xref: /openbmc/linux/drivers/edac/sb_edac.c (revision bc5aa3a0)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/processor.h>
27 #include <asm/mce.h>
28 
29 #include "edac_core.h"
30 
31 /* Static vars */
32 static LIST_HEAD(sbridge_edac_list);
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57 	0x80, 0x88, 0x90, 0x98, 0xa0,
58 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60 
61 static const u32 ibridge_dram_rule[] = {
62 	0x60, 0x68, 0x70, 0x78, 0x80,
63 	0x88, 0x90, 0x98, 0xa0,	0xa8,
64 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67 
68 static const u32 knl_dram_rule[] = {
69 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
70 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
71 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
72 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
73 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
74 };
75 
76 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
77 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
78 
79 static char *show_dram_attr(u32 attr)
80 {
81 	switch (attr) {
82 		case 0:
83 			return "DRAM";
84 		case 1:
85 			return "MMCFG";
86 		case 2:
87 			return "NXM";
88 		default:
89 			return "unknown";
90 	}
91 }
92 
93 static const u32 sbridge_interleave_list[] = {
94 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
95 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
96 };
97 
98 static const u32 ibridge_interleave_list[] = {
99 	0x64, 0x6c, 0x74, 0x7c, 0x84,
100 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
101 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
102 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
103 };
104 
105 static const u32 knl_interleave_list[] = {
106 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
107 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
108 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
109 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
110 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
111 };
112 
113 struct interleave_pkg {
114 	unsigned char start;
115 	unsigned char end;
116 };
117 
118 static const struct interleave_pkg sbridge_interleave_pkg[] = {
119 	{ 0, 2 },
120 	{ 3, 5 },
121 	{ 8, 10 },
122 	{ 11, 13 },
123 	{ 16, 18 },
124 	{ 19, 21 },
125 	{ 24, 26 },
126 	{ 27, 29 },
127 };
128 
129 static const struct interleave_pkg ibridge_interleave_pkg[] = {
130 	{ 0, 3 },
131 	{ 4, 7 },
132 	{ 8, 11 },
133 	{ 12, 15 },
134 	{ 16, 19 },
135 	{ 20, 23 },
136 	{ 24, 27 },
137 	{ 28, 31 },
138 };
139 
140 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
141 			  int interleave)
142 {
143 	return GET_BITFIELD(reg, table[interleave].start,
144 			    table[interleave].end);
145 }
146 
147 /* Devices 12 Function 7 */
148 
149 #define TOLM		0x80
150 #define TOHM		0x84
151 #define HASWELL_TOLM	0xd0
152 #define HASWELL_TOHM_0	0xd4
153 #define HASWELL_TOHM_1	0xd8
154 #define KNL_TOLM	0xd0
155 #define KNL_TOHM_0	0xd4
156 #define KNL_TOHM_1	0xd8
157 
158 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
159 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
160 
161 /* Device 13 Function 6 */
162 
163 #define SAD_TARGET	0xf0
164 
165 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
166 
167 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
168 
169 #define SAD_CONTROL	0xf4
170 
171 /* Device 14 function 0 */
172 
173 static const u32 tad_dram_rule[] = {
174 	0x40, 0x44, 0x48, 0x4c,
175 	0x50, 0x54, 0x58, 0x5c,
176 	0x60, 0x64, 0x68, 0x6c,
177 };
178 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
179 
180 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
181 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
182 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
183 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
184 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
185 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
186 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
187 
188 /* Device 15, function 0 */
189 
190 #define MCMTR			0x7c
191 #define KNL_MCMTR		0x624
192 
193 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
194 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
195 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
196 
197 /* Device 15, function 1 */
198 
199 #define RASENABLES		0xac
200 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
201 
202 /* Device 15, functions 2-5 */
203 
204 static const int mtr_regs[] = {
205 	0x80, 0x84, 0x88,
206 };
207 
208 static const int knl_mtr_reg = 0xb60;
209 
210 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
211 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
212 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
213 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
214 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
215 
216 static const u32 tad_ch_nilv_offset[] = {
217 	0x90, 0x94, 0x98, 0x9c,
218 	0xa0, 0xa4, 0xa8, 0xac,
219 	0xb0, 0xb4, 0xb8, 0xbc,
220 };
221 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
222 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
223 
224 static const u32 rir_way_limit[] = {
225 	0x108, 0x10c, 0x110, 0x114, 0x118,
226 };
227 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
228 
229 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
230 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
231 
232 #define MAX_RIR_WAY	8
233 
234 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
235 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
236 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
237 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
238 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
239 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
240 };
241 
242 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
243 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
244 
245 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
246 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
247 
248 /* Device 16, functions 2-7 */
249 
250 /*
251  * FIXME: Implement the error count reads directly
252  */
253 
254 static const u32 correrrcnt[] = {
255 	0x104, 0x108, 0x10c, 0x110,
256 };
257 
258 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
259 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
261 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
262 
263 static const u32 correrrthrsld[] = {
264 	0x11c, 0x120, 0x124, 0x128,
265 };
266 
267 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
268 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
269 
270 
271 /* Device 17, function 0 */
272 
273 #define SB_RANK_CFG_A		0x0328
274 
275 #define IB_RANK_CFG_A		0x0320
276 
277 /*
278  * sbridge structs
279  */
280 
281 #define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */
282 #define MAX_DIMMS		3	/* Max DIMMS per channel */
283 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
284 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
285 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
286 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
287 
288 enum type {
289 	SANDY_BRIDGE,
290 	IVY_BRIDGE,
291 	HASWELL,
292 	BROADWELL,
293 	KNIGHTS_LANDING,
294 };
295 
296 struct sbridge_pvt;
297 struct sbridge_info {
298 	enum type	type;
299 	u32		mcmtr;
300 	u32		rankcfgr;
301 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
302 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
303 	u64		(*rir_limit)(u32 reg);
304 	u64		(*sad_limit)(u32 reg);
305 	u32		(*interleave_mode)(u32 reg);
306 	char*		(*show_interleave_mode)(u32 reg);
307 	u32		(*dram_attr)(u32 reg);
308 	const u32	*dram_rule;
309 	const u32	*interleave_list;
310 	const struct interleave_pkg *interleave_pkg;
311 	u8		max_sad;
312 	u8		max_interleave;
313 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
314 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
315 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
316 	struct pci_dev	*pci_vtd;
317 };
318 
319 struct sbridge_channel {
320 	u32		ranks;
321 	u32		dimms;
322 };
323 
324 struct pci_id_descr {
325 	int			dev_id;
326 	int			optional;
327 };
328 
329 struct pci_id_table {
330 	const struct pci_id_descr	*descr;
331 	int				n_devs;
332 	enum type			type;
333 };
334 
335 struct sbridge_dev {
336 	struct list_head	list;
337 	u8			bus, mc;
338 	u8			node_id, source_id;
339 	struct pci_dev		**pdev;
340 	int			n_devs;
341 	struct mem_ctl_info	*mci;
342 };
343 
344 struct knl_pvt {
345 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
346 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
347 	struct pci_dev          *pci_mc0;
348 	struct pci_dev          *pci_mc1;
349 	struct pci_dev          *pci_mc0_misc;
350 	struct pci_dev          *pci_mc1_misc;
351 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
352 };
353 
354 struct sbridge_pvt {
355 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
356 	struct pci_dev		*pci_sad0, *pci_sad1;
357 	struct pci_dev		*pci_ha0, *pci_ha1;
358 	struct pci_dev		*pci_br0, *pci_br1;
359 	struct pci_dev		*pci_ha1_ta;
360 	struct pci_dev		*pci_tad[NUM_CHANNELS];
361 
362 	struct sbridge_dev	*sbridge_dev;
363 
364 	struct sbridge_info	info;
365 	struct sbridge_channel	channel[NUM_CHANNELS];
366 
367 	/* Memory type detection */
368 	bool			is_mirrored, is_lockstep, is_close_pg;
369 	bool			is_chan_hash;
370 
371 	/* Memory description */
372 	u64			tolm, tohm;
373 	struct knl_pvt knl;
374 };
375 
376 #define PCI_DESCR(device_id, opt)	\
377 	.dev_id = (device_id),		\
378 	.optional = opt
379 
380 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
381 		/* Processor Home Agent */
382 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
383 
384 		/* Memory controller */
385 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
386 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
387 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
388 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
389 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
390 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
391 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
392 
393 		/* System Address Decoder */
394 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
395 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
396 
397 		/* Broadcast Registers */
398 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
399 };
400 
401 #define PCI_ID_TABLE_ENTRY(A, T) {	\
402 	.descr = A,			\
403 	.n_devs = ARRAY_SIZE(A),	\
404 	.type = T			\
405 }
406 
407 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
408 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, SANDY_BRIDGE),
409 	{0,}			/* 0 terminated list. */
410 };
411 
412 /* This changes depending if 1HA or 2HA:
413  * 1HA:
414  *	0x0eb8 (17.0) is DDRIO0
415  * 2HA:
416  *	0x0ebc (17.4) is DDRIO0
417  */
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
420 
421 /* pci ids */
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
439 
440 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
441 		/* Processor Home Agent */
442 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
443 
444 		/* Memory controller */
445 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
446 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
447 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
448 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
449 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
450 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
451 
452 		/* System Address Decoder */
453 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
454 
455 		/* Broadcast Registers */
456 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
457 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
458 
459 		/* Optional, mode 2HA */
460 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
461 #if 0
462 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
463 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
464 #endif
465 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
466 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
467 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	},
468 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	},
469 
470 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
471 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
472 };
473 
474 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
475 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, IVY_BRIDGE),
476 	{0,}			/* 0 terminated list. */
477 };
478 
479 /* Haswell support */
480 /* EN processor:
481  *	- 1 IMC
482  *	- 3 DDR3 channels, 2 DPC per channel
483  * EP processor:
484  *	- 1 or 2 IMC
485  *	- 4 DDR4 channels, 3 DPC per channel
486  * EP 4S processor:
487  *	- 2 IMC
488  *	- 4 DDR4 channels, 3 DPC per channel
489  * EX processor:
490  *	- 2 IMC
491  *	- each IMC interfaces with a SMI 2 channel
492  *	- each SMI channel interfaces with a scalable memory buffer
493  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
494  */
495 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
496 #define HASWELL_HASYSDEFEATURE2 0x84
497 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
518 static const struct pci_id_descr pci_dev_descr_haswell[] = {
519 	/* first item must be the HA */
520 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
521 
522 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
523 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
524 
525 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
526 
527 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
528 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
529 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
530 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
531 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
532 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
533 
534 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
535 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)		},
536 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)		},
537 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)		},
538 
539 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
540 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
541 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
542 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
543 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
544 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
545 };
546 
547 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
548 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, HASWELL),
549 	{0,}			/* 0 terminated list. */
550 };
551 
552 /* Knight's Landing Support */
553 /*
554  * KNL's memory channels are swizzled between memory controllers.
555  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
556  */
557 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
558 
559 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
560 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
561 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
562 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
563 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
564 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
565 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
566 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
567 /* SAD target - 1-29-1 (1 of these) */
568 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
569 /* Caching / Home Agent */
570 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
571 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
572 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
573 
574 /*
575  * KNL differs from SB, IB, and Haswell in that it has multiple
576  * instances of the same device with the same device ID, so we handle that
577  * by creating as many copies in the table as we expect to find.
578  * (Like device ID must be grouped together.)
