xref: /openbmc/linux/drivers/edac/sb_edac.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57 	0x80, 0x88, 0x90, 0x98, 0xa0,
58 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60 
61 static const u32 ibridge_dram_rule[] = {
62 	0x60, 0x68, 0x70, 0x78, 0x80,
63 	0x88, 0x90, 0x98, 0xa0,	0xa8,
64 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67 
68 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
70 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
71 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
72 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
73 
74 static char *get_dram_attr(u32 reg)
75 {
76 	switch(DRAM_ATTR(reg)) {
77 		case 0:
78 			return "DRAM";
79 		case 1:
80 			return "MMCFG";
81 		case 2:
82 			return "NXM";
83 		default:
84 			return "unknown";
85 	}
86 }
87 
88 static const u32 sbridge_interleave_list[] = {
89 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
90 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91 };
92 
93 static const u32 ibridge_interleave_list[] = {
94 	0x64, 0x6c, 0x74, 0x7c, 0x84,
95 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
96 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98 };
99 
100 struct interleave_pkg {
101 	unsigned char start;
102 	unsigned char end;
103 };
104 
105 static const struct interleave_pkg sbridge_interleave_pkg[] = {
106 	{ 0, 2 },
107 	{ 3, 5 },
108 	{ 8, 10 },
109 	{ 11, 13 },
110 	{ 16, 18 },
111 	{ 19, 21 },
112 	{ 24, 26 },
113 	{ 27, 29 },
114 };
115 
116 static const struct interleave_pkg ibridge_interleave_pkg[] = {
117 	{ 0, 3 },
118 	{ 4, 7 },
119 	{ 8, 11 },
120 	{ 12, 15 },
121 	{ 16, 19 },
122 	{ 20, 23 },
123 	{ 24, 27 },
124 	{ 28, 31 },
125 };
126 
127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128 			  int interleave)
129 {
130 	return GET_BITFIELD(reg, table[interleave].start,
131 			    table[interleave].end);
132 }
133 
134 /* Devices 12 Function 7 */
135 
136 #define TOLM		0x80
137 #define	TOHM		0x84
138 #define HASWELL_TOLM	0xd0
139 #define HASWELL_TOHM_0	0xd4
140 #define HASWELL_TOHM_1	0xd8
141 
142 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
143 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
144 
145 /* Device 13 Function 6 */
146 
147 #define SAD_TARGET	0xf0
148 
149 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
150 
151 #define SAD_CONTROL	0xf4
152 
153 /* Device 14 function 0 */
154 
155 static const u32 tad_dram_rule[] = {
156 	0x40, 0x44, 0x48, 0x4c,
157 	0x50, 0x54, 0x58, 0x5c,
158 	0x60, 0x64, 0x68, 0x6c,
159 };
160 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
161 
162 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
163 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
164 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
165 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
166 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
167 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
168 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
169 
170 /* Device 15, function 0 */
171 
172 #define MCMTR			0x7c
173 
174 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
175 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
176 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
177 
178 /* Device 15, function 1 */
179 
180 #define RASENABLES		0xac
181 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
182 
183 /* Device 15, functions 2-5 */
184 
185 static const int mtr_regs[] = {
186 	0x80, 0x84, 0x88,
187 };
188 
189 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
190 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
191 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
192 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
193 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
194 
195 static const u32 tad_ch_nilv_offset[] = {
196 	0x90, 0x94, 0x98, 0x9c,
197 	0xa0, 0xa4, 0xa8, 0xac,
198 	0xb0, 0xb4, 0xb8, 0xbc,
199 };
200 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
201 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
202 
203 static const u32 rir_way_limit[] = {
204 	0x108, 0x10c, 0x110, 0x114, 0x118,
205 };
206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
207 
208 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
209 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
210 
211 #define MAX_RIR_WAY	8
212 
213 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
214 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
215 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
216 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
217 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
218 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
219 };
220 
221 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
222 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
223 
224 /* Device 16, functions 2-7 */
225 
226 /*
227  * FIXME: Implement the error count reads directly
228  */
229 
230 static const u32 correrrcnt[] = {
231 	0x104, 0x108, 0x10c, 0x110,
232 };
233 
234 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
235 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
236 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
237 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
238 
239 static const u32 correrrthrsld[] = {
240 	0x11c, 0x120, 0x124, 0x128,
241 };
242 
243 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
244 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
245 
246 
247 /* Device 17, function 0 */
248 
249 #define SB_RANK_CFG_A		0x0328
250 
251 #define IB_RANK_CFG_A		0x0320
252 
253 /*
254  * sbridge structs
255  */
256 
257 #define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */
258 #define MAX_DIMMS		3	/* Max DIMMS per channel */
259 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
260 
261 enum type {
262 	SANDY_BRIDGE,
263 	IVY_BRIDGE,
264 	HASWELL,
265 	BROADWELL,
266 };
267 
268 struct sbridge_pvt;
269 struct sbridge_info {
270 	enum type	type;
271 	u32		mcmtr;
272 	u32		rankcfgr;
273 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
274 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
275 	u64		(*rir_limit)(u32 reg);
276 	const u32	*dram_rule;
277 	const u32	*interleave_list;
278 	const struct interleave_pkg *interleave_pkg;
279 	u8		max_sad;
280 	u8		max_interleave;
281 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
282 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
283 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
284 	struct pci_dev	*pci_vtd;
285 };
286 
287 struct sbridge_channel {
288 	u32		ranks;
289 	u32		dimms;
290 };
291 
292 struct pci_id_descr {
293 	int			dev_id;
294 	int			optional;
295 };
296 
297 struct pci_id_table {
298 	const struct pci_id_descr	*descr;
299 	int				n_devs;
300 };
301 
302 struct sbridge_dev {
303 	struct list_head	list;
304 	u8			bus, mc;
305 	u8			node_id, source_id;
306 	struct pci_dev		**pdev;
307 	int			n_devs;
308 	struct mem_ctl_info	*mci;
309 };
310 
311 struct sbridge_pvt {
312 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
313 	struct pci_dev		*pci_sad0, *pci_sad1;
314 	struct pci_dev		*pci_ha0, *pci_ha1;
315 	struct pci_dev		*pci_br0, *pci_br1;
316 	struct pci_dev		*pci_ha1_ta;
317 	struct pci_dev		*pci_tad[NUM_CHANNELS];
318 
319 	struct sbridge_dev	*sbridge_dev;
320 
321 	struct sbridge_info	info;
322 	struct sbridge_channel	channel[NUM_CHANNELS];
323 
324 	/* Memory type detection */
325 	bool			is_mirrored, is_lockstep, is_close_pg;
326 
327 	/* Fifo double buffers */
328 	struct mce		mce_entry[MCE_LOG_LEN];
329 	struct mce		mce_outentry[MCE_LOG_LEN];
330 
331 	/* Fifo in/out counters */
332 	unsigned		mce_in, mce_out;
333 
334 	/* Count indicator to show errors not got */
335 	unsigned		mce_overrun;
336 
337 	/* Memory description */
338 	u64			tolm, tohm;
339 };
340 
341 #define PCI_DESCR(device_id, opt)	\
342 	.dev_id = (device_id),		\
343 	.optional = opt
344 
345 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
346 		/* Processor Home Agent */
347 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
348 
349 		/* Memory controller */
350 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
351 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
352 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
353 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
354 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
355 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
356 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
357 
358 		/* System Address Decoder */
359 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
360 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
361 
362 		/* Broadcast Registers */
363 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
364 };
365 
366 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
367 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
368 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
369 	{0,}			/* 0 terminated list. */
370 };
371 
372 /* This changes depending if 1HA or 2HA:
373  * 1HA:
374  *	0x0eb8 (17.0) is DDRIO0
375  * 2HA:
376  *	0x0ebc (17.4) is DDRIO0
377  */
378 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
379 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
380 
381 /* pci ids */
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
396 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
397 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
398 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
399 
400 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
401 		/* Processor Home Agent */
402 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
403 
404 		/* Memory controller */
405 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
406 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
407 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
408 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
409 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
410 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
411 
412 		/* System Address Decoder */
413 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
414 
415 		/* Broadcast Registers */
416 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
417 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
418 
419 		/* Optional, mode 2HA */
420 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
421 #if 0
422 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
423 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
424 #endif
425 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
426 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
427 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	},
428 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	},
429 
430 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
431 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
432 };
433 
434 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
435 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
436 	{0,}			/* 0 terminated list. */
437 };
438 
439 /* Haswell support */
440 /* EN processor:
441  *	- 1 IMC
442  *	- 3 DDR3 channels, 2 DPC per channel
443  * EP processor:
444  *	- 1 or 2 IMC
445  *	- 4 DDR4 channels, 3 DPC per channel
446  * EP 4S processor:
447  *	- 2 IMC
448  *	- 4 DDR4 channels, 3 DPC per channel
449  * EX processor:
450  *	- 2 IMC
451  *	- each IMC interfaces with a SMI 2 channel
452  *	- each SMI channel interfaces with a scalable memory buffer
