1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * EDAC driver for Intel(R) Xeon(R) Skylake processors
4 * Copyright (c) 2016, Intel Corporation.
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/processor.h>
9 #include <asm/cpu_device_id.h>
10 #include <asm/intel-family.h>
11 #include <asm/mce.h>
12
13 #include "edac_module.h"
14 #include "skx_common.h"
15
16 #define EDAC_MOD_STR "skx_edac"
17
18 /*
19 * Debug macros
20 */
21 #define skx_printk(level, fmt, arg...) \
22 edac_printk(level, "skx", fmt, ##arg)
23
24 #define skx_mc_printk(mci, level, fmt, arg...) \
25 edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)
26
27 static struct list_head *skx_edac_list;
28
29 static u64 skx_tolm, skx_tohm;
30 static int skx_num_sockets;
31 static unsigned int nvdimm_count;
32
33 #define MASK26 0x3FFFFFF /* Mask for 2^26 */
34 #define MASK29 0x1FFFFFFF /* Mask for 2^29 */
35
get_skx_dev(struct pci_bus * bus,u8 idx)36 static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
37 {
38 struct skx_dev *d;
39
40 list_for_each_entry(d, skx_edac_list, list) {
41 if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
42 return d;
43 }
44
45 return NULL;
46 }
47
48 enum munittype {
49 CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD,
50 ERRCHAN0, ERRCHAN1, ERRCHAN2,
51 };
52
53 struct munit {
54 u16 did;
55 u16 devfn[SKX_NUM_IMC];
56 u8 busidx;
57 u8 per_socket;
58 enum munittype mtype;
59 };
60
61 /*
62 * List of PCI device ids that we need together with some device
63 * number and function numbers to tell which memory controller the
64 * device belongs to.
65 */
66 static const struct munit skx_all_munits[] = {
67 { 0x2054, { }, 1, 1, SAD_ALL },
68 { 0x2055, { }, 1, 1, UTIL_ALL },
69 { 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
70 { 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
71 { 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
72 { 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0 },
73 { 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1 },
74 { 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2 },
75 { 0x208e, { }, 1, 0, SAD },
76 { }
77 };
78
get_all_munits(const struct munit * m)79 static int get_all_munits(const struct munit *m)
80 {
81 struct pci_dev *pdev, *prev;
82 struct skx_dev *d;
83 u32 reg;
84 int i = 0, ndev = 0;
85
86 prev = NULL;
87 for (;;) {
88 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
89 if (!pdev)
90 break;
91 ndev++;
92 if (m->per_socket == SKX_NUM_IMC) {
93 for (i = 0; i < SKX_NUM_IMC; i++)
94 if (m->devfn[i] == pdev->devfn)
95 break;
96 if (i == SKX_NUM_IMC)
97 goto fail;
98 }
99 d = get_skx_dev(pdev->bus, m->busidx);
100 if (!d)
101 goto fail;
102
103 /* Be sure that the device is enabled */
104 if (unlikely(pci_enable_device(pdev) < 0)) {
105 skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
106 PCI_VENDOR_ID_INTEL, m->did);
107 goto fail;
108 }
109
110 switch (m->mtype) {
111 case CHAN0:
112 case CHAN1:
113 case CHAN2:
114 pci_dev_get(pdev);
115 d->imc[i].chan[m->mtype].cdev = pdev;
116 break;
117 case ERRCHAN0:
118 case ERRCHAN1:
119 case ERRCHAN2:
120 pci_dev_get(pdev);
121 d->imc[i].chan[m->mtype - ERRCHAN0].edev = pdev;
122 break;
123 case SAD_ALL:
124 pci_dev_get(pdev);
125 d->sad_all = pdev;
126 break;
127 case UTIL_ALL:
128 pci_dev_get(pdev);
129 d->util_all = pdev;
130 break;
131 case SAD:
132 /*
133 * one of these devices per core, including cores
134 * that don't exist on this SKU. Ignore any that
135 * read a route table of zero, make sure all the
136 * non-zero values match.