579  */
580 
581 static const struct pci_id_descr pci_dev_descr_knl[] = {
582 	[0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
583 	[1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
584 	[2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
585 	[4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
586 	[42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
587 	[48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
588 	[49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
589 };
590 
591 static const struct pci_id_table pci_dev_descr_knl_table[] = {
592 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, KNIGHTS_LANDING),
593 	{0,}
594 };
595 
596 /*
597  * Broadwell support
598  *
599  * DE processor:
600  *	- 1 IMC
601  *	- 2 DDR3 channels, 2 DPC per channel
602  * EP processor:
603  *	- 1 or 2 IMC
604  *	- 4 DDR4 channels, 3 DPC per channel
605  * EP 4S processor:
606  *	- 2 IMC
607  *	- 4 DDR4 channels, 3 DPC per channel
608  * EX processor:
609  *	- 2 IMC
610  *	- each IMC interfaces with a SMI 2 channel
611  *	- each SMI channel interfaces with a scalable memory buffer
612  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
613  */
614 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
632 
633 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
634 	/* first item must be the HA */
635 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},
636 
637 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
638 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},
639 
640 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		},
641 
642 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
643 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
644 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
645 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
646 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	},
647 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	},
648 
649 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
650 
651 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	},
652 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	},
653 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	},
654 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	},
655 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	},
656 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	},
657 };
658 
659 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
660 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, BROADWELL),
661 	{0,}			/* 0 terminated list. */
662 };
663 
664 
665 /****************************************************************************
666 			Ancillary status routines
667  ****************************************************************************/
668 
669 static inline int numrank(enum type type, u32 mtr)
670 {
671 	int ranks = (1 << RANK_CNT_BITS(mtr));
672 	int max = 4;
673 
674 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
675 		max = 8;
676 
677 	if (ranks > max) {
678 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
679 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
680 		return -EINVAL;
681 	}
682 
683 	return ranks;
684 }
685 
686 static inline int numrow(u32 mtr)
687 {
688 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
689 
690 	if (rows < 13 || rows > 18) {
691 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
692 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
693 		return -EINVAL;
694 	}
695 
696 	return 1 << rows;
697 }
698 
699 static inline int numcol(u32 mtr)
700 {
701 	int cols = (COL_WIDTH_BITS(mtr) + 10);
702 
703 	if (cols > 12) {
704 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
705 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
706 		return -EINVAL;
707 	}
708 
709 	return 1 << cols;
710 }
711 
712 static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
713 {
714 	struct sbridge_dev *sbridge_dev;
715 
716 	/*
717 	 * If we have devices scattered across several busses that pertain
718 	 * to the same memory controller, we'll lump them all together.
719 	 */
720 	if (multi_bus) {
721 		return list_first_entry_or_null(&sbridge_edac_list,
722 				struct sbridge_dev, list);
723 	}
724 
725 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
726 		if (sbridge_dev->bus == bus)
727 			return sbridge_dev;
728 	}
729 
730 	return NULL;
731 }
732 
733 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
734 					   const struct pci_id_table *table)
735 {
736 	struct sbridge_dev *sbridge_dev;
737 
738 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
739 	if (!sbridge_dev)
740 		return NULL;
741 
742 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
743 				   GFP_KERNEL);
744 	if (!sbridge_dev->pdev) {
745 		kfree(sbridge_dev);
746 		return NULL;
747 	}
748 
749 	sbridge_dev->bus = bus;
750 	sbridge_dev->n_devs = table->n_devs;
751 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
752 
753 	return sbridge_dev;
754 }
755 
756 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
757 {
758 	list_del(&sbridge_dev->list);
759 	kfree(sbridge_dev->pdev);
760 	kfree(sbridge_dev);
761 }
762 
763 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
764 {
765 	u32 reg;
766 
767 	/* Address range is 32:28 */
768 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
769 	return GET_TOLM(reg);
770 }
771 
772 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
773 {
774 	u32 reg;
775 
776 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
777 	return GET_TOHM(reg);
778 }
779 
780 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
781 {
782 	u32 reg;
783 
784 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
785 
786 	return GET_TOLM(reg);
787 }
788 
789 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
790 {
791 	u32 reg;
792 
793 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
794 
795 	return GET_TOHM(reg);
796 }
797 
798 static u64 rir_limit(u32 reg)
799 {
800 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
801 }
802 
803 static u64 sad_limit(u32 reg)
804 {
805 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
806 }
807 
808 static u32 interleave_mode(u32 reg)
809 {
810 	return GET_BITFIELD(reg, 1, 1);
811 }
812 
813 char *show_interleave_mode(u32 reg)
814 {
815 	return interleave_mode(reg) ? "8:6" : "[8:6]XOR[18:16]";
816 }
817 
818 static u32 dram_attr(u32 reg)
819 {
820 	return GET_BITFIELD(reg, 2, 3);
821 }
822 
823 static u64 knl_sad_limit(u32 reg)
824 {
825 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
826 }
827 
828 static u32 knl_interleave_mode(u32 reg)
829 {
830 	return GET_BITFIELD(reg, 1, 2);
831 }
832 
833 static char *knl_show_interleave_mode(u32 reg)
834 {
835 	char *s;
836 
837 	switch (knl_interleave_mode(reg)) {
838 	case 0:
839 		s = "use address bits [8:6]";
840 		break;
841 	case 1:
842 		s = "use address bits [10:8]";
843 		break;
844 	case 2:
845 		s = "use address bits [14:12]";
846 		break;
847 	case 3:
848 		s = "use address bits [32:30]";
849 		break;
850 	default:
851 		WARN_ON(1);
852 		break;
853 	}
854 
855 	return s;
856 }
857 
858 static u32 dram_attr_knl(u32 reg)
859 {
860 	return GET_BITFIELD(reg, 3, 4);
861 }
862 
863 
864 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
865 {
866 	u32 reg;
867 	enum mem_type mtype;
868 
869 	if (pvt->pci_ddrio) {
870 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
871 				      &reg);
872 		if (GET_BITFIELD(reg, 11, 11))
873 			/* FIXME: Can also be LRDIMM */
874 			mtype = MEM_RDDR3;
875 		else
876 			mtype = MEM_DDR3;
877 	} else
878 		mtype = MEM_UNKNOWN;
879 
880 	return mtype;
881 }
882 
883 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
884 {
885 	u32 reg;
886 	bool registered = false;
887 	enum mem_type mtype = MEM_UNKNOWN;
888 
889 	if (!pvt->pci_ddrio)
890 		goto out;
891 
892 	pci_read_config_dword(pvt->pci_ddrio,
893 			      HASWELL_DDRCRCLKCONTROLS, &reg);
894 	/* Is_Rdimm */
895 	if (GET_BITFIELD(reg, 16, 16))
896 		registered = true;
897 
898 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
899 	if (GET_BITFIELD(reg, 14, 14)) {
900 		if (registered)
901 			mtype = MEM_RDDR4;
902 		else
903 			mtype = MEM_DDR4;
904 	} else {
905 		if (registered)
906 			mtype = MEM_RDDR3;
907 		else
908 			mtype = MEM_DDR3;
909 	}
910 
911 out:
912 	return mtype;
913 }
914 
915 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
916 {
917 	/* for KNL value is fixed */
918 	return DEV_X16;
919 }
920 
921 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
922 {
923 	/* there's no way to figure out */
924 	return DEV_UNKNOWN;
925 }
926 
927 static enum dev_type __ibridge_get_width(u32 mtr)
928 {
929 	enum dev_type type;
930 
931 	switch (mtr) {
932 	case 3:
933 		type = DEV_UNKNOWN;
934 		break;
935 	case 2:
936 		type = DEV_X16;
937 		break;
938 	case 1:
939 		type = DEV_X8;
940 		break;
941 	case 0:
942 		type = DEV_X4;
943 		break;
944 	}
945 
946 	return type;
947 }
948 
949 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
950 {
951 	/*
952 	 * ddr3_width on the documentation but also valid for DDR4 on
953 	 * Haswell
954 	 */
955 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
956 }
957 
958 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
959 {
960 	/* ddr3_width on the documentation but also valid for DDR4 */
961 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
962 }
963 
964 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
965 {
966 	/* DDR4 RDIMMS and LRDIMMS are supported */
967 	return MEM_RDDR4;
968 }
969 
970 static u8 get_node_id(struct sbridge_pvt *pvt)
971 {
972 	u32 reg;
973 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
974 	return GET_BITFIELD(reg, 0, 2);
975 }
976 
977 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
978 {
979 	u32 reg;
980 
981 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
982 	return GET_BITFIELD(reg, 0, 3);
983 }
984 
985 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
986 {
987 	u32 reg;
988 
989 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
990 	return GET_BITFIELD(reg, 0, 2);
991 }
992 
993 
994 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
995 {
996 	u32 reg;
997 
998 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
999 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1000 }
1001 
1002 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1003 {
1004 	u64 rc;
1005 	u32 reg;
1006 
1007 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1008 	rc = GET_BITFIELD(reg, 26, 31);
1009 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1010 	rc = ((reg << 6) | rc) << 26;
1011 
1012 	return rc | 0x1ffffff;
1013 }
1014 
1015 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1016 {
1017 	u32 reg;
1018 
1019 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1020 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1021 }
1022 
1023 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1024 {
1025 	u64 rc;
1026 	u32 reg_lo, reg_hi;
1027 
1028 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1029 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1030 	rc = ((u64)reg_hi << 32) | reg_lo;
1031 	return rc | 0x3ffffff;
1032 }
1033 
1034 
1035 static u64 haswell_rir_limit(u32 reg)
1036 {
1037 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1038 }
1039 
1040 static inline u8 sad_pkg_socket(u8 pkg)
1041 {
1042 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1043 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1044 }
1045 
1046 static inline u8 sad_pkg_ha(u8 pkg)
1047 {
1048 	return (pkg >> 2) & 0x1;
1049 }
1050 
1051 static int haswell_chan_hash(int idx, u64 addr)
1052 {
1053 	int i;
1054 
1055 	/*
1056 	 * XOR even bits from 12:26 to bit0 of idx,
1057 	 *     odd bits from 13:27 to bit1
1058 	 */
1059 	for (i = 12; i < 28; i += 2)
1060 		idx ^= (addr >> i) & 3;
1061 
1062 	return idx;
1063 }
1064 
1065 /****************************************************************************
1066 			Memory check routines
1067  ****************************************************************************/
1068 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1069 {
1070 	struct pci_dev *pdev = NULL;
1071 
1072 	do {
1073 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1074 		if (pdev && pdev->bus->number == bus)
1075 			break;
1076 	} while (pdev);
1077 
1078 	return pdev;
1079 }
1080 
1081 /**
1082  * check_if_ecc_is_active() - Checks if ECC is active
1083  * @bus:	Device bus
1084  * @type:	Memory controller type
1085  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1086  *	    disabled
1087  */
1088 static int check_if_ecc_is_active(const u8 bus, enum type type)
1089 {
1090 	struct pci_dev *pdev = NULL;
1091 	u32 mcmtr, id;
1092 
1093 	switch (type) {
1094 	case IVY_BRIDGE:
1095 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1096 		break;
1097 	case HASWELL:
1098 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1099 		break;
1100 	case SANDY_BRIDGE:
1101 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1102 		break;
1103 	case BROADWELL:
1104 		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1105 		break;
1106 	case KNIGHTS_LANDING:
1107 		/*
1108 		 * KNL doesn't group things by bus the same way
1109 		 * SB/IB/Haswell does.
