xref: /openbmc/linux/drivers/edac/sb_edac.c (revision a36954f5)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29 
30 #include "edac_module.h"
31 
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34 
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.1 "
39 #define EDAC_MOD_STR      "sbridge_edac"
40 
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)			\
45 	edac_printk(level, "sbridge", fmt, ##arg)
46 
47 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
48 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi)	\
54 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 	0x80, 0x88, 0x90, 0x98, 0xa0,
59 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61 
62 static const u32 ibridge_dram_rule[] = {
63 	0x60, 0x68, 0x70, 0x78, 0x80,
64 	0x88, 0x90, 0x98, 0xa0,	0xa8,
65 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68 
69 static const u32 knl_dram_rule[] = {
70 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76 
77 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79 
80 static char *show_dram_attr(u32 attr)
81 {
82 	switch (attr) {
83 		case 0:
84 			return "DRAM";
85 		case 1:
86 			return "MMCFG";
87 		case 2:
88 			return "NXM";
89 		default:
90 			return "unknown";
91 	}
92 }
93 
94 static const u32 sbridge_interleave_list[] = {
95 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98 
99 static const u32 ibridge_interleave_list[] = {
100 	0x64, 0x6c, 0x74, 0x7c, 0x84,
101 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105 
106 static const u32 knl_interleave_list[] = {
107 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 
114 struct interleave_pkg {
115 	unsigned char start;
116 	unsigned char end;
117 };
118 
119 static const struct interleave_pkg sbridge_interleave_pkg[] = {
120 	{ 0, 2 },
121 	{ 3, 5 },
122 	{ 8, 10 },
123 	{ 11, 13 },
124 	{ 16, 18 },
125 	{ 19, 21 },
126 	{ 24, 26 },
127 	{ 27, 29 },
128 };
129 
130 static const struct interleave_pkg ibridge_interleave_pkg[] = {
131 	{ 0, 3 },
132 	{ 4, 7 },
133 	{ 8, 11 },
134 	{ 12, 15 },
135 	{ 16, 19 },
136 	{ 20, 23 },
137 	{ 24, 27 },
138 	{ 28, 31 },
139 };
140 
141 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
142 			  int interleave)
143 {
144 	return GET_BITFIELD(reg, table[interleave].start,
145 			    table[interleave].end);
146 }
147 
148 /* Devices 12 Function 7 */
149 
150 #define TOLM		0x80
151 #define TOHM		0x84
152 #define HASWELL_TOLM	0xd0
153 #define HASWELL_TOHM_0	0xd4
154 #define HASWELL_TOHM_1	0xd8
155 #define KNL_TOLM	0xd0
156 #define KNL_TOHM_0	0xd4
157 #define KNL_TOHM_1	0xd8
158 
159 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
160 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
161 
162 /* Device 13 Function 6 */
163 
164 #define SAD_TARGET	0xf0
165 
166 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
167 
168 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
169 
170 #define SAD_CONTROL	0xf4
171 
172 /* Device 14 function 0 */
173 
174 static const u32 tad_dram_rule[] = {
175 	0x40, 0x44, 0x48, 0x4c,
176 	0x50, 0x54, 0x58, 0x5c,
177 	0x60, 0x64, 0x68, 0x6c,
178 };
179 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
180 
181 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
182 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
183 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
184 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
185 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
186 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
187 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
188 
189 /* Device 15, function 0 */
190 
191 #define MCMTR			0x7c
192 #define KNL_MCMTR		0x624
193 
194 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
195 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
196 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
197 
198 /* Device 15, function 1 */
199 
200 #define RASENABLES		0xac
201 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
202 
203 /* Device 15, functions 2-5 */
204 
205 static const int mtr_regs[] = {
206 	0x80, 0x84, 0x88,
207 };
208 
209 static const int knl_mtr_reg = 0xb60;
210 
211 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
212 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
213 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
214 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
215 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
216 
217 static const u32 tad_ch_nilv_offset[] = {
218 	0x90, 0x94, 0x98, 0x9c,
219 	0xa0, 0xa4, 0xa8, 0xac,
220 	0xb0, 0xb4, 0xb8, 0xbc,
221 };
222 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
223 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
224 
225 static const u32 rir_way_limit[] = {
226 	0x108, 0x10c, 0x110, 0x114, 0x118,
227 };
228 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
229 
230 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
231 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
232 
233 #define MAX_RIR_WAY	8
234 
235 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
236 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
237 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
