, log4);
250 
251 	pci_read_config_dword(edev, 0x104, &corr0);
252 	pci_read_config_dword(edev, 0x108, &corr1);
253 	pci_read_config_dword(edev, 0x10c, &corr2);
254 	pci_read_config_dword(edev, 0x110, &corr3);
255 
256 	if (len - n > 0)
257 		snprintf(msg + n, len - n,
258 			 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
259 			 corr0 & 0xffff, corr0 >> 16,
260 			 corr1 & 0xffff, corr1 >> 16,
261 			 corr2 & 0xffff, corr2 >> 16,
262 			 corr3 & 0xffff, corr3 >> 16);
263 }
264 
265 static bool skx_sad_decode(struct decoded_addr *res)
266 {
267 	struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
268 	u64 addr = res->addr;
269 	int i, idx, tgt, lchan, shift;
270 	u32 sad, ilv;
271 	u64 limit, prev_limit;
272 	int remote = 0;
273 
274 	/* Simple sanity check for I/O space or out of range */
275 	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
276 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
277 		return false;
278 	}
279 
280 restart:
281 	prev_limit = 0;
282 	for (i = 0; i < SKX_MAX_SAD; i++) {
283 		SKX_GET_SAD(d, i, sad);
284 		limit = SKX_SAD_LIMIT(sad);
285 		if (SKX_SAD_ENABLE(sad)) {
286 			if (addr >= prev_limit && addr <= limit)
287 				goto sad_found;
288 		}
289 		prev_limit = limit + 1;
290 	}
291 	edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
292 	return false;
293 
294 sad_found:
295 	SKX_GET_ILV(d, i, ilv);
296 
297 	switch (SKX_SAD_INTERLEAVE(sad)) {
298 	case 0:
299 		idx = GET_BITFIELD(addr, 6, 8);
300 		break;
301 	case 1:
302 		idx = GET_BITFIELD(addr, 8, 10);
303 		break;
304 	case 2:
305 		idx = GET_BITFIELD(addr, 12, 14);
306 		break;
307 	case 3:
308 		idx = GET_BITFIELD(addr, 30, 32);
309 		break;
310 	}
311 
312 	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
313 
314 	/* If point to another node, find it and start over */
315 	if (SKX_ILV_REMOTE(tgt)) {
316 		if (remote) {
317 			edac_dbg(0, "Double remote!\n");
318 			return false;
319 		}
320 		remote = 1;
321 		list_for_each_entry(d, skx_edac_list, list) {
322 			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
323 				goto restart;
324 		}
325 		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
326 		return false;
327 	}
328 
329 	if (SKX_SAD_MOD3(sad) == 0) {
330 		lchan = SKX_ILV_TARGET(tgt);
331 	} else {
332 		switch (SKX_SAD_MOD3MODE(sad)) {
333 		case 0:
334 			shift = 6;
335 			break;
336 		case 1:
337 			shift = 8;
338 			break;
339 		case 2:
340 			shift = 12;
341 			break;
342 		default:
343 			edac_dbg(0, "illegal mod3mode\n");
344 			return false;
345 		}
346 		switch (SKX_SAD_MOD3ASMOD2(sad)) {
347 		case 0:
348 			lchan = (addr >> shift) % 3;
349 			break;
350 		case 1:
351 			lchan = (addr >> shift) % 2;
352 			break;
353 		case 2:
354 			lchan = (addr >> shift) % 2;
355 			lchan = (lchan << 1) | !lchan;
356 			break;
357 		case 3:
358 			lchan = ((addr >> shift) % 2) << 1;
359 			break;
360 		}
361 		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
362 	}
363 
364 	res->dev = d;
365 	res->socket = d->imc[0].src_id;
366 	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
367 	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
368 
369 	edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
370 		 res->addr, res->socket, res->imc, res->channel);
371 	return true;
372 }
373 
374 #define	SKX_MAX_TAD 8
375 
376 #define SKX_GET_TADBASE(d, mc, i, reg)			\
377 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
378 #define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
379 	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
380 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
381 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
382 
383 #define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
384 #define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
385 #define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
386 #define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
387 #define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
388 #define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
389 #define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)
390 
391 /* which bit used for both socket and channel interleave */
392 static int skx_granularity[] = { 6, 8, 12, 30 };
393 
394 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
395 {
396 	addr >>= shift;
397 	addr /= ways;
398 	addr <<= shift;
399 
400 	return addr | (lowbits & ((1ull << shift) - 1));
401 }
402 
403 static bool skx_tad_decode(struct decoded_addr *res)
404 {
405 	int i;
406 	u32 base, wayness, chnilvoffset;
407 	int skt_interleave_bit, chn_interleave_bit;
408 	u64 channel_addr;
409 
410 	for (i = 0; i < SKX_MAX_TAD; i++) {
411 		SKX_GET_TADBASE(res->dev, res->imc, i, base);
412 		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
413 		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
414 			goto tad_found;
415 	}
416 	edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
417 	return false;
418 
419 tad_found:
420 	res->sktways = SKX_TAD_SKTWAYS(wayness);
421 	res->chanways = SKX_TAD_CHNWAYS(wayness);
422 	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
423 	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
424 
425 	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
426 	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
427 