453  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
454  */
455 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
456 #define HASWELL_HASYSDEFEATURE2 0x84
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
470 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
471 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
472 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
473 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
474 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
475 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
476 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
477 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
478 static const struct pci_id_descr pci_dev_descr_haswell[] = {
479 	/* first item must be the HA */
480 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
481 
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
484 
485 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
486 
487 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
488 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
489 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
490 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
491 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
492 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
493 
494 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
495 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)		},
496 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)		},
497 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)		},
498 
499 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
500 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
501 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
502 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
503 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
504 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
505 };
506 
507 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
508 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
509 	{0,}			/* 0 terminated list. */
510 };
511 
512 /*
513  * Broadwell support
514  *
515  * DE processor:
516  *	- 1 IMC
517  *	- 2 DDR3 channels, 2 DPC per channel
518  * EP processor:
519  *	- 1 or 2 IMC
520  *	- 4 DDR4 channels, 3 DPC per channel
521  * EP 4S processor:
522  *	- 2 IMC
523  *	- 4 DDR4 channels, 3 DPC per channel
524  * EX processor:
525  *	- 2 IMC
526  *	- each IMC interfaces with a SMI 2 channel
527  *	- each SMI channel interfaces with a scalable memory buffer
528  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
529  */
530 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
531 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
532 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
533 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
534 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
535 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
536 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
537 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
538 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
539 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
540 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
541 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
542 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
543 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
544 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
545 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
546 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
547 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
548 
549 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
550 	/* first item must be the HA */
551 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},
552 
553 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
554 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},
555 
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		},
557 
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
559 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
560 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
561 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
562 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	},
563 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	},
564 
565 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
566 
567 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	},
568 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	},
569 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	},
570 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	},
571 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	},
572 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	},
573 };
574 
575 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
576 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
577 	{0,}			/* 0 terminated list. */
578 };
579 
580 /*
581  *	pci_device_id	table for which devices we are looking for
582  */
583 static const struct pci_device_id sbridge_pci_tbl[] = {
584 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
585 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
586 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
587 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
588 	{0,}			/* 0 terminated list. */
589 };
590 
591 
592 /****************************************************************************
593 			Ancillary status routines
594  ****************************************************************************/
595 
596 static inline int numrank(enum type type, u32 mtr)
597 {
598 	int ranks = (1 << RANK_CNT_BITS(mtr));
599 	int max = 4;
600 
601 	if (type == HASWELL || type == BROADWELL)
602 		max = 8;
603 
604 	if (ranks > max) {
605 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
606 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
607 		return -EINVAL;
608 	}
609 
610 	return ranks;
611 }
612 
613 static inline int numrow(u32 mtr)
614 {
615 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
616 
617 	if (rows < 13 || rows > 18) {
618 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
619 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
620 		return -EINVAL;
621 	}
622 
623 	return 1 << rows;
624 }
625 
626 static inline int numcol(u32 mtr)
627 {
628 	int cols = (COL_WIDTH_BITS(mtr) + 10);
629 
630 	if (cols > 12) {
631 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
632 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
633 		return -EINVAL;
634 	}
635 
636 	return 1 << cols;
637 }
638 
639 static struct sbridge_dev *get_sbridge_dev(u8 bus)
640 {
641 	struct sbridge_dev *sbridge_dev;
642 
643 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
644 		if (sbridge_dev->bus == bus)
645 			return sbridge_dev;
646 	}
647 
648 	return NULL;
649 }
650 
651 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
652 					   const struct pci_id_table *table)
653 {
654 	struct sbridge_dev *sbridge_dev;
655 
656 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
657 	if (!sbridge_dev)
658 		return NULL;
659 
660 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
661 				   GFP_KERNEL);
662 	if (!sbridge_dev->pdev) {
663 		kfree(sbridge_dev);
664 		return NULL;
665 	}
666 
667 	sbridge_dev->bus = bus;
668 	sbridge_dev->n_devs = table->n_devs;
669 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
670 
671 	return sbridge_dev;
672 }
673 
674 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
675 {
676 	list_del(&sbridge_dev->list);
677 	kfree(sbridge_dev->pdev);
678 	kfree(sbridge_dev);
679 }
680 
681 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
682 {
683 	u32 reg;
684 
685 	/* Address range is 32:28 */
686 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
687 	return GET_TOLM(reg);
688 }
689 
690 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
691 {
692 	u32 reg;
693 
694 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
695 	return GET_TOHM(reg);
696 }
697 
698 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
699 {
700 	u32 reg;
701 
702 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
703 
704 	return GET_TOLM(reg);
705 }
706 
707 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
708 {
709 	u32 reg;
710 
711 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
712 
713 	return GET_TOHM(reg);
714 }
715 
716 static u64 rir_limit(u32 reg)
717 {
718 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
719 }
720 
721 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
722 {
723 	u32 reg;
724 	enum mem_type mtype;
725 
726 	if (pvt->pci_ddrio) {
727 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
728 				      &reg);
729 		if (GET_BITFIELD(reg, 11, 11))
730 			/* FIXME: Can also be LRDIMM */
731 			mtype = MEM_RDDR3;
732 		else
733 			mtype = MEM_DDR3;
734 	} else
735 		mtype = MEM_UNKNOWN;
736 
737 	return mtype;
738 }
739 
740 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
741 {
742 	u32 reg;
743 	bool registered = false;
744 	enum mem_type mtype = MEM_UNKNOWN;
745 
746 	if (!pvt->pci_ddrio)
747 		goto out;
748 
749 	pci_read_config_dword(pvt->pci_ddrio,
750 			      HASWELL_DDRCRCLKCONTROLS, &reg);
751 	/* Is_Rdimm */
752 	if (GET_BITFIELD(reg, 16, 16))
753 		registered = true;
754 
755 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
756 	if (GET_BITFIELD(reg, 14, 14)) {
757 		if (registered)
758 			mtype = MEM_RDDR4;
759 		else
760 			mtype = MEM_DDR4;
761 	} else {
762 		if (registered)
763 			mtype = MEM_RDDR3;
764 		else
765 			mtype = MEM_DDR3;
766 	}
767 
768 out:
769 	return mtype;
770 }
771 
772 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
773 {
774 	/* there's no way to figure out */
775 	return DEV_UNKNOWN;
776 }
777 
778 static enum dev_type __ibridge_get_width(u32 mtr)
779 {
780 	enum dev_type type;
781 
782 	switch (mtr) {
783 	case 3:
784 		type = DEV_UNKNOWN;
785 		break;
786 	case 2:
787 		type = DEV_X16;
788 		break;
789 	case 1:
790 		type = DEV_X8;
791 		break;
792 	case 0:
793 		type = DEV_X4;
794 		break;
795 	}
796 
797 	return type;
798 }
799 
800 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
801 {
802 	/*
803 	 * ddr3_width on the documentation but also valid for DDR4 on
804 	 * Haswell
805 	 */
806 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
807 }
808 
809 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
810 {
811 	/* ddr3_width on the documentation but also valid for DDR4 */
812 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
813 }
814 
815 static u8 get_node_id(struct sbridge_pvt *pvt)
816 {
817 	u32 reg;
818 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
819 	return GET_BITFIELD(reg, 0, 2);
820 }
821 
822 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
823 {
824 	u32 reg;
825 
826 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
827 	return GET_BITFIELD(reg, 0, 3);
828 }
829 
830 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
831 {
832 	u32 reg;
833 
834 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
835 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
836 }
837 
838 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
839 {
840 	u64 rc;
841 	u32 reg;
842 
843 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
844 	rc = GET_BITFIELD(reg, 26, 31);
845 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
846 	rc = ((reg << 6) | rc) << 26;
847 
848 	return rc | 0x1ffffff;
849 }
850 