1110 		 */
1111 		id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1112 		break;
1113 	default:
1114 		return -ENODEV;
1115 	}
1116 
1117 	if (type != KNIGHTS_LANDING)
1118 		pdev = get_pdev_same_bus(bus, id);
1119 	else
1120 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1121 
1122 	if (!pdev) {
1123 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1124 					"%04x:%04x! on bus %02d\n",
1125 					PCI_VENDOR_ID_INTEL, id, bus);
1126 		return -ENODEV;
1127 	}
1128 
1129 	pci_read_config_dword(pdev,
1130 			type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1131 	if (!IS_ECC_ENABLED(mcmtr)) {
1132 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1133 		return -ENODEV;
1134 	}
1135 	return 0;
1136 }
1137 
1138 /* Low bits of TAD limit, and some metadata. */
1139 static const u32 knl_tad_dram_limit_lo[] = {
1140 	0x400, 0x500, 0x600, 0x700,
1141 	0x800, 0x900, 0xa00, 0xb00,
1142 };
1143 
1144 /* Low bits of TAD offset. */
1145 static const u32 knl_tad_dram_offset_lo[] = {
1146 	0x404, 0x504, 0x604, 0x704,
1147 	0x804, 0x904, 0xa04, 0xb04,
1148 };
1149 
1150 /* High 16 bits of TAD limit and offset. */
1151 static const u32 knl_tad_dram_hi[] = {
1152 	0x408, 0x508, 0x608, 0x708,
1153 	0x808, 0x908, 0xa08, 0xb08,
1154 };
1155 
1156 /* Number of ways a tad entry is interleaved. */
1157 static const u32 knl_tad_ways[] = {
1158 	8, 6, 4, 3, 2, 1,
1159 };
1160 
1161 /*
1162  * Retrieve the n'th Target Address Decode table entry
1163  * from the memory controller's TAD table.
1164  *
1165  * @pvt:	driver private data
1166  * @entry:	which entry you want to retrieve
1167  * @mc:		which memory controller (0 or 1)
1168  * @offset:	output tad range offset
1169  * @limit:	output address of first byte above tad range
1170  * @ways:	output number of interleave ways
1171  *
1172  * The offset value has curious semantics.  It's a sort of running total
1173  * of the sizes of all the memory regions that aren't mapped in this
1174  * tad table.
1175  */
1176 static int knl_get_tad(const struct sbridge_pvt *pvt,
1177 		const int entry,
1178 		const int mc,
1179 		u64 *offset,
1180 		u64 *limit,
1181 		int *ways)
1182 {
1183 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1184 	struct pci_dev *pci_mc;
1185 	int way_id;
1186 
1187 	switch (mc) {
1188 	case 0:
1189 		pci_mc = pvt->knl.pci_mc0;
1190 		break;
1191 	case 1:
1192 		pci_mc = pvt->knl.pci_mc1;
1193 		break;
1194 	default:
1195 		WARN_ON(1);
1196 		return -EINVAL;
1197 	}
1198 
1199 	pci_read_config_dword(pci_mc,
1200 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1201 	pci_read_config_dword(pci_mc,
1202 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1203 	pci_read_config_dword(pci_mc,
1204 			knl_tad_dram_hi[entry], &reg_hi);
1205 
1206 	/* Is this TAD entry enabled? */
1207 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1208 		return -ENODEV;
1209 
1210 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1211 
1212 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1213 		*ways = knl_tad_ways[way_id];
1214 	} else {
1215 		*ways = 0;
1216 		sbridge_printk(KERN_ERR,
1217 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1218 				way_id);
1219 		return -ENODEV;
1220 	}
1221 
1222 	/*
1223 	 * The least significant 6 bits of base and limit are truncated.
1224 	 * For limit, we fill the missing bits with 1s.
1225 	 */
1226 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1227 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1228 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1229 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1230 
1231 	return 0;
1232 }
1233 
1234 /* Determine which memory controller is responsible for a given channel. */
1235 static int knl_channel_mc(int channel)
1236 {
1237 	WARN_ON(channel < 0 || channel >= 6);
1238 
1239 	return channel < 3 ? 1 : 0;
1240 }
1241 
1242 /*
1243  * Get the Nth entry from EDC_ROUTE_TABLE register.
1244  * (This is the per-tile mapping of logical interleave targets to
1245  *  physical EDC modules.)
1246  *
1247  * entry 0: 0:2
1248  *       1: 3:5
1249  *       2: 6:8
1250  *       3: 9:11
1251  *       4: 12:14
1252  *       5: 15:17
1253  *       6: 18:20
1254  *       7: 21:23
1255  * reserved: 24:31
1256  */
1257 static u32 knl_get_edc_route(int entry, u32 reg)
1258 {
1259 	WARN_ON(entry >= KNL_MAX_EDCS);
1260 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1261 }
1262 
1263 /*
1264  * Get the Nth entry from MC_ROUTE_TABLE register.
1265  * (This is the per-tile mapping of logical interleave targets to
1266  *  physical DRAM channels modules.)
1267  *
1268  * entry 0: mc 0:2   channel 18:19
1269  *       1: mc 3:5   channel 20:21
1270  *       2: mc 6:8   channel 22:23
1271  *       3: mc 9:11  channel 24:25
1272  *       4: mc 12:14 channel 26:27
1273  *       5: mc 15:17 channel 28:29
1274  * reserved: 30:31
1275  *
1276  * Though we have 3 bits to identify the MC, we should only see
1277  * the values 0 or 1.
1278  */
1279 
1280 static u32 knl_get_mc_route(int entry, u32 reg)
1281 {
1282 	int mc, chan;
1283 
1284 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1285 
1286 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1287 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1288 
1289 	return knl_channel_remap(mc, chan);
1290 }
1291 
1292 /*
1293  * Render the EDC_ROUTE register in human-readable form.
1294  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1295  */
1296 static void knl_show_edc_route(u32 reg, char *s)
1297 {
1298 	int i;
1299 
1300 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1301 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1302 		s[i*2+1] = '-';
1303 	}
1304 
1305 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1306 }
1307 
1308 /*
1309  * Render the MC_ROUTE register in human-readable form.
1310  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1311  */
1312 static void knl_show_mc_route(u32 reg, char *s)
1313 {
1314 	int i;
1315 
1316 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1317 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1318 		s[i*2+1] = '-';
1319 	}
1320 
1321 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1322 }
1323 
1324 #define KNL_EDC_ROUTE 0xb8
1325 #define KNL_MC_ROUTE 0xb4
1326 
1327 /* Is this dram rule backed by regular DRAM in flat mode? */
1328 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1329 
1330 /* Is this dram rule cached? */
1331 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1332 
1333 /* Is this rule backed by edc ? */
1334 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1335 
1336 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1337 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1338 
1339 /* Is this rule mod3? */
1340 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1341 
1342 /*
1343  * Figure out how big our RAM modules are.
1344  *
1345  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1346  * have to figure this out from the SAD rules, interleave lists, route tables,
1347  * and TAD rules.
1348  *
1349  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1350  * inspect the TAD rules to figure out how large the SAD regions really are.
1351  *
1352  * When we know the real size of a SAD region and how many ways it's
1353  * interleaved, we know the individual contribution of each channel to
1354  * TAD is size/ways.
1355  *
1356  * Finally, we have to check whether each channel participates in each SAD
1357  * region.
1358  *
1359  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1360  * much memory the channel uses, we know the DIMM is at least that large.
1361  * (The BIOS might possibly choose not to map all available memory, in which
1362  * case we will underreport the size of the DIMM.)
1363  *
1364  * In theory, we could try to determine the EDC sizes as well, but that would
1365  * only work in flat mode, not in cache mode.
1366  *
1367  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1368  *            elements)
1369  */
1370 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1371 {
1372 	u64 sad_base, sad_size, sad_limit = 0;
1373 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1374 	int sad_rule = 0;
1375 	int tad_rule = 0;
1376 	int intrlv_ways, tad_ways;
1377 	u32 first_pkg, pkg;
1378 	int i;
1379 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1380 	u32 dram_rule, interleave_reg;
1381 	u32 mc_route_reg[KNL_MAX_CHAS];
1382 	u32 edc_route_reg[KNL_MAX_CHAS];
1383 	int edram_only;
1384 	char edc_route_string[KNL_MAX_EDCS*2];
1385 	char mc_route_string[KNL_MAX_CHANNELS*2];
1386 	int cur_reg_start;
1387 	int mc;
1388 	int channel;
1389 	int way;
1390 	int participants[KNL_MAX_CHANNELS];
1391 	int participant_count = 0;
1392 
1393 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1394 		mc_sizes[i] = 0;
1395 
1396 	/* Read the EDC route table in each CHA. */
1397 	cur_reg_start = 0;
1398 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1399 		pci_read_config_dword(pvt->knl.pci_cha[i],
1400 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1401 
1402 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1403 			knl_show_edc_route(edc_route_reg[i-1],
1404 					edc_route_string);
1405 			if (cur_reg_start == i-1)
1406 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1407 					cur_reg_start, edc_route_string);
1408 			else
1409 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1410 					cur_reg_start, i-1, edc_route_string);
1411 			cur_reg_start = i;
1412 		}
1413 	}
1414 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1415 	if (cur_reg_start == i-1)
1416 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1417 			cur_reg_start, edc_route_string);
1418 	else
1419 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1420 			cur_reg_start, i-1, edc_route_string);
1421 
1422 	/* Read the MC route table in each CHA. */
1423 	cur_reg_start = 0;
1424 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1425 		pci_read_config_dword(pvt->knl.pci_cha[i],
1426 			KNL_MC_ROUTE, &mc_route_reg[i]);
1427 
1428 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1429 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1430 			if (cur_reg_start == i-1)
1431 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1432 					cur_reg_start, mc_route_string);
1433 			else
1434 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1435 					cur_reg_start, i-1, mc_route_string);
1436 			cur_reg_start = i;
1437 		}
1438 	}
1439 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1440 	if (cur_reg_start == i-1)
1441 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1442 			cur_reg_start, mc_route_string);
1443 	else
1444 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1445 			cur_reg_start, i-1, mc_route_string);
1446 
1447 	/* Process DRAM rules */
1448 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1449 		/* previous limit becomes the new base */
1450 		sad_base = sad_limit;
1451 
1452 		pci_read_config_dword(pvt->pci_sad0,
1453 			pvt->info.dram_rule[sad_rule], &dram_rule);
1454 
1455 		if (!DRAM_RULE_ENABLE(dram_rule))
1456 			break;
1457 
1458 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1459 
1460 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1461 		sad_size = sad_limit - sad_base;
1462 
1463 		pci_read_config_dword(pvt->pci_sad0,
1464 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1465 
1466 		/*
1467 		 * Find out how many ways this dram rule is interleaved.
1468 		 * We stop when we see the first channel again.
1469 		 */
1470 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1471 						interleave_reg, 0);
1472 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1473 			pkg = sad_pkg(pvt->info.interleave_pkg,
1474 						interleave_reg, intrlv_ways);
1475 
1476 			if ((pkg & 0x8) == 0) {
1477 				/*
1478 				 * 0 bit means memory is non-local,
1479 				 * which KNL doesn't support
1480 				 */
1481 				edac_dbg(0, "Unexpected interleave target %d\n",
1482 					pkg);
1483 				return -1;
1484 			}
1485 
1486 			if (pkg == first_pkg)
1487 				break;
1488 		}
1489 		if (KNL_MOD3(dram_rule))
1490 			intrlv_ways *= 3;
1491 
1492 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1493 			sad_rule,
1494 			sad_base,
1495 			sad_limit,
1496 			intrlv_ways,
1497 			edram_only ? ", EDRAM" : "");
1498 
1499 		/*
1500 		 * Find out how big the SAD region really is by iterating
1501 		 * over TAD tables (SAD regions may contain holes).
1502 		 * Each memory controller might have a different TAD table, so
1503 		 * we have to look at both.
1504 		 *
1505 		 * Livespace is the memory that's mapped in this TAD table,
1506 		 * deadspace is the holes (this could be the MMIO hole, or it
1507 		 * could be memory that's mapped by the other TAD table but
1508 		 * not this one).
