1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * EDAC driver for Intel(R) Xeon(R) Skylake processors 4 * Copyright (c) 2016, Intel Corporation. 5 */ 6 7 #include <linux/kernel.h> 8 #include <linux/processor.h> 9 #include <asm/cpu_device_id.h> 10 #include <asm/intel-family.h> 11 #include <asm/mce.h> 12 13 #include "edac_module.h" 14 #include "skx_common.h" 15 16 #define EDAC_MOD_STR "skx_edac" 17 18 /* 19 * Debug macros 20 */ 21 #define skx_printk(level, fmt, arg...) \ 22 edac_printk(level, "skx", fmt, ##arg) 23 24 #define skx_mc_printk(mci, level, fmt, arg...) \ 25 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg) 26 27 static struct list_head *skx_edac_list; 28 29 static u64 skx_tolm, skx_tohm; 30 static int skx_num_sockets; 31 static unsigned int nvdimm_count; 32 33 #define MASK26 0x3FFFFFF /* Mask for 2^26 */ 34 #define MASK29 0x1FFFFFFF /* Mask for 2^29 */ 35 36 static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx) 37 { 38 struct skx_dev *d; 39 40 list_for_each_entry(d, skx_edac_list, list) { 41 if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number) 42 return d; 43 } 44 45 return NULL; 46 } 47 48 enum munittype { 49 CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD 50 }; 51 52 struct munit { 53 u16 did; 54 u16 devfn[SKX_NUM_IMC]; 55 u8 busidx; 56 u8 per_socket; 57 enum munittype mtype; 58 }; 59 60 /* 61 * List of PCI device ids that we need together with some device 62 * number and function numbers to tell which memory controller the 63 * device belongs to. 64 */ 65 static const struct munit skx_all_munits[] = { 66 { 0x2054, { }, 1, 1, SAD_ALL }, 67 { 0x2055, { }, 1, 1, UTIL_ALL }, 68 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 }, 69 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 }, 70 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 }, 71 { 0x208e, { }, 1, 0, SAD }, 72 { } 73 }; 74 75 static int get_all_munits(const struct munit *m) 76 { 77 struct pci_dev *pdev, *prev; 78 struct skx_dev *d; 79 u32 reg; 80 int i = 0, ndev = 0; 81 82 prev = NULL; 83 for (;;) { 84 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev); 85 if (!pdev) 86 break; 87 ndev++; 88 if (m->per_socket == SKX_NUM_IMC) { 89 for (i = 0; i < SKX_NUM_IMC; i++) 90 if (m->devfn[i] == pdev->devfn) 91 break; 92 if (i == SKX_NUM_IMC) 93 goto fail; 94 } 95 d = get_skx_dev(pdev->bus, m->busidx); 96 if (!d) 97 goto fail; 98 99 /* Be sure that the device is enabled */ 100 if (unlikely(pci_enable_device(pdev) < 0)) { 101 skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n", 102 PCI_VENDOR_ID_INTEL, m->did); 103 goto fail; 104 } 105 106 switch (m->mtype) { 107 case CHAN0: case CHAN1: case CHAN2: 108 pci_dev_get(pdev); 109 d->imc[i].chan[m->mtype].cdev = pdev; 110 break; 111 case SAD_ALL: 112 pci_dev_get(pdev); 113 d->sad_all = pdev; 114 break; 115 case UTIL_ALL: 116 pci_dev_get(pdev); 117 d->util_all = pdev; 118 break; 119 case SAD: 120 /* 121 * one of these devices per core, including cores 122 * that don't exist on this SKU. Ignore any that 123 * read a route table of zero, make sure all the 124 * non-zero values match. 125 */ 126 pci_read_config_dword(pdev, 0xB4, ®); 127 if (reg != 0) { 128 if (d->mcroute == 0) { 129 d->mcroute = reg; 130 } else if (d->mcroute != reg) { 131 skx_printk(KERN_ERR, "mcroute mismatch\n"); 132 goto fail; 133 } 134 } 135 ndev--; 136 break; 137 } 138 139 prev = pdev; 140 } 141 142 return ndev; 143 fail: 144 pci_dev_put(pdev); 145 return -ENODEV; 146 } 147 148 static const struct x86_cpu_id skx_cpuids[] = { 149 { X86_VENDOR_INTEL, 6, INTEL_FAM6_SKYLAKE_X, 0, 0 }, 150 { } 151 }; 152 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids); 153 154 #define SKX_GET_MTMTR(dev, reg) \ 155 pci_read_config_dword((dev), 0x87c, &(reg)) 156 157 static bool skx_check_ecc(struct pci_dev *pdev) 158 { 159 u32 mtmtr; 160 161 SKX_GET_MTMTR(pdev, mtmtr); 162 163 return !!GET_BITFIELD(mtmtr, 