851 static u64 haswell_rir_limit(u32 reg)
852 {
853 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
854 }
855 
856 static inline u8 sad_pkg_socket(u8 pkg)
857 {
858 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
859 	return ((pkg >> 3) << 2) | (pkg & 0x3);
860 }
861 
862 static inline u8 sad_pkg_ha(u8 pkg)
863 {
864 	return (pkg >> 2) & 0x1;
865 }
866 
867 /****************************************************************************
868 			Memory check routines
869  ****************************************************************************/
870 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
871 {
872 	struct pci_dev *pdev = NULL;
873 
874 	do {
875 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
876 		if (pdev && pdev->bus->number == bus)
877 			break;
878 	} while (pdev);
879 
880 	return pdev;
881 }
882 
883 /**
884  * check_if_ecc_is_active() - Checks if ECC is active
885  * @bus:	Device bus
886  * @type:	Memory controller type
887  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
888  *	    disabled
889  */
890 static int check_if_ecc_is_active(const u8 bus, enum type type)
891 {
892 	struct pci_dev *pdev = NULL;
893 	u32 mcmtr, id;
894 
895 	switch (type) {
896 	case IVY_BRIDGE:
897 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
898 		break;
899 	case HASWELL:
900 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
901 		break;
902 	case SANDY_BRIDGE:
903 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
904 		break;
905 	case BROADWELL:
906 		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
907 		break;
908 	default:
909 		return -ENODEV;
910 	}
911 
912 	pdev = get_pdev_same_bus(bus, id);
913 	if (!pdev) {
914 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
915 					"%04x:%04x! on bus %02d\n",
916 					PCI_VENDOR_ID_INTEL, id, bus);
917 		return -ENODEV;
918 	}
919 
920 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
921 	if (!IS_ECC_ENABLED(mcmtr)) {
922 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
923 		return -ENODEV;
924 	}
925 	return 0;
926 }
927 
928 static int get_dimm_config(struct mem_ctl_info *mci)
929 {
930 	struct sbridge_pvt *pvt = mci->pvt_info;
931 	struct dimm_info *dimm;
932 	unsigned i, j, banks, ranks, rows, cols, npages;
933 	u64 size;
934 	u32 reg;
935 	enum edac_type mode;
936 	enum mem_type mtype;
937 
938 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
939 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
940 	else
941 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
942 
943 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
944 
945 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
946 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
947 		 pvt->sbridge_dev->mc,
948 		 pvt->sbridge_dev->node_id,
949 		 pvt->sbridge_dev->source_id);
950 
951 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
952 	if (IS_MIRROR_ENABLED(reg)) {
953 		edac_dbg(0, "Memory mirror is enabled\n");
954 		pvt->is_mirrored = true;
955 	} else {
956 		edac_dbg(0, "Memory mirror is disabled\n");
957 		pvt->is_mirrored = false;
958 	}
959 
960 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
961 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
962 		edac_dbg(0, "Lockstep is enabled\n");
963 		mode = EDAC_S8ECD8ED;
964 		pvt->is_lockstep = true;
965 	} else {
966 		edac_dbg(0, "Lockstep is disabled\n");
967 		mode = EDAC_S4ECD4ED;
968 		pvt->is_lockstep = false;
969 	}
970 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
971 		edac_dbg(0, "address map is on closed page mode\n");
972 		pvt->is_close_pg = true;
973 	} else {
974 		edac_dbg(0, "address map is on open page mode\n");
975 		pvt->is_close_pg = false;
976 	}
977 
978 	mtype = pvt->info.get_memory_type(pvt);
979 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
980 		edac_dbg(0, "Memory is registered\n");
981 	else if (mtype == MEM_UNKNOWN)
982 		edac_dbg(0, "Cannot determine memory type\n");
983 	else
984 		edac_dbg(0, "Memory is unregistered\n");
985 
986 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
987 		banks = 16;
988 	else
989 		banks = 8;
990 
991 	for (i = 0; i < NUM_CHANNELS; i++) {
992 		u32 mtr;
993 
994 		if (!pvt->pci_tad[i])
995 			continue;
996 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
997 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
998 				       i, j, 0);
999 			pci_read_config_dword(pvt->pci_tad[i],
1000 					      mtr_regs[j], &mtr);
1001 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1002 			if (IS_DIMM_PRESENT(mtr)) {
1003 				pvt->channel[i].dimms++;
1004 
1005 				ranks = numrank(pvt->info.type, mtr);
1006 				rows = numrow(mtr);
1007 				cols = numcol(mtr);
1008 
1009 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1010 				npages = MiB_TO_PAGES(size);
1011 
1012 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1013 					 pvt->sbridge_dev->mc, i/4, i%4, j,
1014 					 size, npages,
1015 					 banks, ranks, rows, cols);
1016 
1017 				dimm->nr_pages = npages;
1018 				dimm->grain = 32;
1019 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1020 				dimm->mtype = mtype;
1021 				dimm->edac_mode = mode;
1022 				snprintf(dimm->label, sizeof(dimm->label),
1023 					 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1024 					 pvt->sbridge_dev->source_id, i/4, i%4, j);
1025 			}
1026 		}
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 static void get_memory_layout(const struct mem_ctl_info *mci)
1033 {
1034 	struct sbridge_pvt *pvt = mci->pvt_info;
1035 	int i, j, k, n_sads, n_tads, sad_interl;
1036 	u32 reg;
1037 	u64 limit, prv = 0;
1038 	u64 tmp_mb;
1039 	u32 gb, mb;
1040 	u32 rir_way;
1041 
1042 	/*
1043 	 * Step 1) Get TOLM/TOHM ranges
1044 	 */
1045 
1046 	pvt->tolm = pvt->info.get_tolm(pvt);
1047 	tmp_mb = (1 + pvt->tolm) >> 20;
1048 
1049 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1050 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1051 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1052 
1053 	/* Address range is already 45:25 */
1054 	pvt->tohm = pvt->info.get_tohm(pvt);
1055 	tmp_mb = (1 + pvt->tohm) >> 20;
1056 
1057 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1058 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1059 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1060 
1061 	/*
1062 	 * Step 2) Get SAD range and SAD Interleave list
1063 	 * TAD registers contain the interleave wayness. However, it
1064 	 * seems simpler to just discover it indirectly, with the
1065 	 * algorithm bellow.
1066 	 */
1067 	prv = 0;
1068 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1069 		/* SAD_LIMIT Address range is 45:26 */
1070 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1071 				      &reg);
1072 		limit = SAD_LIMIT(reg);
1073 
1074 		if (!DRAM_RULE_ENABLE(reg))
1075 			continue;
1076 
1077 		if (limit <= prv)
1078 			break;
1079 
1080 		tmp_mb = (limit + 1) >> 20;
1081 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1082 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1083 			 n_sads,
1084 			 get_dram_attr(reg),
1085 			 gb, (mb*1000)/1024,
1086 			 ((u64)tmp_mb) << 20L,
1087 			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
1088 			 reg);
1089 		prv = limit;
1090 
1091 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1092 				      &reg);
1093 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1094 		for (j = 0; j < 8; j++) {
1095 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1096 			if (j > 0 && sad_interl == pkg)
1097 				break;
1098 
1099 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1100 				 n_sads, j, pkg);
1101 		}
1102 	}
1103 
1104 	/*
1105 	 * Step 3) Get TAD range
1106 	 */
1107 	prv = 0;
1108 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1109 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1110 				      &reg);
1111 		limit = TAD_LIMIT(reg);
1112 		if (limit <= prv)
1113 			break;
1114 		tmp_mb = (limit + 1) >> 20;
1115 
1116 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1117 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1118 			 n_tads, gb, (mb*1000)/1024,
1119 			 ((u64)tmp_mb) << 20L,
1120 			 (u32)TAD_SOCK(reg),
1121 			 (u32)TAD_CH(reg),
1122 			 (u32)TAD_TGT0(reg),
1123 			 (u32)TAD_TGT1(reg),
1124 			 (u32)TAD_TGT2(reg),
1125 			 (u32)TAD_TGT3(reg),
1126 			 reg);
1127 		prv = limit;
1128 	}
1129 
1130 	/*
1131 	 * Step 4) Get TAD offsets, per each channel
1132 	 */
1133 	for (i = 0; i < NUM_CHANNELS; i++) {
1134 		if (!pvt->channel[i].dimms)
1135 			continue;
1136 		for (j = 0; j < n_tads; j++) {
1137 			pci_read_config_dword(pvt->pci_tad[i],
1138 					      tad_ch_nilv_offset[j],
1139 					      &reg);
1140 			tmp_mb = TAD_OFFSET(reg) >> 20;
1141 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1142 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1143 				 i, j,
1144 				 gb, (mb*1000)/1024,
1145 				 ((u64)tmp_mb) << 20L,
1146 				 reg);
1147 		}
1148 	}
1149 
1150 	/*
1151 	 * Step 6) Get RIR Wayness/Limit, per each channel
1152 	 */
1153 	for (i = 0; i < NUM_CHANNELS; i++) {
1154 		if (!pvt->channel[i].dimms)
1155 			continue;
1156 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1157 			pci_read_config_dword(pvt->pci_tad[i],
1158 					      rir_way_limit[j],
1159 					      &reg);
1160 
1161 			if (!IS_RIR_VALID(reg))
1162 				continue;
1163 
1164 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1165 			rir_way = 1 << RIR_WAY(reg);
1166 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1167 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1168 				 i, j,
1169 				 gb, (mb*1000)/1024,
1170 				 ((u64)tmp_mb) << 20L,
1171 				 rir_way,
1172 				 reg);
1173 
1174 			for (k = 0; k < rir_way; k++) {
1175 				pci_read_config_dword(pvt->pci_tad[i],
1176 						      rir_offset[j][k],
1177 						      &reg);
1178 				tmp_mb = RIR_OFFSET(reg) << 6;
1179 
1180 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1181 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1182 					 i, j, k,
1183 					 gb, (mb*1000)/1024,
1184 					 ((u64)tmp_mb) << 20L,
1185 					 (u32)RIR_RNK_TGT(reg),
1186 					 reg);
1187 			}
1188 		}
1189 	}
1190 }
1191 
1192 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1193 {
1194 	struct sbridge_dev *sbridge_dev;
1195 
1196 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1197 		if (sbridge_dev->node_id == node_id)
1198 			return sbridge_dev->mci;
1199 	}
1200 	return NULL;
1201 }
1202 
1203 static int get_memory_error_data(struct mem_ctl_info *mci,
1204 				 u64 addr,
1205 				 u8 *socket, u8 *ha,
1206 				 long *channel_mask,
1207 				 u8 *rank,
1208 				 char **area_type, char *msg)
1209 {
1210 	struct mem_ctl_info	*new_mci;
1211 	struct sbridge_pvt *pvt = mci->pvt_info;
1212 	struct pci_dev		*pci_ha;
1213 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1214 	int			sad_interl, idx, base_ch;
1215 	int			interleave_mode, shiftup = 0;
1216 	unsigned		sad_interleave[pvt->info.max_interleave];
1217 	u32			reg, dram_rule;
1218 	u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1219 	u32			tad_offset;
1220 	u32			rir_way;
1221 	u32			mb, gb;
1222 	u64			ch_addr, offset, limit = 0, prv = 0;
1223 
1224 
1225 	/*
1226 	 * Step 0) Check if the address is at special memory ranges
1227 	 * The check bellow is probably enough to fill all cases where
1228 	 * the error is not inside a memory, except for the legacy
1229 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1230 	 * memory controller would generate an error on that range.
