1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module 2 * 3 * This driver supports the memory controllers found on the Intel 4 * processor family Sandy Bridge. 5 * 6 * This file may be distributed under the terms of the 7 * GNU General Public License version 2 only. 8 * 9 * Copyright (c) 2011 by: 10 * Mauro Carvalho Chehab 11 */ 12 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/pci.h> 16 #include <linux/pci_ids.h> 17 #include <linux/slab.h> 18 #include <linux/delay.h> 19 #include <linux/edac.h> 20 #include <linux/mmzone.h> 21 #include <linux/smp.h> 22 #include <linux/bitmap.h> 23 #include <linux/math64.h> 24 #include <asm/processor.h> 25 #include <asm/mce.h> 26 27 #include "edac_core.h" 28 29 /* Static vars */ 30 static LIST_HEAD(sbridge_edac_list); 31 static DEFINE_MUTEX(sbridge_edac_lock); 32 static int probed; 33 34 /* 35 * Alter this version for the module when modifications are made 36 */ 37 #define SBRIDGE_REVISION " Ver: 1.1.1 " 38 #define EDAC_MOD_STR "sbridge_edac" 39 40 /* 41 * Debug macros 42 */ 43 #define sbridge_printk(level, fmt, arg...) \ 44 edac_printk(level, "sbridge", fmt, ##arg) 45 46 #define sbridge_mc_printk(mci, level, fmt, arg...) \ 47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) 48 49 /* 50 * Get a bit field at register value <v>, from bit <lo> to bit <hi> 51 */ 52 #define GET_BITFIELD(v, lo, hi) \ 53 (((v) & GENMASK_ULL(hi, lo)) >> (lo)) 54 55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ 56 static const u32 sbridge_dram_rule[] = { 57 0x80, 0x88, 0x90, 0x98, 0xa0, 58 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, 59 }; 60 61 static const u32 ibridge_dram_rule[] = { 62 0x60, 0x68, 0x70, 0x78, 0x80, 63 0x88, 0x90, 0x98, 0xa0, 0xa8, 64 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, 65 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, 66 }; 67 68 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff) 69 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3) 70 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1) 71 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) 72 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26) 73 74 static char *get_dram_attr(u32 reg) 75 { 76 switch(DRAM_ATTR(reg)) { 77 case 0: 78 return "DRAM"; 79 case 1: 80 return "MMCFG"; 81 case 2: 82 return "NXM"; 83 default: 84 return "unknown"; 85 } 86 } 87 88 static const u32 sbridge_interleave_list[] = { 89 0x84, 0x8c, 0x94, 0x9c, 0xa4, 90 0xac, 0xb4, 0xbc, 0xc4, 0xcc, 91 }; 92 93 static const u32 ibridge_interleave_list[] = { 94 0x64, 0x6c, 0x74, 0x7c, 0x84, 95 0x8c, 0x94, 0x9c, 0xa4, 0xac, 96 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, 97 0xdc, 0xe4, 0xec, 0xf4, 0xfc, 98 }; 99 100 struct interleave_pkg { 101 unsigned char start; 102 unsigned char end; 103 }; 104 105 static const struct interleave_pkg sbridge_interleave_pkg[] = { 106 { 0, 2 }, 107 { 3, 5 }, 108 { 8, 10 }, 109 { 11, 13 }, 110 { 16, 18 }, 111 { 19, 21 }, 112 { 24, 26 }, 113 { 27, 29 }, 114 }; 115 116 static const struct interleave_pkg ibridge_interleave_pkg[] = { 117 { 0, 3 }, 118 { 4, 7 }, 119 { 8, 11 }, 120 { 12, 15 }, 121 { 16, 19 }, 122 { 20, 23 }, 123 { 24, 27 }, 124 { 28, 31 }, 125 }; 126 127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg, 128 int interleave) 129 { 130 return GET_BITFIELD(reg, table[interleave].start, 131 table[interleave].end); 132 } 133 134 /* Devices 12 Function 7 */ 135 136 #define TOLM 0x80 137 #define TOHM 0x84 138 #define HASWELL_TOLM 0xd0 139 #define HASWELL_TOHM_0 0xd4 140 #define HASWELL_TOHM_1 0xd8 141 142 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) 143 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) 144 145 /* Device 13 Function 6 */ 146 147 #define SAD_TARGET 0xf0 148 149 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) 150 151 #define SAD_CONTROL 0xf4 152 153 /* Device 14 function 0 */ 154 155 static const u32 tad_dram_rule[] = { 156 0x40, 0x44, 0x48, 0x4c, 157 0x50, 0x54, 0x58, 0x5c, 158 0x60, 0x64, 0x68, 0x6c, 159 }; 160 #define MAX_TAD ARRAY_SIZE(tad_dram_rule) 161 162 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) 163 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) 164 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) 165 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) 166 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) 167 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) 168 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) 169 170 /* Device 15, function 0 */ 171 172 #define MCMTR 0x7c 173 174 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) 175 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) 176 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) 177 178 /* Device 15, function 1 */ 179 180 #define RASENABLES 0xac 181 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) 182 183 /* Device 15, functions 2-5 */ 184 185 static const int mtr_regs[] = { 186 0x80, 0x84, 0x88, 187 }; 188 189 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) 190 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) 191 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) 192 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) 193 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) 194 195 static const u32 tad_ch_nilv_offset[] = { 196 0x90, 0x94, 0x98, 0x9c, 197 0xa0, 0xa4, 0xa8, 0xac, 198 0xb0, 0xb4, 0xb8, 0xbc, 199 }; 200 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) 201 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) 202 203 static const u32 rir_way_limit[] = { 204 0x108, 0x10c, 0x110, 0x114, 0x118, 205 }; 206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) 207 208 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) 209 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) 210 211 #define MAX_RIR_WAY 8 212 213 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { 214 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, 215 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, 216 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, 217 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, 218 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, 219 }; 220 221 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19) 222 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14) 223 224 /* Device 16, functions 2-7 */ 225 226 /* 227 * FIXME: Implement the error count reads directly 228 */ 229 230 static const u32 correrrcnt[] = { 231 0x104, 0x108, 0x10c, 0x110, 232 }; 233 234 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) 235 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) 236 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) 237 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) 238 239 static const u32 correrrthrsld[] = { 240 0x11c, 0x120, 0x124, 0x128, 241 }; 242 243 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) 244 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) 245 246 247 /* Device 17, function 0 */ 248 249 #define SB_RANK_CFG_A 0x0328 250 251 #define IB_RANK_CFG_A 0x0320 252 253 /* 254 * sbridge structs 255 */ 256 257 #define NUM_CHANNELS 8 /* 2MC per socket, four chan per MC */ 258 #define MAX_DIMMS 3 /* Max DIMMS per channel */ 259 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */ 260 261 enum type { 262 SANDY_BRIDGE, 263 IVY_BRIDGE, 264 HASWELL, 265 BROADWELL, 266 }; 267 268 struct sbridge_pvt; 269 struct sbridge_info { 270 enum type type; 271 u32 mcmtr; 272 u32 rankcfgr; 273 u64 (*get_tolm)(struct sbridge_pvt *pvt); 274 u64 (*get_tohm)(struct sbridge_pvt *pvt); 275 u64 (*rir_limit)(u32 reg); 276 const u32 *dram_rule; 277 const u32 *interleave_list; 278 const struct interleave_pkg *interleave_pkg; 279 u8 max_sad; 280 u8 max_interleave; 281 u8 (*get_node_id)(struct sbridge_pvt *pvt); 282 enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt); 283 struct pci_dev *pci_vtd; 284 }; 285 286 struct sbridge_channel { 287 u32 ranks; 288 u32 dimms; 289 }; 290 291 struct pci_id_descr { 292 int dev_id; 293 int optional; 294 }; 295 296 struct pci_id_table { 297 const struct pci_id_descr *descr; 298 int n_devs; 299 }; 300 301 struct sbridge_dev { 302 struct list_head list; 303 u8 bus, mc; 304 u8 node_id, source_id; 305 struct pci_dev **pdev; 306 int n_devs; 307 struct mem_ctl_info *mci; 308 }; 309 310 struct sbridge_pvt { 311 struct pci_dev *pci_ta, *pci_ddrio, *pci_ras; 312 struct pci_dev *pci_sad0, *pci_sad1; 313 struct pci_dev *pci_ha0, *pci_ha1; 314 struct pci_dev *pci_br0, *pci_br1; 315 struct pci_dev *pci_ha1_ta; 316 struct pci_dev *pci_tad[NUM_CHANNELS]; 317 318 struct sbridge_dev *sbridge_dev; 319 320 struct sbridge_info info; 321 struct sbridge_channel channel[NUM_CHANNELS]; 322 323 /* Memory type detection */ 324 bool is_mirrored, is_lockstep, is_close_pg; 325 326 /* Fifo double buffers */ 327 struct mce mce_entry[MCE_LOG_LEN]; 328 struct mce mce_outentry[MCE_LOG_LEN]; 329 330 /* Fifo in/out counters */ 331 unsigned mce_in, mce_out; 332 333 /* Count indicator to show errors not got */ 334 unsigned mce_overrun; 335 336 /* Memory description */ 337 u64 tolm, tohm; 338 }; 339 340 #define PCI_DESCR(device_id, opt) \ 341 .dev_id = (device_id), \ 342 .optional = opt 343 344 static const struct pci_id_descr pci_dev_descr_sbridge[] = { 345 /* Processor Home Agent */ 346 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0) }, 347 348 /* Memory controller */ 349 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0) }, 350 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0) }, 351 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0) }, 352 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0) }, 353 