238 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
239 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
240 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
241 };
242 
243 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
244 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
245 
246 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
247 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
248 
249 /* Device 16, functions 2-7 */
250 
251 /*
252  * FIXME: Implement the error count reads directly
253  */
254 
255 static const u32 correrrcnt[] = {
256 	0x104, 0x108, 0x10c, 0x110,
257 };
258 
259 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
263 
264 static const u32 correrrthrsld[] = {
265 	0x11c, 0x120, 0x124, 0x128,
266 };
267 
268 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
269 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
270 
271 
272 /* Device 17, function 0 */
273 
274 #define SB_RANK_CFG_A		0x0328
275 
276 #define IB_RANK_CFG_A		0x0320
277 
278 /*
279  * sbridge structs
280  */
281 
282 #define NUM_CHANNELS		8	/* 2MC per socket, four chan per MC */
283 #define MAX_DIMMS		3	/* Max DIMMS per channel */
284 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
285 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
286 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
287 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
288 
289 enum type {
290 	SANDY_BRIDGE,
291 	IVY_BRIDGE,
292 	HASWELL,
293 	BROADWELL,
294 	KNIGHTS_LANDING,
295 };
296 
297 struct sbridge_pvt;
298 struct sbridge_info {
299 	enum type	type;
300 	u32		mcmtr;
301 	u32		rankcfgr;
302 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
303 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
304 	u64		(*rir_limit)(u32 reg);
305 	u64		(*sad_limit)(u32 reg);
306 	u32		(*interleave_mode)(u32 reg);
307 	u32		(*dram_attr)(u32 reg);
308 	const u32	*dram_rule;
309 	const u32	*interleave_list;
310 	const struct interleave_pkg *interleave_pkg;
311 	u8		max_sad;
312 	u8		max_interleave;
313 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
314 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
315 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
316 	struct pci_dev	*pci_vtd;
317 };
318 
319 struct sbridge_channel {
320 	u32		ranks;
321 	u32		dimms;
322 };
323 
324 struct pci_id_descr {
325 	int			dev_id;
326 	int			optional;
327 };
328 
329 struct pci_id_table {
330 	const struct pci_id_descr	*descr;
331 	int				n_devs;
332 	enum type			type;
333 };
334 
335 struct sbridge_dev {
336 	struct list_head	list;
337 	u8			bus, mc;
338 	u8			node_id, source_id;
339 	struct pci_dev		**pdev;
340 	int			n_devs;
341 	struct mem_ctl_info	*mci;
342 };
343 
344 struct knl_pvt {
345 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
346 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
347 	struct pci_dev          *pci_mc0;
348 	struct pci_dev          *pci_mc1;
349 	struct pci_dev          *pci_mc0_misc;
350 	struct pci_dev          *pci_mc1_misc;
351 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
352 };
353 
354 struct sbridge_pvt {
355 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
356 	struct pci_dev		*pci_sad0, *pci_sad1;
357 	struct pci_dev		*pci_ha0, *pci_ha1;
358 	struct pci_dev		*pci_br0, *pci_br1;
359 	struct pci_dev		*pci_ha1_ta;
360 	struct pci_dev		*pci_tad[NUM_CHANNELS];
361 
362 	struct sbridge_dev	*sbridge_dev;
363 
364 	struct sbridge_info	info;
365 	struct sbridge_channel	channel[NUM_CHANNELS];
366 
367 	/* Memory type detection */
368 	bool			is_mirrored, is_lockstep, is_close_pg;
369 	bool			is_chan_hash;
370 
371 	/* Memory description */
372 	u64			tolm, tohm;
373 	struct knl_pvt knl;
374 };
375 
376 #define PCI_DESCR(device_id, opt)	\
377 	.dev_id = (device_id),		\
378 	.optional = opt
379 
380 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
381 		/* Processor Home Agent */
382 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
383 
384 		/* Memory controller */
385 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
386 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
387 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
388 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
389 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
390 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
391 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
392 
393 		/* System Address Decoder */
394 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
395 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
396 
397 		/* Broadcast Registers */
398 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
399 };
400 
401 #define PCI_ID_TABLE_ENTRY(A, T) {	\
402 	.descr = A,			\
403 	.n_devs = ARRAY_SIZE(A),	\
404 	.type = T			\
405 }
406 
407 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
408 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, SANDY_BRIDGE),
409 	{0,}			/* 0 terminated list. */
410 };
411 
412 /* This changes depending if 1HA or 2HA:
413  * 1HA:
414  *	0x0eb8 (17.0) is DDRIO0
415  * 2HA:
416  *	0x0ebc (17.4) is DDRIO0
417  */
