xref: /openbmc/linux/drivers/edac/sb_edac.c (revision afb46f79)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 
55 /*
56  * sbridge Memory Controller Registers
57  */
58 
59 /*
60  * FIXME: For now, let's order by device function, as it makes
61  * easier for driver's development process. This table should be
62  * moved to pci_id.h when submitted upstream
63  */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */
75 
76 	/*
77 	 * Currently, unused, but will be needed in the future
78 	 * implementations, as they hold the error counters
79 	 */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */
84 
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 sbridge_dram_rule[] = {
87 	0x80, 0x88, 0x90, 0x98, 0xa0,
88 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89 };
90 
91 static const u32 ibridge_dram_rule[] = {
92 	0x60, 0x68, 0x70, 0x78, 0x80,
93 	0x88, 0x90, 0x98, 0xa0,	0xa8,
94 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
95 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
96 };
97 
98 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
99 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
100 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
101 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
102 
103 static char *get_dram_attr(u32 reg)
104 {
105 	switch(DRAM_ATTR(reg)) {
106 		case 0:
107 			return "DRAM";
108 		case 1:
109 			return "MMCFG";
110 		case 2:
111 			return "NXM";
112 		default:
113 			return "unknown";
114 	}
115 }
116 
117 static const u32 sbridge_interleave_list[] = {
118 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
119 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
120 };
121 
122 static const u32 ibridge_interleave_list[] = {
123 	0x64, 0x6c, 0x74, 0x7c, 0x84,
124 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
125 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
126 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
127 };
128 
129 struct interleave_pkg {
130 	unsigned char start;
131 	unsigned char end;
132 };
133 
134 static const struct interleave_pkg sbridge_interleave_pkg[] = {
135 	{ 0, 2 },
136 	{ 3, 5 },
137 	{ 8, 10 },
138 	{ 11, 13 },
139 	{ 16, 18 },
140 	{ 19, 21 },
141 	{ 24, 26 },
142 	{ 27, 29 },
143 };
144 
145 static const struct interleave_pkg ibridge_interleave_pkg[] = {
146 	{ 0, 3 },
147 	{ 4, 7 },
148 	{ 8, 11 },
149 	{ 12, 15 },
150 	{ 16, 19 },
151 	{ 20, 23 },
152 	{ 24, 27 },
153 	{ 28, 31 },
154 };
155 
156 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
157 			  int interleave)
158 {
159 	return GET_BITFIELD(reg, table[interleave].start,
160 			    table[interleave].end);
161 }
162 
163 /* Devices 12 Function 7 */
164 
165 #define TOLM		0x80
166 #define	TOHM		0x84
167 
168 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
169 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
170 
171 /* Device 13 Function 6 */
172 
173 #define SAD_TARGET	0xf0
174 
175 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
176 
177 #define SAD_CONTROL	0xf4
178 
179 #define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)
180 
181 /* Device 14 function 0 */
182 
183 static const u32 tad_dram_rule[] = {
184 	0x40, 0x44, 0x48, 0x4c,
185 	0x50, 0x54, 0x58, 0x5c,
186 	0x60, 0x64, 0x68, 0x6c,
187 };
188 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
189 
190 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
191 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
192 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
193 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
194 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
195 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
196 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
197 
198 /* Device 15, function 0 */
199 
200 #define MCMTR			0x7c
201 
202 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
203 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
204 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
205 
206 /* Device 15, function 1 */
207 
208 #define RASENABLES		0xac
209 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
210 
211 /* Device 15, functions 2-5 */
212 
213 static const int mtr_regs[] = {
214 	0x80, 0x84, 0x88,
215 };
216 
217 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
218 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
219 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
220 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
221 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
222 
223 static const u32 tad_ch_nilv_offset[] = {
224 	0x90, 0x94, 0x98, 0x9c,
225 	0xa0, 0xa4, 0xa8, 0xac,
226 	0xb0, 0xb4, 0xb8, 0xbc,
227 };
228 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
229 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
230 
231 static const u32 rir_way_limit[] = {
232 	0x108, 0x10c, 0x110, 0x114, 0x118,
233 };
234 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
235 
236 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
237 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
238 #define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)
239 
240 #define MAX_RIR_WAY	8
241 
242 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
243 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
244 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
245 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
246 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
247 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
248 };
249 
250 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
251 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
252 
253 /* Device 16, functions 2-7 */
254 
255 /*
256  * FIXME: Implement the error count reads directly
257  */
258 
259 static const u32 correrrcnt[] = {
260 	0x104, 0x108, 0x10c, 0x110,
261 };
262 
263 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
264 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
266 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
267 
268 static const u32 correrrthrsld[] = {
269 	0x11c, 0x120, 0x124, 0x128,
270 };
271 
272 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
274 
275 
276 /* Device 17, function 0 */
277 
278 #define SB_RANK_CFG_A		0x0328
279 
280 #define IB_RANK_CFG_A		0x0320
281 
282 #define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)
283 
284 /*
285  * sbridge structs
286  */
287 
288 #define NUM_CHANNELS	4
289 #define MAX_DIMMS	3		/* Max DIMMS per channel */
290 
291 enum type {
292 	SANDY_BRIDGE,
293 	IVY_BRIDGE,
294 };
295 
296 struct sbridge_pvt;
297 struct sbridge_info {
298 	enum type	type;
299 	u32		mcmtr;
300 	u32		rankcfgr;
301 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
302 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
303 	const u32	*dram_rule;
304 	const u32	*interleave_list;
305 	const struct interleave_pkg *interleave_pkg;
306 	u8		max_sad;
307 	u8		max_interleave;
308 };
309 
310 struct sbridge_channel {
311 	u32		ranks;
312 	u32		dimms;
313 };
314 
315 struct pci_id_descr {
316 	int			dev;
317 	int			func;
318 	int 			dev_id;
319 	int			optional;
320 };
321 
322 struct pci_id_table {
323 	const struct pci_id_descr	*descr;
324 	int				n_devs;
325 };
326 
327 struct sbridge_dev {
328 	struct list_head	list;
329 	u8			bus, mc;
330 	u8			node_id, source_id;
331 	struct pci_dev		**pdev;
332 	int			n_devs;
333 	struct mem_ctl_info	*mci;
334 };
335 
336 struct sbridge_pvt {
337 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
338 	struct pci_dev		*pci_sad0, *pci_sad1;
339 	struct pci_dev		*pci_ha0, *pci_ha1;
340 	struct pci_dev		*pci_br0, *pci_br1;
341 	struct pci_dev		*pci_tad[NUM_CHANNELS];
342 
343 	struct sbridge_dev	*sbridge_dev;
344 
345 	struct sbridge_info	info;
346 	struct sbridge_channel	channel[NUM_CHANNELS];
347 
348 	/* Memory type detection */
349 	bool			is_mirrored, is_lockstep, is_close_pg;
350 
351 	/* Fifo double buffers */
352 	struct mce		mce_entry[MCE_LOG_LEN];
353 	struct mce		mce_outentry[MCE_LOG_LEN];
354 
355 	/* Fifo in/out counters */
356 	unsigned		mce_in, mce_out;
357 
358 	/* Count indicator to show errors not got */
359 	unsigned		mce_overrun;
360 
361 	/* Memory description */
362 	u64			tolm, tohm;
363 };
364 
365 #define PCI_DESCR(device, function, device_id, opt)	\
366 	.dev = (device),				\
367 	.func = (function),				\
368 	.dev_id = (device_id),				\
369 	.optional = opt
370 
371 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
372 		/* Processor Home Agent */
373 	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
374 
375 		/* Memory controller */
376 	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