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0) }, 354 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0) }, 355 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1) }, 356 357 /* System Address Decoder */ 358 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0) }, 359 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0) }, 360 361 /* Broadcast Registers */ 362 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0) }, 363 }; 364 365 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } 366 static const struct pci_id_table pci_dev_descr_sbridge_table[] = { 367 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge), 368 {0,} /* 0 terminated list. */ 369 }; 370 371 /* This changes depending if 1HA or 2HA: 372 * 1HA: 373 * 0x0eb8 (17.0) is DDRIO0 374 * 2HA: 375 * 0x0ebc (17.4) is DDRIO0 376 */ 377 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8 378 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc 379 380 /* pci ids */ 381 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0 382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8 383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71 384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa 385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab 386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac 387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead 388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8 389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9 390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca 391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60 392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68 393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79 394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a 395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b 396 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c 397 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d 398 399 static const struct pci_id_descr pci_dev_descr_ibridge[] = { 400 /* Processor Home Agent */ 401 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0) }, 402 403 /* Memory controller */ 404 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0) }, 405 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0) }, 406 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0) }, 407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0) }, 408 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0) }, 409 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0) }, 410 411 /* System Address Decoder */ 412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0) }, 413 414 /* Broadcast Registers */ 415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1) }, 416 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0) }, 417 418 /* Optional, mode 2HA */ 419 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1) }, 420 #if 0 421 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1) }, 422 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1) }, 423 #endif 424 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1) }, 425 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1) }, 426 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1) }, 427 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1) }, 428 429 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1) }, 430 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1) }, 431 }; 432 433 static const struct pci_id_table pci_dev_descr_ibridge_table[] = { 434 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge), 435 {0,} /* 0 terminated list. */ 436 }; 437 438 /* Haswell support */ 439 /* EN processor: 440 * - 1 IMC 441 * - 3 DDR3 channels, 2 DPC per channel 442 * EP processor: 443 * - 1 or 2 IMC 444 * - 4 DDR4 channels, 3 DPC per channel 445 * EP 4S processor: 446 * - 2 IMC 447 * - 4 DDR4 channels, 3 DPC per channel 448 * EX processor: 449 * - 2 IMC 450 * - each IMC interfaces with a SMI 2 channel 451 * - each SMI channel interfaces with a scalable memory buffer 452 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC 453 */ 454 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */ 455 #define HASWELL_HASYSDEFEATURE2 0x84 456 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28 457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0 458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60 459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8 460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71 461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68 462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79 463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc 464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd 465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa 466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab 467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac 468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad 469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a 470 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b 471 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c 472 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d 473 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd 474 static const struct pci_id_descr pci_dev_descr_haswell[] = { 475 /* first item must be the HA */ 476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0) }, 477 478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0) }, 479 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0) }, 480 481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1) }, 482 483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0) }, 484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0) }, 485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0) }, 486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0) }, 487 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1) }, 488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1) }, 489 490 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1) }, 491 492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1) }, 493 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1) }, 494 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1) }, 495 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1) }, 496 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1) }, 497 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1) }, 498 }; 499 500 static const struct pci_id_table pci_dev_descr_haswell_table[] = { 501 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell), 502 {0,} /* 0 terminated list. */ 503 }; 504 505 /* 506 * Broadwell support 507 * 508 * DE processor: 509 * - 1 IMC 510 * - 2 DDR3 channels, 2 DPC per channel 511 * EP processor: 512 * - 1 or 2 IMC 513 * - 4 DDR4 channels, 3 DPC per channel 514 * EP 4S processor: 515 * - 2 IMC 516 * - 4 DDR4 channels, 3 DPC per channel 517 * EX processor: 518 * - 2 IMC 519 * - each IMC interfaces with a SMI 2 channel 520 * - each SMI channel interfaces with a scalable memory buffer 521 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC 522 */ 523 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28 524 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0 525 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60 526 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8 527 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71 528 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68 529 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79 530 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc 531 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd 532 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa 533 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab 534 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac 535 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad 536 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a 537 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b 538 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c 539 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d 540 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf 541 542 static const struct pci_id_descr pci_dev_descr_broadwell[] = { 543 /* first item must be the HA */ 544 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0) }, 545 546 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0) }, 547 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0) }, 548 549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1) }, 550 551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0) }, 552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0) }, 553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0) }, 554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0) }, 555 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1) }, 556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1) }, 557 558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1) }, 559 560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1) }, 561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1) }, 562 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1) }, 563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1) }, 564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1) }, 565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1) }, 566 }; 567 568 static const struct pci_id_table pci_dev_descr_broadwell_table[] = { 569 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell), 570 {0,} /* 0 terminated list. */ 571 }; 572 573 /* 574 * pci_device_id table for which devices we are looking for 575 */ 576 static const struct pci_device_id sbridge_pci_tbl[] = { 577 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)}, 578 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)}, 579 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)}, 580 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)}, 581 {0,} /* 0 terminated list. */ 582 }; 583 584 585 /**************************************************************************** 586 Ancillary status routines 587 ****************************************************************************/ 588 589 static inline int numrank(enum type type, u32 mtr) 590 { 591 int ranks = (1 << RANK_CNT_BITS(mtr)); 592 int max = 4; 593 594 if (type == HASWELL || type == BROADWELL) 595 max = 8; 596 597 if (ranks > max) { 598 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n", 599 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr); 600 return -EINVAL; 601 } 602 603 return ranks; 604 } 605 606 static inline int numrow(u32 mtr) 607 { 608 int rows = (RANK_WIDTH_BITS(mtr) + 12); 609 610 if (rows < 13 || rows > 18) { 611 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n", 612 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); 613 return -EINVAL; 614 } 615 616 return 1 << rows; 617 } 618 619 static inline int numcol(u32 mtr) 620 { 621 int cols = (COL_WIDTH_BITS(mtr) + 10); 622 623 if (cols > 12) { 624 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n", 625 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); 626 return -EINVAL; 627 } 628 629 return 1 << cols; 630 } 631 632 static struct sbridge_dev *get_sbridge_dev(u8 bus) 633 { 634 struct sbridge_dev *sbridge_dev; 635 636 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { 637 if (sbridge_dev->bus == bus) 638 return sbridge_dev; 639 } 640 641 return NULL; 642 } 643 644 static struct sbridge_dev *alloc_sbridge_dev(u8 bus, 645 const struct pci_id_table *table) 646 { 647 struct sbridge_dev *sbridge_dev; 648 649 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); 650 if (!sbridge_dev) 651 return NULL; 652 653 sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs, 654 GFP_KERNEL); 655 if (!sbridge_dev->pdev) { 656 kfree(sbridge_dev); 657 return NULL; 658 } 659 660 sbridge_dev->bus = bus; 661 sbridge_dev->n_devs = table->n_devs; 662 list_add_tail(&sbridge_dev->list, &sbridge_edac_list); 663 664 return sbridge_dev; 665 } 666 667 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) 668 { 669 list_del(&sbridge_dev->list); 670 kfree(sbridge_dev->pdev); 671 kfree(sbridge_dev); 672 } 673 674 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt) 675 { 676 u32 reg; 677 678 /* Address range is 32:28 */ 679 pci_read_config_dword(pvt->pci_sad1, TOLM, ®); 680 return GET_TOLM(reg); 681 } 682 683 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt) 684 { 685 u32 reg; 686 687 pci_read_config_dword(pvt->pci_sad1, TOHM, ®); 688 return GET_TOHM(reg); 689 } 690 691 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt) 692 { 693 u32 reg; 694 695 pci_read_config_dword(pvt->pci_br1, TOLM, ®); 696 697 return GET_TOLM(reg); 698 } 699 700 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt) 701 { 702 u32 reg; 703 704 pci_read_config_dword(pvt->pci_br1, TOHM, ®); 705 706 return GET_TOHM(reg); 707 } 708 709 static u64 rir_limit(u32 reg) 710 { 711 return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff; 712 } 713 714 static enum mem_type get_memory_type(struct sbridge_pvt *pvt) 715 { 716 u32 reg; 717 enum mem_type mtype; 718 719 if (pvt->pci_ddrio) { 720 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr, 721 ®); 722 if (GET_BITFIELD(reg, 11, 11)) 723 /* FIXME: Can also be LRDIMM */ 724 mtype = MEM_RDDR3; 725 else 726 mtype = MEM_DDR3; 727 } else 728 mtype = MEM_UNKNOWN; 729 730 return mtype; 731 } 732 733 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt) 734 { 735 u32 reg; 736 bool registered = false; 737 enum mem_type mtype = MEM_UNKNOWN; 738 739 if (!pvt->pci_ddrio) 740 goto out; 741 742 pci_read_config_dword(pvt->pci_ddrio, 743 HASWELL_DDRCRCLKCONTROLS, ®); 744 /* Is_Rdimm */ 745 if (GET_BITFIELD(reg, 16, 16)) 746 registered = true; 747 748 pci_read_config_dword(pvt->pci_ta, MCMTR, ®); 749 if (GET_BITFIELD(reg, 14, 14)) { 750 if (registered) 751 mtype = MEM_RDDR4; 752 else 753 mtype = MEM_DDR4; 754 } else { 755 if (registered) 756 mtype = MEM_RDDR3; 757 else 758 mtype = MEM_DDR3; 759 } 760 761 out: 762 return mtype; 763 } 764 765 static u8 get_node_id(struct sbridge_pvt *pvt) 766 { 767 u32 reg; 768 pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®); 769 return GET_BITFIELD(reg, 0, 2); 770 } 771 772 static u8 haswell_get_node_id(struct sbridge_pvt *pvt) 773 { 774 u32 reg; 775 776 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); 777 return GET_BITFIELD(reg, 0, 3); 778 } 779 780 static u64 haswell_get_tolm(struct sbridge_pvt *pvt) 781 { 782 u32 reg; 783 784 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®); 785 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; 786 } 787 788 static u64 haswell_get_tohm(struct sbridge_pvt *pvt) 789 { 790 u64 rc; 791 u32 reg; 792 793 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®); 794 rc = GET_BITFIELD(reg, 26, 31); 795 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®); 796 rc = ((reg << 6) | rc) << 26; 797 798 return rc | 0x1ffffff; 799 } 800 801 static u64 haswell_rir_limit(u32 reg) 802 { 803 return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1; 804 } 805 806 static inline u8 sad_pkg_socket(u8 pkg) 807 { 808 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */ 809 return ((pkg >> 3) << 2) | (pkg & 0x3); 810 } 811 812 static inline u8 sad_pkg_ha(u8 pkg) 813 { 814 return (pkg >> 2) & 0x1; 815 } 816 817 /**************************************************************************** 818 Memory check routines 819 ****************************************************************************/ 820 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id) 821 { 822 struct pci_dev *pdev = NULL; 823 824 do { 825 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev); 826 if (pdev && pdev->bus->number == bus) 827 break; 828 } while (pdev); 829 830 return pdev; 831 } 832 833 /** 834 * check_if_ecc_is_active() - Checks if ECC is active 835 * @bus: Device bus 836 * @type: Memory controller type 837 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or 838 * disabled 839 */ 840 static int check_if_ecc_is_active(const u8 bus, enum type type) 841 { 842 struct pci_dev *pdev = NULL; 843 u32 mcmtr, id; 844 845 switch (type) { 846 case IVY_BRIDGE: 847 id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA; 848 break; 849 case HASWELL: 850 id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA; 851 break; 852 case SANDY_BRIDGE: 853 id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA; 854 break; 855 case BROADWELL: 856 id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA; 857 break; 858 default: 859 return -ENODEV; 860 } 861 862 pdev = get_pdev_same_bus(bus, id); 863 if (!pdev) { 864 sbridge_printk(KERN_ERR, "Couldn't find PCI device " 865 "%04x:%04x! on bus %02d\n", 866 PCI_VENDOR_ID_INTEL, id, bus); 867 return -ENODEV; 868 } 869 870 pci_read_config_dword(pdev, MCMTR, &mcmtr); 871 if (!IS_ECC_ENABLED(mcmtr)) { 872 sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n"); 873 return -ENODEV; 874 } 875 return 0; 876 } 877 878 static int get_dimm_config(struct mem_ctl_info *mci) 879 { 880 struct sbridge_pvt *pvt = mci->pvt_info; 881 struct dimm_info *dimm; 882 unsigned i, j, banks, ranks, rows, cols, npages; 883 u64 size; 884 u32 reg; 885 enum edac_type mode; 886 enum mem_type mtype; 887 888 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) 889 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®); 890 else 891 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®); 892 893 pvt->sbridge_dev->source_id = SOURCE_ID(reg); 894 895 pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt); 896 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n", 897 pvt->sbridge_dev->mc, 898 pvt->sbridge_dev->node_id, 899 pvt->sbridge_dev->source_id); 900 901 pci_read_config_dword(pvt->pci_ras, RASENABLES, ®); 902 if (IS_MIRROR_ENABLED(reg)) { 903 edac_dbg(0, "Memory mirror is enabled\n"); 904 pvt->is_mirrored = true; 905 } else { 906 edac_dbg(0, "Memory mirror is disabled\n"); 907 pvt->is_mirrored = false; 908 } 909 910 pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr); 911 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { 912 edac_dbg(0, "Lockstep is enabled\n"); 913 mode = EDAC_S8ECD8ED; 914 pvt->is_lockstep = true; 915 } else { 916 edac_dbg(0, "Lockstep is disabled\n"); 917 mode = EDAC_S4ECD4ED; 918 pvt->is_lockstep = false; 919 } 920 if (IS_CLOSE_PG(pvt->info.mcmtr)) { 921 edac_dbg(0, "address map is on closed page mode\n"); 922 pvt->is_close_pg = true; 923 } else { 924 edac_dbg(0, "address map is on open page mode\n"); 925 pvt->is_close_pg = false; 926 } 927 928 mtype = pvt->info.get_memory_type(pvt); 929 if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4) 930 edac_dbg(0, "Memory is registered\n"); 931 else if (mtype == MEM_UNKNOWN) 932 edac_dbg(0, "Cannot determine memory type\n"); 933 else 934 edac_dbg(0, "Memory is unregistered\n"); 935 936 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4) 937 banks = 16; 938 else 939 banks = 8; 940 941 for (i = 0; i < NUM_CHANNELS; i++) { 942 u32 mtr; 943 944 if (!pvt->pci_tad[i]) 945 continue; 946 for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { 947 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, 948 i, j, 0); 949 pci_read_config_dword(pvt->pci_tad[i], 950 mtr_regs[j], &mtr); 951 