428 	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
429 		/* Must handle channel first, then socket */
430 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
431 						 res->chanways, channel_addr);
432 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
433 						 res->sktways, channel_addr);
434 	} else {
435 		/* Handle socket then channel. Preserve low bits from original address */
436 		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
437 						 res->sktways, res->addr);
438 		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
439 						 res->chanways, res->addr);
440 	}
441 
442 	res->chan_addr = channel_addr;
443 
444 	edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
445 		 res->addr, res->chan_addr, res->sktways, res->chanways);
446 	return true;
447 }
448 
449 #define SKX_MAX_RIR 4
450 
451 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
452 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
453 			      0x108 + 4 * (i), &(reg))
454 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
455 	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
456 			      0x120 + 16 * (idx) + 4 * (i), &(reg))
457 
458 #define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
459 #define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
460 #define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
461 #define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
462 #define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
463 
464 static bool skx_rir_decode(struct decoded_addr *res)
465 {
466 	int i, idx, chan_rank;
467 	int shift;
468 	u32 rirway, rirlv;
469 	u64 rank_addr, prev_limit = 0, limit;
470 
471 	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
472 		shift = 6;
473 	else
474 		shift = 13;
475 
476 	for (i = 0; i < SKX_MAX_RIR; i++) {
477 		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
478 		limit = SKX_RIR_LIMIT(rirway);
479 		if (SKX_RIR_VALID(rirway)) {
480 			if (prev_limit <= res->chan_addr &&
481 			    res->chan_addr <= limit)
482 				goto rir_found;
483 		}
484 		prev_limit = limit;
485 	}
486 	edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
487 	return false;
488 
489 rir_found:
490 	rank_addr = res->chan_addr >> shift;
491 	rank_addr /= SKX_RIR_WAYS(rirway);
492 	rank_addr <<= shift;
493 	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
494 
495 	res->rank_address = rank_addr;
496 	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
497 
498 	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
499 	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
500 	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
501 	res->channel_rank = chan_rank;
502 	res->dimm = chan_rank / 4;
503 	res->rank = chan_rank % 4;
504 
505 	edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
506 		 res->addr, res->dimm, res->rank,
507 		 res->channel_rank, res->rank_address);
508 	return true;
509 }
510 
511 static u8 skx_close_row[] = {
512 	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
513 };
514 
515 static u8 skx_close_column[] = {
516 	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
517 };
518 
519 static u8 skx_open_row[] = {
520 	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
521 };
522 
523 static u8 skx_open_column[] = {
524 	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
525 };
526 
527 static u8 skx_open_fine_column[] = {
528 	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
529 };
530 
531 static int skx_bits(u64 addr, int nbits, u8 *bits)
532 {
533 	int i, res = 0;
534 
535 	for (i = 0; i < nbits; i++)
536 		res |= ((addr >> bits[i]) & 1) << i;
537 	return res;
538 }
539 
540 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
541 {
542 	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
543 
544 	if (do_xor)
545 		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
546 
547 	return ret;
548 }
549 
550 static bool skx_mad_decode(struct decoded_addr *r)
551 {
552 	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
553 	int bg0 = dimm->fine_grain_bank ? 6 : 13;
554 
555 	if (dimm->close_pg) {
556 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
557 		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
558 		r->column |= 0x400; /* C10 is autoprecharge, always set */
559 		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
560 		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
561 	} else {
562 		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
563 		if (dimm->fine_grain_bank)
564 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
565 		else
566 			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
567 		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
568 		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
569 	}
570 	r->row &= (1u << dimm->rowbits) - 1;
571 
572 	edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
573 		 r->addr, r->row, r->column, r->bank_address,
574 		 r->bank_group);
575 	return true;
576 }
577 
578 static bool skx_decode(struct decoded_addr *res)
579 {
580 	return skx_sad_decode(res) && skx_tad_decode(res) &&
581 		skx_rir_decode(res) && skx_mad_decode(res);
582 }
583 
584 static struct notifier_block skx_mce_dec = {
585 	.notifier_call	= skx_mce_check_error,
586 	.priority	= MCE_PRIO_EDAC,
587 };
588 
589 #ifdef CONFIG_EDAC_DEBUG
590 /*
591  * Debug feature.