137 */
138 pci_read_config_dword(pdev, 0xB4, ®);
139 if (reg != 0) {
140 if (d->mcroute == 0) {
141 d->mcroute = reg;
142 } else if (d->mcroute != reg) {
143 skx_printk(KERN_ERR, "mcroute mismatch\n");
144 goto fail;
145 }
146 }
147 ndev--;
148 break;
149 }
150
151 prev = pdev;
152 }
153
154 return ndev;
155 fail:
156 pci_dev_put(pdev);
157 return -ENODEV;
158 }
159
160 static struct res_config skx_cfg = {
161 .type = SKX,
162 .decs_did = 0x2016,
163 .busno_cfg_offset = 0xcc,
164 };
165
166 static const struct x86_cpu_id skx_cpuids[] = {
167 X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x0, 0xf), &skx_cfg),
168 { }
169 };
170 MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);
171
skx_check_ecc(u32 mcmtr)172 static bool skx_check_ecc(u32 mcmtr)
173 {
174 return !!GET_BITFIELD(mcmtr, 2, 2);
175 }
176
skx_get_dimm_config(struct mem_ctl_info * mci,struct res_config * cfg)177 static int skx_get_dimm_config(struct mem_ctl_info *mci, struct res_config *cfg)
178 {
179 struct skx_pvt *pvt = mci->pvt_info;
180 u32 mtr, mcmtr, amap, mcddrtcfg;
181 struct skx_imc *imc = pvt->imc;
182 struct dimm_info *dimm;
183 int i, j;
184 int ndimms;
185
186 /* Only the mcmtr on the first channel is effective */
187 pci_read_config_dword(imc->chan[0].cdev, 0x87c, &mcmtr);
188
189 for (i = 0; i < SKX_NUM_CHANNELS; i++) {
190 ndimms = 0;
191 pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
192 pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
193 for (j = 0; j < SKX_NUM_DIMMS; j++) {
194 dimm = edac_get_dimm(mci, i, j, 0);
195 pci_read_config_dword(imc->chan[i].cdev,
196 0x80 + 4 * j, &mtr);
197 if (IS_DIMM_PRESENT(mtr)) {
198 ndimms += skx_get_dimm_info(mtr, mcmtr, amap, dimm, imc, i, j, cfg);
199 } else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
200 ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
201 EDAC_MOD_STR);
202 nvdimm_count++;
203 }
204 }
205 if (ndimms && !skx_check_ecc(mcmtr)) {
206 skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
207 return -ENODEV;
208 }
209 }
210
211 return 0;
212 }
213
214 #define SKX_MAX_SAD 24
215
216 #define SKX_GET_SAD(d, i, reg) \
217 pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
218 #define SKX_GET_ILV(d, i, reg) \
219 pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))
220
221 #define SKX_SAD_MOD3MODE(sad) GET_BITFIELD((sad), 30, 31)
222 #define SKX_SAD_MOD3(sad) GET_BITFIELD((sad), 27, 27)
223 #define SKX_SAD_LIMIT(sad) (((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
224 #define SKX_SAD_MOD3ASMOD2(sad) GET_BITFIELD((sad), 5, 6)
225 #define SKX_SAD_ATTR(sad) GET_BITFIELD((sad), 3, 4)
226 #define SKX_SAD_INTERLEAVE(sad) GET_BITFIELD((sad), 1, 2)
227 #define SKX_SAD_ENABLE(sad) GET_BITFIELD((sad), 0, 0)
228
229 #define SKX_ILV_REMOTE(tgt) (((tgt) & 8) == 0)
230 #define SKX_ILV_TARGET(tgt) ((tgt) & 7)
231
skx_show_retry_rd_err_log(struct decoded_addr * res,char * msg,int len,bool scrub_err)232 static void skx_show_retry_rd_err_log(struct decoded_addr *res,
233 char *msg, int len,
234 bool scrub_err)
235 {
236 u32 log0, log1, log2, log3, log4;
237 u32 corr0, corr1, corr2, corr3;
238 struct pci_dev *edev;
239 int n;
240
241 edev = res->dev->imc[res->imc].chan[res->channel].edev;
242
243 pci_read_config_dword(edev, 0x154, &log0);
244 pci_read_config_dword(edev, 0x148, &log1);
245 pci_read_config_dword(edev, 0x150, &log2);
246 pci_read_config_dword(edev, 0x15c, &log3);
247 pci_read_config_dword(edev, 0x114, &log4);
248
249 n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
250 log0, log1, log2, log3, log4);
251
252 pci_read_config_dword(edev, 0x104, &corr0);
253 pci_read_config_dword(edev, 0x108, &corr1);
254 pci_read_config_dword(edev, 0x10c, &corr2);
255 pci_read_config_dword(edev, 0x110, &corr3);
256
257 if (len - n > 0)
258 snprintf(msg + n, len - n,
259 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
260 corr0 & 0xffff, corr0 >> 16,