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr); 952 if (IS_DIMM_PRESENT(mtr)) { 953 pvt->channel[i].dimms++; 954 955 ranks = numrank(pvt->info.type, mtr); 956 rows = numrow(mtr); 957 cols = numcol(mtr); 958 959 size = ((u64)rows * cols * banks * ranks) >> (20 - 3); 960 npages = MiB_TO_PAGES(size); 961 962 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", 963 pvt->sbridge_dev->mc, i/4, i%4, j, 964 size, npages, 965 banks, ranks, rows, cols); 966 967 dimm->nr_pages = npages; 968 dimm->grain = 32; 969 switch (banks) { 970 case 16: 971 dimm->dtype = DEV_X16; 972 break; 973 case 8: 974 dimm->dtype = DEV_X8; 975 break; 976 case 4: 977 dimm->dtype = DEV_X4; 978 break; 979 } 980 dimm->mtype = mtype; 981 dimm->edac_mode = mode; 982 snprintf(dimm->label, sizeof(dimm->label), 983 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u", 984 pvt->sbridge_dev->source_id, i/4, i%4, j); 985 } 986 } 987 } 988 989 return 0; 990 } 991 992 static void get_memory_layout(const struct mem_ctl_info *mci) 993 { 994 struct sbridge_pvt *pvt = mci->pvt_info; 995 int i, j, k, n_sads, n_tads, sad_interl; 996 u32 reg; 997 u64 limit, prv = 0; 998 u64 tmp_mb; 999 u32 gb, mb; 1000 u32 rir_way; 1001 1002 /* 1003 * Step 1) Get TOLM/TOHM ranges 1004 */ 1005 1006 pvt->tolm = pvt->info.get_tolm(pvt); 1007 tmp_mb = (1 + pvt->tolm) >> 20; 1008 1009 gb = div_u64_rem(tmp_mb, 1024, &mb); 1010 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", 1011 gb, (mb*1000)/1024, (u64)pvt->tolm); 1012 1013 /* Address range is already 45:25 */ 1014 pvt->tohm = pvt->info.get_tohm(pvt); 1015 tmp_mb = (1 + pvt->tohm) >> 20; 1016 1017 gb = div_u64_rem(tmp_mb, 1024, &mb); 1018 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", 1019 gb, (mb*1000)/1024, (u64)pvt->tohm); 1020 1021 /* 1022 * Step 2) Get SAD range and SAD Interleave list 1023 * TAD registers contain the interleave wayness. However, it 1024 * seems simpler to just discover it indirectly, with the 1025 * algorithm bellow. 1026 */ 1027 prv = 0; 1028 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { 1029 /* SAD_LIMIT Address range is 45:26 */ 1030 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], 1031 ®); 1032 limit = SAD_LIMIT(reg); 1033 1034 if (!DRAM_RULE_ENABLE(reg)) 1035 continue; 1036 1037 if (limit <= prv) 1038 break; 1039 1040 tmp_mb = (limit + 1) >> 20; 1041 gb = div_u64_rem(tmp_mb, 1024, &mb); 1042 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n", 1043 n_sads, 1044 get_dram_attr(reg), 1045 gb, (mb*1000)/1024, 1046 ((u64)tmp_mb) << 20L, 1047 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]", 1048 reg); 1049 prv = limit; 1050 1051 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], 1052 ®); 1053 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); 1054 for (j = 0; j < 8; j++) { 1055 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j); 1056 if (j > 0 && sad_interl == pkg) 1057 break; 1058 1059 edac_dbg(0, "SAD#%d, interleave #%d: %d\n", 1060 n_sads, j, pkg); 1061 } 1062 } 1063 1064 /* 1065 * Step 3) Get TAD range 1066 */ 1067 prv = 0; 1068 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { 1069 pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], 1070 ®); 1071 limit = TAD_LIMIT(reg); 1072 if (limit <= prv) 1073 break; 1074 tmp_mb = (limit + 1) >> 20; 1075 1076 gb = div_u64_rem(tmp_mb, 1024, &mb); 1077 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", 1078 n_tads, gb, (mb*1000)/1024, 1079 ((u64)tmp_mb) << 20L, 1080 (u32)TAD_SOCK(reg), 1081 (u32)TAD_CH(reg), 1082 (u32)TAD_TGT0(reg), 1083 (u32)TAD_TGT1(reg), 1084 (u32)TAD_TGT2(reg), 1085 (u32)TAD_TGT3(reg), 1086 reg); 1087 prv = limit; 1088 } 1089 1090 /* 1091 * Step 4) Get TAD offsets, per each channel 1092 */ 1093 for (i = 0; i < NUM_CHANNELS; i++) { 1094 if (!pvt->channel[i].dimms) 1095 continue; 1096 for (j = 0; j < n_tads; j++) { 1097 pci_read_config_dword(pvt->pci_tad[i], 1098 tad_ch_nilv_offset[j], 1099 ®); 1100 tmp_mb = TAD_OFFSET(reg) >> 20; 1101 gb = div_u64_rem(tmp_mb, 1024, &mb); 1102 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", 1103 i, j, 1104 gb, (mb*1000)/1024, 1105 ((u64)tmp_mb) << 20L, 1106 reg); 1107 } 1108 } 1109 1110 /* 1111 * Step 6) Get RIR Wayness/Limit, per each channel 1112 */ 1113 for (i = 0; i < NUM_CHANNELS; i++) { 1114 if (!pvt->channel[i].dimms) 1115 continue; 1116 for (j = 0; j < MAX_RIR_RANGES; j++) { 1117 pci_read_config_dword(pvt->pci_tad[i], 1118 rir_way_limit[j], 1119 ®); 1120 1121 if (!IS_RIR_VALID(reg)) 1122 continue; 1123 1124 tmp_mb = pvt->info.rir_limit(reg) >> 20; 1125 rir_way = 1 << RIR_WAY(reg); 1126 gb = div_u64_rem(tmp_mb, 1024, &mb); 1127 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", 1128 i, j, 1129 gb, (mb*1000)/1024, 1130 ((u64)tmp_mb) << 20L, 1131 rir_way, 1132 reg); 1133 1134 for (k = 0; k < rir_way; k++) { 1135 pci_read_config_dword(pvt->pci_tad[i], 1136 rir_offset[j][k], 1137 ®); 1138 tmp_mb = RIR_OFFSET(reg) << 6; 1139 1140 gb = div_u64_rem(tmp_mb, 1024, &mb); 1141 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", 1142 i, j, k, 1143 gb, (mb*1000)/1024, 1144 ((u64)tmp_mb) << 20L, 1145 (u32)RIR_RNK_TGT(reg), 1146 reg); 1147 } 1148 } 1149 } 1150 } 1151 1152 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id) 1153 { 1154 struct sbridge_dev *sbridge_dev; 1155 1156 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { 1157 if (sbridge_dev->node_id == node_id) 1158 return sbridge_dev->mci; 1159 } 1160 return NULL; 1161 } 1162 1163 static int get_memory_error_data(struct mem_ctl_info *mci, 1164 u64 addr, 1165 u8 *socket, u8 *ha, 1166 long *channel_mask, 1167 u8 *rank, 1168 char **area_type, char *msg) 1169 { 1170 struct mem_ctl_info *new_mci; 1171 struct sbridge_pvt *pvt = mci->pvt_info; 1172 struct pci_dev *pci_ha; 1173 int n_rir, n_sads, n_tads, sad_way, sck_xch; 1174 int sad_interl, idx, base_ch; 1175 int interleave_mode, shiftup = 0; 1176 unsigned sad_interleave[pvt->info.max_interleave]; 1177 u32 reg, dram_rule; 1178 u8 ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0; 1179 u32 tad_offset; 1180 u32 rir_way; 1181 u32 mb, gb; 1182 u64 ch_addr, offset, limit = 0, prv = 0; 1183 1184 1185 /* 1186 * Step 0) Check if the address is at special memory ranges 1187 * The check bellow is probably enough to fill all cases where 1188 * the error is not inside a memory, except for the legacy 1189 * range (e. g. VGA addresses). It is unlikely, however, that the 1190 * memory controller would generate an error on that range. 1191 */ 1192 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { 1193 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); 1194 return -EINVAL; 1195 } 1196 if (addr >= (u64)pvt->tohm) { 1197 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); 1198 return -EINVAL; 1199 } 1200 1201 /* 1202 * Step 1) Get socket 1203 */ 1204 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { 1205 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], 1206 ®); 1207 1208 if (!DRAM_RULE_ENABLE(reg)) 1209 continue; 1210 1211 limit = SAD_LIMIT(reg); 1212 if (limit <= prv) { 1213 sprintf(msg, "Can't discover the memory socket"); 1214 return -EINVAL; 1215 } 1216 if (addr <= limit) 1217 break; 1218 prv = limit; 1219 } 1220 if (n_sads == pvt->info.max_sad) { 1221 sprintf(msg, "Can't discover the memory socket"); 1222 return -EINVAL; 1223 } 1224 dram_rule = reg; 1225 *area_type = get_dram_attr(dram_rule); 1226 interleave_mode = INTERLEAVE_MODE(dram_rule); 1227 1228 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], 1229 ®); 1230 1231 if (pvt->info.type == SANDY_BRIDGE) { 1232 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); 1233 for (sad_way = 0; sad_way < 8; sad_way++) { 1234 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way); 1235 if (sad_way > 0 && sad_interl == pkg) 1236 break; 1237 sad_interleave[sad_way] = pkg; 1238 edac_dbg(0, "SAD interleave #%d: %d\n", 1239 sad_way, sad_interleave[sad_way]); 1240 } 1241 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", 1242 pvt->sbridge_dev->mc, 1243 n_sads, 1244 addr, 1245 limit, 1246 sad_way + 7, 1247 !interleave_mode ? "" : "XOR[18:16]"); 1248 if (interleave_mode) 1249 idx = ((addr >> 6) ^ (addr >> 16)) & 7; 1250 else 1251 idx = (addr >> 6) & 7; 1252 switch (sad_way) { 1253 case 1: 1254 idx = 0; 1255 break; 1256 case 2: 1257 idx = idx & 1; 1258 break; 1259 case 4: 1260 idx = idx & 3; 1261 break; 1262 case 8: 1263 break; 1264 default: 1265 sprintf(msg, "Can't discover socket interleave"); 1266 return -EINVAL; 1267 } 1268 *socket = sad_interleave[idx]; 1269 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n", 1270 idx, sad_way, *socket); 1271 } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { 1272 int bits, a7mode = A7MODE(dram_rule); 1273 1274 if (a7mode) { 1275 /* A7 mode swaps P9 with P6 */ 1276 bits = GET_BITFIELD(addr, 7, 8) << 1; 1277 bits |= GET_BITFIELD(addr, 9, 9); 1278 } else 1279 bits = GET_BITFIELD(addr, 6, 8); 1280 1281 if (interleave_mode == 0) { 1282 /* interleave mode will XOR {8,7,6} with {18,17,16} */ 1283 idx = GET_BITFIELD(addr, 16, 18); 1284 idx ^= bits; 1285 } else 1286 idx = bits; 1287 1288 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); 1289 *socket = sad_pkg_socket(pkg); 1290 sad_ha = sad_pkg_ha(pkg); 1291 if (sad_ha) 1292 ch_add = 4; 1293 1294 if (a7mode) { 1295 /* MCChanShiftUpEnable */ 1296 pci_read_config_dword(pvt->pci_ha0, 1297 HASWELL_HASYSDEFEATURE2, ®); 1298 shiftup = GET_BITFIELD(reg, 22, 22); 1299 } 1300 1301 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n", 1302 idx, *socket, sad_ha, shiftup); 1303 } else { 1304 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */ 1305 idx = (addr >> 6) & 7; 1306 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); 