377 	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
378 	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
379 	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
380 	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
381 	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
382 	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
383 
384 		/* System Address Decoder */
385 	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)		},
386 	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)		},
387 
388 		/* Broadcast Registers */
389 	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
390 };
391 
392 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
393 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
394 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
395 	{0,}			/* 0 terminated list. */
396 };
397 
398 /* This changes depending if 1HA or 2HA:
399  * 1HA:
400  *	0x0eb8 (17.0) is DDRIO0
401  * 2HA:
402  *	0x0ebc (17.4) is DDRIO0
403  */
404 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
405 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
406 
407 /* pci ids */
408 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
409 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
410 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
411 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
412 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
413 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
414 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
415 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
416 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
417 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
421 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
423 
424 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
425 		/* Processor Home Agent */
426 	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)	},
427 
428 		/* Memory controller */
429 	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)	},
430 	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)	},
431 	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
432 	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
433 	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
434 	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
435 
436 		/* System Address Decoder */
437 	{ PCI_DESCR(22, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)		},
438 
439 		/* Broadcast Registers */
440 	{ PCI_DESCR(22, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)		},
441 	{ PCI_DESCR(22, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)		},
442 
443 		/* Optional, mode 2HA */
444 	{ PCI_DESCR(28, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)	},
445 #if 0
446 	{ PCI_DESCR(29, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
447 	{ PCI_DESCR(29, 1, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
448 #endif
449 	{ PCI_DESCR(29, 2, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
450 	{ PCI_DESCR(29, 3, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
451 
452 	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1) },
453 	{ PCI_DESCR(17, 4, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1) },
454 };
455 
456 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
457 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
458 	{0,}			/* 0 terminated list. */
459 };
460 
461 /*
462  *	pci_device_id	table for which devices we are looking for
463  */
464 static const struct pci_device_id sbridge_pci_tbl[] = {
465 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
466 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
467 	{0,}			/* 0 terminated list. */
468 };
469 
470 
471 /****************************************************************************
472 			Ancillary status routines
473  ****************************************************************************/
474 
475 static inline int numrank(u32 mtr)
476 {
477 	int ranks = (1 << RANK_CNT_BITS(mtr));
478 
479 	if (ranks > 4) {
480 		edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
481 			 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
482 		return -EINVAL;
483 	}
484 
485 	return ranks;
486 }
487 
488 static inline int numrow(u32 mtr)
489 {
490 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
491 
492 	if (rows < 13 || rows > 18) {
493 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
494 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
495 		return -EINVAL;
496 	}
497 
498 	return 1 << rows;
499 }
500 
501 static inline int numcol(u32 mtr)
502 {
503 	int cols = (COL_WIDTH_BITS(mtr) + 10);
504 
505 	if (cols > 12) {
506 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
507 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
508 		return -EINVAL;
509 	}
510 
511 	return 1 << cols;
512 }
513 
514 static struct sbridge_dev *get_sbridge_dev(u8 bus)
515 {
516 	struct sbridge_dev *sbridge_dev;
517 
518 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
519 		if (sbridge_dev->bus == bus)
520 			return sbridge_dev;
521 	}
522 
523 	return NULL;
524 }
525 
526 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
527 					   const struct pci_id_table *table)
528 {
529 	struct sbridge_dev *sbridge_dev;
530 
531 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
532 	if (!sbridge_dev)
533 		return NULL;
534 
535 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
536 				   GFP_KERNEL);
537 	if (!sbridge_dev->pdev) {
538 		kfree(sbridge_dev);
539 		return NULL;
540 	}
541 
542 	sbridge_dev->bus = bus;
543 	sbridge_dev->n_devs = table->n_devs;
544 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
545 
546 	return sbridge_dev;
547 }
548 
549 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
550 {
551 	list_del(&sbridge_dev->list);
552 	kfree(sbridge_dev->pdev);
553 	kfree(sbridge_dev);
554 }
555 
556 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
557 {
558 	u32 reg;
559 
560 	/* Address range is 32:28 */
561 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
562 	return GET_TOLM(reg);
563 }
564 
565 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
566 {
567 	u32 reg;
568 
569 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
570 	return GET_TOHM(reg);
571 }
572 
573 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
574 {
575 	u32 reg;
576 
577 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
578 
579 	return GET_TOLM(reg);
580 }
581 
582 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
583 {
584 	u32 reg;
585 
586 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
587 
588 	return GET_TOHM(reg);
589 }
590 
591 static inline u8 sad_pkg_socket(u8 pkg)
592 {
593 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
594 	return (pkg >> 3) | (pkg & 0x3);
595 }
596 
597 static inline u8 sad_pkg_ha(u8 pkg)
598 {
599 	return (pkg >> 2) & 0x1;
600 }
601 
602 /****************************************************************************
603 			Memory check routines
604  ****************************************************************************/
605 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
606 					  unsigned func)
607 {
608 	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
609 	int i;
610 
611 	if (!sbridge_dev)
612 		return NULL;
613 
614 	for (i = 0; i < sbridge_dev->n_devs; i++) {
615 		if (!sbridge_dev->pdev[i])
616 			continue;
617 
618 		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
619 		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
620 			edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
621 				 bus, slot, func, sbridge_dev->pdev[i]);
622 			return sbridge_dev->pdev[i];
623 		}
624 	}
625 
626 	return NULL;
627 }
628 
629 /**
630  * check_if_ecc_is_active() - Checks if ECC is active
631  * bus:		Device bus
632  */
633 static int check_if_ecc_is_active(const u8 bus)
634 {
635 	struct pci_dev *pdev = NULL;
636 	u32 mcmtr;
637 
638 	pdev = get_pdev_slot_func(bus, 15, 0);
639 	if (!pdev) {
640 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
641 					"%2x.%02d.%d!!!\n",
642 					bus, 15, 0);
643 		return -ENODEV;
644 	}
645 
646 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
647 	if (!IS_ECC_ENABLED(mcmtr)) {
648 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
649 		return -ENODEV;
650 	}
651 	return 0;
652 }
653 
654 static int get_dimm_config(struct mem_ctl_info *mci)
655 {
656 	struct sbridge_pvt *pvt = mci->pvt_info;
657 	struct dimm_info *dimm;
658 	unsigned i, j, banks, ranks, rows, cols, npages;
659 	u64 size;
660 	u32 reg;
661 	enum edac_type mode;
662 	enum mem_type mtype;