1509 		 */
1510 		for (mc = 0; mc < 2; mc++) {
1511 			sad_actual_size[mc] = 0;
1512 			tad_livespace = 0;
1513 			for (tad_rule = 0;
1514 					tad_rule < ARRAY_SIZE(
1515 						knl_tad_dram_limit_lo);
1516 					tad_rule++) {
1517 				if (knl_get_tad(pvt,
1518 						tad_rule,
1519 						mc,
1520 						&tad_deadspace,
1521 						&tad_limit,
1522 						&tad_ways))
1523 					break;
1524 
1525 				tad_size = (tad_limit+1) -
1526 					(tad_livespace + tad_deadspace);
1527 				tad_livespace += tad_size;
1528 				tad_base = (tad_limit+1) - tad_size;
1529 
1530 				if (tad_base < sad_base) {
1531 					if (tad_limit > sad_base)
1532 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1533 				} else if (tad_base < sad_limit) {
1534 					if (tad_limit+1 > sad_limit) {
1535 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1536 					} else {
1537 						/* TAD region is completely inside SAD region */
1538 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1539 							tad_rule, tad_base,
1540 							tad_limit, tad_size,
1541 							mc);
1542 						sad_actual_size[mc] += tad_size;
1543 					}
1544 				}
1545 				tad_base = tad_limit+1;
1546 			}
1547 		}
1548 
1549 		for (mc = 0; mc < 2; mc++) {
1550 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1551 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1552 		}
1553 
1554 		/* Ignore EDRAM rule */
1555 		if (edram_only)
1556 			continue;
1557 
1558 		/* Figure out which channels participate in interleave. */
1559 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1560 			participants[channel] = 0;
1561 
1562 		/* For each channel, does at least one CHA have
1563 		 * this channel mapped to the given target?
1564 		 */
1565 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1566 			for (way = 0; way < intrlv_ways; way++) {
1567 				int target;
1568 				int cha;
1569 
1570 				if (KNL_MOD3(dram_rule))
1571 					target = way;
1572 				else
1573 					target = 0x7 & sad_pkg(
1574 				pvt->info.interleave_pkg, interleave_reg, way);
1575 
1576 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1577 					if (knl_get_mc_route(target,
1578 						mc_route_reg[cha]) == channel
1579 						&& !participants[channel]) {
1580 						participant_count++;
1581 						participants[channel] = 1;
1582 						break;
1583 					}
1584 				}
1585 			}
1586 		}
1587 
1588 		if (participant_count != intrlv_ways)
1589 			edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1590 				participant_count, intrlv_ways);
1591 
1592 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1593 			mc = knl_channel_mc(channel);
1594 			if (participants[channel]) {
1595 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1596 					channel,
1597 					sad_actual_size[mc]/intrlv_ways,
1598 					sad_rule);
1599 				mc_sizes[channel] +=
1600 					sad_actual_size[mc]/intrlv_ways;
1601 			}
1602 		}
1603 	}
1604 
1605 	return 0;
1606 }
1607 
1608 static int get_dimm_config(struct mem_ctl_info *mci)
1609 {
1610 	struct sbridge_pvt *pvt = mci->pvt_info;
1611 	struct dimm_info *dimm;
1612 	unsigned i, j, banks, ranks, rows, cols, npages;
1613 	u64 size;
1614 	u32 reg;
1615 	enum edac_type mode;
1616 	enum mem_type mtype;
1617 	int channels = pvt->info.type == KNIGHTS_LANDING ?
1618 		KNL_MAX_CHANNELS : NUM_CHANNELS;
1619 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1620 
1621 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1622 		pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1623 		pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1624 	}
1625 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1626 			pvt->info.type == KNIGHTS_LANDING)
1627 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1628 	else
1629 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1630 
1631 	if (pvt->info.type == KNIGHTS_LANDING)
1632 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1633 	else
1634 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1635 
1636 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1637 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1638 		 pvt->sbridge_dev->mc,
1639 		 pvt->sbridge_dev->node_id,
1640 		 pvt->sbridge_dev->source_id);
1641 
1642 	/* KNL doesn't support mirroring or lockstep,
1643 	 * and is always closed page
1644 	 */
1645 	if (pvt->info.type == KNIGHTS_LANDING) {
1646 		mode = EDAC_S4ECD4ED;
1647 		pvt->is_mirrored = false;
1648 
1649 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1650 			return -1;
1651 	} else {
1652 		pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1653 		if (IS_MIRROR_ENABLED(reg)) {
1654 			edac_dbg(0, "Memory mirror is enabled\n");
1655 			pvt->is_mirrored = true;
1656 		} else {
1657 			edac_dbg(0, "Memory mirror is disabled\n");
1658 			pvt->is_mirrored = false;
1659 		}
1660 
1661 		pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1662 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1663 			edac_dbg(0, "Lockstep is enabled\n");
1664 			mode = EDAC_S8ECD8ED;
1665 			pvt->is_lockstep = true;
1666 		} else {
1667 			edac_dbg(0, "Lockstep is disabled\n");
1668 			mode = EDAC_S4ECD4ED;
1669 			pvt->is_lockstep = false;
1670 		}
1671 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1672 			edac_dbg(0, "address map is on closed page mode\n");
1673 			pvt->is_close_pg = true;
1674 		} else {
1675 			edac_dbg(0, "address map is on open page mode\n");
1676 			pvt->is_close_pg = false;
1677 		}
1678 	}
1679 
1680 	mtype = pvt->info.get_memory_type(pvt);
1681 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1682 		edac_dbg(0, "Memory is registered\n");
1683 	else if (mtype == MEM_UNKNOWN)
1684 		edac_dbg(0, "Cannot determine memory type\n");
1685 	else
1686 		edac_dbg(0, "Memory is unregistered\n");
1687 
1688 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1689 		banks = 16;
1690 	else
1691 		banks = 8;
1692 
1693 	for (i = 0; i < channels; i++) {
1694 		u32 mtr;
1695 
1696 		int max_dimms_per_channel;
1697 
1698 		if (pvt->info.type == KNIGHTS_LANDING) {
1699 			max_dimms_per_channel = 1;
1700 			if (!pvt->knl.pci_channel[i])
1701 				continue;
1702 		} else {
1703 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1704 			if (!pvt->pci_tad[i])
1705 				continue;
1706 		}
1707 
1708 		for (j = 0; j < max_dimms_per_channel; j++) {
1709 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1710 				       i, j, 0);
1711 			if (pvt->info.type == KNIGHTS_LANDING) {
1712 				pci_read_config_dword(pvt->knl.pci_channel[i],
1713 					knl_mtr_reg, &mtr);
1714 			} else {
1715 				pci_read_config_dword(pvt->pci_tad[i],
1716 					mtr_regs[j], &mtr);
1717 			}
1718 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1719 			if (IS_DIMM_PRESENT(mtr)) {
1720 				pvt->channel[i].dimms++;
1721 
1722 				ranks = numrank(pvt->info.type, mtr);
1723 
1724 				if (pvt->info.type == KNIGHTS_LANDING) {
1725 					/* For DDR4, this is fixed. */
1726 					cols = 1 << 10;
1727 					rows = knl_mc_sizes[i] /
1728 						((u64) cols * ranks * banks * 8);
1729 				} else {
1730 					rows = numrow(mtr);
1731 					cols = numcol(mtr);
1732 				}
1733 
1734 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1735 				npages = MiB_TO_PAGES(size);
1736 
1737 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1738 					 pvt->sbridge_dev->mc, i/4, i%4, j,
1739 					 size, npages,
1740 					 banks, ranks, rows, cols);
1741 
1742 				dimm->nr_pages = npages;
1743 				dimm->grain = 32;
1744 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1745 				dimm->mtype = mtype;
1746 				dimm->edac_mode = mode;
1747 				snprintf(dimm->label, sizeof(dimm->label),
1748 					 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1749 					 pvt->sbridge_dev->source_id, i/4, i%4, j);
1750 			}
1751 		}
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static void get_memory_layout(const struct mem_ctl_info *mci)
1758 {
1759 	struct sbridge_pvt *pvt = mci->pvt_info;
1760 	int i, j, k, n_sads, n_tads, sad_interl;
1761 	u32 reg;
1762 	u64 limit, prv = 0;
1763 	u64 tmp_mb;
1764 	u32 gb, mb;
1765 	u32 rir_way;
1766 
1767 	/*
1768 	 * Step 1) Get TOLM/TOHM ranges
1769 	 */
1770 
1771 	pvt->tolm = pvt->info.get_tolm(pvt);
1772 	tmp_mb = (1 + pvt->tolm) >> 20;
1773 
1774 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1775 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1776 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1777 
1778 	/* Address range is already 45:25 */
1779 	pvt->tohm = pvt->info.get_tohm(pvt);
1780 	tmp_mb = (1 + pvt->tohm) >> 20;
1781 
1782 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1783 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1784 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1785 
1786 	/*
1787 	 * Step 2) Get SAD range and SAD Interleave list
1788 	 * TAD registers contain the interleave wayness. However, it
1789 	 * seems simpler to just discover it indirectly, with the
1790 	 * algorithm bellow.
1791 	 */
1792 	prv = 0;
1793 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1794 		/* SAD_LIMIT Address range is 45:26 */
1795 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1796 				      &reg);
1797 		limit = pvt->info.sad_limit(reg);
1798 
1799 		if (!DRAM_RULE_ENABLE(reg))
1800 			continue;
1801 
1802 		if (limit <= prv)
1803 			break;
1804 
1805 		tmp_mb = (limit + 1) >> 20;
1806 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1807 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1808 			 n_sads,
1809 			 show_dram_attr(pvt->info.dram_attr(reg)),
1810 			 gb, (mb*1000)/1024,
1811 			 ((u64)tmp_mb) << 20L,
1812 			 pvt->info.show_interleave_mode(reg),
1813 			 reg);
1814 		prv = limit;
1815 
1816 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1817 				      &reg);
1818 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1819 		for (j = 0; j < 8; j++) {
1820 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1821 			if (j > 0 && sad_interl == pkg)
1822 				break;
1823 
1824 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1825 				 n_sads, j, pkg);
1826 		}
1827 	}
1828 
1829 	if (pvt->info.type == KNIGHTS_LANDING)
1830 		return;
1831 
1832 	/*
1833 	 * Step 3) Get TAD range
1834 	 */
1835 	prv = 0;
1836 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1837 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1838 				      &reg);
1839 		limit = TAD_LIMIT(reg);
1840 		if (limit <= prv)
1841 			break;
1842 		tmp_mb = (limit + 1) >> 20;
1843 
1844 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1845 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1846 			 n_tads, gb, (mb*1000)/1024,
1847 			 ((u64)tmp_mb) << 20L,
1848 			 (u32)(1 << TAD_SOCK(reg)),
1849 			 (u32)TAD_CH(reg) + 1,
1850 			 (u32)TAD_TGT0(reg),
1851 			 (u32)TAD_TGT1(reg),
1852 			 (u32)TAD_TGT2(reg),
1853 			 (u32)TAD_TGT3(reg),
1854 			 reg);
1855 		prv = limit;
1856 	}
1857 
1858 	/*
1859 	 * Step 4) Get TAD offsets, per each channel
1860 	 */
1861 	for (i = 0; i < NUM_CHANNELS; i++) {
1862 		if (!pvt->channel[i].dimms)
1863 			continue;
1864 		for (j = 0; j < n_tads; j++) {
1865 			pci_read_config_dword(pvt->pci_tad[i],
1866 					      tad_ch_nilv_offset[j],
1867 					      &reg);
1868 			tmp_mb = TAD_OFFSET(reg) >> 20;
1869 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1870 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1871 				 i, j,
1872 				 gb, (mb*1000)/1024,
1873 				 ((u64)tmp_mb) << 20L,
1874 				 reg);
1875 		}
1876 	}
1877 
1878 	/*
1879 	 * Step 6) Get RIR Wayness/Limit, per each channel
1880 	 */
1881 	for (i = 0; i < NUM_CHANNELS; i++) {
1882 		if (!pvt->channel[i].dimms)
1883 			continue;
1884 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1885 			pci_read_config_dword(pvt->pci_tad[i],
1886 					      rir_way_limit[j],
1887 					      &reg);
1888 
1889 			if (!IS_RIR_VALID(reg))
1890 				continue;
1891 
1892 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1893 			rir_way = 1 << RIR_WAY(reg);
1894 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1895 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1896 				 i, j,
1897 				 gb, (mb*1000)/1024,
1898 				 ((u64)tmp_mb) << 20L,
1899 				 rir_way,
1900 				 reg);
1901 
1902 			for (k = 0; k < rir_way; k++) {
1903 				pci_read_config_dword(pvt->pci_tad[i],
1904 						      rir_offset[j][k],
1905 						      &reg);
1906 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1907 
1908 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1909 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1910 					 i, j, k,
1911 					 gb, (mb*1000)/1024,
1912 					 ((u64)tmp_mb) << 20L,
1913 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1914 					 reg);
1915 			}
1916 		}
1917 	}
1918 }
1919 
1920 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1921 {
1922 	struct sbridge_dev *sbridge_dev;
1923 
1924 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1925 		if (sbridge_dev->node_id == node_id)
1926 			return sbridge_dev->mci;
1927 	}
1928 	return NULL;
1929 }
1930 
1931 static int get_memory_error_data(struct mem_ctl_info *mci,
1932 				 u64 addr,
1933 				 u8 *socket, u8 *ha,
1934 				 long *channel_mask,
1935 				 u8 *rank,
1936 				 char **area_type, char *msg)
1937 {
1938 	struct mem_ctl_info	*new_mci;
1939 	struct sbridge_pvt *pvt = mci->pvt_info;
1940 	struct pci_dev		*pci_ha;
1941 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1942 	int			sad_interl, idx, base_ch;
1943 	int			interleave_mode, shiftup = 0;
1944 	unsigned		sad_interleave[pvt->info.max_interleave];
1945 	u32			reg, dram_rule;
1946 	u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1947 	u32			tad_offset;
1948 	u32			rir_way;
1949 	u32			mb, gb;
1950 	u64			ch_addr, offset, limit = 0, prv = 0;
1951 
1952 
1953 	/*
1954 	 * Step 0) Check if the address is at special memory ranges
1955 	 * The check bellow is probably enough to fill all cases where
1956 	 * the error is not inside a memory, except for the legacy
1957 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1958 	 * memory controller would generate an error on that range.