1307 *socket = sad_pkg_socket(pkg); 1308 sad_ha = sad_pkg_ha(pkg); 1309 if (sad_ha) 1310 ch_add = 4; 1311 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n", 1312 idx, *socket, sad_ha); 1313 } 1314 1315 *ha = sad_ha; 1316 1317 /* 1318 * Move to the proper node structure, in order to access the 1319 * right PCI registers 1320 */ 1321 new_mci = get_mci_for_node_id(*socket); 1322 if (!new_mci) { 1323 sprintf(msg, "Struct for socket #%u wasn't initialized", 1324 *socket); 1325 return -EINVAL; 1326 } 1327 mci = new_mci; 1328 pvt = mci->pvt_info; 1329 1330 /* 1331 * Step 2) Get memory channel 1332 */ 1333 prv = 0; 1334 if (pvt->info.type == SANDY_BRIDGE) 1335 pci_ha = pvt->pci_ha0; 1336 else { 1337 if (sad_ha) 1338 pci_ha = pvt->pci_ha1; 1339 else 1340 pci_ha = pvt->pci_ha0; 1341 } 1342 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { 1343 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®); 1344 limit = TAD_LIMIT(reg); 1345 if (limit <= prv) { 1346 sprintf(msg, "Can't discover the memory channel"); 1347 return -EINVAL; 1348 } 1349 if (addr <= limit) 1350 break; 1351 prv = limit; 1352 } 1353 if (n_tads == MAX_TAD) { 1354 sprintf(msg, "Can't discover the memory channel"); 1355 return -EINVAL; 1356 } 1357 1358 ch_way = TAD_CH(reg) + 1; 1359 sck_way = TAD_SOCK(reg) + 1; 1360 1361 if (ch_way == 3) 1362 idx = addr >> 6; 1363 else 1364 idx = (addr >> (6 + sck_way + shiftup)) & 0x3; 1365 idx = idx % ch_way; 1366 1367 /* 1368 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? 1369 */ 1370 switch (idx) { 1371 case 0: 1372 base_ch = TAD_TGT0(reg); 1373 break; 1374 case 1: 1375 base_ch = TAD_TGT1(reg); 1376 break; 1377 case 2: 1378 base_ch = TAD_TGT2(reg); 1379 break; 1380 case 3: 1381 base_ch = TAD_TGT3(reg); 1382 break; 1383 default: 1384 sprintf(msg, "Can't discover the TAD target"); 1385 return -EINVAL; 1386 } 1387 *channel_mask = 1 << base_ch; 1388 1389 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch], 1390 tad_ch_nilv_offset[n_tads], 1391 &tad_offset); 1392 1393 if (pvt->is_mirrored) { 1394 *channel_mask |= 1 << ((base_ch + 2) % 4); 1395 switch(ch_way) { 1396 case 2: 1397 case 4: 1398 sck_xch = 1 << sck_way * (ch_way >> 1); 1399 break; 1400 default: 1401 sprintf(msg, "Invalid mirror set. Can't decode addr"); 1402 return -EINVAL; 1403 } 1404 } else 1405 sck_xch = (1 << sck_way) * ch_way; 1406 1407 if (pvt->is_lockstep) 1408 *channel_mask |= 1 << ((base_ch + 1) % 4); 1409 1410 offset = TAD_OFFSET(tad_offset); 1411 1412 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", 1413 n_tads, 1414 addr, 1415 limit, 1416 (u32)TAD_SOCK(reg), 1417 ch_way, 1418 offset, 1419 idx, 1420 base_ch, 1421 *channel_mask); 1422 1423 /* Calculate channel address */ 1424 /* Remove the TAD offset */ 1425 1426 if (offset > addr) { 1427 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", 1428 offset, addr); 1429 return -EINVAL; 1430 } 1431 addr -= offset; 1432 /* Store the low bits [0:6] of the addr */ 1433 ch_addr = addr & 0x7f; 1434 /* Remove socket wayness and remove 6 bits */ 1435 addr >>= 6; 1436 addr = div_u64(addr, sck_xch); 1437 #if 0 1438 /* Divide by channel way */ 1439 addr = addr / ch_way; 1440 #endif 1441 /* Recover the last 6 bits */ 1442 ch_addr |= addr << 6; 1443 1444 /* 1445 * Step 3) Decode rank 1446 */ 1447 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { 1448 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch], 1449 rir_way_limit[n_rir], 1450 ®); 1451 1452 if (!IS_RIR_VALID(reg)) 1453 continue; 1454 1455 limit = pvt->info.rir_limit(reg); 1456 gb = div_u64_rem(limit >> 20, 1024, &mb); 1457 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", 1458 n_rir, 1459 gb, (mb*1000)/1024, 1460 limit, 1461 1 << RIR_WAY(reg)); 1462 if (ch_addr <= limit) 1463 break; 1464 } 1465 if (n_rir == MAX_RIR_RANGES) { 1466 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", 1467 ch_addr); 1468 return -EINVAL; 1469 } 1470 rir_way = RIR_WAY(reg); 1471 1472 if (pvt->is_close_pg) 1473 idx = (ch_addr >> 6); 1474 else 1475 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ 1476 idx %= 1 << rir_way; 1477 1478 pci_read_config_dword(pvt->pci_tad[ch_add + base_ch], 1479 rir_offset[n_rir][idx], 1480 ®); 1481 *rank = RIR_RNK_TGT(reg); 1482 1483 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", 1484 n_rir, 1485 ch_addr, 1486 limit, 1487 rir_way, 1488 idx); 1489 1490 return 0; 1491 } 1492 1493 /**************************************************************************** 1494 Device initialization routines: put/get, init/exit 1495 ****************************************************************************/ 1496 1497 /* 1498 * sbridge_put_all_devices 'put' all the devices that we have 1499 * reserved via 'get' 1500 */ 1501 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) 1502 { 1503 int i; 1504 1505 edac_dbg(0, "\n"); 1506 for (i = 0; i < sbridge_dev->n_devs; i++) { 1507 struct pci_dev *pdev = sbridge_dev->pdev[i]; 1508 if (!pdev) 1509 continue; 1510 edac_dbg(0, "Removing dev %02x:%02x.%d\n", 1511 pdev->bus->number, 1512 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 1513 pci_dev_put(pdev); 1514 } 1515 } 1516 1517 static void sbridge_put_all_devices(void) 1518 { 1519 struct sbridge_dev *sbridge_dev, *tmp; 1520 1521 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { 1522 sbridge_put_devices(sbridge_dev); 1523 free_sbridge_dev(sbridge_dev); 1524 } 1525 } 1526 1527 static int sbridge_get_onedevice(struct pci_dev **prev, 1528 u8 *num_mc, 1529 const struct pci_id_table *table, 1530 const unsigned devno) 1531 { 1532 struct sbridge_dev *sbridge_dev; 1533 const struct pci_id_descr *dev_descr = &table->descr[devno]; 1534 struct pci_dev *pdev = NULL; 1535 u8 bus = 0; 1536 1537 sbridge_printk(KERN_DEBUG, 1538 "Seeking for: PCI ID %04x:%04x\n", 1539 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1540 1541 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1542 dev_descr->dev_id, *prev); 1543 1544 if (!pdev) { 1545 if (*prev) { 1546 *prev = pdev; 1547 return 0; 1548 } 1549 1550 if (dev_descr->optional) 1551 return 0; 1552 1553 /* if the HA wasn't found */ 1554 if (devno == 0) 1555 return -ENODEV; 1556 1557 sbridge_printk(KERN_INFO, 1558 "Device not found: %04x:%04x\n", 1559 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1560 1561 /* End of list, leave */ 1562 return -ENODEV; 1563 } 1564 bus = pdev->bus->number; 1565 1566 sbridge_dev = get_sbridge_dev(bus); 1567 if (!sbridge_dev) { 1568 sbridge_dev = alloc_sbridge_dev(bus, table); 1569 if (!sbridge_dev) { 1570 pci_dev_put(pdev); 1571 return -ENOMEM; 1572 } 1573 (*num_mc)++; 1574 } 1575 1576 if (sbridge_dev->pdev[devno]) { 1577 sbridge_printk(KERN_ERR, 1578 "Duplicated device for %04x:%04x\n", 1579 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1580 pci_dev_put(pdev); 1581 return -ENODEV; 1582 } 1583 1584 sbridge_dev->pdev[devno] = pdev; 1585 1586 /* Be sure that the device is enabled */ 1587 if (unlikely(pci_enable_device(pdev) < 0)) { 1588 sbridge_printk(KERN_ERR, 1589 "Couldn't enable %04x:%04x\n", 1590 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1591 return -ENODEV; 1592 } 1593 1594 edac_dbg(0, "Detected %04x:%04x\n", 1595 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1596 1597 /* 1598 * As stated on drivers/pci/search.c, the reference count for 1599 * @from is always decremented if it is not %NULL. So, as we need 1600 * to get all devices up to null, we need to do a get for the device 1601 */ 1602 pci_dev_get(pdev); 1603 1604 *prev = pdev; 1605 1606 return 0; 1607 } 1608 1609 /* 1610 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's 1611 * devices we want to reference for this driver. 1612 * @num_mc: pointer to the memory controllers count, to be incremented in case 1613 * of success. 1614 * @table: model specific table 1615 * 1616 * returns 0 in case of success or error code 1617 */ 1618 static int sbridge_get_all_devices(u8 *num_mc, 1619 const struct pci_id_table *table) 1620 { 1621 int i, rc; 1622 struct pci_dev *pdev = NULL; 1623 1624 while (table && table->descr) { 1625 for (i = 0; i < table->n_devs; i++) { 1626 pdev = NULL; 1627 do { 1628 rc = sbridge_get_onedevice(&pdev, num_mc, 1629 table, i); 1630 if (rc < 0) { 1631 if (i == 0) { 1632 i = table->n_devs; 1633 break; 1634 } 1635 sbridge_put_all_devices(); 1636 return -ENODEV; 1637 } 1638 } while (pdev); 1639 } 1640 table++; 1641 } 1642 1643 return 0; 1644 } 1645 1646 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci, 1647 struct sbridge_dev *sbridge_dev) 1648 { 1649 struct sbridge_pvt *pvt = mci->pvt_info; 1650 struct pci_dev *pdev; 1651 int i; 1652 1653 for (i = 0; i < sbridge_dev->n_devs; i++) { 1654 pdev = sbridge_dev->pdev[i]; 1655 if (!pdev) 1656 continue; 1657 1658 switch (pdev->device) { 1659 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0: 1660 pvt->pci_sad0 = pdev; 1661 break; 1662 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1: 1663 pvt->pci_sad1 = pdev; 1664 break; 1665 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR: 1666 pvt->pci_br0 = pdev; 1667 break; 1668 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0: 1669 pvt->pci_ha0 = pdev; 1670 break; 1671 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA: 1672 pvt->pci_ta = pdev; 1673 break; 1674 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS: 1675 pvt->pci_ras = pdev; 1676 break; 1677 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0: 1678 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1: 1679 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2: 1680 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3: 1681 { 1682 int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0; 1683 pvt->pci_tad[id] = pdev; 1684 } 1685 break; 1686 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO: 1687 pvt->pci_ddrio = pdev; 1688 break; 1689 default: 1690 goto error; 1691 } 1692 1693 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n", 1694 pdev->vendor, pdev->device, 1695 sbridge_dev->bus, 1696 pdev); 1697 } 1698 1699 /* Check if everything were registered */ 1700 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 || 1701 !