663 
664 	pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
665 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
666 
667 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
668 	pvt->sbridge_dev->node_id = NODE_ID(reg);
669 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
670 		 pvt->sbridge_dev->mc,
671 		 pvt->sbridge_dev->node_id,
672 		 pvt->sbridge_dev->source_id);
673 
674 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
675 	if (IS_MIRROR_ENABLED(reg)) {
676 		edac_dbg(0, "Memory mirror is enabled\n");
677 		pvt->is_mirrored = true;
678 	} else {
679 		edac_dbg(0, "Memory mirror is disabled\n");
680 		pvt->is_mirrored = false;
681 	}
682 
683 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
684 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
685 		edac_dbg(0, "Lockstep is enabled\n");
686 		mode = EDAC_S8ECD8ED;
687 		pvt->is_lockstep = true;
688 	} else {
689 		edac_dbg(0, "Lockstep is disabled\n");
690 		mode = EDAC_S4ECD4ED;
691 		pvt->is_lockstep = false;
692 	}
693 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
694 		edac_dbg(0, "address map is on closed page mode\n");
695 		pvt->is_close_pg = true;
696 	} else {
697 		edac_dbg(0, "address map is on open page mode\n");
698 		pvt->is_close_pg = false;
699 	}
700 
701 	if (pvt->pci_ddrio) {
702 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
703 				      &reg);
704 		if (IS_RDIMM_ENABLED(reg)) {
705 			/* FIXME: Can also be LRDIMM */
706 			edac_dbg(0, "Memory is registered\n");
707 			mtype = MEM_RDDR3;
708 		} else {
709 			edac_dbg(0, "Memory is unregistered\n");
710 			mtype = MEM_DDR3;
711 		}
712 	} else {
713 		edac_dbg(0, "Cannot determine memory type\n");
714 		mtype = MEM_UNKNOWN;
715 	}
716 
717 	/* On all supported DDR3 DIMM types, there are 8 banks available */
718 	banks = 8;
719 
720 	for (i = 0; i < NUM_CHANNELS; i++) {
721 		u32 mtr;
722 
723 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
724 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
725 				       i, j, 0);
726 			pci_read_config_dword(pvt->pci_tad[i],
727 					      mtr_regs[j], &mtr);
728 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
729 			if (IS_DIMM_PRESENT(mtr)) {
730 				pvt->channel[i].dimms++;
731 
732 				ranks = numrank(mtr);
733 				rows = numrow(mtr);
734 				cols = numcol(mtr);
735 
736 				/* DDR3 has 8 I/O banks */
737 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
738 				npages = MiB_TO_PAGES(size);
739 
740 				edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
741 					 pvt->sbridge_dev->mc, i, j,
742 					 size, npages,
743 					 banks, ranks, rows, cols);
744 
745 				dimm->nr_pages = npages;
746 				dimm->grain = 32;
747 				dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
748 				dimm->mtype = mtype;
749 				dimm->edac_mode = mode;
750 				snprintf(dimm->label, sizeof(dimm->label),
751 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
752 					 pvt->sbridge_dev->source_id, i, j);
753 			}
754 		}
755 	}
756 
757 	return 0;
758 }
759 
760 static void get_memory_layout(const struct mem_ctl_info *mci)
761 {
762 	struct sbridge_pvt *pvt = mci->pvt_info;
763 	int i, j, k, n_sads, n_tads, sad_interl;
764 	u32 reg;
765 	u64 limit, prv = 0;
766 	u64 tmp_mb;
767 	u32 mb, kb;
768 	u32 rir_way;
769 
770 	/*
771 	 * Step 1) Get TOLM/TOHM ranges
772 	 */
773 
774 	pvt->tolm = pvt->info.get_tolm(pvt);
775 	tmp_mb = (1 + pvt->tolm) >> 20;
776 
777 	mb = div_u64_rem(tmp_mb, 1000, &kb);
778 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
779 
780 	/* Address range is already 45:25 */
781 	pvt->tohm = pvt->info.get_tohm(pvt);
782 	tmp_mb = (1 + pvt->tohm) >> 20;
783 
784 	mb = div_u64_rem(tmp_mb, 1000, &kb);
785 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
786 
787 	/*
788 	 * Step 2) Get SAD range and SAD Interleave list
789 	 * TAD registers contain the interleave wayness. However, it
790 	 * seems simpler to just discover it indirectly, with the
791 	 * algorithm bellow.
792 	 */
793 	prv = 0;
794 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
795 		/* SAD_LIMIT Address range is 45:26 */
796 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
797 				      &reg);
798 		limit = SAD_LIMIT(reg);
799 
800 		if (!DRAM_RULE_ENABLE(reg))
801 			continue;
802 
803 		if (limit <= prv)
804 			break;
805 
806 		tmp_mb = (limit + 1) >> 20;
807 		mb = div_u64_rem(tmp_mb, 1000, &kb);
808 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
809 			 n_sads,
810 			 get_dram_attr(reg),
811 			 mb, kb,
812 			 ((u64)tmp_mb) << 20L,
813 			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
814 			 reg);
815 		prv = limit;
816 
817 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
818 				      &reg);
819 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
820 		for (j = 0; j < 8; j++) {
821 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
822 			if (j > 0 && sad_interl == pkg)
823 				break;
824 
825 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
826 				 n_sads, j, pkg);
827 		}
828 	}
829 
830 	/*
831 	 * Step 3) Get TAD range
832 	 */
833 	prv = 0;
834 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
835 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
836 				      &reg);
837 		limit = TAD_LIMIT(reg);
838 		if (limit <= prv)
839 			break;
840 		tmp_mb = (limit + 1) >> 20;
841 
842 		mb = div_u64_rem(tmp_mb, 1000, &kb);
843 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
844 			 n_tads, mb, kb,
845 			 ((u64)tmp_mb) << 20L,
846 			 (u32)TAD_SOCK(reg),
847 			 (u32)TAD_CH(reg),
848 			 (u32)TAD_TGT0(reg),
849 			 (u32)TAD_TGT1(reg),
850 			 (u32)TAD_TGT2(reg),
851 			 (u32)TAD_TGT3(reg),
852 			 reg);
853 		prv = limit;
854 	}
855 
856 	/*
857 	 * Step 4) Get TAD offsets, per each channel
858 	 */
859 	for (i = 0; i < NUM_CHANNELS; i++) {
860 		if (!pvt->channel[i].dimms)
861 			continue;
862 		for (j = 0; j < n_tads; j++) {
863 			pci_read_config_dword(pvt->pci_tad[i],
864 					      tad_ch_nilv_offset[j],
865 					      &reg);
866 			tmp_mb = TAD_OFFSET(reg) >> 20;
867 			mb = div_u64_rem(tmp_mb, 1000, &kb);
868 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
869 				 i, j,
870 				 mb, kb,
871 				 ((u64)tmp_mb) << 20L,
872 				 reg);
873 		}
874 	}
875 
876 	/*
877 	 * Step 6) Get RIR Wayness/Limit, per each channel
878 	 */
879 	for (i = 0; i < NUM_CHANNELS; i++) {
880 		if (!pvt->channel[i].dimms)
881 			continue;
882 		for (j = 0; j < MAX_RIR_RANGES; j++) {
883 			pci_read_config_dword(pvt->pci_tad[i],
884 					      rir_way_limit[j],
885 					      &reg);
886 
887 			if (!IS_RIR_VALID(reg))
888 				continue;
889 
890 			tmp_mb = RIR_LIMIT(reg) >> 20;
891 			rir_way = 1 << RIR_WAY(reg);
892 			mb = div_u64_rem(tmp_mb, 1000, &kb);
893 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
894 				 i, j,
895 				 mb, kb,
896 				 ((u64)tmp_mb) << 20L,
897 				 rir_way,
898 				 reg);
899 
900 			for (k = 0; k < rir_way; k++) {
901 				pci_read_config_dword(pvt->pci_tad[i],
902 						      rir_offset[j][k],
903 						      &reg);
904 				tmp_mb = RIR_OFFSET(reg) << 6;
905 
906 				mb = div_u64_rem(tmp_mb, 1000, &kb);
907 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
908 					 i, j, k,
909 					 mb, kb,
910 					 ((u64)tmp_mb) << 20L,
911 					 (u32)RIR_RNK_TGT(reg),
912 					 reg);
913 			}
914 		}
915 	}
916 }
917 
918 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
919 {
920 	struct sbridge_dev *sbridge_dev;
921 
922 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
923 		if (sbridge_dev->node_id == node_id)
924 			return sbridge_dev->mci;
925 	}
926 	return NULL;
927 }
928 
929 static int get_memory_error_data(struct mem_ctl_info *mci,
930 				 u64 addr,
931 				 u8 *socket,
932 				 long *channel_mask,
933 				 u8 *rank,
934 				 char **area_type, char *msg)
935 {
936 	struct mem_ctl_info	*new_mci;
937 	struct sbridge_pvt *pvt = mci->pvt_info;
938 	struct pci_dev		*pci_ha;
939 	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
940 	int			sad_interl, idx, base_ch;
941 	int			interleave_mode;
942 	unsigned		sad_interleave[pvt->info.max_interleave];
943 	u32			reg;
944 	u8			ch_way, sck_way, pkg, sad_ha = 0;
945 	u32			tad_offset;
946 	u32			rir_way;
947 	u32			mb, kb;
948 	u64			ch_addr, offset, limit = 0, prv = 0;
949 
950 
951 	/*
952 	 * Step 0) Check if the address is at special memory ranges
953 	 * The check bellow is probably enough to fill all cases where
954 	 * the error is not inside a memory, except for the legacy
955 	 * range (e. g. VGA addresses). It is unlikely, however, that the
956 	 * memory controller would generate an error on that range.