261 corr1 & 0xffff, corr1 >> 16,
262 corr2 & 0xffff, corr2 >> 16,
263 corr3 & 0xffff, corr3 >> 16);
264 }
265
skx_sad_decode(struct decoded_addr * res)266 static bool skx_sad_decode(struct decoded_addr *res)
267 {
268 struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
269 u64 addr = res->addr;
270 int i, idx, tgt, lchan, shift;
271 u32 sad, ilv;
272 u64 limit, prev_limit;
273 int remote = 0;
274
275 /* Simple sanity check for I/O space or out of range */
276 if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
277 edac_dbg(0, "Address 0x%llx out of range\n", addr);
278 return false;
279 }
280
281 restart:
282 prev_limit = 0;
283 for (i = 0; i < SKX_MAX_SAD; i++) {
284 SKX_GET_SAD(d, i, sad);
285 limit = SKX_SAD_LIMIT(sad);
286 if (SKX_SAD_ENABLE(sad)) {
287 if (addr >= prev_limit && addr <= limit)
288 goto sad_found;
289 }
290 prev_limit = limit + 1;
291 }
292 edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
293 return false;
294
295 sad_found:
296 SKX_GET_ILV(d, i, ilv);
297
298 switch (SKX_SAD_INTERLEAVE(sad)) {
299 case 0:
300 idx = GET_BITFIELD(addr, 6, 8);
301 break;
302 case 1:
303 idx = GET_BITFIELD(addr, 8, 10);
304 break;
305 case 2:
306 idx = GET_BITFIELD(addr, 12, 14);
307 break;
308 case 3:
309 idx = GET_BITFIELD(addr, 30, 32);
310 break;
311 }
312
313 tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);
314
315 /* If point to another node, find it and start over */
316 if (SKX_ILV_REMOTE(tgt)) {
317 if (remote) {
318 edac_dbg(0, "Double remote!\n");
319 return false;
320 }
321 remote = 1;
322 list_for_each_entry(d, skx_edac_list, list) {
323 if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
324 goto restart;
325 }
326 edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
327 return false;
328 }
329
330 if (SKX_SAD_MOD3(sad) == 0) {
331 lchan = SKX_ILV_TARGET(tgt);
332 } else {
333 switch (SKX_SAD_MOD3MODE(sad)) {
334 case 0:
335 shift = 6;
336 break;
337 case 1:
338 shift = 8;
339 break;
340 case 2:
341 shift = 12;
342 break;
343 default:
344 edac_dbg(0, "illegal mod3mode\n");
345 return false;
346 }
347 switch (SKX_SAD_MOD3ASMOD2(sad)) {
348 case 0:
349 lchan = (addr >> shift) % 3;
350 break;
351 case 1:
352 lchan = (addr >> shift) % 2;
353 break;
354 case 2:
355 lchan = (addr >> shift) % 2;
356 lchan = (lchan << 1) | !lchan;
357 break;
358 case 3:
359 lchan = ((addr >> shift) % 2) << 1;
360 break;
361 }
362 lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
363 }
364
365 res->dev = d;
366 res->socket = d->imc[0].src_id;
367 res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
368 res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);
369
370 edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
371 res->addr, res->socket, res->imc, res->channel);
372 return true;
373 }
374
375 #define SKX_MAX_TAD 8
376
377 #define SKX_GET_TADBASE(d, mc, i, reg) \
378 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
379 #define SKX_GET_TADWAYNESS(d, mc, i, reg) \
380 pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
381 #define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg) \
382 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))
383
384 #define SKX_TAD_BASE(b) ((u64)GET_BITFIELD((b), 12, 31) << 26)
385 #define SKX_TAD_SKT_GRAN(b) GET_BITFIELD((b), 4, 5)
386 #define SKX_TAD_CHN_GRAN(b) GET_BITFIELD((b), 6, 7)
387 #define SKX_TAD_LIMIT(b) (((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
388 #define SKX_TAD_OFFSET(b) ((u64)GET_BITFIELD((b), 4, 23) << 26)
389 #define SKX_TAD_SKTWAYS(b) (1 << GET_BITFIELD((b), 10, 11))
390 #define SKX_TAD_CHNWAYS(b) (GET_BITFIELD((b), 8, 9) + 1)
391
392 /* which bit used for both socket and channel interleave */
393 static int skx_granularity[] = { 6, 8, 12, 30 };
394
skx_do_interleave(u64 addr,int shift,int ways,u64 lowbits)395 static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
396 {
397 addr >>= shift;
398 addr /= ways;
399 addr <<= shift;
400