1231 	 */
1232 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1233 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1234 		return -EINVAL;
1235 	}
1236 	if (addr >= (u64)pvt->tohm) {
1237 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1238 		return -EINVAL;
1239 	}
1240 
1241 	/*
1242 	 * Step 1) Get socket
1243 	 */
1244 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1245 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1246 				      &reg);
1247 
1248 		if (!DRAM_RULE_ENABLE(reg))
1249 			continue;
1250 
1251 		limit = SAD_LIMIT(reg);
1252 		if (limit <= prv) {
1253 			sprintf(msg, "Can't discover the memory socket");
1254 			return -EINVAL;
1255 		}
1256 		if  (addr <= limit)
1257 			break;
1258 		prv = limit;
1259 	}
1260 	if (n_sads == pvt->info.max_sad) {
1261 		sprintf(msg, "Can't discover the memory socket");
1262 		return -EINVAL;
1263 	}
1264 	dram_rule = reg;
1265 	*area_type = get_dram_attr(dram_rule);
1266 	interleave_mode = INTERLEAVE_MODE(dram_rule);
1267 
1268 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1269 			      &reg);
1270 
1271 	if (pvt->info.type == SANDY_BRIDGE) {
1272 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1273 		for (sad_way = 0; sad_way < 8; sad_way++) {
1274 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1275 			if (sad_way > 0 && sad_interl == pkg)
1276 				break;
1277 			sad_interleave[sad_way] = pkg;
1278 			edac_dbg(0, "SAD interleave #%d: %d\n",
1279 				 sad_way, sad_interleave[sad_way]);
1280 		}
1281 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1282 			 pvt->sbridge_dev->mc,
1283 			 n_sads,
1284 			 addr,
1285 			 limit,
1286 			 sad_way + 7,
1287 			 !interleave_mode ? "" : "XOR[18:16]");
1288 		if (interleave_mode)
1289 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1290 		else
1291 			idx = (addr >> 6) & 7;
1292 		switch (sad_way) {
1293 		case 1:
1294 			idx = 0;
1295 			break;
1296 		case 2:
1297 			idx = idx & 1;
1298 			break;
1299 		case 4:
1300 			idx = idx & 3;
1301 			break;
1302 		case 8:
1303 			break;
1304 		default:
1305 			sprintf(msg, "Can't discover socket interleave");
1306 			return -EINVAL;
1307 		}
1308 		*socket = sad_interleave[idx];
1309 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1310 			 idx, sad_way, *socket);
1311 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1312 		int bits, a7mode = A7MODE(dram_rule);
1313 
1314 		if (a7mode) {
1315 			/* A7 mode swaps P9 with P6 */
1316 			bits = GET_BITFIELD(addr, 7, 8) << 1;
1317 			bits |= GET_BITFIELD(addr, 9, 9);
1318 		} else
1319 			bits = GET_BITFIELD(addr, 6, 8);
1320 
1321 		if (interleave_mode == 0) {
1322 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
1323 			idx = GET_BITFIELD(addr, 16, 18);
1324 			idx ^= bits;
1325 		} else
1326 			idx = bits;
1327 
1328 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1329 		*socket = sad_pkg_socket(pkg);
1330 		sad_ha = sad_pkg_ha(pkg);
1331 		if (sad_ha)
1332 			ch_add = 4;
1333 
1334 		if (a7mode) {
1335 			/* MCChanShiftUpEnable */
1336 			pci_read_config_dword(pvt->pci_ha0,
1337 					      HASWELL_HASYSDEFEATURE2, &reg);
1338 			shiftup = GET_BITFIELD(reg, 22, 22);
1339 		}
1340 
1341 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1342 			 idx, *socket, sad_ha, shiftup);
1343 	} else {
1344 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1345 		idx = (addr >> 6) & 7;
1346 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1347 		*socket = sad_pkg_socket(pkg);
1348 		sad_ha = sad_pkg_ha(pkg);
1349 		if (sad_ha)
1350 			ch_add = 4;
1351 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1352 			 idx, *socket, sad_ha);
1353 	}
1354 
1355 	*ha = sad_ha;
1356 
1357 	/*
1358 	 * Move to the proper node structure, in order to access the
1359 	 * right PCI registers
1360 	 */
1361 	new_mci = get_mci_for_node_id(*socket);
1362 	if (!new_mci) {
1363 		sprintf(msg, "Struct for socket #%u wasn't initialized",
1364 			*socket);
1365 		return -EINVAL;
1366 	}
1367 	mci = new_mci;
1368 	pvt = mci->pvt_info;
1369 
1370 	/*
1371 	 * Step 2) Get memory channel
1372 	 */
1373 	prv = 0;
1374 	if (pvt->info.type == SANDY_BRIDGE)
1375 		pci_ha = pvt->pci_ha0;
1376 	else {
1377 		if (sad_ha)
1378 			pci_ha = pvt->pci_ha1;
1379 		else
1380 			pci_ha = pvt->pci_ha0;
1381 	}
1382 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1383 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1384 		limit = TAD_LIMIT(reg);
1385 		if (limit <= prv) {
1386 			sprintf(msg, "Can't discover the memory channel");
1387 			return -EINVAL;
1388 		}
1389 		if  (addr <= limit)
1390 			break;
1391 		prv = limit;
1392 	}
1393 	if (n_tads == MAX_TAD) {
1394 		sprintf(msg, "Can't discover the memory channel");
1395 		return -EINVAL;
1396 	}
1397 
1398 	ch_way = TAD_CH(reg) + 1;
1399 	sck_way = TAD_SOCK(reg) + 1;
1400 
1401 	if (ch_way == 3)
1402 		idx = addr >> 6;
1403 	else
1404 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1405 	idx = idx % ch_way;
1406 
1407 	/*
1408 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1409 	 */
1410 	switch (idx) {
1411 	case 0:
1412 		base_ch = TAD_TGT0(reg);
1413 		break;
1414 	case 1:
1415 		base_ch = TAD_TGT1(reg);
1416 		break;
1417 	case 2:
1418 		base_ch = TAD_TGT2(reg);
1419 		break;
1420 	case 3:
1421 		base_ch = TAD_TGT3(reg);
1422 		break;
1423 	default:
1424 		sprintf(msg, "Can't discover the TAD target");
1425 		return -EINVAL;
1426 	}
1427 	*channel_mask = 1 << base_ch;
1428 
1429 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1430 				tad_ch_nilv_offset[n_tads],
1431 				&tad_offset);
1432 
1433 	if (pvt->is_mirrored) {
1434 		*channel_mask |= 1 << ((base_ch + 2) % 4);
1435 		switch(ch_way) {
1436 		case 2:
1437 		case 4:
1438 			sck_xch = 1 << sck_way * (ch_way >> 1);
1439 			break;
1440 		default:
1441 			sprintf(msg, "Invalid mirror set. Can't decode addr");
1442 			return -EINVAL;
1443 		}
1444 	} else
1445 		sck_xch = (1 << sck_way) * ch_way;
1446 
1447 	if (pvt->is_lockstep)
1448 		*channel_mask |= 1 << ((base_ch + 1) % 4);
1449 
1450 	offset = TAD_OFFSET(tad_offset);
1451 
1452 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1453 		 n_tads,
1454 		 addr,
1455 		 limit,
1456 		 (u32)TAD_SOCK(reg),
1457 		 ch_way,
1458 		 offset,
1459 		 idx,
1460 		 base_ch,
1461 		 *channel_mask);
1462 
1463 	/* Calculate channel address */
1464 	/* Remove the TAD offset */
1465 
1466 	if (offset > addr) {
1467 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1468 			offset, addr);
1469 		return -EINVAL;
1470 	}
1471 	addr -= offset;
1472 	/* Store the low bits [0:6] of the addr */
1473 	ch_addr = addr & 0x7f;
1474 	/* Remove socket wayness and remove 6 bits */
1475 	addr >>= 6;
1476 	addr = div_u64(addr, sck_xch);
1477 #if 0
1478 	/* Divide by channel way */
1479 	addr = addr / ch_way;
1480 #endif
1481 	/* Recover the last 6 bits */
1482 	ch_addr |= addr << 6;
1483 
1484 	/*
1485 	 * Step 3) Decode rank
1486 	 */
1487 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1488 		pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1489 				      rir_way_limit[n_rir],
1490 				      &reg);
1491 
1492 		if (!IS_RIR_VALID(reg))
1493 			continue;
1494 
1495 		limit = pvt->info.rir_limit(reg);
1496 		gb = div_u64_rem(limit >> 20, 1024, &mb);
1497 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1498 			 n_rir,
1499 			 gb, (mb*1000)/1024,
1500 			 limit,
1501 			 1 << RIR_WAY(reg));
1502 		if  (ch_addr <= limit)
1503 			break;
1504 	}
1505 	if (n_rir == MAX_RIR_RANGES) {
1506 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1507 			ch_addr);
1508 		return -EINVAL;
1509 	}
1510 	rir_way = RIR_WAY(reg);
1511 
1512 	if (pvt->is_close_pg)
1513 		idx = (ch_addr >> 6);
1514 	else
1515 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1516 	idx %= 1 << rir_way;
1517 
1518 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
1519 			      rir_offset[n_rir][idx],
1520 			      &reg);
1521 	*rank = RIR_RNK_TGT(reg);
1522 
1523 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1524 		 n_rir,
1525 		 ch_addr,
1526 		 limit,
1527 		 rir_way,
1528 		 idx);
1529 
1530 	return 0;
1531 }
1532 
1533 /****************************************************************************
1534 	Device initialization routines: put/get, init/exit
1535  ****************************************************************************/
1536 
1537 /*
1538  *	sbridge_put_all_devices	'put' all the devices that we have
1539  *				reserved via 'get'
1540  */
1541 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1542 {
1543 	int i;
1544 
1545 	edac_dbg(0, "\n");
1546 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1547 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1548 		if (!pdev)
1549 			continue;
1550 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1551 			 pdev->bus->number,
1552 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1553 		pci_dev_put(pdev);
1554 	}
1555 }
1556 
1557 static void sbridge_put_all_devices(void)
1558 {
1559 	struct sbridge_dev *sbridge_dev, *tmp;
1560 
1561 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1562 		sbridge_put_devices(sbridge_dev);
1563 		free_sbridge_dev(sbridge_dev);