957 	 */
958 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
959 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
960 		return -EINVAL;
961 	}
962 	if (addr >= (u64)pvt->tohm) {
963 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
964 		return -EINVAL;
965 	}
966 
967 	/*
968 	 * Step 1) Get socket
969 	 */
970 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
971 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
972 				      &reg);
973 
974 		if (!DRAM_RULE_ENABLE(reg))
975 			continue;
976 
977 		limit = SAD_LIMIT(reg);
978 		if (limit <= prv) {
979 			sprintf(msg, "Can't discover the memory socket");
980 			return -EINVAL;
981 		}
982 		if  (addr <= limit)
983 			break;
984 		prv = limit;
985 	}
986 	if (n_sads == pvt->info.max_sad) {
987 		sprintf(msg, "Can't discover the memory socket");
988 		return -EINVAL;
989 	}
990 	*area_type = get_dram_attr(reg);
991 	interleave_mode = INTERLEAVE_MODE(reg);
992 
993 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
994 			      &reg);
995 
996 	if (pvt->info.type == SANDY_BRIDGE) {
997 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
998 		for (sad_way = 0; sad_way < 8; sad_way++) {
999 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1000 			if (sad_way > 0 && sad_interl == pkg)
1001 				break;
1002 			sad_interleave[sad_way] = pkg;
1003 			edac_dbg(0, "SAD interleave #%d: %d\n",
1004 				 sad_way, sad_interleave[sad_way]);
1005 		}
1006 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1007 			 pvt->sbridge_dev->mc,
1008 			 n_sads,
1009 			 addr,
1010 			 limit,
1011 			 sad_way + 7,
1012 			 !interleave_mode ? "" : "XOR[18:16]");
1013 		if (interleave_mode)
1014 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1015 		else
1016 			idx = (addr >> 6) & 7;
1017 		switch (sad_way) {
1018 		case 1:
1019 			idx = 0;
1020 			break;
1021 		case 2:
1022 			idx = idx & 1;
1023 			break;
1024 		case 4:
1025 			idx = idx & 3;
1026 			break;
1027 		case 8:
1028 			break;
1029 		default:
1030 			sprintf(msg, "Can't discover socket interleave");
1031 			return -EINVAL;
1032 		}
1033 		*socket = sad_interleave[idx];
1034 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1035 			 idx, sad_way, *socket);
1036 	} else {
1037 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1038 		idx = (addr >> 6) & 7;
1039 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1040 		*socket = sad_pkg_socket(pkg);
1041 		sad_ha = sad_pkg_ha(pkg);
1042 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1043 			 idx, *socket, sad_ha);
1044 	}
1045 
1046 	/*
1047 	 * Move to the proper node structure, in order to access the
1048 	 * right PCI registers
1049 	 */
1050 	new_mci = get_mci_for_node_id(*socket);
1051 	if (!new_mci) {
1052 		sprintf(msg, "Struct for socket #%u wasn't initialized",
1053 			*socket);
1054 		return -EINVAL;
1055 	}
1056 	mci = new_mci;
1057 	pvt = mci->pvt_info;
1058 
1059 	/*
1060 	 * Step 2) Get memory channel
1061 	 */
1062 	prv = 0;
1063 	if (pvt->info.type == SANDY_BRIDGE)
1064 		pci_ha = pvt->pci_ha0;
1065 	else {
1066 		if (sad_ha)
1067 			pci_ha = pvt->pci_ha1;
1068 		else
1069 			pci_ha = pvt->pci_ha0;
1070 	}
1071 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1072 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1073 		limit = TAD_LIMIT(reg);
1074 		if (limit <= prv) {
1075 			sprintf(msg, "Can't discover the memory channel");
1076 			return -EINVAL;
1077 		}
1078 		if  (addr <= limit)
1079 			break;
1080 		prv = limit;
1081 	}
1082 	if (n_tads == MAX_TAD) {
1083 		sprintf(msg, "Can't discover the memory channel");
1084 		return -EINVAL;
1085 	}
1086 
1087 	ch_way = TAD_CH(reg) + 1;
1088 	sck_way = TAD_SOCK(reg) + 1;
1089 
1090 	if (ch_way == 3)
1091 		idx = addr >> 6;
1092 	else
1093 		idx = addr >> (6 + sck_way);
1094 	idx = idx % ch_way;
1095 
1096 	/*
1097 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1098 	 */
1099 	switch (idx) {
1100 	case 0:
1101 		base_ch = TAD_TGT0(reg);
1102 		break;
1103 	case 1:
1104 		base_ch = TAD_TGT1(reg);
1105 		break;
1106 	case 2:
1107 		base_ch = TAD_TGT2(reg);
1108 		break;
1109 	case 3:
1110 		base_ch = TAD_TGT3(reg);
1111 		break;
1112 	default:
1113 		sprintf(msg, "Can't discover the TAD target");
1114 		return -EINVAL;
1115 	}
1116 	*channel_mask = 1 << base_ch;
1117 
1118 	pci_read_config_dword(pvt->pci_tad[base_ch],
1119 				tad_ch_nilv_offset[n_tads],
1120 				&tad_offset);
1121 
1122 	if (pvt->is_mirrored) {
1123 		*channel_mask |= 1 << ((base_ch + 2) % 4);
1124 		switch(ch_way) {
1125 		case 2:
1126 		case 4:
1127 			sck_xch = 1 << sck_way * (ch_way >> 1);
1128 			break;
1129 		default:
1130 			sprintf(msg, "Invalid mirror set. Can't decode addr");
1131 			return -EINVAL;
1132 		}
1133 	} else
1134 		sck_xch = (1 << sck_way) * ch_way;
1135 
1136 	if (pvt->is_lockstep)
1137 		*channel_mask |= 1 << ((base_ch + 1) % 4);
1138 
1139 	offset = TAD_OFFSET(tad_offset);
1140 
1141 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1142 		 n_tads,
1143 		 addr,
1144 		 limit,
1145 		 (u32)TAD_SOCK(reg),
1146 		 ch_way,
1147 		 offset,
1148 		 idx,
1149 		 base_ch,
1150 		 *channel_mask);
1151 
1152 	/* Calculate channel address */
1153 	/* Remove the TAD offset */
1154 
1155 	if (offset > addr) {
1156 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1157 			offset, addr);
1158 		return -EINVAL;
1159 	}
1160 	addr -= offset;
1161 	/* Store the low bits [0:6] of the addr */
1162 	ch_addr = addr & 0x7f;
1163 	/* Remove socket wayness and remove 6 bits */
1164 	addr >>= 6;
1165 	addr = div_u64(addr, sck_xch);
1166 #if 0
1167 	/* Divide by channel way */
1168 	addr = addr / ch_way;
1169 #endif
1170 	/* Recover the last 6 bits */