401 return addr | (lowbits & ((1ull << shift) - 1));
402 }
403
skx_tad_decode(struct decoded_addr * res)404 static bool skx_tad_decode(struct decoded_addr *res)
405 {
406 int i;
407 u32 base, wayness, chnilvoffset;
408 int skt_interleave_bit, chn_interleave_bit;
409 u64 channel_addr;
410
411 for (i = 0; i < SKX_MAX_TAD; i++) {
412 SKX_GET_TADBASE(res->dev, res->imc, i, base);
413 SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
414 if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
415 goto tad_found;
416 }
417 edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
418 return false;
419
420 tad_found:
421 res->sktways = SKX_TAD_SKTWAYS(wayness);
422 res->chanways = SKX_TAD_CHNWAYS(wayness);
423 skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
424 chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];
425
426 SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
427 channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);
428
429 if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
430 /* Must handle channel first, then socket */
431 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
432 res->chanways, channel_addr);
433 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
434 res->sktways, channel_addr);
435 } else {
436 /* Handle socket then channel. Preserve low bits from original address */
437 channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
438 res->sktways, res->addr);
439 channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
440 res->chanways, res->addr);
441 }
442
443 res->chan_addr = channel_addr;
444
445 edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
446 res->addr, res->chan_addr, res->sktways, res->chanways);
447 return true;
448 }
449
450 #define SKX_MAX_RIR 4
451
452 #define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg) \
453 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
454 0x108 + 4 * (i), &(reg))
455 #define SKX_GET_RIRILV(d, mc, ch, idx, i, reg) \
456 pci_read_config_dword((d)->imc[mc].chan[ch].cdev, \
457 0x120 + 16 * (idx) + 4 * (i), &(reg))
458
459 #define SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
460 #define SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
461 #define SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
462 #define SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
463 #define SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))
464
skx_rir_decode(struct decoded_addr * res)465 static bool skx_rir_decode(struct decoded_addr *res)
466 {
467 int i, idx, chan_rank;
468 int shift;
469 u32 rirway, rirlv;
470 u64 rank_addr, prev_limit = 0, limit;
471
472 if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
473 shift = 6;
474 else
475 shift = 13;
476
477 for (i = 0; i < SKX_MAX_RIR; i++) {
478 SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
479 limit = SKX_RIR_LIMIT(rirway);
480 if (SKX_RIR_VALID(rirway)) {
481 if (prev_limit <= res->chan_addr &&
482 res->chan_addr <= limit)
483 goto rir_found;
484 }
485 prev_limit = limit;
486 }
487 edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
488 return false;
489
490 rir_found:
491 rank_addr = res->chan_addr >> shift;
492 rank_addr /= SKX_RIR_WAYS(rirway);
493 rank_addr <<= shift;
494 rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);
495
496 res->rank_address = rank_addr;
497 idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);
498
499 SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
500 res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
501 chan_rank = SKX_RIR_CHAN_RANK(rirlv);
502 res->channel_rank = chan_rank;
503 res->dimm = chan_rank / 4;
504 res->rank = chan_rank % 4;
505
506 edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
507 res->addr, res->dimm, res->rank,
508 res->channel_rank, res->rank_address);
509 return true;
510 }
511
512 static u8 skx_close_row[] = {
513 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33, 34