1564 	}
1565 }
1566 
1567 static int sbridge_get_onedevice(struct pci_dev **prev,
1568 				 u8 *num_mc,
1569 				 const struct pci_id_table *table,
1570 				 const unsigned devno)
1571 {
1572 	struct sbridge_dev *sbridge_dev;
1573 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1574 	struct pci_dev *pdev = NULL;
1575 	u8 bus = 0;
1576 
1577 	sbridge_printk(KERN_DEBUG,
1578 		"Seeking for: PCI ID %04x:%04x\n",
1579 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1580 
1581 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1582 			      dev_descr->dev_id, *prev);
1583 
1584 	if (!pdev) {
1585 		if (*prev) {
1586 			*prev = pdev;
1587 			return 0;
1588 		}
1589 
1590 		if (dev_descr->optional)
1591 			return 0;
1592 
1593 		/* if the HA wasn't found */
1594 		if (devno == 0)
1595 			return -ENODEV;
1596 
1597 		sbridge_printk(KERN_INFO,
1598 			"Device not found: %04x:%04x\n",
1599 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1600 
1601 		/* End of list, leave */
1602 		return -ENODEV;
1603 	}
1604 	bus = pdev->bus->number;
1605 
1606 	sbridge_dev = get_sbridge_dev(bus);
1607 	if (!sbridge_dev) {
1608 		sbridge_dev = alloc_sbridge_dev(bus, table);
1609 		if (!sbridge_dev) {
1610 			pci_dev_put(pdev);
1611 			return -ENOMEM;
1612 		}
1613 		(*num_mc)++;
1614 	}
1615 
1616 	if (sbridge_dev->pdev[devno]) {
1617 		sbridge_printk(KERN_ERR,
1618 			"Duplicated device for %04x:%04x\n",
1619 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1620 		pci_dev_put(pdev);
1621 		return -ENODEV;
1622 	}
1623 
1624 	sbridge_dev->pdev[devno] = pdev;
1625 
1626 	/* Be sure that the device is enabled */
1627 	if (unlikely(pci_enable_device(pdev) < 0)) {
1628 		sbridge_printk(KERN_ERR,
1629 			"Couldn't enable %04x:%04x\n",
1630 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1631 		return -ENODEV;
1632 	}
1633 
1634 	edac_dbg(0, "Detected %04x:%04x\n",
1635 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1636 
1637 	/*
1638 	 * As stated on drivers/pci/search.c, the reference count for
1639 	 * @from is always decremented if it is not %NULL. So, as we need
1640 	 * to get all devices up to null, we need to do a get for the device
1641 	 */
1642 	pci_dev_get(pdev);
1643 
1644 	*prev = pdev;
1645 
1646 	return 0;
1647 }
1648 
1649 /*
1650  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1651  *			     devices we want to reference for this driver.
1652  * @num_mc: pointer to the memory controllers count, to be incremented in case
1653  *	    of success.
1654  * @table: model specific table
1655  *
1656  * returns 0 in case of success or error code
1657  */
1658 static int sbridge_get_all_devices(u8 *num_mc,
1659 				   const struct pci_id_table *table)
1660 {
1661 	int i, rc;
1662 	struct pci_dev *pdev = NULL;
1663 
1664 	while (table && table->descr) {
1665 		for (i = 0; i < table->n_devs; i++) {
1666 			pdev = NULL;
1667 			do {
1668 				rc = sbridge_get_onedevice(&pdev, num_mc,
1669 							   table, i);
1670 				if (rc < 0) {
1671 					if (i == 0) {
1672 						i = table->n_devs;
1673 						break;
1674 					}
1675 					sbridge_put_all_devices();
1676 					return -ENODEV;
1677 				}
1678 			} while (pdev);
1679 		}
1680 		table++;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1687 				 struct sbridge_dev *sbridge_dev)
1688 {
1689 	struct sbridge_pvt *pvt = mci->pvt_info;
1690 	struct pci_dev *pdev;
1691 	int i;
1692 
1693 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1694 		pdev = sbridge_dev->pdev[i];
1695 		if (!pdev)
1696 			continue;
1697 
1698 		switch (pdev->device) {
1699 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1700 			pvt->pci_sad0 = pdev;
1701 			break;
1702 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1703 			pvt->pci_sad1 = pdev;
1704 			break;
1705 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1706 			pvt->pci_br0 = pdev;
1707 			break;
1708 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1709 			pvt->pci_ha0 = pdev;
1710 			break;
1711 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1712 			pvt->pci_ta = pdev;
1713 			break;
1714 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1715 			pvt->pci_ras = pdev;
1716 			break;
1717 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1718 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1719 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1720 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1721 		{
1722 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1723 			pvt->pci_tad[id] = pdev;
1724 		}
1725 			break;
1726 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1727 			pvt->pci_ddrio = pdev;
1728 			break;
1729 		default:
1730 			goto error;
1731 		}
1732 
1733 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1734 			 pdev->vendor, pdev->device,
1735 			 sbridge_dev->bus,
1736 			 pdev);
1737 	}
1738 
1739 	/* Check if everything were registered */
1740 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1741 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1742 		goto enodev;
1743 
1744 	for (i = 0; i < NUM_CHANNELS; i++) {
1745 		if (!pvt->pci_tad[i])
1746 			goto enodev;
1747 	}
1748 	return 0;
1749 
1750 enodev:
1751 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1752 	return -ENODEV;
1753 
1754 error:
1755 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1756 		       PCI_VENDOR_ID_INTEL, pdev->device);
1757 	return -EINVAL;
1758 }
1759 
1760 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1761 				 struct sbridge_dev *sbridge_dev)
1762 {
1763 	struct sbridge_pvt *pvt = mci->pvt_info;
1764 	struct pci_dev *pdev;
1765 	u8 saw_chan_mask = 0;
1766 	int i;
1767 
1768 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1769 		pdev = sbridge_dev->pdev[i];
1770 		if (!pdev)
1771 			continue;
1772 
1773 		switch (pdev->device) {
1774 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1775 			pvt->pci_ha0 = pdev;
1776 			break;
1777 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1778 			pvt->pci_ta = pdev;
1779 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1780 			pvt->pci_ras = pdev;
1781 			break;
1782 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1783 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1784 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1785 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1786 		{
1787 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1788 			pvt->pci_tad[id] = pdev;
1789 			saw_chan_mask |= 1 << id;
1790 		}
1791 			break;
1792 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1793 			pvt->pci_ddrio = pdev;
1794 			break;
1795 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1796 			pvt->pci_ddrio = pdev;
1797 			break;
1798 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1799 			pvt->pci_sad0 = pdev;
1800 			break;
1801 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1802 			pvt->pci_br0 = pdev;
1803 			break;
1804 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1805 			pvt->pci_br1 = pdev;
1806 			break;
1807 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1808 			pvt->pci_ha1 = pdev;
1809 			break;
1810 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1811 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1812 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
1813 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
1814 		{
1815 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
1816 			pvt->pci_tad[id] = pdev;
1817 			saw_chan_mask |= 1 << id;
1818 		}
1819 			break;
1820 		default:
1821 			goto error;
1822 		}
1823 
1824 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1825 			 sbridge_dev->bus,
1826 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1827 			 pdev);
1828 	}
1829 
1830 	/* Check if everything were registered */
1831 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1832 	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1833 	    !pvt->pci_ta)
1834 		goto enodev;
1835 
1836 	if (saw_chan_mask != 0x0f && /* -EN */
1837 	    saw_chan_mask != 0x33 && /* -EP */
1838 	    saw_chan_mask != 0xff)   /* -EX */
1839 		goto enodev;
1840 	return 0;
1841 
1842 enodev:
1843 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1844 	return -ENODEV;
1845 
1846 error:
1847 	sbridge_printk(KERN_ERR,
1848 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1849 			pdev->device);
1850 	return -EINVAL;
1851 }
1852 
1853 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1854 				 struct sbridge_dev *sbridge_dev)
1855 {
1856 	struct sbridge_pvt *pvt = mci->pvt_info;
1857 	struct pci_dev *pdev;
1858 	u8 saw_chan_mask = 0;
1859 	int i;
1860 
1861 	/* there's only one device per system; not tied to any bus */
1862 	if (pvt->info.pci_vtd == NULL)
1863 		/* result will be checked later */
1864 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1865 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1866 						   NULL);
1867 
1868 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1869 		pdev = sbridge_dev->pdev[i];
1870 		if (!pdev)
1871 			continue;
1872 
1873 		switch (pdev->device) {
1874 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1875 			pvt->pci_sad0 = pdev;
1876 			break;