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
420 
421 /* pci ids */
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
439 
440 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
441 		/* Processor Home Agent */
442 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
443 
444 		/* Memory controller */
445 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
446 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
447 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
448 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
449 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
450 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
451 
452 		/* System Address Decoder */
453 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
454 
455 		/* Broadcast Registers */
456 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
457 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
458 
459 		/* Optional, mode 2HA */
460 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
461 #if 0
462 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
463 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
464 #endif
465 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
466 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
467 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1)	},
468 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1)	},
469 
470 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
471 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
472 };
473 
474 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
475 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, IVY_BRIDGE),
476 	{0,}			/* 0 terminated list. */
477 };
478 
479 /* Haswell support */
480 /* EN processor:
481  *	- 1 IMC
482  *	- 3 DDR3 channels, 2 DPC per channel
483  * EP processor:
484  *	- 1 or 2 IMC
485  *	- 4 DDR4 channels, 3 DPC per channel
486  * EP 4S processor:
487  *	- 2 IMC
488  *	- 4 DDR4 channels, 3 DPC per channel
489  * EX processor:
490  *	- 2 IMC
491  *	- each IMC interfaces with a SMI 2 channel
492  *	- each SMI channel interfaces with a scalable memory buffer
493  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
494  */
495 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
496 #define HASWELL_HASYSDEFEATURE2 0x84
497 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
518 static const struct pci_id_descr pci_dev_descr_haswell[] = {
519 	/* first item must be the HA */
520 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
521 
522 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
523 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
524 
525 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
526 
527 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
528 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
529 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
530 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
531 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
532 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
533 
534 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
535 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1)		},
536 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1)		},
537 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1)		},
538 
539 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
540 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
541 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
542 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
543 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
544 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
545 };
546 
547 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
548 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, HASWELL),
549 	{0,}			/* 0 terminated list. */
550 };
551 
552 /* Knight's Landing Support */
553 /*
554  * KNL's memory channels are swizzled between memory controllers.
555  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
556  */
557 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
558 
559 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
560 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
561 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
562 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL  0x7843
563 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
564 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
565 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
566 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
567 /* SAD target - 1-29-1 (1 of these) */
568 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
569 /* Caching / Home Agent */
570 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
571 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
572 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
573 
574 /*
575  * KNL differs from SB, IB, and Haswell in that it has multiple
576  * instances of the same device with the same device ID, so we handle that
577  * by creating as many copies in the table as we expect to find.
578  * (Like device ID must be grouped together.)