1959 	 */
1960 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1961 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1962 		return -EINVAL;
1963 	}
1964 	if (addr >= (u64)pvt->tohm) {
1965 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1966 		return -EINVAL;
1967 	}
1968 
1969 	/*
1970 	 * Step 1) Get socket
1971 	 */
1972 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1973 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1974 				      &reg);
1975 
1976 		if (!DRAM_RULE_ENABLE(reg))
1977 			continue;
1978 
1979 		limit = pvt->info.sad_limit(reg);
1980 		if (limit <= prv) {
1981 			sprintf(msg, "Can't discover the memory socket");
1982 			return -EINVAL;
1983 		}
1984 		if  (addr <= limit)
1985 			break;
1986 		prv = limit;
1987 	}
1988 	if (n_sads == pvt->info.max_sad) {
1989 		sprintf(msg, "Can't discover the memory socket");
1990 		return -EINVAL;
1991 	}
1992 	dram_rule = reg;
1993 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1994 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1995 
1996 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1997 			      &reg);
1998 
1999 	if (pvt->info.type == SANDY_BRIDGE) {
2000 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2001 		for (sad_way = 0; sad_way < 8; sad_way++) {
2002 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2003 			if (sad_way > 0 && sad_interl == pkg)
2004 				break;
2005 			sad_interleave[sad_way] = pkg;
2006 			edac_dbg(0, "SAD interleave #%d: %d\n",
2007 				 sad_way, sad_interleave[sad_way]);
2008 		}
2009 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2010 			 pvt->sbridge_dev->mc,
2011 			 n_sads,
2012 			 addr,
2013 			 limit,
2014 			 sad_way + 7,
2015 			 !interleave_mode ? "" : "XOR[18:16]");
2016 		if (interleave_mode)
2017 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2018 		else
2019 			idx = (addr >> 6) & 7;
2020 		switch (sad_way) {
2021 		case 1:
2022 			idx = 0;
2023 			break;
2024 		case 2:
2025 			idx = idx & 1;
2026 			break;
2027 		case 4:
2028 			idx = idx & 3;
2029 			break;
2030 		case 8:
2031 			break;
2032 		default:
2033 			sprintf(msg, "Can't discover socket interleave");
2034 			return -EINVAL;
2035 		}
2036 		*socket = sad_interleave[idx];
2037 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2038 			 idx, sad_way, *socket);
2039 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2040 		int bits, a7mode = A7MODE(dram_rule);
2041 
2042 		if (a7mode) {
2043 			/* A7 mode swaps P9 with P6 */
2044 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2045 			bits |= GET_BITFIELD(addr, 9, 9);
2046 		} else
2047 			bits = GET_BITFIELD(addr, 6, 8);
2048 
2049 		if (interleave_mode == 0) {
2050 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2051 			idx = GET_BITFIELD(addr, 16, 18);
2052 			idx ^= bits;
2053 		} else
2054 			idx = bits;
2055 
2056 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2057 		*socket = sad_pkg_socket(pkg);
2058 		sad_ha = sad_pkg_ha(pkg);
2059 		if (sad_ha)
2060 			ch_add = 4;
2061 
2062 		if (a7mode) {
2063 			/* MCChanShiftUpEnable */
2064 			pci_read_config_dword(pvt->pci_ha0,
2065 					      HASWELL_HASYSDEFEATURE2, &reg);
2066 			shiftup = GET_BITFIELD(reg, 22, 22);
2067 		}
2068 
2069 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2070 			 idx, *socket, sad_ha, shiftup);
2071 	} else {
2072 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2073 		idx = (addr >> 6) & 7;
2074 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2075 		*socket = sad_pkg_socket(pkg);
2076 		sad_ha = sad_pkg_ha(pkg);
2077 		if (sad_ha)
2078 			ch_add = 4;
2079 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2080 			 idx, *socket, sad_ha);
2081 	}
2082 
2083 	*ha = sad_ha;
2084 
2085 	/*
2086 	 * Move to the proper node structure, in order to access the
2087 	 * right PCI registers
2088 	 */
2089 	new_mci = get_mci_for_node_id(*socket);
2090 	if (!new_mci) {
2091 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2092 			*socket);
2093 		return -EINVAL;
2094 	}
2095 	mci = new_mci;
2096 	pvt = mci->pvt_info;
2097 
2098 	/*
2099 	 * Step 2) Get memory channel
2100 	 */
2101 	prv = 0;
2102 	if (pvt->info.type == SANDY_BRIDGE)
2103 		pci_ha = pvt->pci_ha0;
2104 	else {
2105 		if (sad_ha)
2106 			pci_ha = pvt->pci_ha1;
2107 		else
2108 			pci_ha = pvt->pci_ha0;
2109 	}
2110 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2111 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2112 		limit = TAD_LIMIT(reg);
2113 		if (limit <= prv) {
2114 			sprintf(msg, "Can't discover the memory channel");
2115 			return -EINVAL;
2116 		}
2117 		if  (addr <= limit)
2118 			break;
2119 		prv = limit;
2120 	}
2121 	if (n_tads == MAX_TAD) {
2122 		sprintf(msg, "Can't discover the memory channel");
2123 		return -EINVAL;
2124 	}
2125 
2126 	ch_way = TAD_CH(reg) + 1;
2127 	sck_way = TAD_SOCK(reg);
2128 
2129 	if (ch_way == 3)
2130 		idx = addr >> 6;
2131 	else {
2132 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2133 		if (pvt->is_chan_hash)
2134 			idx = haswell_chan_hash(idx, addr);
2135 	}
2136 	idx = idx % ch_way;
2137 
2138 	/*
2139 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2140 	 */
2141 	switch (idx) {
2142 	case 0:
2143 		base_ch = TAD_TGT0(reg);
2144 		break;
2145 	case 1:
2146 		base_ch = TAD_TGT1(reg);
2147 		break;
2148 	case 2:
2149 		base_ch = TAD_TGT2(reg);
2150 		break;
2151 	case 3:
2152 		base_ch = TAD_TGT3(reg);
2153 		break;
2154 	default:
2155 		sprintf(msg, "Can't discover the TAD target");
2156 		return -EINVAL;
2157 	}
2158 	*channel_mask = 1 << base_ch;
2159 
2160 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2161 				tad_ch_nilv_offset[n_tads],
2162 				&tad_offset);
2163 
2164 	if (pvt->is_mirrored) {
2165 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2166 		switch(ch_way) {
2167 		case 2:
2168 		case 4:
2169 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2170 			break;
2171 		default:
2172 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2173 			return -EINVAL;
2174 		}
2175 	} else
2176 		sck_xch = (1 << sck_way) * ch_way;
2177 
2178 	if (pvt->is_lockstep)
2179 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2180 
2181 	offset = TAD_OFFSET(tad_offset);
2182 
2183 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2184 		 n_tads,
2185 		 addr,
2186 		 limit,
2187 		 sck_way,
2188 		 ch_way,
2189 		 offset,
2190 		 idx,
2191 		 base_ch,
2192 		 *channel_mask);
2193 
2194 	/* Calculate channel address */
2195 	/* Remove the TAD offset */
2196 
2197 	if (offset > addr) {
2198 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2199 			offset, addr);
2200 		return -EINVAL;
2201 	}
2202 
2203 	ch_addr = addr - offset;
2204 	ch_addr >>= (6 + shiftup);
2205 	ch_addr /= sck_xch;
2206 	ch_addr <<= (6 + shiftup);
2207 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2208 
2209 	/*
2210 	 * Step 3) Decode rank
2211 	 */
2212 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2213 		pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2214 				      rir_way_limit[n_rir],
2215 				      &reg);
2216 
2217 		if (!IS_RIR_VALID(reg))
2218 			continue;
2219 
2220 		limit = pvt->info.rir_limit(reg);
2221 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2222 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2223 			 n_rir,
2224 			 gb, (mb*1000)/1024,
2225 			 limit,
2226 			 1 << RIR_WAY(reg));
2227 		if  (ch_addr <= limit)
2228 			break;
2229 	}
2230 	if (n_rir == MAX_RIR_RANGES) {
2231 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2232 			ch_addr);
2233 		return -EINVAL;
2234 	}
2235 	rir_way = RIR_WAY(reg);
2236 
2237 	if (pvt->is_close_pg)
2238 		idx = (ch_addr >> 6);
2239 	else
2240 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2241 	idx %= 1 << rir_way;
2242 
2243 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2244 			      rir_offset[n_rir][idx],
2245 			      &reg);
2246 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2247 
2248 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2249 		 n_rir,
2250 		 ch_addr,
2251 		 limit,
2252 		 rir_way,
2253 		 idx);
2254 
2255 	return 0;
2256 }
2257 
2258 /****************************************************************************
2259 	Device initialization routines: put/get, init/exit
2260  ****************************************************************************/
2261 
2262 /*
2263  *	sbridge_put_all_devices	'put' all the devices that we have
2264  *				reserved via 'get'
2265  */
2266 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2267 {
2268 	int i;
2269 
2270 	edac_dbg(0, "\n");
2271 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2272 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2273 		if (!pdev)
2274 			continue;
2275 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2276 			 pdev->bus->number,
2277 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2278 		pci_dev_put(pdev);
2279 	}
2280 }
2281 
2282 static void sbridge_put_all_devices(void)
2283 {
2284 	struct sbridge_dev *sbridge_dev, *tmp;
2285 
2286 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2287 		sbridge_put_devices(sbridge_dev);
2288 		free_sbridge_dev(sbridge_dev);
2289 	}
2290 }
2291 
2292 static int sbridge_get_onedevice(struct pci_dev **prev,
2293 				 u8 *num_mc,
2294 				 const struct pci_id_table *table,
2295 				 const unsigned devno,
2296 				 const int multi_bus)
2297 {
2298 	struct sbridge_dev *sbridge_dev;
2299 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2300 	struct pci_dev *pdev = NULL;
2301 	u8 bus = 0;
2302 
2303 	sbridge_printk(KERN_DEBUG,
2304 		"Seeking for: PCI ID %04x:%04x\n",
2305 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2306 
2307 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2308 			      dev_descr->dev_id, *prev);
2309 
2310 	if (!pdev) {
2311 		if (*prev) {
2312 			*prev = pdev;
2313 			return 0;
2314 		}
2315 
2316 		if (dev_descr->optional)
2317 			return 0;
2318 
2319 		/* if the HA wasn't found */
2320 		if (devno == 0)
2321 			return -ENODEV;
2322 
2323 		sbridge_printk(KERN_INFO,
2324 			"Device not found: %04x:%04x\n",
2325 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2326 
2327 		/* End of list, leave */
2328 		return -ENODEV;
2329 	}
2330 	bus = pdev->bus->number;
2331 
2332 	sbridge_dev = get_sbridge_dev(bus, multi_bus);
2333 	if (!sbridge_dev) {
2334 		sbridge_dev = alloc_sbridge_dev(bus, table);
2335 		if (!sbridge_dev) {
2336 			pci_dev_put(pdev);
2337 			return -ENOMEM;
2338 		}
2339 		(*num_mc)++;
2340 	}
2341 
2342 	if (sbridge_dev->pdev[devno]) {
2343 		sbridge_printk(KERN_ERR,
2344 			"Duplicated device for %04x:%04x\n",
2345 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2346 		pci_dev_put(pdev);
2347 		return -ENODEV;
2348 	}
2349 
2350 	sbridge_dev->pdev[devno] = pdev;
2351 
2352 	/* Be sure that the device is enabled */
2353 	if (unlikely(pci_enable_device(pdev) < 0)) {
2354 		sbridge_printk(KERN_ERR,
2355 			"Couldn't enable %04x:%04x\n",
2356 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2357 		return -ENODEV;
2358 	}
2359 
2360 	edac_dbg(0, "Detected %04x:%04x\n",
2361 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2362 
2363 	/*
2364 	 * As stated on drivers/pci/search.c, the reference count for
2365 	 * @from is always decremented if it is not %NULL. So, as we need
2366 	 * to get all devices up to null, we need to do a get for the device
2367 	 */
2368 	pci_dev_get(pdev);
2369 
2370 	*prev = pdev;
2371 
2372 	return 0;
2373 }
2374 
2375 /*
2376  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2377  *			     devices we want to reference for this driver.