1877 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1878 			pvt->pci_sad1 = pdev;
1879 			break;
1880 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1881 			pvt->pci_ha0 = pdev;
1882 			break;
1883 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1884 			pvt->pci_ta = pdev;
1885 			break;
1886 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1887 			pvt->pci_ras = pdev;
1888 			break;
1889 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1890 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1891 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1892 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1893 		{
1894 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
1895 
1896 			pvt->pci_tad[id] = pdev;
1897 			saw_chan_mask |= 1 << id;
1898 		}
1899 			break;
1900 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1901 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1902 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
1903 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
1904 		{
1905 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
1906 
1907 			pvt->pci_tad[id] = pdev;
1908 			saw_chan_mask |= 1 << id;
1909 		}
1910 			break;
1911 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1912 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
1913 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
1914 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
1915 			if (!pvt->pci_ddrio)
1916 				pvt->pci_ddrio = pdev;
1917 			break;
1918 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1919 			pvt->pci_ha1 = pdev;
1920 			break;
1921 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1922 			pvt->pci_ha1_ta = pdev;
1923 			break;
1924 		default:
1925 			break;
1926 		}
1927 
1928 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1929 			 sbridge_dev->bus,
1930 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1931 			 pdev);
1932 	}
1933 
1934 	/* Check if everything were registered */
1935 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1936 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1937 		goto enodev;
1938 
1939 	if (saw_chan_mask != 0x0f && /* -EN */
1940 	    saw_chan_mask != 0x33 && /* -EP */
1941 	    saw_chan_mask != 0xff)   /* -EX */
1942 		goto enodev;
1943 	return 0;
1944 
1945 enodev:
1946 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1947 	return -ENODEV;
1948 }
1949 
1950 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
1951 				 struct sbridge_dev *sbridge_dev)
1952 {
1953 	struct sbridge_pvt *pvt = mci->pvt_info;
1954 	struct pci_dev *pdev;
1955 	u8 saw_chan_mask = 0;
1956 	int i;
1957 
1958 	/* there's only one device per system; not tied to any bus */
1959 	if (pvt->info.pci_vtd == NULL)
1960 		/* result will be checked later */
1961 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1962 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
1963 						   NULL);
1964 
1965 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1966 		pdev = sbridge_dev->pdev[i];
1967 		if (!pdev)
1968 			continue;
1969 
1970 		switch (pdev->device) {
1971 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
1972 			pvt->pci_sad0 = pdev;
1973 			break;
1974 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
1975 			pvt->pci_sad1 = pdev;
1976 			break;
1977 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
1978 			pvt->pci_ha0 = pdev;
1979 			break;
1980 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
1981 			pvt->pci_ta = pdev;
1982 			break;
1983 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
1984 			pvt->pci_ras = pdev;
1985 			break;
1986 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
1987 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
1988 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
1989 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
1990 		{
1991 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
1992 			pvt->pci_tad[id] = pdev;
1993 			saw_chan_mask |= 1 << id;
1994 		}
1995 			break;
1996 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
1997 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
1998 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
1999 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2000 		{
2001 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2002 			pvt->pci_tad[id] = pdev;
2003 			saw_chan_mask |= 1 << id;
2004 		}
2005 			break;
2006 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2007 			pvt->pci_ddrio = pdev;
2008 			break;
2009 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2010 			pvt->pci_ha1 = pdev;
2011 			break;
2012 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2013 			pvt->pci_ha1_ta = pdev;
2014 			break;
2015 		default:
2016 			break;
2017 		}
2018 
2019 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2020 			 sbridge_dev->bus,
2021 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2022 			 pdev);
2023 	}
2024 
2025 	/* Check if everything were registered */
2026 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2027 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2028 		goto enodev;
2029 
2030 	if (saw_chan_mask != 0x0f && /* -EN */
2031 	    saw_chan_mask != 0x33 && /* -EP */
2032 	    saw_chan_mask != 0xff)   /* -EX */
2033 		goto enodev;
2034 	return 0;
2035 
2036 enodev:
2037 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2038 	return -ENODEV;
2039 }
2040 
2041 /****************************************************************************
2042 			Error check routines
2043  ****************************************************************************/
2044 
2045 /*
2046  * While Sandy Bridge has error count registers, SMI BIOS read values from
2047  * and resets the counters. So, they are not reliable for the OS to read
2048  * from them. So, we have no option but to just trust on whatever MCE is
2049  * telling us about the errors.
2050  */
2051 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2052 				    const struct mce *m)
2053 {
2054 	struct mem_ctl_info *new_mci;
2055 	struct sbridge_pvt *pvt = mci->pvt_info;
2056 	enum hw_event_mc_err_type tp_event;
2057 	char *type, *optype, msg[256];
2058 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2059 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2060 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2061 	bool recoverable;
2062 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2063 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2064 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2065 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2066 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2067 	long channel_mask, first_channel;
2068 	u8  rank, socket, ha;
2069 	int rc, dimm;
2070 	char *area_type = NULL;
2071 
2072 	if (pvt->info.type != SANDY_BRIDGE)
2073 		recoverable = true;
2074 	else
2075 		recoverable = GET_BITFIELD(m->status, 56, 56);
2076 
2077 	if (uncorrected_error) {
2078 		if (ripv) {
2079 			type = "FATAL";
2080 			tp_event = HW_EVENT_ERR_FATAL;
2081 		} else {
2082 			type = "NON_FATAL";
2083 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2084 		}
2085 	} else {
2086 		type = "CORRECTED";
2087 		tp_event = HW_EVENT_ERR_CORRECTED;
2088 	}
2089 
2090 	/*
2091 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2092 	 * memory errors should fit in this mask:
2093 	 *	000f 0000 1mmm cccc (binary)
2094 	 * where:
2095 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2096 	 *	    won't be shown
2097 	 *	mmm = error type
2098 	 *	cccc = channel
2099 	 * If the mask doesn't match, report an error to the parsing logic
2100 	 */
2101 	if (! ((errcode & 0xef80) == 0x80)) {
2102 		optype = "Can't parse: it is not a mem";
2103 	} else {
2104 		switch (optypenum) {
2105 		case 0:
2106 			optype = "generic undef request error";
2107 			break;
2108 		case 1:
2109 			optype = "memory read error";
2110 			break;
2111 		case 2:
2112 			optype = "memory write error";
2113 			break;
2114 		case 3:
2115 			optype = "addr/cmd error";
2116 			break;
2117 		case 4:
2118 			optype = "memory scrubbing error";
2119 			break;
2120 		default:
2121 			optype = "reserved";
2122 			break;
2123 		}
2124 	}
2125 
2126 	/* Only decode errors with an valid address (ADDRV) */
2127 	if (!GET_BITFIELD(m->status, 58, 58))
2128 		return;
2129 
2130 	rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2131 				   &channel_mask, &rank, &area_type, msg);
2132 	if (rc < 0)
2133 		goto err_parsing;
2134 	new_mci = get_mci_for_node_id(socket);
2135 	if (!new_mci) {
2136 		strcpy(msg, "Error: socket got corrupted!");
2137 		goto err_parsing;
2138 	}
2139 	mci = new_mci;
2140 	pvt = mci->pvt_info;
2141 
2142 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2143 
2144 	if (rank < 4)
2145 		dimm = 0;
2146 	else if (rank < 8)
2147 		dimm = 1;
2148 	else
2149 		dimm = 2;
2150 
2151 
2152 	/*
2153 	 * FIXME: On some memory configurations (mirror, lockstep), the
2154 	 * Memory Controller can't point the error to a single DIMM. The
2155 	 * EDAC core should be handling the channel mask, in order to point
2156 	 * to the group of dimm's where the error may be happening.