592  * Exercise the address decode logic by writing an address to
593  * /sys/kernel/debug/edac/skx_test/addr.
594  */
595 static struct dentry *skx_test;
596 
597 static int debugfs_u64_set(void *data, u64 val)
598 {
599 	struct mce m;
600 
601 	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
602 
603 	memset(&m, 0, sizeof(m));
604 	/* ADDRV + MemRd + Unknown channel */
605 	m.status = MCI_STATUS_ADDRV + 0x90;
606 	/* One corrected error */
607 	m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
608 	m.addr = val;
609 	skx_mce_check_error(NULL, 0, &m);
610 
611 	return 0;
612 }
613 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
614 
615 static void setup_skx_debug(void)
616 {
617 	skx_test = edac_debugfs_create_dir("skx_test");
618 	if (!skx_test)
619 		return;
620 
621 	if (!edac_debugfs_create_file("addr", 0200, skx_test,
622 				      NULL, &fops_u64_wo)) {
623 		debugfs_remove(skx_test);
624 		skx_test = NULL;
625 	}
626 }
627 
628 static void teardown_skx_debug(void)
629 {
630 	debugfs_remove_recursive(skx_test);
631 }
632 #else
633 static inline void setup_skx_debug(void) {}
634 static inline void teardown_skx_debug(void) {}
635 #endif /*CONFIG_EDAC_DEBUG*/
636 
637 /*
638  * skx_init:
639  *	make sure we are running on the correct cpu model
640  *	search for all the devices we need
641  *	check which DIMMs are present.
642  */
643 static int __init skx_init(void)
644 {
645 	const struct x86_cpu_id *id;
646 	struct res_config *cfg;
647 	const struct munit *m;
648 	const char *owner;
649 	int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
650 	u8 mc = 0, src_id, node_id;
651 	struct skx_dev *d;
652 
653 	edac_dbg(2, "\n");
654 
655 	owner = edac_get_owner();
656 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
657 		return -EBUSY;
658 
659 	id = x86_match_cpu(skx_cpuids);
660 	if (!id)
661 		return -ENODEV;
662 
663 	cfg = (struct res_config *)id->driver_data;
664 
665 	rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
666 	if (rc)
667 		return rc;
668 
669 	rc = skx_get_all_bus_mappings(cfg, &skx_edac_list);
670 	if (rc < 0)
671 		goto fail;
672 	if (rc == 0) {
673 		edac_dbg(2, "No memory controllers found\n");
674 		return -ENODEV;
675 	}
676 	skx_num_sockets = rc;
677 
678 	for (m = skx_all_munits; m->did; m++) {
679 		rc = get_all_munits(m);
680 		if (rc < 0)
681 			goto fail;
682 		if (rc != m->per_socket * skx_num_sockets) {
683 			edac_dbg(2, "Expected %d, got %d of 0x%x\n",
684 				 m->per_socket * skx_num_sockets, rc, m->did);
685 			rc = -ENODEV;
686 			goto fail;
687 		}
688 	}
689 
690 	list_for_each_entry(d, skx_edac_list, list) {
691 		rc = skx_get_src_id(d, 0xf0, &src_id);
692 		if (rc < 0)
693 			goto fail;
694 		rc = skx_get_node_id(d, &node_id);
695 		if (rc < 0)
696 			goto fail;
697 		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
698 		for (i = 0; i < SKX_NUM_IMC; i++) {
699 			d->imc[i].mc = mc++;
700 			d->imc[i].lmc = i;
701 			d->imc[i].src_id = src_id;
702 			d->imc[i].node_id = node_id;
703 			rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
704 					      "Skylake Socket", EDAC_MOD_STR,
705 					      skx_get_dimm_config);
706 			if (rc < 0)
707 				goto fail;
708 		}
709 	}
710 
711 	skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
712 
713 	if (nvdimm_count && skx_adxl_get() == -ENODEV)
714 		skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
715 
716 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
717 	opstate_init();
718 
719 	setup_skx_debug();
720 
721 	mce_register_decode_chain(&skx_mce_dec);
722 
723 	return 0;
724 fail:
725 	skx_remove();
726 	return rc;
727 }
728 
729 static void __exit skx_exit(void)
730 {
731 	edac_dbg(2, "\n");
732 	mce_unregister_decode_chain(&skx_mce_dec);
733 	teardown_skx_debug();
734 	if (nvdimm_count)
735 		skx_adxl_put();
736 	skx_remove();
737 }
738 
739 module_init(skx_init);
740 module_exit(skx_exit);
741 
742 module_param(edac_op_state, int, 0444);
743 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
744 
745 MODULE_LICENSE("GPL v2");
746 MODULE_AUTHOR("Tony Luck");
747 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
748