579  */
580 
581 static const struct pci_id_descr pci_dev_descr_knl[] = {
582 	[0]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0) },
583 	[1]         = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0) },
584 	[2 ... 3]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0)},
585 	[4 ... 41]  = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0) },
586 	[42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL, 0) },
587 	[48]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0) },
588 	[49]        = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0) },
589 };
590 
591 static const struct pci_id_table pci_dev_descr_knl_table[] = {
592 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, KNIGHTS_LANDING),
593 	{0,}
594 };
595 
596 /*
597  * Broadwell support
598  *
599  * DE processor:
600  *	- 1 IMC
601  *	- 2 DDR3 channels, 2 DPC per channel
602  * EP processor:
603  *	- 1 or 2 IMC
604  *	- 4 DDR4 channels, 3 DPC per channel
605  * EP 4S processor:
606  *	- 2 IMC
607  *	- 4 DDR4 channels, 3 DPC per channel
608  * EX processor:
609  *	- 2 IMC
610  *	- each IMC interfaces with a SMI 2 channel
611  *	- each SMI channel interfaces with a scalable memory buffer
612  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
613  */
614 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
632 
633 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
634 	/* first item must be the HA */
635 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},
636 
637 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
638 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},
639 
640 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1)		},
641 
642 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
643 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
644 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
645 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
646 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1)	},
647 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1)	},
648 
649 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
650 
651 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1)	},
652 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL, 1)	},
653 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1)	},
654 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1)	},
655 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1)	},
656 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1)	},
657 };
658 
659 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
660 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, BROADWELL),
661 	{0,}			/* 0 terminated list. */
662 };
663 
664 
665 /****************************************************************************
666 			Ancillary status routines
667  ****************************************************************************/
668 
669 static inline int numrank(enum type type, u32 mtr)
670 {
671 	int ranks = (1 << RANK_CNT_BITS(mtr));
672 	int max = 4;
673 
674 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
675 		max = 8;
676 
677 	if (ranks > max) {
678 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
679 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
680 		return -EINVAL;
681 	}
682 
683 	return ranks;
684 }
685 
686 static inline int numrow(u32 mtr)
687 {
688 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
689 
690 	if (rows < 13 || rows > 18) {
691 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
692 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
693 		return -EINVAL;
694 	}
695 
696 	return 1 << rows;
697 }
698 
699 static inline int numcol(u32 mtr)
700 {
701 	int cols = (COL_WIDTH_BITS(mtr) + 10);
702 
703 	if (cols > 12) {
704 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
705 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
706 		return -EINVAL;
707 	}
708 
709 	return 1 << cols;
710 }
711 
712 static struct sbridge_dev *get_sbridge_dev(u8 bus, int multi_bus)
713 {
714 	struct sbridge_dev *sbridge_dev;
715 
716 	/*
717 	 * If we have devices scattered across several busses that pertain
718 	 * to the same memory controller, we'll lump them all together.
719 	 */
720 	if (multi_bus) {
721 		return list_first_entry_or_null(&sbridge_edac_list,
722 				struct sbridge_dev, list);
723 	}
724 
725 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
726 		if (sbridge_dev->bus == bus)
727 			return sbridge_dev;
728 	}
729 
730 	return NULL;
731 }
732 
733 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
734 					   const struct pci_id_table *table)
735 {
736 	struct sbridge_dev *sbridge_dev;
737 
738 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
739 	if (!sbridge_dev)
740 		return NULL;
741 
742 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
743 				   GFP_KERNEL);
744 	if (!sbridge_dev->pdev) {