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta) 1702 goto enodev; 1703 1704 for (i = 0; i < NUM_CHANNELS; i++) { 1705 if (!pvt->pci_tad[i]) 1706 goto enodev; 1707 } 1708 return 0; 1709 1710 enodev: 1711 sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); 1712 return -ENODEV; 1713 1714 error: 1715 sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n", 1716 PCI_VENDOR_ID_INTEL, pdev->device); 1717 return -EINVAL; 1718 } 1719 1720 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci, 1721 struct sbridge_dev *sbridge_dev) 1722 { 1723 struct sbridge_pvt *pvt = mci->pvt_info; 1724 struct pci_dev *pdev; 1725 u8 saw_chan_mask = 0; 1726 int i; 1727 1728 for (i = 0; i < sbridge_dev->n_devs; i++) { 1729 pdev = sbridge_dev->pdev[i]; 1730 if (!pdev) 1731 continue; 1732 1733 switch (pdev->device) { 1734 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0: 1735 pvt->pci_ha0 = pdev; 1736 break; 1737 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA: 1738 pvt->pci_ta = pdev; 1739 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS: 1740 pvt->pci_ras = pdev; 1741 break; 1742 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0: 1743 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1: 1744 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2: 1745 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3: 1746 { 1747 int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0; 1748 pvt->pci_tad[id] = pdev; 1749 saw_chan_mask |= 1 << id; 1750 } 1751 break; 1752 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0: 1753 pvt->pci_ddrio = pdev; 1754 break; 1755 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0: 1756 pvt->pci_ddrio = pdev; 1757 break; 1758 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD: 1759 pvt->pci_sad0 = pdev; 1760 break; 1761 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0: 1762 pvt->pci_br0 = pdev; 1763 break; 1764 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1: 1765 pvt->pci_br1 = pdev; 1766 break; 1767 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1: 1768 pvt->pci_ha1 = pdev; 1769 break; 1770 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0: 1771 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1: 1772 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2: 1773 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3: 1774 { 1775 int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4; 1776 pvt->pci_tad[id] = pdev; 1777 saw_chan_mask |= 1 << id; 1778 } 1779 break; 1780 default: 1781 goto error; 1782 } 1783 1784 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", 1785 sbridge_dev->bus, 1786 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 1787 pdev); 1788 } 1789 1790 /* Check if everything were registered */ 1791 if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 || 1792 !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras || 1793 !pvt->pci_ta) 1794 goto enodev; 1795 1796 if (saw_chan_mask != 0x0f && /* -EN */ 1797 saw_chan_mask != 0x33 && /* -EP */ 1798 saw_chan_mask != 0xff) /* -EX */ 1799 goto enodev; 1800 return 0; 1801 1802 enodev: 1803 sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); 1804 return -ENODEV; 1805 1806 error: 1807 sbridge_printk(KERN_ERR, 1808 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL, 1809 pdev->device); 1810 return -EINVAL; 1811 } 1812 1813 static int haswell_mci_bind_devs(struct mem_ctl_info *mci, 1814 struct sbridge_dev *sbridge_dev) 1815 { 1816 struct sbridge_pvt *pvt = mci->pvt_info; 1817 struct pci_dev *pdev; 1818 u8 saw_chan_mask = 0; 1819 int i; 1820 1821 /* there's only one device per system; not tied to any bus */ 1822 if (pvt->info.pci_vtd == NULL) 1823 /* result will be checked later */ 1824 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, 1825 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC, 1826 NULL); 1827 1828 for (i = 0; i < sbridge_dev->n_devs; i++) { 1829 pdev = sbridge_dev->pdev[i]; 1830 if (!pdev) 1831 continue; 1832 1833 switch (pdev->device) { 1834 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0: 1835 pvt->pci_sad0 = pdev; 1836 break; 1837 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1: 1838 pvt->pci_sad1 = pdev; 1839 break; 1840 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0: 1841 pvt->pci_ha0 = pdev; 1842 break; 1843 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA: 1844 pvt->pci_ta = pdev; 1845 break; 1846 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL: 1847 pvt->pci_ras = pdev; 1848 break; 1849 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0: 1850 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1: 1851 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2: 1852 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3: 1853 { 1854 int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0; 1855 1856 pvt->pci_tad[id] = pdev; 1857 saw_chan_mask |= 1 << id; 1858 } 1859 break; 1860 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0: 1861 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1: 1862 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2: 1863 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3: 1864 { 1865 int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4; 1866 1867 pvt->pci_tad[id] = pdev; 1868 saw_chan_mask |= 1 << id; 1869 } 1870 break; 1871 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0: 1872 pvt->pci_ddrio = pdev; 1873 break; 1874 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1: 1875 pvt->pci_ha1 = pdev; 1876 break; 1877 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA: 1878 pvt->pci_ha1_ta = pdev; 1879 break; 1880 default: 1881 break; 1882 } 1883 1884 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", 1885 sbridge_dev->bus, 1886 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 1887 pdev); 1888 } 1889 1890 /* Check if everything were registered */ 1891 if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 || 1892 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd) 1893 goto enodev; 1894 1895 if (saw_chan_mask != 0x0f && /* -EN */ 1896 saw_chan_mask != 0x33 && /* -EP */ 1897 saw_chan_mask != 0xff) /* -EX */ 1898 goto enodev; 1899 return 0; 1900 1901 enodev: 1902 sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); 1903 return -ENODEV; 1904 } 1905 1906 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci, 1907 struct sbridge_dev *sbridge_dev) 1908 { 1909 struct sbridge_pvt *pvt = mci->pvt_info; 1910 struct pci_dev *pdev; 1911 u8 saw_chan_mask = 0; 1912 int i; 1913 1914 /* there's only one device per system; not tied to any bus */ 1915 if (pvt->info.pci_vtd == NULL) 1916 /* result will be checked later */ 1917 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, 1918 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC, 1919 NULL); 1920 1921 for (i = 0; i < sbridge_dev->n_devs; i++) { 1922 pdev = sbridge_dev->pdev[i]; 1923 if (!pdev) 1924 continue; 1925 1926 switch (pdev->device) { 1927 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0: 1928 pvt->pci_sad0 = pdev; 1929 break; 1930 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1: 1931 pvt->pci_sad1 = pdev; 1932 break; 1933 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0: 1934 pvt->pci_ha0 = pdev; 1935 break; 1936 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA: 1937 pvt->pci_ta = pdev; 1938 break; 1939 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL: 1940 pvt->pci_ras = pdev; 1941 break; 1942 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0: 1943 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1: 1944 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2: 1945 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3: 1946 { 1947 int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0; 1948 pvt->pci_tad[id] = pdev; 1949 saw_chan_mask |= 1 << id; 1950 } 1951 break; 1952 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0: 1953 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1: 1954 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2: 1955 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3: 1956 { 1957 int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4; 1958 pvt->pci_tad[id] = pdev; 1959 saw_chan_mask |= 1 << id; 1960 } 1961 break; 1962 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0: 1963 pvt->pci_ddrio = pdev; 1964 break; 1965 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1: 1966 pvt->pci_ha1 = pdev; 1967 break; 1968 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA: 1969 pvt->pci_ha1_ta = pdev; 1970 break; 1971 default: 1972 break; 1973 } 1974 1975 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", 1976 sbridge_dev->bus, 1977 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 1978 pdev); 1979 } 1980 1981 /* Check if everything were registered */ 1982 if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 || 1983 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd) 1984 goto enodev; 1985 1986 if (saw_chan_mask != 0x0f && /* -EN */ 1987 saw_chan_mask != 0x33 && /* -EP */ 1988 saw_chan_mask != 0xff) /* -EX */ 1989 goto enodev; 1990 return 0; 1991 1992 enodev: 1993 sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); 1994 return -ENODEV; 1995 } 1996 1997 /**************************************************************************** 1998 Error check routines 1999 ****************************************************************************/ 2000 2001 /* 2002 * While Sandy Bridge has error count registers, SMI BIOS read values from 2003 * and resets the counters. So, they are not reliable for the OS to read 2004 * from them. So, we have no option but to just trust on whatever MCE is 2005 * telling us about the errors. 