2, 2); 164 } 165 166 static int skx_get_dimm_config(struct mem_ctl_info *mci) 167 { 168 struct skx_pvt *pvt = mci->pvt_info; 169 struct skx_imc *imc = pvt->imc; 170 u32 mtr, amap, mcddrtcfg; 171 struct dimm_info *dimm; 172 int i, j; 173 int ndimms; 174 175 for (i = 0; i < SKX_NUM_CHANNELS; i++) { 176 ndimms = 0; 177 pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap); 178 pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg); 179 for (j = 0; j < SKX_NUM_DIMMS; j++) { 180 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, 181 mci->n_layers, i, j, 0); 182 pci_read_config_dword(imc->chan[i].cdev, 183 0x80 + 4 * j, &mtr); 184 if (IS_DIMM_PRESENT(mtr)) { 185 ndimms += skx_get_dimm_info(mtr, amap, dimm, imc, i, j); 186 } else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) { 187 ndimms += skx_get_nvdimm_info(dimm, imc, i, j, 188 EDAC_MOD_STR); 189 nvdimm_count++; 190 } 191 } 192 if (ndimms && !skx_check_ecc(imc->chan[0].cdev)) { 193 skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc); 194 return -ENODEV; 195 } 196 } 197 198 return 0; 199 } 200 201 #define SKX_MAX_SAD 24 202 203 #define SKX_GET_SAD(d, i, reg) \ 204 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg)) 205 #define SKX_GET_ILV(d, i, reg) \ 206 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg)) 207 208 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31) 209 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27) 210 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26) 211 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6) 212 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4) 213 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2) 214 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0) 215 216 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0) 217 #define SKX_ILV_TARGET(tgt) ((tgt) & 7) 218 219 static bool skx_sad_decode(struct decoded_addr *res) 220 { 221 struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list); 222 u64 addr = res->addr; 223 int i, idx, tgt, lchan, shift; 224 u32 sad, ilv; 225 u64 limit, prev_limit; 226 int remote = 0; 227 228 /* Simple sanity check for I/O space or out of range */ 229 if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) { 230 edac_dbg(0, "Address 0x%llx out of range\n", addr); 231 return false; 232 } 233 234 restart: 235 prev_limit = 0; 236 for (i = 0; i < SKX_MAX_SAD; i++) { 237 SKX_GET_SAD(d, i, sad); 238 limit = SKX_SAD_LIMIT(sad); 239 if (SKX_SAD_ENABLE(sad)) { 240 if (addr >= prev_limit && addr <= limit) 241 goto sad_found; 242 } 243 prev_limit = limit + 1; 244 } 245 edac_dbg(0, "No SAD entry for 0x%llx\n", addr); 246 return false; 247 248 sad_found: 249 SKX_GET_ILV(d, i, ilv); 250 251 switch (SKX_SAD_INTERLEAVE(sad)) { 252 case 0: 253 idx = GET_BITFIELD(addr, 6, 8); 254 break; 255 case 1: 256 idx = GET_BITFIELD(addr, 8, 10); 257 break; 258 case 2: 259 idx = GET_BITFIELD(addr, 12, 14); 260 break; 261 case 3: 262 idx = GET_BITFIELD(addr, 30, 32); 263 break; 264 } 265 266 tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3); 267 268 /* If point to another node, find it and start over */ 269 if (SKX_ILV_REMOTE(tgt)) { 270 if (remote) { 271 edac_dbg(0, "Double remote!\n"); 272 return false; 273 } 274 remote = 1; 275 list_for_each_entry(d, skx_edac_list, list) { 276 if (d->imc[0].src_id == SKX_ILV_TARGET(tgt)) 277 goto restart; 278 } 279 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt)); 280 return false; 281 } 282 283 if (SKX_SAD_MOD3(sad) == 0) { 284 lchan = SKX_ILV_TARGET(tgt); 285 } else { 286 switch (SKX_SAD_MOD3MODE(sad)) { 287 case 0: 288 shift = 6; 289 break; 290 case 1: 291 shift = 8; 292 break; 293 case 2: 294 shift = 12; 295 break; 296 default: 297 edac_dbg(0, "illegal mod3mode\n"); 298 return false; 299 } 300 switch (SKX_SAD_MOD3ASMOD2(sad)) { 301 case 0: 302 lchan = (addr >> shift) % 3; 303 break; 304 case 1: 305 lchan = (addr >> shift) % 2; 306 break; 307 case 2: 308 lchan = (addr >> shift) % 2; 309 lchan = (lchan << 1) | !lchan; 310 break; 311 case 3: 312 lchan = ((addr >> shift) % 2) << 1; 313 break; 314 } 315 lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1); 316 } 317 318 res->dev = d; 319 res->socket = d->imc[0].src_id; 320 res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2); 321 res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19); 322 323 edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n", 324 res->addr, res->socket, res->imc, res->channel); 325 return true; 326 } 327 328 #define SKX_MAX_TAD 8 329 330 #define SKX_GET_TADBASE(d, mc, i, reg) \ 331 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg)) 332 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \ 333 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg)) 334 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \ 335 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg)) 336 337 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26) 338 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5) 339 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7) 340 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26) 341 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26) 342 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11)) 343 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1) 344 345 /* which bit used for both socket and channel interleave */ 346 static int skx_granularity[] = { 6, 8, 12, 30 }; 347 348 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits) 349 { 350 addr >>= shift; 351 addr /= ways; 352 addr <<= shift; 353 354 return addr | (lowbits & ((1ull << shift) - 1)); 355 } 356 357 static bool skx_tad_decode(struct decoded_addr *res) 358 { 359 int i; 360 u32 base, wayness, chnilvoffset; 361 int skt_interleave_bit, chn_interleave_bit; 362 u64 channel_addr; 363 364 for (i = 0; i < SKX_MAX_TAD; i++) { 365 SKX_GET_TADBASE(res->dev, res->imc, i, base); 366 SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness); 367 if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness)) 368 goto tad_found; 369 } 370 edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr); 371 return false; 372 373 tad_found: 374 res->sktways = SKX_TAD_SKTWAYS(wayness); 375 res->chanways = SKX_TAD_CHNWAYS(wayness); 376 skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)]; 377 chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)]; 378 379 SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset); 380 channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset); 381 382 if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) { 383 /* Must handle channel first, then socket */ 384 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, 385 res->chanways, channel_addr); 386 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, 387 res->sktways, channel_addr); 388 } else { 389 /* Handle socket then channel. Preserve low bits from original address */ 390 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit, 391 res->sktways, res->addr); 392 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit, 393 res->chanways, res->addr); 394 } 395 396 res->chan_addr = channel_addr; 397 398 edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n", 399 res->addr, res->chan_addr, res->sktways, res->chanways); 400 return true; 401 } 402 403 #define SKX_MAX_RIR 4 404 405 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \ 406 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ 407 0x108 + 4 * (i), &(reg)) 408 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \ 409 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \ 410 0x120 + 16 * (idx) + 4 * (i), &(reg)) 411 412 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31) 413 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29) 414 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29)) 