745 		kfree(sbridge_dev);
746 		return NULL;
747 	}
748 
749 	sbridge_dev->bus = bus;
750 	sbridge_dev->n_devs = table->n_devs;
751 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
752 
753 	return sbridge_dev;
754 }
755 
756 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
757 {
758 	list_del(&sbridge_dev->list);
759 	kfree(sbridge_dev->pdev);
760 	kfree(sbridge_dev);
761 }
762 
763 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
764 {
765 	u32 reg;
766 
767 	/* Address range is 32:28 */
768 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
769 	return GET_TOLM(reg);
770 }
771 
772 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
773 {
774 	u32 reg;
775 
776 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
777 	return GET_TOHM(reg);
778 }
779 
780 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
781 {
782 	u32 reg;
783 
784 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
785 
786 	return GET_TOLM(reg);
787 }
788 
789 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
790 {
791 	u32 reg;
792 
793 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
794 
795 	return GET_TOHM(reg);
796 }
797 
798 static u64 rir_limit(u32 reg)
799 {
800 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
801 }
802 
803 static u64 sad_limit(u32 reg)
804 {
805 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
806 }
807 
808 static u32 interleave_mode(u32 reg)
809 {
810 	return GET_BITFIELD(reg, 1, 1);
811 }
812 
813 static u32 dram_attr(u32 reg)
814 {
815 	return GET_BITFIELD(reg, 2, 3);
816 }
817 
818 static u64 knl_sad_limit(u32 reg)
819 {
820 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
821 }
822 
823 static u32 knl_interleave_mode(u32 reg)
824 {
825 	return GET_BITFIELD(reg, 1, 2);
826 }
827 
828 static const char * const knl_intlv_mode[] = {
829 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
830 };
831 
832 static const char *get_intlv_mode_str(u32 reg, enum type t)
833 {
834 	if (t == KNIGHTS_LANDING)
835 		return knl_intlv_mode[knl_interleave_mode(reg)];
836 	else
837 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
838 }
839 
840 static u32 dram_attr_knl(u32 reg)
841 {
842 	return GET_BITFIELD(reg, 3, 4);
843 }
844 
845 
846 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
847 {
848 	u32 reg;
849 	enum mem_type mtype;
850 
851 	if (pvt->pci_ddrio) {
852 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
853 				      &reg);
854 		if (GET_BITFIELD(reg, 11, 11))
855 			/* FIXME: Can also be LRDIMM */
856 			mtype = MEM_RDDR3;
857 		else
858 			mtype = MEM_DDR3;
859 	} else
860 		mtype = MEM_UNKNOWN;
861 
862 	return mtype;
863 }
864 
865 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
866 {
867 	u32 reg;
868 	bool registered = false;
869 	enum mem_type mtype = MEM_UNKNOWN;
870 
871 	if (!pvt->pci_ddrio)
872 		goto out;
873 
874 	pci_read_config_dword(pvt->pci_ddrio,
875 			      HASWELL_DDRCRCLKCONTROLS, &reg);
876 	/* Is_Rdimm */
877 	if (GET_BITFIELD(reg, 16, 16))
878 		registered = true;
879 
880 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
881 	if (GET_BITFIELD(reg, 14, 14)) {
882 		if (registered)
883 			mtype = MEM_RDDR4;
884 		else
885 			mtype = MEM_DDR4;
886 	} else {
887 		if (registered)
888 			mtype = MEM_RDDR3;
889 		else
890 			mtype = MEM_DDR3;
891 	}
892 
893 out:
894 	return mtype;
895 }
896 
897 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
898 {
899 	/* for KNL value is fixed */
900 	return DEV_X16;
901 }
902 
903 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
904 {
905 	/* there's no way to figure out */
906 	return DEV_UNKNOWN;
907 }
908 
909 static enum dev_type __ibridge_get_width(u32 mtr)
910 {
911 	enum dev_type type;
912 
913 	switch (mtr) {
914 	case 3:
915 		type = DEV_UNKNOWN;
916 		break;
917 	case 2:
918 		type = DEV_X16;
919 		break;
920 	case 1:
921 		type = DEV_X8;
922 		break;
923 	case 0:
924 		type = DEV_X4;
925 		break;
926 	}
927 
928 	return type;
929 }
930 
931 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
932 {
933 	/*
934 	 * ddr3_width on the documentation but also valid for DDR4 on
935 	 * Haswell
936 	 */
937 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
938 }
939 
940 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
941 {
942 	/* ddr3_width on the documentation but also valid for DDR4 */
943 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
944 }
945 
946 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
947 {
948 	/* DDR4 RDIMMS and LRDIMMS are supported */
949 	return MEM_RDDR4;
950 }
951 
952 static u8 get_node_id(struct sbridge_pvt *pvt)
953 {
954 	u32 reg;
955 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
956 	return GET_BITFIELD(reg, 0, 2);
957 }
958 
959 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
960 {
961 	u32 reg;
962 
963 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