514 };
515
516 static u8 skx_close_column[] = {
517 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
518 };
519
520 static u8 skx_open_row[] = {
521 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34
522 };
523
524 static u8 skx_open_column[] = {
525 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
526 };
527
528 static u8 skx_open_fine_column[] = {
529 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
530 };
531
skx_bits(u64 addr,int nbits,u8 * bits)532 static int skx_bits(u64 addr, int nbits, u8 *bits)
533 {
534 int i, res = 0;
535
536 for (i = 0; i < nbits; i++)
537 res |= ((addr >> bits[i]) & 1) << i;
538 return res;
539 }
540
skx_bank_bits(u64 addr,int b0,int b1,int do_xor,int x0,int x1)541 static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
542 {
543 int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
544
545 if (do_xor)
546 ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
547
548 return ret;
549 }
550
skx_mad_decode(struct decoded_addr * r)551 static bool skx_mad_decode(struct decoded_addr *r)
552 {
553 struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
554 int bg0 = dimm->fine_grain_bank ? 6 : 13;
555
556 if (dimm->close_pg) {
557 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
558 r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
559 r->column |= 0x400; /* C10 is autoprecharge, always set */
560 r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
561 r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
562 } else {
563 r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
564 if (dimm->fine_grain_bank)
565 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
566 else
567 r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
568 r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
569 r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
570 }
571 r->row &= (1u << dimm->rowbits) - 1;
572
573 edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
574 r->addr, r->row, r->column, r->bank_address,
575 r->bank_group);
576 return true;
577 }
578
skx_decode(struct decoded_addr * res)579 static bool skx_decode(struct decoded_addr *res)
580 {
581 return skx_sad_decode(res) && skx_tad_decode(res) &&
582 skx_rir_decode(res) && skx_mad_decode(res);
583 }
584
585 static struct notifier_block skx_mce_dec = {
586 .notifier_call = skx_mce_check_error,
587 .priority = MCE_PRIO_EDAC,
588 };
589
590 #ifdef CONFIG_EDAC_DEBUG
591 /*
592 * Debug feature.
593 * Exercise the address decode logic by writing an address to
594 * /sys/kernel/debug/edac/skx_test/addr.
595 */
596 static struct dentry *skx_test;
597
debugfs_u64_set(void * data,u64 val)598 static int debugfs_u64_set(void *data, u64 val)
599 {
600 struct mce m;
601
602 pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
603
604 memset(&m, 0, sizeof(m));
605 /* ADDRV + MemRd + Unknown channel */
606 m.status = MCI_STATUS_ADDRV + 0x90;
607 /* One corrected error */
608 m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
609 m.addr = val;
610 skx_mce_check_error(NULL, 0, &m);
611
612 return 0;
613 }
614 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
615
setup_skx_debug(void)616 static void setup_skx_debug(void)
617 {
618 skx_test = edac_debugfs_create_dir("skx_test");
619 if (!skx_test)
620 return;
621
622 if (!edac_debugfs_create_file("addr", 0200, skx_test,
623 NULL, &fops_u64_wo)) {
624 debugfs_remove(skx_test);
625 skx_test = NULL;
626 }
627 }
628
teardown_skx_debug(void)629 static void teardown_skx_debug(void)
630 {
631 debugfs_remove_recursive(skx_test);
632 }
633 #else
setup_skx_debug(void)634 static inline void setup_skx_debug(void) {}
teardown_skx_debug(void)635 static inline void teardown_skx_debug(void) {}
636 #endif /*CONFIG_EDAC_DEBUG*/
637
638 /*
639 * skx_init:
640 * make sure we are running on the correct cpu model
641 * search for all the devices we need
642 * check which DIMMs are present.