1171 	ch_addr |= addr << 6;
1172 
1173 	/*
1174 	 * Step 3) Decode rank
1175 	 */
1176 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1177 		pci_read_config_dword(pvt->pci_tad[base_ch],
1178 				      rir_way_limit[n_rir],
1179 				      &reg);
1180 
1181 		if (!IS_RIR_VALID(reg))
1182 			continue;
1183 
1184 		limit = RIR_LIMIT(reg);
1185 		mb = div_u64_rem(limit >> 20, 1000, &kb);
1186 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1187 			 n_rir,
1188 			 mb, kb,
1189 			 limit,
1190 			 1 << RIR_WAY(reg));
1191 		if  (ch_addr <= limit)
1192 			break;
1193 	}
1194 	if (n_rir == MAX_RIR_RANGES) {
1195 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1196 			ch_addr);
1197 		return -EINVAL;
1198 	}
1199 	rir_way = RIR_WAY(reg);
1200 	if (pvt->is_close_pg)
1201 		idx = (ch_addr >> 6);
1202 	else
1203 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1204 	idx %= 1 << rir_way;
1205 
1206 	pci_read_config_dword(pvt->pci_tad[base_ch],
1207 			      rir_offset[n_rir][idx],
1208 			      &reg);
1209 	*rank = RIR_RNK_TGT(reg);
1210 
1211 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1212 		 n_rir,
1213 		 ch_addr,
1214 		 limit,
1215 		 rir_way,
1216 		 idx);
1217 
1218 	return 0;
1219 }
1220 
1221 /****************************************************************************
1222 	Device initialization routines: put/get, init/exit
1223  ****************************************************************************/
1224 
1225 /*
1226  *	sbridge_put_all_devices	'put' all the devices that we have
1227  *				reserved via 'get'
1228  */
1229 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1230 {
1231 	int i;
1232 
1233 	edac_dbg(0, "\n");
1234 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1235 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1236 		if (!pdev)
1237 			continue;
1238 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1239 			 pdev->bus->number,
1240 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1241 		pci_dev_put(pdev);
1242 	}
1243 }
1244 
1245 static void sbridge_put_all_devices(void)
1246 {
1247 	struct sbridge_dev *sbridge_dev, *tmp;
1248 
1249 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1250 		sbridge_put_devices(sbridge_dev);
1251 		free_sbridge_dev(sbridge_dev);
1252 	}
1253 }
1254 
1255 static int sbridge_get_onedevice(struct pci_dev **prev,
1256 				 u8 *num_mc,
1257 				 const struct pci_id_table *table,
1258 				 const unsigned devno)
1259 {
1260 	struct sbridge_dev *sbridge_dev;
1261 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1262 
1263 	struct pci_dev *pdev = NULL;
1264 	u8 bus = 0;
1265 
1266 	sbridge_printk(KERN_DEBUG,
1267 		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1268 		dev_descr->dev, dev_descr->func,
1269 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1270 
1271 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1272 			      dev_descr->dev_id, *prev);
1273 
1274 	if (!pdev) {
1275 		if (*prev) {
1276 			*prev = pdev;
1277 			return 0;
1278 		}
1279 
1280 		if (dev_descr->optional)
1281 			return 0;
1282 
1283 		if (devno == 0)
1284 			return -ENODEV;
1285 
1286 		sbridge_printk(KERN_INFO,
1287 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1288 			dev_descr->dev, dev_descr->func,
1289 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1290 
1291 		/* End of list, leave */
1292 		return -ENODEV;
1293 	}
1294 	bus = pdev->bus->number;
1295 
1296 	sbridge_dev = get_sbridge_dev(bus);
1297 	if (!sbridge_dev) {
1298 		sbridge_dev = alloc_sbridge_dev(bus, table);
1299 		if (!sbridge_dev) {
1300 			pci_dev_put(pdev);
1301 			return -ENOMEM;
1302 		}
1303 		(*num_mc)++;
1304 	}
1305 
1306 	if (sbridge_dev->pdev[devno]) {
1307 		sbridge_printk(KERN_ERR,
1308 			"Duplicated device for "
1309 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1310 			bus, dev_descr->dev, dev_descr->func,
1311 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1312 		pci_dev_put(pdev);
1313 		return -ENODEV;
1314 	}
1315 
1316 	sbridge_dev->pdev[devno] = pdev;
1317 
1318 	/* Sanity check */
1319 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1320 			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1321 		sbridge_printk(KERN_ERR,
1322 			"Device PCI ID %04x:%04x "
1323 			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1324 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1325 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1326 			bus, dev_descr->dev, dev_descr->func);
1327 		return -ENODEV;
1328 	}
1329 
1330 	/* Be sure that the device is enabled */
1331 	if (unlikely(pci_enable_device(pdev) < 0)) {
1332 		sbridge_printk(KERN_ERR,
1333 			"Couldn't enable "
1334 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1335 			bus, dev_descr->dev, dev_descr->func,
1336 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1337 		return -ENODEV;
1338 	}
1339 
1340 	edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1341 		 bus, dev_descr->dev, dev_descr->func,
1342 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1343 
1344 	/*
1345 	 * As stated on drivers/pci/search.c, the reference count for
1346 	 * @from is always decremented if it is not %NULL. So, as we need
1347 	 * to get all devices up to null, we need to do a get for the device
1348 	 */
1349 	pci_dev_get(pdev);
1350 
1351 	*prev = pdev;
1352 
1353 	return 0;
1354 }
1355 
1356 /*
1357  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1358  *			     device/functions we want to reference for this driver.
1359  *			     Need to 'get' device 16 func 1 and func 2.
1360  * @num_mc: pointer to the memory controllers count, to be incremented in case
1361  * 	    of success.