2157 	 */
2158 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2159 		channel = first_channel;
2160 
2161 	snprintf(msg, sizeof(msg),
2162 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2163 		 overflow ? " OVERFLOW" : "",
2164 		 (uncorrected_error && recoverable) ? " recoverable" : "",
2165 		 area_type,
2166 		 mscod, errcode,
2167 		 socket, ha,
2168 		 channel_mask,
2169 		 rank);
2170 
2171 	edac_dbg(0, "%s\n", msg);
2172 
2173 	/* FIXME: need support for channel mask */
2174 
2175 	if (channel == CHANNEL_UNSPECIFIED)
2176 		channel = -1;
2177 
2178 	/* Call the helper to output message */
2179 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
2180 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2181 			     4*ha+channel, dimm, -1,
2182 			     optype, msg);
2183 	return;
2184 err_parsing:
2185 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2186 			     -1, -1, -1,
2187 			     msg, "");
2188 
2189 }
2190 
2191 /*
2192  *	sbridge_check_error	Retrieve and process errors reported by the
2193  *				hardware. Called by the Core module.
2194  */
2195 static void sbridge_check_error(struct mem_ctl_info *mci)
2196 {
2197 	struct sbridge_pvt *pvt = mci->pvt_info;
2198 	int i;
2199 	unsigned count = 0;
2200 	struct mce *m;
2201 
2202 	/*
2203 	 * MCE first step: Copy all mce errors into a temporary buffer
2204 	 * We use a double buffering here, to reduce the risk of
2205 	 * loosing an error.
2206 	 */
2207 	smp_rmb();
2208 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
2209 		% MCE_LOG_LEN;
2210 	if (!count)
2211 		return;
2212 
2213 	m = pvt->mce_outentry;
2214 	if (pvt->mce_in + count > MCE_LOG_LEN) {
2215 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
2216 
2217 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2218 		smp_wmb();
2219 		pvt->mce_in = 0;
2220 		count -= l;
2221 		m += l;
2222 	}
2223 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2224 	smp_wmb();
2225 	pvt->mce_in += count;
2226 
2227 	smp_rmb();
2228 	if (pvt->mce_overrun) {
2229 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2230 			      pvt->mce_overrun);
2231 		smp_wmb();
2232 		pvt->mce_overrun = 0;
2233 	}
2234 
2235 	/*
2236 	 * MCE second step: parse errors and display
2237 	 */
2238 	for (i = 0; i < count; i++)
2239 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2240 }
2241 
2242 /*
2243  * sbridge_mce_check_error	Replicates mcelog routine to get errors
2244  *				This routine simply queues mcelog errors, and
2245  *				return. The error itself should be handled later
2246  *				by sbridge_check_error.
2247  * WARNING: As this routine should be called at NMI time, extra care should
2248  * be taken to avoid deadlocks, and to be as fast as possible.
2249  */
2250 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2251 				   void *data)
2252 {
2253 	struct mce *mce = (struct mce *)data;
2254 	struct mem_ctl_info *mci;
2255 	struct sbridge_pvt *pvt;
2256 	char *type;
2257 
2258 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2259 		return NOTIFY_DONE;
2260 
2261 	mci = get_mci_for_node_id(mce->socketid);
2262 	if (!mci)
2263 		return NOTIFY_BAD;
2264 	pvt = mci->pvt_info;
2265 
2266 	/*
2267 	 * Just let mcelog handle it if the error is
2268 	 * outside the memory controller. A memory error
2269 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2270 	 * bit 12 has an special meaning.
2271 	 */
2272 	if ((mce->status & 0xefff) >> 7 != 1)
2273 		return NOTIFY_DONE;
2274 
2275 	if (mce->mcgstatus & MCG_STATUS_MCIP)
2276 		type = "Exception";
2277 	else
2278 		type = "Event";
2279 
2280 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2281 
2282 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2283 			  "Bank %d: %016Lx\n", mce->extcpu, type,
2284 			  mce->mcgstatus, mce->bank, mce->status);
2285 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2286 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2287 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2288 
2289 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2290 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2291 			  mce->time, mce->socketid, mce->apicid);
2292 
2293 	smp_rmb();
2294 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2295 		smp_wmb();
2296 		pvt->mce_overrun++;
2297 		return NOTIFY_DONE;
2298 	}
2299 
2300 	/* Copy memory error at the ringbuffer */
2301 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2302 	smp_wmb();
2303 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2304 
2305 	/* Handle fatal errors immediately */
2306 	if (mce->mcgstatus & 1)
2307 		sbridge_check_error(mci);
2308 
2309 	/* Advice mcelog that the error were handled */
2310 	return NOTIFY_STOP;
2311 }
2312 
2313 static struct notifier_block sbridge_mce_dec = {
2314 	.notifier_call      = sbridge_mce_check_error,
2315 };
2316 
2317 /****************************************************************************
2318 			EDAC register/unregister logic
2319  ****************************************************************************/
2320 
2321 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2322 {
2323 	struct mem_ctl_info *mci = sbridge_dev->mci;
2324 	struct sbridge_pvt *pvt;
2325 
2326 	if (unlikely(!mci || !mci->pvt_info)) {
2327 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2328 
2329 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2330 		return;
2331 	}
2332 
2333 	pvt = mci->pvt_info;
2334 
2335 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2336 		 mci, &sbridge_dev->pdev[0]->dev);
2337 
2338 	/* Remove MC sysfs nodes */
2339 	edac_mc_del_mc(mci->pdev);
2340 
2341 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2342 	kfree(mci->ctl_name);
2343 	edac_mc_free(mci);
2344 	sbridge_dev->mci = NULL;
2345 }
2346 
2347 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2348 {
2349 	struct mem_ctl_info *mci;
2350 	struct edac_mc_layer layers[2];
2351 	struct sbridge_pvt *pvt;
2352 	struct pci_dev *pdev = sbridge_dev->pdev[0];
2353 	int rc;
2354 
2355 	/* Check the number of active and not disabled channels */
2356 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2357 	if (unlikely(rc < 0))
2358 		return rc;
2359 
2360 	/* allocate a new MC control structure */
2361 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
2362 	layers[0].size = NUM_CHANNELS;
2363 	layers[0].is_virt_csrow = false;
2364 	layers[1].type = EDAC_MC_LAYER_SLOT;
2365 	layers[1].size = MAX_DIMMS;
2366 	layers[1].is_virt_csrow = true;
2367 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2368 			    sizeof(*pvt));
2369 
2370 	if (unlikely(!mci))
2371 		return -ENOMEM;
2372 
2373 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2374 		 mci, &pdev->dev);
2375 
2376 	pvt = mci->pvt_info;
2377 	memset(pvt, 0, sizeof(*pvt));
2378 
2379 	/* Associate sbridge_dev and mci for future usage */
2380 	pvt->sbridge_dev = sbridge_dev;
2381 	sbridge_dev->mci = mci;
2382 
2383 	mci->mtype_cap = MEM_FLAG_DDR3;
2384 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
2385 	mci->edac_cap = EDAC_FLAG_NONE;
2386 	mci->mod_name = "sbridge_edac.c";
2387 	mci->mod_ver = SBRIDGE_REVISION;
2388 	mci->dev_name = pci_name(pdev);
2389 	mci->ctl_page_to_phys = NULL;
2390 
2391 	/* Set the function pointer to an actual operation function */
2392 	mci->edac_check = sbridge_check_error;
2393 
2394 	pvt->info.type = type;
2395 	switch (type) {
2396 	case IVY_BRIDGE:
2397 		pvt->info.rankcfgr = IB_RANK_CFG_A;
2398 		pvt->info.get_tolm = ibridge_get_tolm;
2399 		pvt->info.get_tohm = ibridge_get_tohm;
2400 		pvt->info.dram_rule = ibridge_dram_rule;
2401 		pvt->info.get_memory_type = get_memory_type;
2402 		pvt->info.get_node_id = get_node_id;
2403 		pvt->info.rir_limit = rir_limit;
2404 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2405 		pvt->info.interleave_list = ibridge_interleave_list;
2406 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2407 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2408 		pvt->info.get_width = ibridge_get_width;
2409 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2410 
2411 		/* Store pci devices at mci for faster access */
2412 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2413 		if (unlikely(rc < 0))