964 	return GET_BITFIELD(reg, 0, 3);
965 }
966 
967 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
968 {
969 	u32 reg;
970 
971 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
972 	return GET_BITFIELD(reg, 0, 2);
973 }
974 
975 
976 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
977 {
978 	u32 reg;
979 
980 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
981 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
982 }
983 
984 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
985 {
986 	u64 rc;
987 	u32 reg;
988 
989 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
990 	rc = GET_BITFIELD(reg, 26, 31);
991 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
992 	rc = ((reg << 6) | rc) << 26;
993 
994 	return rc | 0x1ffffff;
995 }
996 
997 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
998 {
999 	u32 reg;
1000 
1001 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1002 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1003 }
1004 
1005 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1006 {
1007 	u64 rc;
1008 	u32 reg_lo, reg_hi;
1009 
1010 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1011 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1012 	rc = ((u64)reg_hi << 32) | reg_lo;
1013 	return rc | 0x3ffffff;
1014 }
1015 
1016 
1017 static u64 haswell_rir_limit(u32 reg)
1018 {
1019 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1020 }
1021 
1022 static inline u8 sad_pkg_socket(u8 pkg)
1023 {
1024 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1025 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1026 }
1027 
1028 static inline u8 sad_pkg_ha(u8 pkg)
1029 {
1030 	return (pkg >> 2) & 0x1;
1031 }
1032 
1033 static int haswell_chan_hash(int idx, u64 addr)
1034 {
1035 	int i;
1036 
1037 	/*
1038 	 * XOR even bits from 12:26 to bit0 of idx,
1039 	 *     odd bits from 13:27 to bit1
1040 	 */
1041 	for (i = 12; i < 28; i += 2)
1042 		idx ^= (addr >> i) & 3;
1043 
1044 	return idx;
1045 }
1046 
1047 /****************************************************************************
1048 			Memory check routines
1049  ****************************************************************************/
1050 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
1051 {
1052 	struct pci_dev *pdev = NULL;
1053 
1054 	do {
1055 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
1056 		if (pdev && pdev->bus->number == bus)
1057 			break;
1058 	} while (pdev);
1059 
1060 	return pdev;
1061 }
1062 
1063 /**
1064  * check_if_ecc_is_active() - Checks if ECC is active
1065  * @bus:	Device bus
1066  * @type:	Memory controller type
1067  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1068  *	    disabled
1069  */
1070 static int check_if_ecc_is_active(const u8 bus, enum type type)
1071 {
1072 	struct pci_dev *pdev = NULL;
1073 	u32 mcmtr, id;
1074 
1075 	switch (type) {
1076 	case IVY_BRIDGE:
1077 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
1078 		break;
1079 	case HASWELL:
1080 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
1081 		break;
1082 	case SANDY_BRIDGE:
1083 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
1084 		break;
1085 	case BROADWELL:
1086 		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
1087 		break;
1088 	case KNIGHTS_LANDING:
1089 		/*
1090 		 * KNL doesn't group things by bus the same way
1091 		 * SB/IB/Haswell does.
1092 		 */
1093 		id = PCI_DEVICE_ID_INTEL_KNL_IMC_TA;
1094 		break;
1095 	default:
1096 		return -ENODEV;
1097 	}
1098 
1099 	if (type != KNIGHTS_LANDING)
1100 		pdev = get_pdev_same_bus(bus, id);
1101 	else
1102 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, 0);
1103 
1104 	if (!pdev) {
1105 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
1106 					"%04x:%04x! on bus %02d\n",
1107 					PCI_VENDOR_ID_INTEL, id, bus);
1108 		return -ENODEV;
1109 	}
1110 
1111 	pci_read_config_dword(pdev,
1112 			type == KNIGHTS_LANDING ? KNL_MCMTR : MCMTR, &mcmtr);
1113 	if (!IS_ECC_ENABLED(mcmtr)) {
1114 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
1115 		return -ENODEV;
1116 	}
1117 	return 0;
1118 }
1119 
1120 /* Low bits of TAD limit, and some metadata. */
1121 static const u32 knl_tad_dram_limit_lo[] = {
1122 	0x400, 0x500, 0x600, 0x700,
1123 	0x800, 0x900, 0xa00, 0xb00,
1124 };
1125 
1126 /* Low bits of TAD offset. */
1127 static const u32 knl_tad_dram_offset_lo[] = {
1128 	0x404, 0x504, 0x604, 0x704,
1129 	0x804, 0x904, 0xa04, 0xb04,
1130 };
1131 
1132 /* High 16 bits of TAD limit and offset. */
1133 static const u32 knl_tad_dram_hi[] = {
1134 	0x408, 0x508, 0x608, 0x708,
1135 	0x808, 0x908, 0xa08, 0xb08,
1136 };
1137 
1138 /* Number of ways a tad entry is interleaved. */
1139 static const u32 knl_tad_ways[] = {
1140 	8, 6, 4, 3, 2, 1,
1141 };
1142 
1143 /*
1144  * Retrieve the n'th Target Address Decode table entry
1145  * from the memory controller's TAD table.