1362  * @table: model specific table
1363  *
1364  * returns 0 in case of success or error code
1365  */
1366 static int sbridge_get_all_devices(u8 *num_mc,
1367 				   const struct pci_id_table *table)
1368 {
1369 	int i, rc;
1370 	struct pci_dev *pdev = NULL;
1371 
1372 	while (table && table->descr) {
1373 		for (i = 0; i < table->n_devs; i++) {
1374 			pdev = NULL;
1375 			do {
1376 				rc = sbridge_get_onedevice(&pdev, num_mc,
1377 							   table, i);
1378 				if (rc < 0) {
1379 					if (i == 0) {
1380 						i = table->n_devs;
1381 						break;
1382 					}
1383 					sbridge_put_all_devices();
1384 					return -ENODEV;
1385 				}
1386 			} while (pdev);
1387 		}
1388 		table++;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1395 				 struct sbridge_dev *sbridge_dev)
1396 {
1397 	struct sbridge_pvt *pvt = mci->pvt_info;
1398 	struct pci_dev *pdev;
1399 	int i, func, slot;
1400 
1401 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1402 		pdev = sbridge_dev->pdev[i];
1403 		if (!pdev)
1404 			continue;
1405 		slot = PCI_SLOT(pdev->devfn);
1406 		func = PCI_FUNC(pdev->devfn);
1407 		switch (slot) {
1408 		case 12:
1409 			switch (func) {
1410 			case 6:
1411 				pvt->pci_sad0 = pdev;
1412 				break;
1413 			case 7:
1414 				pvt->pci_sad1 = pdev;
1415 				break;
1416 			default:
1417 				goto error;
1418 			}
1419 			break;
1420 		case 13:
1421 			switch (func) {
1422 			case 6:
1423 				pvt->pci_br0 = pdev;
1424 				break;
1425 			default:
1426 				goto error;
1427 			}
1428 			break;
1429 		case 14:
1430 			switch (func) {
1431 			case 0:
1432 				pvt->pci_ha0 = pdev;
1433 				break;
1434 			default:
1435 				goto error;
1436 			}
1437 			break;
1438 		case 15:
1439 			switch (func) {
1440 			case 0:
1441 				pvt->pci_ta = pdev;
1442 				break;
1443 			case 1:
1444 				pvt->pci_ras = pdev;
1445 				break;
1446 			case 2:
1447 			case 3:
1448 			case 4:
1449 			case 5:
1450 				pvt->pci_tad[func - 2] = pdev;
1451 				break;
1452 			default:
1453 				goto error;
1454 			}
1455 			break;
1456 		case 17:
1457 			switch (func) {
1458 			case 0:
1459 				pvt->pci_ddrio = pdev;
1460 				break;
1461 			default:
1462 				goto error;
1463 			}
1464 			break;
1465 		default:
1466 			goto error;
1467 		}
1468 
1469 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1470 			 sbridge_dev->bus,
1471 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1472 			 pdev);
1473 	}
1474 
1475 	/* Check if everything were registered */
1476 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1477 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1478 		goto enodev;
1479 
1480 	for (i = 0; i < NUM_CHANNELS; i++) {
1481 		if (!pvt->pci_tad[i])
1482 			goto enodev;
1483 	}
1484 	return 0;
1485 
1486 enodev:
1487 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1488 	return -ENODEV;
1489 
1490 error:
1491 	sbridge_printk(KERN_ERR, "Device %d, function %d "
1492 		      "is out of the expected range\n",
1493 		      slot, func);
1494 	return -EINVAL;
1495 }
1496 
1497 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1498 				 struct sbridge_dev *sbridge_dev)
1499 {
1500 	struct sbridge_pvt *pvt = mci->pvt_info;
1501 	struct pci_dev *pdev, *tmp;
1502 	int i, func, slot;
1503 	bool mode_2ha = false;
1504 
1505 	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1506 			     PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
1507 	if (tmp) {
1508 		mode_2ha = true;
1509 		pci_dev_put(tmp);
1510 	}
1511 
1512 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1513 		pdev = sbridge_dev->pdev[i];
1514 		if (!pdev)
1515 			continue;
1516 		slot = PCI_SLOT(pdev->devfn);
1517 		func = PCI_FUNC(pdev->devfn);
1518 
1519 		switch (slot) {
1520 		case 14:
1521 			if (func == 0) {
1522 				pvt->pci_ha0 = pdev;
1523 				break;
1524 			}
1525 			goto error;
1526 		case 15:
1527 			switch (func) {
1528 			case 0:
1529 				pvt->pci_ta = pdev;
1530 				break;
1531 			case 1:
1532 				pvt->pci_ras = pdev;
1533 				break;
1534 			case 4:
1535 			case 5:
1536 				/* if we have 2 HAs active, channels 2 and 3
1537 				 * are in other device */
1538 				if (mode_2ha)
1539 					break;
1540 				/* fall through */
1541 			case 2:
1542 			case 3:
1543 				pvt->pci_tad[func - 2] = pdev;
1544 				break;
1545 			default:
1546 				goto error;
1547 			}
1548 			break;
1549 		case 17:
1550 			if (func == 4) {
1551 				pvt->pci_ddrio = pdev;
1552 				break;
1553 			} else if (func == 0) {
1554 				if (!mode_2ha)
1555 					pvt->pci_ddrio = pdev;
1556 				break;
1557 			}
1558 			goto error;
1559 		case 22:
1560 			switch (func) {
1561 			case 0:
1562 				pvt->pci_sad0 = pdev;
1563 				break;
1564 			case 1:
1565 				pvt->pci_br0 = pdev;
1566 				break;
1567 			case 2:
1568 				pvt->pci_br1 = pdev;
1569 				break;
1570 			default:
1571 				goto error;
1572 			}
1573 			break;
1574 		case 28:
1575 			if (func == 0) {
1576 				pvt->pci_ha1 = pdev;
1577 				break;
1578 			}
1579 			goto error;
1580 		case 29:
1581 			/* we shouldn't have this device if we have just one
1582 			 * HA present */
1583 			WARN_ON(!mode_2ha);
1584 			if (func == 2 || func == 3) {
1585 				pvt->pci_tad[func] = pdev;
1586 				break;
1587 			}
1588 			goto error;
1589 		default:
1590 			goto error;
1591 		}
1592 
1593 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1594 			 sbridge_dev->bus,
1595 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1596 			 pdev);
1597 	}
1598 
1599 	/* Check if everything were registered */
1600 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1601 	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1602 	    !pvt->pci_ta)
1603 		goto enodev;
1604 
1605 	for (i = 0; i < NUM_CHANNELS; i++) {
1606 		if (!pvt->pci_tad[i])
1607 			goto enodev;
1608 	}
1609 	return 0;
1610 
1611 enodev:
1612 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1613 	return -ENODEV;
1614 
1615 error:
1616 	sbridge_printk(KERN_ERR,
1617 		       "Device %d, function %d is out of the expected range\n",
1618 		       slot, func);
1619 	return -EINVAL;
1620 }
1621 
1622 /****************************************************************************
1623 			Error check routines
1624  ****************************************************************************/
1625 
1626 /*
1627  * While Sandy Bridge has error count registers, SMI BIOS read values from
1628  * and resets the counters. So, they are not reliable for the OS to read
1629  * from them. So, we have no option but to just trust on whatever MCE is
1630  * telling us about the errors.
1631  */
1632 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1633 				    const struct mce *m)
1634 {
1635 	struct mem_ctl_info *new_mci;
1636 	struct sbridge_pvt *pvt = mci->pvt_info;
1637 	enum hw_event_mc_err_type tp_event;
1638 	char *type, *optype, msg[256];
1639 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1640 	bool overflow = GET_BITFIELD(m->status, 62, 62);
1641 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1642 	bool recoverable;
1643 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1644 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1645 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1646 	u32 channel = GET_BITFIELD(m->status, 0, 3);
1647 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1648 	long channel_mask, first_channel;
1649 	u8  rank, socket;
1650 	int rc, dimm;
1651 	char *area_type = NULL;
1652 
1653 	if (pvt->info.type == IVY_BRIDGE)
1654 		recoverable = true;
1655 	else
1656 		recoverable = GET_BITFIELD(m->status, 56, 56);
1657 
1658 	if (uncorrected_error) {
1659 		if (ripv) {
1660 			type = "FATAL";
1661 			tp_event = HW_EVENT_ERR_FATAL;
1662 		} else {
1663 			type = "NON_FATAL";
1664 			tp_event = HW_EVENT_ERR_UNCORRECTED;
1665 		}
1666 	} else {
1667 		type = "CORRECTED";
1668 		tp_event = HW_EVENT_ERR_CORRECTED;
1669 	}
1670 
1671 	/*
1672 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1673 	 * memory errors should fit in this mask:
1674 	 *	000f 0000 1mmm cccc (binary)
1675 	 * where:
1676 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
1677 	 *	    won't be shown
1678 	 *	mmm = error type
1679 	 *	cccc = channel
1680 	 * If the mask doesn't match, report an error to the parsing logic
1681 	 */
1682 	if (! ((errcode & 0xef80) == 0x80)) {
1683 		optype = "Can't parse: it is not a mem";
1684 	} else {
1685 		switch (optypenum) {
1686 		case 0:
1687 			optype = "generic undef request error";
1688 			break;
1689 		case 1:
1690 			optype = "memory read error";
1691 			break;
1692 		case 2:
1693 			optype = "memory write error";
1694 			break;
1695 		case 3:
1696 			optype = "addr/cmd error";
1697 			break;
1698 		case 4:
1699 			optype = "memory scrubbing error";
1700 			break;
1701 		default:
1702 			optype = "reserved";
1703 			break;
1704 		}
1705 	}
1706 
1707 	/* Only decode errors with an valid address (ADDRV) */
1708 	if (!GET_BITFIELD(m->status, 58, 58))
1709 		return;
1710 
1711 	rc = get_memory_error_data(mci, m->addr, &socket,
1712 				   &channel_mask, &rank, &area_type, msg);
1713 	if (rc < 0)
1714 		goto err_parsing;
1715 	new_mci = get_mci_for_node_id(socket);
1716 	if (!new_mci) {
1717 		strcpy(msg, "Error: socket got corrupted!");
1718 		goto err_parsing;
1719 	}
1720 	mci = new_mci;
1721 	pvt = mci->pvt_info;
1722 
1723 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1724 
1725 	if (rank < 4)
1726 		dimm = 0;
1727 	else if (rank < 8)
1728 		dimm = 1;
1729 	else
1730 		dimm = 2;
1731 
1732 
1733 	/*
1734 	 * FIXME: On some memory configurations (mirror, lockstep), the
1735 	 * Memory Controller can't point the error to a single DIMM. The
1736 	 * EDAC core should be handling the channel mask, in order to point
1737 	 * to the group of dimm's where the error may be happening.