415 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19) 416 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26)) 417 418 static bool skx_rir_decode(struct decoded_addr *res) 419 { 420 int i, idx, chan_rank; 421 int shift; 422 u32 rirway, rirlv; 423 u64 rank_addr, prev_limit = 0, limit; 424 425 if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg) 426 shift = 6; 427 else 428 shift = 13; 429 430 for (i = 0; i < SKX_MAX_RIR; i++) { 431 SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway); 432 limit = SKX_RIR_LIMIT(rirway); 433 if (SKX_RIR_VALID(rirway)) { 434 if (prev_limit <= res->chan_addr && 435 res->chan_addr <= limit) 436 goto rir_found; 437 } 438 prev_limit = limit; 439 } 440 edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr); 441 return false; 442 443 rir_found: 444 rank_addr = res->chan_addr >> shift; 445 rank_addr /= SKX_RIR_WAYS(rirway); 446 rank_addr <<= shift; 447 rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0); 448 449 res->rank_address = rank_addr; 450 idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway); 451 452 SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv); 453 res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv); 454 chan_rank = SKX_RIR_CHAN_RANK(rirlv); 455 res->channel_rank = chan_rank; 456 res->dimm = chan_rank / 4; 457 res->rank = chan_rank % 4; 458 459 edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n", 460 res->addr, res->dimm, res->rank, 461 res->channel_rank, res->rank_address); 462 return true; 463 } 464 465 static u8 skx_close_row[] = { 466 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33 467 }; 468 469 static u8 skx_close_column[] = { 470 3, 4, 5, 14, 19, 23, 24, 25, 26, 27 471 }; 472 473 static u8 skx_open_row[] = { 474 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33 475 }; 476 477 static u8 skx_open_column[] = { 478 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 479 }; 480 481 static u8 skx_open_fine_column[] = { 482 3, 4, 5, 7, 8, 9, 10, 11, 12, 13 483 }; 484 485 static int skx_bits(u64 addr, int nbits, u8 *bits) 486 { 487 int i, res = 0; 488 489 for (i = 0; i < nbits; i++) 490 res |= ((addr >> bits[i]) & 1) << i; 491 return res; 492 } 493 494 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1) 495 { 496 int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1); 497 498 if (do_xor) 499 ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1); 500 501 return ret; 502 } 503 504 static bool skx_mad_decode(struct decoded_addr *r) 505 { 506 struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm]; 507 int bg0 = dimm->fine_grain_bank ? 6 : 13; 508 509 if (dimm->close_pg) { 510 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row); 511 r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column); 512 r->column |= 0x400; /* C10 is autoprecharge, always set */ 513 r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28); 514 r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21); 515 } else { 516 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row); 517 if (dimm->fine_grain_bank) 518 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column); 519 else 520 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column); 521 r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23); 522 r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21); 523 } 524 r->row &= (1u << dimm->rowbits) - 1; 525 526 edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n", 527 r->addr, r->row, r->column, r->bank_address, 528 r->bank_group); 529 return true; 530 } 531 532 static bool skx_decode(struct decoded_addr *res) 533 { 534 return skx_sad_decode(res) && skx_tad_decode(res) && 535 skx_rir_decode(res) && skx_mad_decode(res); 536 } 537 538 static struct notifier_block skx_mce_dec = { 539 .notifier_call = skx_mce_check_error, 540 .priority = MCE_PRIO_EDAC, 541 }; 542 543 #ifdef CONFIG_EDAC_DEBUG 544 /* 545 * Debug feature. 