2378  * @num_mc: pointer to the memory controllers count, to be incremented in case
2379  *	    of success.
2380  * @table: model specific table
2381  *
2382  * returns 0 in case of success or error code
2383  */
2384 static int sbridge_get_all_devices(u8 *num_mc,
2385 					const struct pci_id_table *table)
2386 {
2387 	int i, rc;
2388 	struct pci_dev *pdev = NULL;
2389 	int allow_dups = 0;
2390 	int multi_bus = 0;
2391 
2392 	if (table->type == KNIGHTS_LANDING)
2393 		allow_dups = multi_bus = 1;
2394 	while (table && table->descr) {
2395 		for (i = 0; i < table->n_devs; i++) {
2396 			if (!allow_dups || i == 0 ||
2397 					table->descr[i].dev_id !=
2398 						table->descr[i-1].dev_id) {
2399 				pdev = NULL;
2400 			}
2401 			do {
2402 				rc = sbridge_get_onedevice(&pdev, num_mc,
2403 							   table, i, multi_bus);
2404 				if (rc < 0) {
2405 					if (i == 0) {
2406 						i = table->n_devs;
2407 						break;
2408 					}
2409 					sbridge_put_all_devices();
2410 					return -ENODEV;
2411 				}
2412 			} while (pdev && !allow_dups);
2413 		}
2414 		table++;
2415 	}
2416 
2417 	return 0;
2418 }
2419 
2420 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2421 				 struct sbridge_dev *sbridge_dev)
2422 {
2423 	struct sbridge_pvt *pvt = mci->pvt_info;
2424 	struct pci_dev *pdev;
2425 	u8 saw_chan_mask = 0;
2426 	int i;
2427 
2428 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2429 		pdev = sbridge_dev->pdev[i];
2430 		if (!pdev)
2431 			continue;
2432 
2433 		switch (pdev->device) {
2434 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2435 			pvt->pci_sad0 = pdev;
2436 			break;
2437 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2438 			pvt->pci_sad1 = pdev;
2439 			break;
2440 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2441 			pvt->pci_br0 = pdev;
2442 			break;
2443 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2444 			pvt->pci_ha0 = pdev;
2445 			break;
2446 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2447 			pvt->pci_ta = pdev;
2448 			break;
2449 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2450 			pvt->pci_ras = pdev;
2451 			break;
2452 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2453 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2454 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2455 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2456 		{
2457 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2458 			pvt->pci_tad[id] = pdev;
2459 			saw_chan_mask |= 1 << id;
2460 		}
2461 			break;
2462 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2463 			pvt->pci_ddrio = pdev;
2464 			break;
2465 		default:
2466 			goto error;
2467 		}
2468 
2469 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2470 			 pdev->vendor, pdev->device,
2471 			 sbridge_dev->bus,
2472 			 pdev);
2473 	}
2474 
2475 	/* Check if everything were registered */
2476 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2477 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
2478 		goto enodev;
2479 
2480 	if (saw_chan_mask != 0x0f)
2481 		goto enodev;
2482 	return 0;
2483 
2484 enodev:
2485 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2486 	return -ENODEV;
2487 
2488 error:
2489 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2490 		       PCI_VENDOR_ID_INTEL, pdev->device);
2491 	return -EINVAL;
2492 }
2493 
2494 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2495 				 struct sbridge_dev *sbridge_dev)
2496 {
2497 	struct sbridge_pvt *pvt = mci->pvt_info;
2498 	struct pci_dev *pdev;
2499 	u8 saw_chan_mask = 0;
2500 	int i;
2501 
2502 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2503 		pdev = sbridge_dev->pdev[i];
2504 		if (!pdev)
2505 			continue;
2506 
2507 		switch (pdev->device) {
2508 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2509 			pvt->pci_ha0 = pdev;
2510 			break;
2511 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2512 			pvt->pci_ta = pdev;
2513 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2514 			pvt->pci_ras = pdev;
2515 			break;
2516 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2517 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2518 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2519 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2520 		{
2521 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2522 			pvt->pci_tad[id] = pdev;
2523 			saw_chan_mask |= 1 << id;
2524 		}
2525 			break;
2526 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2527 			pvt->pci_ddrio = pdev;
2528 			break;
2529 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2530 			pvt->pci_ddrio = pdev;
2531 			break;
2532 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2533 			pvt->pci_sad0 = pdev;
2534 			break;
2535 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2536 			pvt->pci_br0 = pdev;
2537 			break;
2538 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2539 			pvt->pci_br1 = pdev;
2540 			break;
2541 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2542 			pvt->pci_ha1 = pdev;
2543 			break;
2544 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2545 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2546 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2547 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2548 		{
2549 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2550 			pvt->pci_tad[id] = pdev;
2551 			saw_chan_mask |= 1 << id;
2552 		}
2553 			break;
2554 		default:
2555 			goto error;
2556 		}
2557 
2558 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2559 			 sbridge_dev->bus,
2560 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2561 			 pdev);
2562 	}
2563 
2564 	/* Check if everything were registered */
2565 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2566 	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
2567 	    !pvt->pci_ta)
2568 		goto enodev;
2569 
2570 	if (saw_chan_mask != 0x0f && /* -EN */
2571 	    saw_chan_mask != 0x33 && /* -EP */
2572 	    saw_chan_mask != 0xff)   /* -EX */
2573 		goto enodev;
2574 	return 0;
2575 
2576 enodev:
2577 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2578 	return -ENODEV;
2579 
2580 error:
2581 	sbridge_printk(KERN_ERR,
2582 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2583 			pdev->device);
2584 	return -EINVAL;
2585 }
2586 
2587 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2588 				 struct sbridge_dev *sbridge_dev)
2589 {
2590 	struct sbridge_pvt *pvt = mci->pvt_info;
2591 	struct pci_dev *pdev;
2592 	u8 saw_chan_mask = 0;
2593 	int i;
2594 
2595 	/* there's only one device per system; not tied to any bus */
2596 	if (pvt->info.pci_vtd == NULL)
2597 		/* result will be checked later */
2598 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2599 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2600 						   NULL);
2601 
2602 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2603 		pdev = sbridge_dev->pdev[i];
2604 		if (!pdev)
2605 			continue;
2606 
2607 		switch (pdev->device) {
2608 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2609 			pvt->pci_sad0 = pdev;
2610 			break;
2611 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2612 			pvt->pci_sad1 = pdev;
2613 			break;
2614 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2615 			pvt->pci_ha0 = pdev;
2616 			break;
2617 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2618 			pvt->pci_ta = pdev;
2619 			break;
2620 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2621 			pvt->pci_ras = pdev;
2622 			break;
2623 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2624 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2625 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2626 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2627 		{
2628 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2629 
2630 			pvt->pci_tad[id] = pdev;
2631 			saw_chan_mask |= 1 << id;
2632 		}
2633 			break;
2634 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2635 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2636 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2637 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2638 		{
2639 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2640 
2641 			pvt->pci_tad[id] = pdev;
2642 			saw_chan_mask |= 1 << id;
2643 		}
2644 			break;
2645 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2646 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2647 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2648 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2649 			if (!pvt->pci_ddrio)
2650 				pvt->pci_ddrio = pdev;
2651 			break;
2652 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2653 			pvt->pci_ha1 = pdev;
2654 			break;
2655 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2656 			pvt->pci_ha1_ta = pdev;
2657 			break;
2658 		default:
2659 			break;
2660 		}
2661 
2662 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2663 			 sbridge_dev->bus,
2664 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2665 			 pdev);
2666 	}
2667 
2668 	/* Check if everything were registered */
2669 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2670 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2671 		goto enodev;
2672 
2673 	if (saw_chan_mask != 0x0f && /* -EN */
2674 	    saw_chan_mask != 0x33 && /* -EP */
2675 	    saw_chan_mask != 0xff)   /* -EX */
2676 		goto enodev;
2677 	return 0;
2678 
2679 enodev:
2680 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2681 	return -ENODEV;
2682 }
2683 
2684 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2685 				 struct sbridge_dev *sbridge_dev)
2686 {
2687 	struct sbridge_pvt *pvt = mci->pvt_info;
2688 	struct pci_dev *pdev;
2689 	u8 saw_chan_mask = 0;
2690 	int i;
2691 
2692 	/* there's only one device per system; not tied to any bus */
2693 	if (pvt->info.pci_vtd == NULL)
2694 		/* result will be checked later */
2695 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2696 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2697 						   NULL);
2698 
2699 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2700 		pdev = sbridge_dev->pdev[i];
2701 		if (!pdev)
2702 			continue;
2703 
2704 		switch (pdev->device) {
2705 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2706 			pvt->pci_sad0 = pdev;
2707 			break;
2708 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2709 			pvt->pci_sad1 = pdev;
2710 			break;
2711 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2712 			pvt->pci_ha0 = pdev;
2713 			break;
2714 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2715 			pvt->pci_ta = pdev;
2716 			break;
2717 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2718 			pvt->pci_ras = pdev;
2719 			break;
2720 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2721 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2722 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2723 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2724 		{
2725 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2726 			pvt->pci_tad[id] = pdev;
2727 			saw_chan_mask |= 1 << id;
2728 		}
2729 			break;
2730 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2731 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2732 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2733 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2734 		{
2735 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2736 			pvt->pci_tad[id] = pdev;
2737 			saw_chan_mask |= 1 << id;
2738 		}
2739 			break;
2740 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2741 			pvt->pci_ddrio = pdev;
2742 			break;
2743 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2744 			pvt->pci_ha1 = pdev;
2745 			break;
2746 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2747 			pvt->pci_ha1_ta = pdev;
2748 			break;
2749 		default:
2750 			break;
2751 		}
2752 
2753 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2754 			 sbridge_dev->bus,
2755 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2756 			 pdev);
2757 	}
2758 
2759 	/* Check if everything were registered */
2760 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2761 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2762 		goto enodev;
2763 
2764 	if (saw_chan_mask != 0x0f && /* -EN */
2765 	    saw_chan_mask != 0x33 && /* -EP */
2766 	    saw_chan_mask != 0xff)   /* -EX */
2767 		goto enodev;
2768 	return 0;
2769 
2770 enodev:
2771 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2772 	return -ENODEV;
2773 }
2774 
2775 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2776 			struct sbridge_dev *sbridge_dev)
2777 {
2778 	struct sbridge_pvt *pvt = mci->pvt_info;
2779 	struct pci_dev *pdev;
2780 	int dev, func;
2781 
2782 	int i;
2783 	int devidx;
2784 
2785 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2786 		pdev = sbridge_dev->pdev[i];
2787 		if (!pdev)
2788 			continue;
2789 
2790 		/* Extract PCI device and function. */
2791 		dev = (pdev->devfn >> 3) & 0x1f;
2792 		func = pdev->devfn & 0x7;
2793 
2794 		switch (pdev->device) {
2795 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2796 			if (dev == 8)
2797 				pvt->knl.pci_mc0 = pdev;
2798 			else if (dev == 9)
2799 				pvt->knl.pci_mc1 = pdev;
2800 			else {
2801 				sbridge_printk(KERN_ERR,
2802 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2803 					dev, func);
2804 				continue;
2805 			}
2806 			break;
2807 
2808 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2809 			pvt->pci_sad0 = pdev;
2810 			break;
2811 
2812 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2813 			pvt->pci_sad1 = pdev;
2814 			break;
2815 
2816 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2817 			/* There are one of these per tile, and range from
2818 			 * 1.14.0 to 1.18.5.