1738 	 */
1739 	snprintf(msg, sizeof(msg),
1740 		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1741 		 overflow ? " OVERFLOW" : "",
1742 		 (uncorrected_error && recoverable) ? " recoverable" : "",
1743 		 area_type,
1744 		 mscod, errcode,
1745 		 socket,
1746 		 channel_mask,
1747 		 rank);
1748 
1749 	edac_dbg(0, "%s\n", msg);
1750 
1751 	/* FIXME: need support for channel mask */
1752 
1753 	/* Call the helper to output message */
1754 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
1755 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1756 			     channel, dimm, -1,
1757 			     optype, msg);
1758 	return;
1759 err_parsing:
1760 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1761 			     -1, -1, -1,
1762 			     msg, "");
1763 
1764 }
1765 
1766 /*
1767  *	sbridge_check_error	Retrieve and process errors reported by the
1768  *				hardware. Called by the Core module.
1769  */
1770 static void sbridge_check_error(struct mem_ctl_info *mci)
1771 {
1772 	struct sbridge_pvt *pvt = mci->pvt_info;
1773 	int i;
1774 	unsigned count = 0;
1775 	struct mce *m;
1776 
1777 	/*
1778 	 * MCE first step: Copy all mce errors into a temporary buffer
1779 	 * We use a double buffering here, to reduce the risk of
1780 	 * loosing an error.
1781 	 */
1782 	smp_rmb();
1783 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1784 		% MCE_LOG_LEN;
1785 	if (!count)
1786 		return;
1787 
1788 	m = pvt->mce_outentry;
1789 	if (pvt->mce_in + count > MCE_LOG_LEN) {
1790 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1791 
1792 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1793 		smp_wmb();
1794 		pvt->mce_in = 0;
1795 		count -= l;
1796 		m += l;
1797 	}
1798 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1799 	smp_wmb();
1800 	pvt->mce_in += count;
1801 
1802 	smp_rmb();
1803 	if (pvt->mce_overrun) {
1804 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1805 			      pvt->mce_overrun);
1806 		smp_wmb();
1807 		pvt->mce_overrun = 0;
1808 	}
1809 
1810 	/*
1811 	 * MCE second step: parse errors and display
1812 	 */
1813 	for (i = 0; i < count; i++)
1814 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1815 }
1816 
1817 /*
1818  * sbridge_mce_check_error	Replicates mcelog routine to get errors
1819  *				This routine simply queues mcelog errors, and
1820  *				return. The error itself should be handled later
1821  *				by sbridge_check_error.
1822  * WARNING: As this routine should be called at NMI time, extra care should
1823  * be taken to avoid deadlocks, and to be as fast as possible.
1824  */
1825 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1826 				   void *data)
1827 {
1828 	struct mce *mce = (struct mce *)data;
1829 	struct mem_ctl_info *mci;
1830 	struct sbridge_pvt *pvt;
1831 	char *type;
1832 
1833 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
1834 		return NOTIFY_DONE;
1835 
1836 	mci = get_mci_for_node_id(mce->socketid);
1837 	if (!mci)
1838 		return NOTIFY_BAD;
1839 	pvt = mci->pvt_info;
1840 
1841 	/*
1842 	 * Just let mcelog handle it if the error is
1843 	 * outside the memory controller. A memory error
1844 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1845 	 * bit 12 has an special meaning.
1846 	 */
1847 	if ((mce->status & 0xefff) >> 7 != 1)
1848 		return NOTIFY_DONE;
1849 
1850 	if (mce->mcgstatus & MCG_STATUS_MCIP)
1851 		type = "Exception";
1852 	else
1853 		type = "Event";
1854 
1855 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
1856 
1857 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
1858 			  "Bank %d: %016Lx\n", mce->extcpu, type,
1859 			  mce->mcgstatus, mce->bank, mce->status);
1860 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
1861 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
1862 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
1863 
1864 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
1865 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
1866 			  mce->time, mce->socketid, mce->apicid);
1867 
1868 	/* Only handle if it is the right mc controller */
1869 	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1870 		return NOTIFY_DONE;
1871 
1872 	smp_rmb();
1873 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1874 		smp_wmb();
1875 		pvt->mce_overrun++;
1876 		return NOTIFY_DONE;
1877 	}
1878 
1879 	/* Copy memory error at the ringbuffer */
1880 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1881 	smp_wmb();
1882 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1883 
1884 	/* Handle fatal errors immediately */
1885 	if (mce->mcgstatus & 1)
1886 		sbridge_check_error(mci);
1887 
1888 	/* Advice mcelog that the error were handled */
1889 	return NOTIFY_STOP;
1890 }
1891 
1892 static struct notifier_block sbridge_mce_dec = {
1893 	.notifier_call      = sbridge_mce_check_error,
1894 };
1895 
1896 /****************************************************************************
1897 			EDAC register/unregister logic
1898  ****************************************************************************/
1899 
1900 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1901 {
1902 	struct mem_ctl_info *mci = sbridge_dev->mci;
1903 	struct sbridge_pvt *pvt;
1904 
1905 	if (unlikely(!mci || !mci->pvt_info)) {
1906 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1907 
1908 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1909 		return;
1910 	}
1911 
1912 	pvt = mci->pvt_info;
1913 
1914 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
1915 		 mci, &sbridge_dev->pdev[0]->dev);
1916 
1917 	/* Remove MC sysfs nodes */
1918 	edac_mc_del_mc(mci->pdev);
1919 
1920 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1921 	kfree(mci->ctl_name);
1922 	edac_mc_free(mci);
1923 	sbridge_dev->mci = NULL;
1924 }
1925 
1926 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
1927 {
1928 	struct mem_ctl_info *mci;
1929 	struct edac_mc_layer layers[2];
1930 	struct sbridge_pvt *pvt;
1931 	struct pci_dev *pdev = sbridge_dev->pdev[0];
1932 	int rc;
1933 
1934 	/* Check the number of active and not disabled channels */
1935 	rc = check_if_ecc_is_active(sbridge_dev->bus);
1936 	if (unlikely(rc < 0))
1937 		return rc;
1938 
1939 	/* allocate a new MC control structure */
1940 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1941 	layers[0].size = NUM_CHANNELS;
1942 	layers[0].is_virt_csrow = false;
1943 	layers[1].type = EDAC_MC_LAYER_SLOT;
1944 	layers[1].size = MAX_DIMMS;
1945 	layers[1].is_virt_csrow = true;
1946 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1947 			    sizeof(*pvt));
1948 
1949 	if (unlikely(!mci))
1950 		return -ENOMEM;
1951 
1952 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
1953 		 mci, &pdev->dev);
1954 
1955 	pvt = mci->pvt_info;
1956 	memset(pvt, 0, sizeof(*pvt));
1957 
1958 	/* Associate sbridge_dev and mci for future usage */
1959 	pvt->sbridge_dev = sbridge_dev;