546 * Exercise the address decode logic by writing an address to 547 * /sys/kernel/debug/edac/skx_test/addr. 548 */ 549 static struct dentry *skx_test; 550 551 static int debugfs_u64_set(void *data, u64 val) 552 { 553 struct mce m; 554 555 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val); 556 557 memset(&m, 0, sizeof(m)); 558 /* ADDRV + MemRd + Unknown channel */ 559 m.status = MCI_STATUS_ADDRV + 0x90; 560 /* One corrected error */ 561 m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT); 562 m.addr = val; 563 skx_mce_check_error(NULL, 0, &m); 564 565 return 0; 566 } 567 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); 568 569 static void setup_skx_debug(void) 570 { 571 skx_test = edac_debugfs_create_dir("skx_test"); 572 if (!skx_test) 573 return; 574 575 if (!edac_debugfs_create_file("addr", 0200, skx_test, 576 NULL, &fops_u64_wo)) { 577 debugfs_remove(skx_test); 578 skx_test = NULL; 579 } 580 } 581 582 static void teardown_skx_debug(void) 583 { 584 debugfs_remove_recursive(skx_test); 585 } 586 #else 587 static inline void setup_skx_debug(void) {} 588 static inline void teardown_skx_debug(void) {} 589 #endif /*CONFIG_EDAC_DEBUG*/ 590 591 /* 592 * skx_init: 593 * make sure we are running on the correct cpu model 594 * search for all the devices we need 595 * check which DIMMs are present. 596 */ 597 static int __init skx_init(void) 598 { 599 const struct x86_cpu_id *id; 600 const struct munit *m; 601 const char *owner; 602 int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8}; 603 u8 mc = 0, src_id, node_id; 604 struct skx_dev *d; 605 606 edac_dbg(2, "\n"); 607 608 owner = edac_get_owner(); 609 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) 610 return -EBUSY; 611 612 id = x86_match_cpu(skx_cpuids); 613 if (!id) 614 return -ENODEV; 615 616 rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm); 617 if (rc) 618 return rc; 619 620 rc = skx_get_all_bus_mappings(0x2016, 0xcc, SKX, &skx_edac_list); 621 if (rc < 0) 622 goto fail; 623 if (rc == 0) { 624 edac_dbg(2, "No memory controllers found\n"); 625 return -ENODEV; 626 } 627 skx_num_sockets = rc; 628 629 for (m = skx_all_munits; m->did; m++) { 630 rc = get_all_munits(m); 631 if (rc < 0) 632 goto fail; 633 if (rc != m->per_socket * skx_num_sockets) { 634 edac_dbg(2, "Expected %d, got %d of 0x%x\n", 635 m->per_socket * skx_num_sockets, rc, m->did); 636 rc = -ENODEV; 637 goto fail; 638 } 639 } 640 641 list_for_each_entry(d, skx_edac_list, list) { 642 rc = skx_get_src_id(d, &src_id); 643 if (rc < 0) 644 goto fail; 645 rc = skx_get_node_id(d, &node_id); 646 if (rc < 0) 647 goto fail; 648 edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id); 649 for (i = 0; i < SKX_NUM_IMC; i++) { 650 d->imc[i].mc = mc++; 651 d->imc[i].lmc = i; 652 d->imc[i].src_id = src_id; 653 d->imc[i].node_id = node_id; 654 rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev, 655 "Skylake Socket", EDAC_MOD_STR, 656 skx_get_dimm_config); 657 if (rc < 0) 658 goto fail; 659 } 660 } 661 662 skx_set_decode(skx_decode); 663 664 if (nvdimm_count && skx_adxl_get() == -ENODEV) 665 skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n"); 666 667 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 668 opstate_init(); 669 670 setup_skx_debug(); 671 672 mce_register_decode_chain(&skx_mce_dec); 673 674 return 0; 675 fail: 676 skx_remove(); 677 return rc; 678 } 679 680 static void __exit skx_exit(void) 681 { 682 edac_dbg(2, "\n"); 683 mce_unregister_decode_chain(&skx_mce_dec); 684 teardown_skx_debug(); 685 if (nvdimm_count) 686 skx_adxl_put(); 687 skx_remove(); 688 } 689 690 module_init(skx_init); 691 module_exit(skx_exit); 692 693 module_param(edac_op_state, int, 0444); 694 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 695 696 MODULE_LICENSE("GPL v2"); 697 MODULE_AUTHOR("Tony Luck"); 698 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors"); 699