2819 			 */
2820 			devidx = ((dev-14)*8)+func;
2821 
2822 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2823 				sbridge_printk(KERN_ERR,
2824 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2825 					dev, func);
2826 				continue;
2827 			}
2828 
2829 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2830 
2831 			pvt->knl.pci_cha[devidx] = pdev;
2832 			break;
2833 
2834 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2835 			devidx = -1;
2836 
2837 			/*
2838 			 *  MC0 channels 0-2 are device 9 function 2-4,
2839 			 *  MC1 channels 3-5 are device 8 function 2-4.
2840 			 */
2841 
2842 			if (dev == 9)
2843 				devidx = func-2;
2844 			else if (dev == 8)
2845 				devidx = 3 + (func-2);
2846 
2847 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2848 				sbridge_printk(KERN_ERR,
2849 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2850 					dev, func);
2851 				continue;
2852 			}
2853 
2854 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2855 			pvt->knl.pci_channel[devidx] = pdev;
2856 			break;
2857 
2858 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2859 			pvt->knl.pci_mc_info = pdev;
2860 			break;
2861 
2862 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2863 			pvt->pci_ta = pdev;
2864 			break;
2865 
2866 		default:
2867 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2868 				pdev->device);
2869 			break;
2870 		}
2871 	}
2872 
2873 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2874 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2875 	    !pvt->pci_ta) {
2876 		goto enodev;
2877 	}
2878 
2879 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2880 		if (!pvt->knl.pci_channel[i]) {
2881 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2882 			goto enodev;
2883 		}
2884 	}
2885 
2886 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2887 		if (!pvt->knl.pci_cha[i]) {
2888 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2889 			goto enodev;
2890 		}
2891 	}
2892 
2893 	return 0;
2894 
2895 enodev:
2896 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2897 	return -ENODEV;
2898 }
2899 
2900 /****************************************************************************
2901 			Error check routines
2902  ****************************************************************************/
2903 
2904 /*
2905  * While Sandy Bridge has error count registers, SMI BIOS read values from
2906  * and resets the counters. So, they are not reliable for the OS to read
2907  * from them. So, we have no option but to just trust on whatever MCE is
2908  * telling us about the errors.
2909  */
2910 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2911 				    const struct mce *m)
2912 {
2913 	struct mem_ctl_info *new_mci;
2914 	struct sbridge_pvt *pvt = mci->pvt_info;
2915 	enum hw_event_mc_err_type tp_event;
2916 	char *type, *optype, msg[256];
2917 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2918 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2919 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2920 	bool recoverable;
2921 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2922 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2923 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2924 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2925 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2926 	long channel_mask, first_channel;
2927 	u8  rank, socket, ha;
2928 	int rc, dimm;
2929 	char *area_type = NULL;
2930 
2931 	if (pvt->info.type != SANDY_BRIDGE)
2932 		recoverable = true;
2933 	else
2934 		recoverable = GET_BITFIELD(m->status, 56, 56);
2935 
2936 	if (uncorrected_error) {
2937 		if (ripv) {
2938 			type = "FATAL";
2939 			tp_event = HW_EVENT_ERR_FATAL;
2940 		} else {
2941 			type = "NON_FATAL";
2942 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2943 		}
2944 	} else {
2945 		type = "CORRECTED";
2946 		tp_event = HW_EVENT_ERR_CORRECTED;
2947 	}
2948 
2949 	/*
2950 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2951 	 * memory errors should fit in this mask:
2952 	 *	000f 0000 1mmm cccc (binary)
2953 	 * where:
2954 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2955 	 *	    won't be shown
2956 	 *	mmm = error type
2957 	 *	cccc = channel
2958 	 * If the mask doesn't match, report an error to the parsing logic
2959 	 */
2960 	if (! ((errcode & 0xef80) == 0x80)) {
2961 		optype = "Can't parse: it is not a mem";
2962 	} else {
2963 		switch (optypenum) {
2964 		case 0:
2965 			optype = "generic undef request error";
2966 			break;
2967 		case 1:
2968 			optype = "memory read error";
2969 			break;
2970 		case 2:
2971 			optype = "memory write error";
2972 			break;
2973 		case 3:
2974 			optype = "addr/cmd error";
2975 			break;
2976 		case 4:
2977 			optype = "memory scrubbing error";
2978 			break;
2979 		default:
2980 			optype = "reserved";
2981 			break;
2982 		}
2983 	}
2984 
2985 	/* Only decode errors with an valid address (ADDRV) */
2986 	if (!GET_BITFIELD(m->status, 58, 58))
2987 		return;
2988 
2989 	if (pvt->info.type == KNIGHTS_LANDING) {
2990 		if (channel == 14) {
2991 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2992 				overflow ? " OVERFLOW" : "",
2993 				(uncorrected_error && recoverable)
2994 				? " recoverable" : "",
2995 				mscod, errcode,
2996 				m->bank);
2997 		} else {
2998 			char A = *("A");
2999 
3000 			/*
3001 			 * Reported channel is in range 0-2, so we can't map it
3002 			 * back to mc. To figure out mc we check machine check
3003 			 * bank register that reported this error.
3004 			 * bank15 means mc0 and bank16 means mc1.
3005 			 */
3006 			channel = knl_channel_remap(m->bank == 16, channel);
3007 			channel_mask = 1 << channel;
3008 
3009 			snprintf(msg, sizeof(msg),
3010 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3011 				overflow ? " OVERFLOW" : "",
3012 				(uncorrected_error && recoverable)
3013 				? " recoverable" : " ",
3014 				mscod, errcode, channel, A + channel);
3015 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3016 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3017 				channel, 0, -1,
3018 				optype, msg);
3019 		}
3020 		return;
3021 	} else {
3022 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3023 				&channel_mask, &rank, &area_type, msg);
3024 	}
3025 
3026 	if (rc < 0)
3027 		goto err_parsing;
3028 	new_mci = get_mci_for_node_id(socket);
3029 	if (!new_mci) {
3030 		strcpy(msg, "Error: socket got corrupted!");
3031 		goto err_parsing;
3032 	}
3033 	mci = new_mci;
3034 	pvt = mci->pvt_info;
3035 
3036 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3037 
3038 	if (rank < 4)
3039 		dimm = 0;
3040 	else if (rank < 8)
3041 		dimm = 1;
3042 	else
3043 		dimm = 2;
3044 
3045 
3046 	/*
3047 	 * FIXME: On some memory configurations (mirror, lockstep), the
3048 	 * Memory Controller can't point the error to a single DIMM. The
3049 	 * EDAC core should be handling the channel mask, in order to point
3050 	 * to the group of dimm's where the error may be happening.
3051 	 */
3052 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3053 		channel = first_channel;
3054 
3055 	snprintf(msg, sizeof(msg),
3056 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3057 		 overflow ? " OVERFLOW" : "",
3058 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3059 		 area_type,
3060 		 mscod, errcode,
3061 		 socket, ha,
3062 		 channel_mask,
3063 		 rank);
3064 
3065 	edac_dbg(0, "%s\n", msg);
3066 
3067 	/* FIXME: need support for channel mask */
3068 
3069 	if (channel == CHANNEL_UNSPECIFIED)
3070 		channel = -1;
3071 
3072 	/* Call the helper to output message */
3073 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3074 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3075 			     4*ha+channel, dimm, -1,
3076 			     optype, msg);
3077 	return;
3078 err_parsing:
3079 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3080 			     -1, -1, -1,
3081 			     msg, "");
3082 
3083 }
3084 
3085 /*
3086  * Check that logging is enabled and that this is the right type
3087  * of error for us to handle.
3088  */
3089 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3090 				   void *data)
3091 {
3092 	struct mce *mce = (struct mce *)data;
3093 	struct mem_ctl_info *mci;
3094 	struct sbridge_pvt *pvt;
3095 	char *type;
3096 
3097 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3098 		return NOTIFY_DONE;
3099 
3100 	mci = get_mci_for_node_id(mce->socketid);
3101 	if (!mci)
3102 		return NOTIFY_DONE;
3103 	pvt = mci->pvt_info;
3104 
3105 	/*
3106 	 * Just let mcelog handle it if the error is
3107 	 * outside the memory controller. A memory error
3108 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3109 	 * bit 12 has an special meaning.
3110 	 */
3111 	if ((mce->status & 0xefff) >> 7 != 1)
3112 		return NOTIFY_DONE;
3113 
3114 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3115 		type = "Exception";
3116 	else
3117 		type = "Event";
3118 
3119 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3120 
3121 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3122 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3123 			  mce->mcgstatus, mce->bank, mce->status);
3124 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3125 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3126 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3127 
3128 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3129 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3130 			  mce->time, mce->socketid, mce->apicid);
3131 
3132 	sbridge_mce_output_error(mci, mce);
3133 
3134 	/* Advice mcelog that the error were handled */
3135 	return NOTIFY_STOP;
3136 }
3137 
3138 static struct notifier_block sbridge_mce_dec = {
3139 	.notifier_call      = sbridge_mce_check_error,
3140 };
3141 
3142 /****************************************************************************
3143 			EDAC register/unregister logic
3144  ****************************************************************************/
3145 
3146 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3147 {
3148 	struct mem_ctl_info *mci = sbridge_dev->mci;
3149 	struct sbridge_pvt *pvt;
3150 
3151 	if (unlikely(!mci || !mci->pvt_info)) {
3152 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3153 
3154 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3155 		return;
3156 	}
3157 
3158 	pvt = mci->pvt_info;
3159 
3160 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3161 		 mci, &sbridge_dev->pdev[0]->dev);
3162 
3163 	/* Remove MC sysfs nodes */
3164 	edac_mc_del_mc(mci->pdev);
3165 
3166 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3167 	kfree(mci->ctl_name);
3168 	edac_mc_free(mci);
3169 	sbridge_dev->mci = NULL;
3170 }
3171 
3172 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3173 {
3174 	struct mem_ctl_info *mci;
3175 	struct edac_mc_layer layers[2];
3176 	struct sbridge_pvt *pvt;
3177 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3178 	int rc;
3179 
3180 	/* Check the number of active and not disabled channels */
3181 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3182 	if (unlikely(rc < 0))
3183 		return rc;
3184 
3185 	/* allocate a new MC control structure */
3186 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3187 	layers[0].size = type == KNIGHTS_LANDING ?