2414 			goto fail0;
2415 		break;
2416 	case SANDY_BRIDGE:
2417 		pvt->info.rankcfgr = SB_RANK_CFG_A;
2418 		pvt->info.get_tolm = sbridge_get_tolm;
2419 		pvt->info.get_tohm = sbridge_get_tohm;
2420 		pvt->info.dram_rule = sbridge_dram_rule;
2421 		pvt->info.get_memory_type = get_memory_type;
2422 		pvt->info.get_node_id = get_node_id;
2423 		pvt->info.rir_limit = rir_limit;
2424 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2425 		pvt->info.interleave_list = sbridge_interleave_list;
2426 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2427 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
2428 		pvt->info.get_width = sbridge_get_width;
2429 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2430 
2431 		/* Store pci devices at mci for faster access */
2432 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2433 		if (unlikely(rc < 0))
2434 			goto fail0;
2435 		break;
2436 	case HASWELL:
2437 		/* rankcfgr isn't used */
2438 		pvt->info.get_tolm = haswell_get_tolm;
2439 		pvt->info.get_tohm = haswell_get_tohm;
2440 		pvt->info.dram_rule = ibridge_dram_rule;
2441 		pvt->info.get_memory_type = haswell_get_memory_type;
2442 		pvt->info.get_node_id = haswell_get_node_id;
2443 		pvt->info.rir_limit = haswell_rir_limit;
2444 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2445 		pvt->info.interleave_list = ibridge_interleave_list;
2446 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2447 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2448 		pvt->info.get_width = ibridge_get_width;
2449 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2450 
2451 		/* Store pci devices at mci for faster access */
2452 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
2453 		if (unlikely(rc < 0))
2454 			goto fail0;
2455 		break;
2456 	case BROADWELL:
2457 		/* rankcfgr isn't used */
2458 		pvt->info.get_tolm = haswell_get_tolm;
2459 		pvt->info.get_tohm = haswell_get_tohm;
2460 		pvt->info.dram_rule = ibridge_dram_rule;
2461 		pvt->info.get_memory_type = haswell_get_memory_type;
2462 		pvt->info.get_node_id = haswell_get_node_id;
2463 		pvt->info.rir_limit = haswell_rir_limit;
2464 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2465 		pvt->info.interleave_list = ibridge_interleave_list;
2466 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2467 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2468 		pvt->info.get_width = broadwell_get_width;
2469 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
2470 
2471 		/* Store pci devices at mci for faster access */
2472 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
2473 		if (unlikely(rc < 0))
2474 			goto fail0;
2475 		break;
2476 	}
2477 
2478 	/* Get dimm basic config and the memory layout */
2479 	get_dimm_config(mci);
2480 	get_memory_layout(mci);
2481 
2482 	/* record ptr to the generic device */
2483 	mci->pdev = &pdev->dev;
2484 
2485 	/* add this new MC control structure to EDAC's list of MCs */
2486 	if (unlikely(edac_mc_add_mc(mci))) {
2487 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2488 		rc = -EINVAL;
2489 		goto fail0;
2490 	}
2491 
2492 	return 0;
2493 
2494 fail0:
2495 	kfree(mci->ctl_name);
2496 	edac_mc_free(mci);
2497 	sbridge_dev->mci = NULL;
2498 	return rc;
2499 }
2500 
2501 /*
2502  *	sbridge_probe	Probe for ONE instance of device to see if it is
2503  *			present.
2504  *	return:
2505  *		0 for FOUND a device
2506  *		< 0 for error code
2507  */
2508 
2509 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2510 {
2511 	int rc = -ENODEV;
2512 	u8 mc, num_mc = 0;
2513 	struct sbridge_dev *sbridge_dev;
2514 	enum type type = SANDY_BRIDGE;
2515 
2516 	/* get the pci devices we want to reserve for our use */
2517 	mutex_lock(&sbridge_edac_lock);
2518 
2519 	/*
2520 	 * All memory controllers are allocated at the first pass.
2521 	 */
2522 	if (unlikely(probed >= 1)) {
2523 		mutex_unlock(&sbridge_edac_lock);
2524 		return -ENODEV;
2525 	}
2526 	probed++;
2527 
2528 	switch (pdev->device) {
2529 	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2530 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2531 		type = IVY_BRIDGE;
2532 		break;
2533 	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2534 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2535 		type = SANDY_BRIDGE;
2536 		break;
2537 	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2538 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2539 		type = HASWELL;
2540 		break;
2541 	case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2542 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
2543 		type = BROADWELL;
2544 		break;
2545 	}
2546 	if (unlikely(rc < 0)) {
2547 		edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
2548 		goto fail0;
2549 	}
2550 
2551 	mc = 0;
2552 
2553 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2554 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2555 			 mc, mc + 1, num_mc);
2556 
2557 		sbridge_dev->mc = mc++;
2558 		rc = sbridge_register_mci(sbridge_dev, type);
2559 		if (unlikely(rc < 0))
2560 			goto fail1;
2561 	}
2562 
2563 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
2564 
2565 	mutex_unlock(&sbridge_edac_lock);
2566 	return 0;
2567 
2568 fail1:
2569 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2570 		sbridge_unregister_mci(sbridge_dev);
2571 
2572 	sbridge_put_all_devices();
2573 fail0:
2574 	mutex_unlock(&sbridge_edac_lock);
2575 	return rc;
2576 }
2577 
2578 /*
2579  *	sbridge_remove	destructor for one instance of device
2580  *
2581  */
2582 static void sbridge_remove(struct pci_dev *pdev)
2583 {
2584 	struct sbridge_dev *sbridge_dev;
2585 
2586 	edac_dbg(0, "\n");
2587 
2588 	/*
2589 	 * we have a trouble here: pdev value for removal will be wrong, since
2590 	 * it will point to the X58 register used to detect that the machine
2591 	 * is a Nehalem or upper design. However, due to the way several PCI
2592 	 * devices are grouped together to provide MC functionality, we need
2593 	 * to use a different method for releasing the devices
2594 	 */
2595 
2596 	mutex_lock(&sbridge_edac_lock);
2597 
2598 	if (unlikely(!probed)) {
2599 		mutex_unlock(&sbridge_edac_lock);
2600 		return;
2601 	}
2602 
2603 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2604 		sbridge_unregister_mci(sbridge_dev);
2605 
2606 	/* Release PCI resources */
2607 	sbridge_put_all_devices();
2608 
2609 	probed--;
2610 
2611 	mutex_unlock(&sbridge_edac_lock);
2612 }
2613 
2614 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2615 
2616 /*
2617  *	sbridge_driver	pci_driver structure for this module
2618  *
2619  */
2620 static struct pci_driver sbridge_driver = {
2621 	.name     = "sbridge_edac",
2622 	.probe    = sbridge_probe,
2623 	.remove   = sbridge_remove,
2624 	.id_table = sbridge_pci_tbl,
2625 };
2626 
2627 /*
2628  *	sbridge_init		Module entry function
2629  *			Try to initialize this module for its devices
2630  */
2631 static int __init sbridge_init(void)
2632 {
2633 	int pci_rc;
2634 
2635 	edac_dbg(2, "\n");
2636 
2637 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
2638 	opstate_init();
2639 
2640 	pci_rc = pci_register_driver(&sbridge_driver);
2641 	if (pci_rc >= 0) {
2642 		mce_register_decode_chain(&sbridge_mce_dec);
2643 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2644 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2645 		return 0;
2646 	}
2647 
2648 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2649 		      pci_rc);
2650 
2651 	return pci_rc;
2652 }
2653 
2654 /*
2655  *	sbridge_exit()	Module exit function
2656  *			Unregister the driver
2657  */
2658 static void __exit sbridge_exit(void)
2659 {
2660 	edac_dbg(2, "\n");
2661 	pci_unregister_driver(&sbridge_driver);
2662 	mce_unregister_decode_chain(&sbridge_mce_dec);
2663 }
2664 
2665 module_init(sbridge_init);
2666 module_exit(sbridge_exit);
2667 
2668 module_param(edac_op_state, int, 0444);
2669 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2670 
2671 MODULE_LICENSE("GPL");
2672 MODULE_AUTHOR("Mauro Carvalho Chehab");
2673 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2674 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2675 		   SBRIDGE_REVISION);
2676