2006 */ 2007 static void sbridge_mce_output_error(struct mem_ctl_info *mci, 2008 const struct mce *m) 2009 { 2010 struct mem_ctl_info *new_mci; 2011 struct sbridge_pvt *pvt = mci->pvt_info; 2012 enum hw_event_mc_err_type tp_event; 2013 char *type, *optype, msg[256]; 2014 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); 2015 bool overflow = GET_BITFIELD(m->status, 62, 62); 2016 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); 2017 bool recoverable; 2018 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); 2019 u32 mscod = GET_BITFIELD(m->status, 16, 31); 2020 u32 errcode = GET_BITFIELD(m->status, 0, 15); 2021 u32 channel = GET_BITFIELD(m->status, 0, 3); 2022 u32 optypenum = GET_BITFIELD(m->status, 4, 6); 2023 long channel_mask, first_channel; 2024 u8 rank, socket, ha; 2025 int rc, dimm; 2026 char *area_type = NULL; 2027 2028 if (pvt->info.type != SANDY_BRIDGE) 2029 recoverable = true; 2030 else 2031 recoverable = GET_BITFIELD(m->status, 56, 56); 2032 2033 if (uncorrected_error) { 2034 if (ripv) { 2035 type = "FATAL"; 2036 tp_event = HW_EVENT_ERR_FATAL; 2037 } else { 2038 type = "NON_FATAL"; 2039 tp_event = HW_EVENT_ERR_UNCORRECTED; 2040 } 2041 } else { 2042 type = "CORRECTED"; 2043 tp_event = HW_EVENT_ERR_CORRECTED; 2044 } 2045 2046 /* 2047 * According with Table 15-9 of the Intel Architecture spec vol 3A, 2048 * memory errors should fit in this mask: 2049 * 000f 0000 1mmm cccc (binary) 2050 * where: 2051 * f = Correction Report Filtering Bit. If 1, subsequent errors 2052 * won't be shown 2053 * mmm = error type 2054 * cccc = channel 2055 * If the mask doesn't match, report an error to the parsing logic 2056 */ 2057 if (! ((errcode & 0xef80) == 0x80)) { 2058 optype = "Can't parse: it is not a mem"; 2059 } else { 2060 switch (optypenum) { 2061 case 0: 2062 optype = "generic undef request error"; 2063 break; 2064 case 1: 2065 optype = "memory read error"; 2066 break; 2067 case 2: 2068 optype = "memory write error"; 2069 break; 2070 case 3: 2071 optype = "addr/cmd error"; 2072 break; 2073 case 4: 2074 optype = "memory scrubbing error"; 2075 break; 2076 default: 2077 optype = "reserved"; 2078 break; 2079 } 2080 } 2081 2082 /* Only decode errors with an valid address (ADDRV) */ 2083 if (!GET_BITFIELD(m->status, 58, 58)) 2084 return; 2085 2086 rc = get_memory_error_data(mci, m->addr, &socket, &ha, 2087 &channel_mask, &rank, &area_type, msg); 2088 if (rc < 0) 2089 goto err_parsing; 2090 new_mci = get_mci_for_node_id(socket); 2091 if (!new_mci) { 2092 strcpy(msg, "Error: socket got corrupted!"); 2093 goto err_parsing; 2094 } 2095 mci = new_mci; 2096 pvt = mci->pvt_info; 2097 2098 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); 2099 2100 if (rank < 4) 2101 dimm = 0; 2102 else if (rank < 8) 2103 dimm = 1; 2104 else 2105 dimm = 2; 2106 2107 2108 /* 2109 * FIXME: On some memory configurations (mirror, lockstep), the 2110 * Memory Controller can't point the error to a single DIMM. The 2111 * EDAC core should be handling the channel mask, in order to point 2112 * to the group of dimm's where the error may be happening. 2113 */ 2114 if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg) 2115 channel = first_channel; 2116 2117 snprintf(msg, sizeof(msg), 2118 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d", 2119 overflow ? " OVERFLOW" : "", 2120 (uncorrected_error && recoverable) ? " recoverable" : "", 2121 area_type, 2122 mscod, errcode, 2123 socket, ha, 2124 channel_mask, 2125 rank); 2126 2127 edac_dbg(0, "%s\n", msg); 2128 2129 /* FIXME: need support for channel mask */ 2130 2131 if (channel == CHANNEL_UNSPECIFIED) 2132 channel = -1; 2133 2134 /* Call the helper to output message */ 2135 edac_mc_handle_error(tp_event, mci, core_err_cnt, 2136 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, 2137 4*ha+channel, dimm, -1, 2138 optype, msg); 2139 return; 2140 err_parsing: 2141 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, 2142 -1, -1, -1, 2143 msg, ""); 2144 2145 } 2146 2147 /* 2148 * sbridge_check_error Retrieve and process errors reported by the 2149 * hardware. Called by the Core module. 2150 */ 2151 static void sbridge_check_error(struct mem_ctl_info *mci) 2152 { 2153 struct sbridge_pvt *pvt = mci->pvt_info; 2154 int i; 2155 unsigned count = 0; 2156 struct mce *m; 2157 2158 /* 2159 * MCE first step: Copy all mce errors into a temporary buffer 2160 * We use a double buffering here, to reduce the risk of 2161 * loosing an error. 2162 */ 2163 smp_rmb(); 2164 count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) 2165 % MCE_LOG_LEN; 2166 if (!count) 2167 return; 2168 2169 m = pvt->mce_outentry; 2170 if (pvt->mce_in + count > MCE_LOG_LEN) { 2171 unsigned l = MCE_LOG_LEN - pvt->mce_in; 2172 2173 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); 2174 smp_wmb(); 2175 pvt->mce_in = 0; 2176 count -= l; 2177 m += l; 2178 } 2179 memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); 2180 smp_wmb(); 2181 pvt->mce_in += count; 2182 2183 smp_rmb(); 2184 if (pvt->mce_overrun) { 2185 sbridge_printk(KERN_ERR, "Lost %d memory errors\n", 2186 pvt->mce_overrun); 2187 smp_wmb(); 2188 pvt->mce_overrun = 0; 2189 } 2190 2191 /* 2192 * MCE second step: parse errors and display 2193 */ 2194 for (i = 0; i < count; i++) 2195 sbridge_mce_output_error(mci, &pvt->mce_outentry[i]); 2196 } 2197 2198 /* 2199 * sbridge_mce_check_error Replicates mcelog routine to get errors 2200 * This routine simply queues mcelog errors, and 2201 * return. The error itself should be handled later 2202 * by sbridge_check_error. 2203 * WARNING: As this routine should be called at NMI time, extra care should 2204 * be taken to avoid deadlocks, and to be as fast as possible. 2205 */ 2206 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, 2207 void *data) 2208 { 2209 struct mce *mce = (struct mce *)data; 2210 struct mem_ctl_info *mci; 2211 struct sbridge_pvt *pvt; 2212 char *type; 2213 2214 if (get_edac_report_status() == EDAC_REPORTING_DISABLED) 2215 return NOTIFY_DONE; 2216 2217 mci = get_mci_for_node_id(mce->socketid); 2218 if (!mci) 2219 return NOTIFY_BAD; 2220 pvt = mci->pvt_info; 2221 2222 /* 2223 * Just let mcelog handle it if the error is 2224 * outside the memory controller. A memory error 2225 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. 2226 * bit 12 has an special meaning. 2227 */ 2228 if ((mce->status & 0xefff) >> 7 != 1) 2229 return NOTIFY_DONE; 2230 2231 if (mce->mcgstatus & MCG_STATUS_MCIP) 2232 type = "Exception"; 2233 else 2234 type = "Event"; 2235 2236 sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); 2237 2238 sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " 2239 "Bank %d: %016Lx\n", mce->extcpu, type, 2240 mce->mcgstatus, mce->bank, mce->status); 2241 sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); 2242 sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); 2243 sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); 2244 2245 sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " 2246 "%u APIC %x\n", mce->cpuvendor, mce->cpuid, 2247 mce->time, mce->socketid, mce->apicid); 2248 2249 smp_rmb(); 2250 if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { 2251 smp_wmb(); 2252 pvt->mce_overrun++; 2253 return NOTIFY_DONE; 2254 } 2255 2256 /* Copy memory error at the ringbuffer */ 2257 memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); 2258 smp_wmb(); 2259 pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; 2260 2261 /* Handle fatal errors immediately */ 2262 if (mce->mcgstatus & 1) 2263 sbridge_check_error(mci); 2264 2265 /* Advice mcelog that the error were handled */ 2266 return NOTIFY_STOP; 2267 } 2268 2269 static struct notifier_block sbridge_mce_dec = { 2270 .notifier_call = sbridge_mce_check_error, 2271 }; 2272 2273 /**************************************************************************** 2274 EDAC register/unregister logic 2275 ****************************************************************************/ 2276 2277 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) 2278 { 2279 struct mem_ctl_info *mci = sbridge_dev->mci; 2280 struct sbridge_pvt *pvt; 2281 2282 if (unlikely(!mci || !mci->pvt_info)) { 2283 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev); 2284 2285 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); 2286 return; 2287 } 2288 2289 pvt = mci->pvt_info; 2290 2291 edac_dbg(0, "MC: mci = %p, dev = %p\n", 2292 mci, &sbridge_dev->pdev[0]->dev); 2293 2294 /* Remove MC sysfs nodes */ 2295 edac_mc_del_mc(mci->pdev); 2296 2297 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 2298 kfree(mci->ctl_name); 2299 edac_mc_free(mci); 2300 sbridge_dev->mci = NULL; 2301 } 2302 2303 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type) 2304 { 2305 struct mem_ctl_info *mci; 2306 struct edac_mc_layer layers[2]; 2307 struct sbridge_pvt *pvt; 2308 struct pci_dev *pdev = sbridge_dev->pdev[0]; 2309 int rc; 2310 2311 /* Check the number of active and not disabled channels */ 2312 rc = check_if_ecc_is_active(sbridge_dev->bus, type); 2313 if (unlikely(rc < 0)) 2314 return rc; 2315 2316 /* allocate a new MC control structure */ 2317 layers[0].type = EDAC_MC_LAYER_CHANNEL; 2318 