643 */
skx_init(void)644 static int __init skx_init(void)
645 {
646 const struct x86_cpu_id *id;
647 struct res_config *cfg;
648 const struct munit *m;
649 const char *owner;
650 int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
651 u8 mc = 0, src_id, node_id;
652 struct skx_dev *d;
653
654 edac_dbg(2, "\n");
655
656 if (ghes_get_devices())
657 return -EBUSY;
658
659 owner = edac_get_owner();
660 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
661 return -EBUSY;
662
663 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
664 return -ENODEV;
665
666 id = x86_match_cpu(skx_cpuids);
667 if (!id)
668 return -ENODEV;
669
670 cfg = (struct res_config *)id->driver_data;
671
672 rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
673 if (rc)
674 return rc;
675
676 rc = skx_get_all_bus_mappings(cfg, &skx_edac_list);
677 if (rc < 0)
678 goto fail;
679 if (rc == 0) {
680 edac_dbg(2, "No memory controllers found\n");
681 return -ENODEV;
682 }
683 skx_num_sockets = rc;
684
685 for (m = skx_all_munits; m->did; m++) {
686 rc = get_all_munits(m);
687 if (rc < 0)
688 goto fail;
689 if (rc != m->per_socket * skx_num_sockets) {
690 edac_dbg(2, "Expected %d, got %d of 0x%x\n",
691 m->per_socket * skx_num_sockets, rc, m->did);
692 rc = -ENODEV;
693 goto fail;
694 }
695 }
696
697 list_for_each_entry(d, skx_edac_list, list) {
698 rc = skx_get_src_id(d, 0xf0, &src_id);
699 if (rc < 0)
700 goto fail;
701 rc = skx_get_node_id(d, &node_id);
702 if (rc < 0)
703 goto fail;
704 edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
705 for (i = 0; i < SKX_NUM_IMC; i++) {
706 d->imc[i].mc = mc++;
707 d->imc[i].lmc = i;
708 d->imc[i].src_id = src_id;
709 d->imc[i].node_id = node_id;
710 rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
711 "Skylake Socket", EDAC_MOD_STR,
712 skx_get_dimm_config, cfg);
713 if (rc < 0)
714 goto fail;
715 }
716 }
717
718 skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
719
720 if (nvdimm_count && skx_adxl_get() != -ENODEV) {
721 skx_set_decode(NULL, skx_show_retry_rd_err_log);
722 } else {
723 if (nvdimm_count)
724 skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");
725 skx_set_decode(skx_decode, skx_show_retry_rd_err_log);
726 }
727
728 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
729 opstate_init();
730
731 setup_skx_debug();
732
733 mce_register_decode_chain(&skx_mce_dec);
734
735 return 0;
736 fail:
737 skx_remove();
738 return rc;
739 }
740
skx_exit(void)741 static void __exit skx_exit(void)
742 {
743 edac_dbg(2, "\n");
744 mce_unregister_decode_chain(&skx_mce_dec);
745 teardown_skx_debug();
746 if (nvdimm_count)
747 skx_adxl_put();
748 skx_remove();
749 }
750
751 module_init(skx_init);
752 module_exit(skx_exit);
753
754 module_param(edac_op_state, int, 0444);
755 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
756
757 MODULE_LICENSE("GPL v2");
758 MODULE_AUTHOR("Tony Luck");
759 MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");
760