1960 	sbridge_dev->mci = mci;
1961 
1962 	mci->mtype_cap = MEM_FLAG_DDR3;
1963 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1964 	mci->edac_cap = EDAC_FLAG_NONE;
1965 	mci->mod_name = "sbridge_edac.c";
1966 	mci->mod_ver = SBRIDGE_REVISION;
1967 	mci->dev_name = pci_name(pdev);
1968 	mci->ctl_page_to_phys = NULL;
1969 
1970 	/* Set the function pointer to an actual operation function */
1971 	mci->edac_check = sbridge_check_error;
1972 
1973 	pvt->info.type = type;
1974 	if (type == IVY_BRIDGE) {
1975 		pvt->info.rankcfgr = IB_RANK_CFG_A;
1976 		pvt->info.get_tolm = ibridge_get_tolm;
1977 		pvt->info.get_tohm = ibridge_get_tohm;
1978 		pvt->info.dram_rule = ibridge_dram_rule;
1979 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
1980 		pvt->info.interleave_list = ibridge_interleave_list;
1981 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
1982 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
1983 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
1984 
1985 		/* Store pci devices at mci for faster access */
1986 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
1987 		if (unlikely(rc < 0))
1988 			goto fail0;
1989 	} else {
1990 		pvt->info.rankcfgr = SB_RANK_CFG_A;
1991 		pvt->info.get_tolm = sbridge_get_tolm;
1992 		pvt->info.get_tohm = sbridge_get_tohm;
1993 		pvt->info.dram_rule = sbridge_dram_rule;
1994 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
1995 		pvt->info.interleave_list = sbridge_interleave_list;
1996 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
1997 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
1998 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1999 
2000 		/* Store pci devices at mci for faster access */
2001 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2002 		if (unlikely(rc < 0))
2003 			goto fail0;
2004 	}
2005 
2006 
2007 	/* Get dimm basic config and the memory layout */
2008 	get_dimm_config(mci);
2009 	get_memory_layout(mci);
2010 
2011 	/* record ptr to the generic device */
2012 	mci->pdev = &pdev->dev;
2013 
2014 	/* add this new MC control structure to EDAC's list of MCs */
2015 	if (unlikely(edac_mc_add_mc(mci))) {
2016 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2017 		rc = -EINVAL;
2018 		goto fail0;
2019 	}
2020 
2021 	return 0;
2022 
2023 fail0:
2024 	kfree(mci->ctl_name);
2025 	edac_mc_free(mci);
2026 	sbridge_dev->mci = NULL;
2027 	return rc;
2028 }
2029 
2030 /*
2031  *	sbridge_probe	Probe for ONE instance of device to see if it is
2032  *			present.
2033  *	return:
2034  *		0 for FOUND a device
2035  *		< 0 for error code
2036  */
2037 
2038 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2039 {
2040 	int rc;
2041 	u8 mc, num_mc = 0;
2042 	struct sbridge_dev *sbridge_dev;
2043 	enum type type;
2044 
2045 	/* get the pci devices we want to reserve for our use */
2046 	mutex_lock(&sbridge_edac_lock);
2047 
2048 	/*
2049 	 * All memory controllers are allocated at the first pass.
2050 	 */
2051 	if (unlikely(probed >= 1)) {
2052 		mutex_unlock(&sbridge_edac_lock);
2053 		return -ENODEV;
2054 	}
2055 	probed++;
2056 
2057 	if (pdev->device == PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA) {
2058 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2059 		type = IVY_BRIDGE;
2060 	} else {
2061 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2062 		type = SANDY_BRIDGE;
2063 	}
2064 	if (unlikely(rc < 0))
2065 		goto fail0;
2066 	mc = 0;
2067 
2068 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2069 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2070 			 mc, mc + 1, num_mc);
2071 		sbridge_dev->mc = mc++;
2072 		rc = sbridge_register_mci(sbridge_dev, type);
2073 		if (unlikely(rc < 0))
2074 			goto fail1;
2075 	}
2076 
2077 	sbridge_printk(KERN_INFO, "Driver loaded.\n");
2078 
2079 	mutex_unlock(&sbridge_edac_lock);
2080 	return 0;
2081 
2082 fail1:
2083 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2084 		sbridge_unregister_mci(sbridge_dev);
2085 
2086 	sbridge_put_all_devices();
2087 fail0:
2088 	mutex_unlock(&sbridge_edac_lock);
2089 	return rc;
2090 }
2091 
2092 /*
2093  *	sbridge_remove	destructor for one instance of device
2094  *
2095  */
2096 static void sbridge_remove(struct pci_dev *pdev)
2097 {
2098 	struct sbridge_dev *sbridge_dev;
2099 
2100 	edac_dbg(0, "\n");
2101 
2102 	/*
2103 	 * we have a trouble here: pdev value for removal will be wrong, since
2104 	 * it will point to the X58 register used to detect that the machine
2105 	 * is a Nehalem or upper design. However, due to the way several PCI
2106 	 * devices are grouped together to provide MC functionality, we need
2107 	 * to use a different method for releasing the devices
2108 	 */
2109 
2110 	mutex_lock(&sbridge_edac_lock);
2111 
2112 	if (unlikely(!probed)) {
2113 		mutex_unlock(&sbridge_edac_lock);
2114 		return;
2115 	}
2116 
2117 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2118 		sbridge_unregister_mci(sbridge_dev);
2119 
2120 	/* Release PCI resources */
2121 	sbridge_put_all_devices();
2122 
2123 	probed--;
2124 
2125 	mutex_unlock(&sbridge_edac_lock);
2126 }
2127 
2128 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2129 
2130 /*
2131  *	sbridge_driver	pci_driver structure for this module
2132  *
2133  */
2134 static struct pci_driver sbridge_driver = {
2135 	.name     = "sbridge_edac",
2136 	.probe    = sbridge_probe,
2137 	.remove   = sbridge_remove,
2138 	.id_table = sbridge_pci_tbl,
2139 };
2140 
2141 /*
2142  *	sbridge_init		Module entry function
2143  *			Try to initialize this module for its devices
2144  */
2145 static int __init sbridge_init(void)
2146 {
2147 	int pci_rc;
2148 
2149 	edac_dbg(2, "\n");
2150 
2151 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
2152 	opstate_init();
2153 
2154 	pci_rc = pci_register_driver(&sbridge_driver);
2155 	if (pci_rc >= 0) {
2156 		mce_register_decode_chain(&sbridge_mce_dec);
2157 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2158 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2159 		return 0;
2160 	}
2161 
2162 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2163 		      pci_rc);
2164 
2165 	return pci_rc;
2166 }
2167 
2168 /*
2169  *	sbridge_exit()	Module exit function
2170  *			Unregister the driver
2171  */
2172 static void __exit sbridge_exit(void)
2173 {
2174 	edac_dbg(2, "\n");
2175 	pci_unregister_driver(&sbridge_driver);
2176 	mce_unregister_decode_chain(&sbridge_mce_dec);
2177 }
2178 
2179 module_init(sbridge_init);
2180 module_exit(sbridge_exit);
2181 
2182 module_param(edac_op_state, int, 0444);
2183 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2184 
2185 MODULE_LICENSE("GPL");
2186 MODULE_AUTHOR("Mauro Carvalho Chehab");
2187 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2188 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2189 		   SBRIDGE_REVISION);
2190