layers[0].size = NUM_CHANNELS; 2319 layers[0].is_virt_csrow = false; 2320 layers[1].type = EDAC_MC_LAYER_SLOT; 2321 layers[1].size = MAX_DIMMS; 2322 layers[1].is_virt_csrow = true; 2323 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, 2324 sizeof(*pvt)); 2325 2326 if (unlikely(!mci)) 2327 return -ENOMEM; 2328 2329 edac_dbg(0, "MC: mci = %p, dev = %p\n", 2330 mci, &pdev->dev); 2331 2332 pvt = mci->pvt_info; 2333 memset(pvt, 0, sizeof(*pvt)); 2334 2335 /* Associate sbridge_dev and mci for future usage */ 2336 pvt->sbridge_dev = sbridge_dev; 2337 sbridge_dev->mci = mci; 2338 2339 mci->mtype_cap = MEM_FLAG_DDR3; 2340 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2341 mci->edac_cap = EDAC_FLAG_NONE; 2342 mci->mod_name = "sbridge_edac.c"; 2343 mci->mod_ver = SBRIDGE_REVISION; 2344 mci->dev_name = pci_name(pdev); 2345 mci->ctl_page_to_phys = NULL; 2346 2347 /* Set the function pointer to an actual operation function */ 2348 mci->edac_check = sbridge_check_error; 2349 2350 pvt->info.type = type; 2351 switch (type) { 2352 case IVY_BRIDGE: 2353 pvt->info.rankcfgr = IB_RANK_CFG_A; 2354 pvt->info.get_tolm = ibridge_get_tolm; 2355 pvt->info.get_tohm = ibridge_get_tohm; 2356 pvt->info.dram_rule = ibridge_dram_rule; 2357 pvt->info.get_memory_type = get_memory_type; 2358 pvt->info.get_node_id = get_node_id; 2359 pvt->info.rir_limit = rir_limit; 2360 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); 2361 pvt->info.interleave_list = ibridge_interleave_list; 2362 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list); 2363 pvt->info.interleave_pkg = ibridge_interleave_pkg; 2364 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx); 2365 2366 /* Store pci devices at mci for faster access */ 2367 rc = ibridge_mci_bind_devs(mci, sbridge_dev); 2368 if (unlikely(rc < 0)) 2369 goto fail0; 2370 break; 2371 case SANDY_BRIDGE: 2372 pvt->info.rankcfgr = SB_RANK_CFG_A; 2373 pvt->info.get_tolm = sbridge_get_tolm; 2374 pvt->info.get_tohm = sbridge_get_tohm; 2375 pvt->info.dram_rule = sbridge_dram_rule; 2376 pvt->info.get_memory_type = get_memory_type; 2377 pvt->info.get_node_id = get_node_id; 2378 pvt->info.rir_limit = rir_limit; 2379 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule); 2380 pvt->info.interleave_list = sbridge_interleave_list; 2381 pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list); 2382 pvt->info.interleave_pkg = sbridge_interleave_pkg; 2383 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx); 2384 2385 /* Store pci devices at mci for faster access */ 2386 rc = sbridge_mci_bind_devs(mci, sbridge_dev); 2387 if (unlikely(rc < 0)) 2388 goto fail0; 2389 break; 2390 case HASWELL: 2391 /* rankcfgr isn't used */ 2392 pvt->info.get_tolm = haswell_get_tolm; 2393 pvt->info.get_tohm = haswell_get_tohm; 2394 pvt->info.dram_rule = ibridge_dram_rule; 2395 pvt->info.get_memory_type = haswell_get_memory_type; 2396 pvt->info.get_node_id = haswell_get_node_id; 2397 pvt->info.rir_limit = haswell_rir_limit; 2398 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); 2399 pvt->info.interleave_list = ibridge_interleave_list; 2400 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list); 2401 pvt->info.interleave_pkg = ibridge_interleave_pkg; 2402 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx); 2403 2404 /* Store pci devices at mci for faster access */ 2405 rc = haswell_mci_bind_devs(mci, sbridge_dev); 2406 if (unlikely(rc < 0)) 2407 goto fail0; 2408 break; 2409 case BROADWELL: 2410 /* rankcfgr isn't used */ 2411 pvt->info.get_tolm = haswell_get_tolm; 2412 pvt->info.get_tohm = haswell_get_tohm; 2413 pvt->info.dram_rule = ibridge_dram_rule; 2414 pvt->info.get_memory_type = haswell_get_memory_type; 2415 pvt->info.get_node_id = haswell_get_node_id; 2416 pvt->info.rir_limit = haswell_rir_limit; 2417 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); 2418 pvt->info.interleave_list = ibridge_interleave_list; 2419 pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list); 2420 pvt->info.interleave_pkg = ibridge_interleave_pkg; 2421 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx); 2422 2423 /* Store pci devices at mci for faster access */ 2424 rc = broadwell_mci_bind_devs(mci, sbridge_dev); 2425 if (unlikely(rc < 0)) 2426 goto fail0; 2427 break; 2428 } 2429 2430 /* Get dimm basic config and the memory layout */ 2431 get_dimm_config(mci); 2432 get_memory_layout(mci); 2433 2434 /* record ptr to the generic device */ 2435 mci->pdev = &pdev->dev; 2436 2437 /* add this new MC control structure to EDAC's list of MCs */ 2438 if (unlikely(edac_mc_add_mc(mci))) { 2439 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 2440 rc = -EINVAL; 2441 goto fail0; 2442 } 2443 2444 return 0; 2445 2446 fail0: 2447 kfree(mci->ctl_name); 2448 edac_mc_free(mci); 2449 sbridge_dev->mci = NULL; 2450 return rc; 2451 } 2452 2453 /* 2454 * sbridge_probe Probe for ONE instance of device to see if it is 2455 * present. 2456 * return: 2457 * 0 for FOUND a device 2458 * < 0 for error code 2459 */ 2460 2461 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2462 { 2463 int rc = -ENODEV; 2464 u8 mc, num_mc = 0; 2465 struct sbridge_dev *sbridge_dev; 2466 enum type type = SANDY_BRIDGE; 2467 2468 /* get the pci devices we want to reserve for our use */ 2469 mutex_lock(&sbridge_edac_lock); 2470 2471 /* 2472 * All memory controllers are allocated at the first pass. 2473 */ 2474 if (unlikely(probed >= 1)) { 2475 mutex_unlock(&sbridge_edac_lock); 2476 return -ENODEV; 2477 } 2478 probed++; 2479 2480 switch (pdev->device) { 2481 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA: 2482 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table); 2483 type = IVY_BRIDGE; 2484 break; 2485 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0: 2486 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table); 2487 type = SANDY_BRIDGE; 2488 break; 2489 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0: 2490 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table); 2491 type = HASWELL; 2492 break; 2493 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0: 2494 rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table); 2495 type = BROADWELL; 2496 break; 2497 } 2498 if (unlikely(rc < 0)) { 2499 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device); 2500 goto fail0; 2501 } 2502 2503 mc = 0; 2504 2505 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { 2506 edac_dbg(0, "Registering MC#%d (%d of %d)\n", 2507 mc, mc + 1, num_mc); 2508 2509 sbridge_dev->mc = mc++; 2510 rc = sbridge_register_mci(sbridge_dev, type); 2511 if (unlikely(rc < 0)) 2512 goto fail1; 2513 } 2514 2515 sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION); 2516 2517 mutex_unlock(&sbridge_edac_lock); 2518 return 0; 2519 2520 fail1: 2521 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) 2522 sbridge_unregister_mci(sbridge_dev); 2523 2524 sbridge_put_all_devices(); 2525 fail0: 2526 mutex_unlock(&sbridge_edac_lock); 2527 return rc; 2528 } 2529 2530 /* 2531 * sbridge_remove destructor for one instance of device 2532 * 2533 */ 2534 static void sbridge_remove(struct pci_dev *pdev) 2535 { 2536 struct sbridge_dev *sbridge_dev; 2537 2538 edac_dbg(0, "\n"); 2539 2540 /* 2541 * we have a trouble here: pdev value for removal will be wrong, since 2542 * it will point to the X58 register used to detect that the machine 2543 * is a Nehalem or upper design. However, due to the way several PCI 2544 * devices are grouped together to provide MC functionality, we need 2545 * to use a different method for releasing the devices 2546 */ 2547 2548 mutex_lock(&sbridge_edac_lock); 2549 2550 if (unlikely(!probed)) { 2551 mutex_unlock(&sbridge_edac_lock); 2552 return; 2553 } 2554 2555 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) 2556 sbridge_unregister_mci(sbridge_dev); 2557 2558 /* Release PCI resources */ 2559 sbridge_put_all_devices(); 2560 2561 probed--; 2562 2563 mutex_unlock(&sbridge_edac_lock); 2564 } 2565 2566 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl); 2567 2568 /* 2569 * sbridge_driver pci_driver structure for this module 2570 * 2571 */ 2572 static struct pci_driver sbridge_driver = { 2573 .name = "sbridge_edac", 2574 .probe = sbridge_probe, 2575 .remove = sbridge_remove, 2576 .id_table = sbridge_pci_tbl, 2577 }; 2578 2579 /* 2580 * sbridge_init Module entry function 2581 * Try to initialize this module for its devices 2582 */ 2583 static int __init sbridge_init(void) 2584 { 2585 int pci_rc; 2586 2587 edac_dbg(2, "\n"); 2588 2589 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 2590 opstate_init(); 2591 2592 pci_rc = pci_register_driver(&sbridge_driver); 2593 if (pci_rc >= 0) { 2594 mce_register_decode_chain(&sbridge_mce_dec); 2595 if (get_edac_report_status() == EDAC_REPORTING_DISABLED) 2596 sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n"); 2597 return 0; 2598 } 2599 2600 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", 2601 pci_rc); 2602 2603 return pci_rc; 2604 } 2605 2606 /* 2607 * sbridge_exit() Module exit function 2608 * Unregister the driver 2609 */ 2610 static void __exit sbridge_exit(void) 2611 { 2612 edac_dbg(2, "\n"); 2613 pci_unregister_driver(&sbridge_driver); 2614 mce_unregister_decode_chain(&sbridge_mce_dec); 2615 } 2616 2617 module_init(sbridge_init); 2618 module_exit(sbridge_exit); 2619 2620 module_param(edac_op_state, int, 0444); 2621 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2622 2623 MODULE_LICENSE("GPL"); 2624 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2625 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); 2626 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - " 2627 SBRIDGE_REVISION); 2628