3188 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3189 	layers[0].is_virt_csrow = false;
3190 	layers[1].type = EDAC_MC_LAYER_SLOT;
3191 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3192 	layers[1].is_virt_csrow = true;
3193 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3194 			    sizeof(*pvt));
3195 
3196 	if (unlikely(!mci))
3197 		return -ENOMEM;
3198 
3199 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3200 		 mci, &pdev->dev);
3201 
3202 	pvt = mci->pvt_info;
3203 	memset(pvt, 0, sizeof(*pvt));
3204 
3205 	/* Associate sbridge_dev and mci for future usage */
3206 	pvt->sbridge_dev = sbridge_dev;
3207 	sbridge_dev->mci = mci;
3208 
3209 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3210 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3211 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3212 	mci->edac_cap = EDAC_FLAG_NONE;
3213 	mci->mod_name = "sbridge_edac.c";
3214 	mci->mod_ver = SBRIDGE_REVISION;
3215 	mci->dev_name = pci_name(pdev);
3216 	mci->ctl_page_to_phys = NULL;
3217 
3218 	pvt->info.type = type;
3219 	switch (type) {
3220 	case IVY_BRIDGE:
3221 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3222 		pvt->info.get_tolm = ibridge_get_tolm;
3223 		pvt->info.get_tohm = ibridge_get_tohm;
3224 		pvt->info.dram_rule = ibridge_dram_rule;
3225 		pvt->info.get_memory_type = get_memory_type;
3226 		pvt->info.get_node_id = get_node_id;
3227 		pvt->info.rir_limit = rir_limit;
3228 		pvt->info.sad_limit = sad_limit;
3229 		pvt->info.interleave_mode = interleave_mode;
3230 		pvt->info.show_interleave_mode = show_interleave_mode;
3231 		pvt->info.dram_attr = dram_attr;
3232 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3233 		pvt->info.interleave_list = ibridge_interleave_list;
3234 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3235 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3236 		pvt->info.get_width = ibridge_get_width;
3237 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3238 
3239 		/* Store pci devices at mci for faster access */
3240 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3241 		if (unlikely(rc < 0))
3242 			goto fail0;
3243 		break;
3244 	case SANDY_BRIDGE:
3245 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3246 		pvt->info.get_tolm = sbridge_get_tolm;
3247 		pvt->info.get_tohm = sbridge_get_tohm;
3248 		pvt->info.dram_rule = sbridge_dram_rule;
3249 		pvt->info.get_memory_type = get_memory_type;
3250 		pvt->info.get_node_id = get_node_id;
3251 		pvt->info.rir_limit = rir_limit;
3252 		pvt->info.sad_limit = sad_limit;
3253 		pvt->info.interleave_mode = interleave_mode;
3254 		pvt->info.show_interleave_mode = show_interleave_mode;
3255 		pvt->info.dram_attr = dram_attr;
3256 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3257 		pvt->info.interleave_list = sbridge_interleave_list;
3258 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3259 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3260 		pvt->info.get_width = sbridge_get_width;
3261 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3262 
3263 		/* Store pci devices at mci for faster access */
3264 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3265 		if (unlikely(rc < 0))
3266 			goto fail0;
3267 		break;
3268 	case HASWELL:
3269 		/* rankcfgr isn't used */
3270 		pvt->info.get_tolm = haswell_get_tolm;
3271 		pvt->info.get_tohm = haswell_get_tohm;
3272 		pvt->info.dram_rule = ibridge_dram_rule;
3273 		pvt->info.get_memory_type = haswell_get_memory_type;
3274 		pvt->info.get_node_id = haswell_get_node_id;
3275 		pvt->info.rir_limit = haswell_rir_limit;
3276 		pvt->info.sad_limit = sad_limit;
3277 		pvt->info.interleave_mode = interleave_mode;
3278 		pvt->info.show_interleave_mode = show_interleave_mode;
3279 		pvt->info.dram_attr = dram_attr;
3280 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3281 		pvt->info.interleave_list = ibridge_interleave_list;
3282 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3283 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3284 		pvt->info.get_width = ibridge_get_width;
3285 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3286 
3287 		/* Store pci devices at mci for faster access */
3288 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3289 		if (unlikely(rc < 0))
3290 			goto fail0;
3291 		break;
3292 	case BROADWELL:
3293 		/* rankcfgr isn't used */
3294 		pvt->info.get_tolm = haswell_get_tolm;
3295 		pvt->info.get_tohm = haswell_get_tohm;
3296 		pvt->info.dram_rule = ibridge_dram_rule;
3297 		pvt->info.get_memory_type = haswell_get_memory_type;
3298 		pvt->info.get_node_id = haswell_get_node_id;
3299 		pvt->info.rir_limit = haswell_rir_limit;
3300 		pvt->info.sad_limit = sad_limit;
3301 		pvt->info.interleave_mode = interleave_mode;
3302 		pvt->info.show_interleave_mode = show_interleave_mode;
3303 		pvt->info.dram_attr = dram_attr;
3304 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3305 		pvt->info.interleave_list = ibridge_interleave_list;
3306 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3307 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3308 		pvt->info.get_width = broadwell_get_width;
3309 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3310 
3311 		/* Store pci devices at mci for faster access */
3312 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3313 		if (unlikely(rc < 0))
3314 			goto fail0;
3315 		break;
3316 	case KNIGHTS_LANDING:
3317 		/* pvt->info.rankcfgr == ??? */
3318 		pvt->info.get_tolm = knl_get_tolm;
3319 		pvt->info.get_tohm = knl_get_tohm;
3320 		pvt->info.dram_rule = knl_dram_rule;
3321 		pvt->info.get_memory_type = knl_get_memory_type;
3322 		pvt->info.get_node_id = knl_get_node_id;
3323 		pvt->info.rir_limit = NULL;
3324 		pvt->info.sad_limit = knl_sad_limit;
3325 		pvt->info.interleave_mode = knl_interleave_mode;
3326 		pvt->info.show_interleave_mode = knl_show_interleave_mode;
3327 		pvt->info.dram_attr = dram_attr_knl;
3328 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3329 		pvt->info.interleave_list = knl_interleave_list;
3330 		pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3331 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3332 		pvt->info.get_width = knl_get_width;
3333 		mci->ctl_name = kasprintf(GFP_KERNEL,
3334 			"Knights Landing Socket#%d", mci->mc_idx);
3335 
3336 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3337 		if (unlikely(rc < 0))
3338 			goto fail0;
3339 		break;
3340 	}
3341 
3342 	/* Get dimm basic config and the memory layout */
3343 	get_dimm_config(mci);
3344 	get_memory_layout(mci);
3345 
3346 	/* record ptr to the generic device */
3347 	mci->pdev = &pdev->dev;
3348 
3349 	/* add this new MC control structure to EDAC's list of MCs */
3350 	if (unlikely(edac_mc_add_mc(mci))) {
3351 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3352 		rc = -EINVAL;
3353 		goto fail0;
3354 	}
3355 
3356 	return 0;
3357 
3358 fail0:
3359 	kfree(mci->ctl_name);
3360 	edac_mc_free(mci);
3361 	sbridge_dev->mci = NULL;
3362 	return rc;
3363 }
3364 
3365 #define ICPU(model, table) \
3366 	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3367 
3368 static const struct x86_cpu_id sbridge_cpuids[] = {
3369 	ICPU(0x2d, pci_dev_descr_sbridge_table),	/* SANDY_BRIDGE */
3370 	ICPU(0x3e, pci_dev_descr_ibridge_table),	/* IVY_BRIDGE */
3371 	ICPU(0x3f, pci_dev_descr_haswell_table),	/* HASWELL */
3372 	ICPU(0x4f, pci_dev_descr_broadwell_table),	/* BROADWELL */
3373 	ICPU(0x56, pci_dev_descr_broadwell_table),	/* BROADWELL-DE */
3374 	ICPU(0x57, pci_dev_descr_knl_table),		/* KNIGHTS_LANDING */
3375 	{ }
3376 };
3377 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3378 
3379 /*
3380  *	sbridge_probe	Get all devices and register memory controllers
3381  *			present.
3382  *	return:
3383  *		0 for FOUND a device
3384  *		< 0 for error code
3385  */
3386 
3387 static int sbridge_probe(const struct x86_cpu_id *id)
3388 {
3389 	int rc = -ENODEV;
3390 	u8 mc, num_mc = 0;
3391 	struct sbridge_dev *sbridge_dev;
3392 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3393 
3394 	/* get the pci devices we want to reserve for our use */
3395 	rc = sbridge_get_all_devices(&num_mc, ptable);
3396 
3397 	if (unlikely(rc < 0)) {
3398 		edac_dbg(0, "couldn't get all devices\n");
3399 		goto fail0;
3400 	}
3401 
3402 	mc = 0;
3403 
3404 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3405 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3406 			 mc, mc + 1, num_mc);
3407 
3408 		sbridge_dev->mc = mc++;
3409 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3410 		if (unlikely(rc < 0))
3411 			goto fail1;
3412 	}
3413 
3414 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3415 
3416 	return 0;
3417 
3418 fail1:
3419 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3420 		sbridge_unregister_mci(sbridge_dev);
3421 
3422 	sbridge_put_all_devices();
3423 fail0:
3424 	return rc;
3425 }
3426 
3427 /*
3428  *	sbridge_remove	cleanup
3429  *
3430  */
3431 static void sbridge_remove(void)
3432 {
3433 	struct sbridge_dev *sbridge_dev;
3434 
3435 	edac_dbg(0, "\n");
3436 
3437 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3438 		sbridge_unregister_mci(sbridge_dev);
3439 
3440 	/* Release PCI resources */
3441 	sbridge_put_all_devices();
3442 }
3443 
3444 /*
3445  *	sbridge_init		Module entry function
3446  *			Try to initialize this module for its devices
3447  */
3448 static int __init sbridge_init(void)
3449 {
3450 	const struct x86_cpu_id *id;
3451 	int rc;
3452 
3453 	edac_dbg(2, "\n");
3454 
3455 	id = x86_match_cpu(sbridge_cpuids);
3456 	if (!id)
3457 		return -ENODEV;
3458 
3459 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3460 	opstate_init();
3461 
3462 	rc = sbridge_probe(id);
3463 
3464 	if (rc >= 0) {
3465 		mce_register_decode_chain(&sbridge_mce_dec);
3466 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
3467 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3468 		return 0;
3469 	}
3470 
3471 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3472 		      rc);
3473 
3474 	return rc;
3475 }
3476 
3477 /*
3478  *	sbridge_exit()	Module exit function
3479  *			Unregister the driver
3480  */
3481 static void __exit sbridge_exit(void)
3482 {
3483 	edac_dbg(2, "\n");
3484 	sbridge_remove();
3485 	mce_unregister_decode_chain(&sbridge_mce_dec);
3486 }
3487 
3488 module_init(sbridge_init);
3489 module_exit(sbridge_exit);
3490 
3491 module_param(edac_op_state, int, 0444);
3492 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3493 
3494 MODULE_LICENSE("GPL");
3495 MODULE_AUTHOR("Mauro Carvalho Chehab");
3496 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3497 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3498 		   SBRIDGE_REVISION);
3499