1146  *
1147  * @pvt:	driver private data
1148  * @entry:	which entry you want to retrieve
1149  * @mc:		which memory controller (0 or 1)
1150  * @offset:	output tad range offset
1151  * @limit:	output address of first byte above tad range
1152  * @ways:	output number of interleave ways
1153  *
1154  * The offset value has curious semantics.  It's a sort of running total
1155  * of the sizes of all the memory regions that aren't mapped in this
1156  * tad table.
1157  */
1158 static int knl_get_tad(const struct sbridge_pvt *pvt,
1159 		const int entry,
1160 		const int mc,
1161 		u64 *offset,
1162 		u64 *limit,
1163 		int *ways)
1164 {
1165 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1166 	struct pci_dev *pci_mc;
1167 	int way_id;
1168 
1169 	switch (mc) {
1170 	case 0:
1171 		pci_mc = pvt->knl.pci_mc0;
1172 		break;
1173 	case 1:
1174 		pci_mc = pvt->knl.pci_mc1;
1175 		break;
1176 	default:
1177 		WARN_ON(1);
1178 		return -EINVAL;
1179 	}
1180 
1181 	pci_read_config_dword(pci_mc,
1182 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1183 	pci_read_config_dword(pci_mc,
1184 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1185 	pci_read_config_dword(pci_mc,
1186 			knl_tad_dram_hi[entry], &reg_hi);
1187 
1188 	/* Is this TAD entry enabled? */
1189 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1190 		return -ENODEV;
1191 
1192 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1193 
1194 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1195 		*ways = knl_tad_ways[way_id];
1196 	} else {
1197 		*ways = 0;
1198 		sbridge_printk(KERN_ERR,
1199 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1200 				way_id);
1201 		return -ENODEV;
1202 	}
1203 
1204 	/*
1205 	 * The least significant 6 bits of base and limit are truncated.
1206 	 * For limit, we fill the missing bits with 1s.
1207 	 */
1208 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1209 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1210 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1211 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1212 
1213 	return 0;
1214 }
1215 
1216 /* Determine which memory controller is responsible for a given channel. */
1217 static int knl_channel_mc(int channel)
1218 {
1219 	WARN_ON(channel < 0 || channel >= 6);
1220 
1221 	return channel < 3 ? 1 : 0;
1222 }
1223 
1224 /*
1225  * Get the Nth entry from EDC_ROUTE_TABLE register.
1226  * (This is the per-tile mapping of logical interleave targets to
1227  *  physical EDC modules.)
1228  *
1229  * entry 0: 0:2
1230  *       1: 3:5
1231  *       2: 6:8
1232  *       3: 9:11
1233  *       4: 12:14
1234  *       5: 15:17
1235  *       6: 18:20
1236  *       7: 21:23
1237  * reserved: 24:31
1238  */
1239 static u32 knl_get_edc_route(int entry, u32 reg)
1240 {
1241 	WARN_ON(entry >= KNL_MAX_EDCS);
1242 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1243 }
1244 
1245 /*
1246  * Get the Nth entry from MC_ROUTE_TABLE register.
1247  * (This is the per-tile mapping of logical interleave targets to
1248  *  physical DRAM channels modules.)
1249  *
1250  * entry 0: mc 0:2   channel 18:19
1251  *       1: mc 3:5   channel 20:21
1252  *       2: mc 6:8   channel 22:23
1253  *       3: mc 9:11  channel 24:25
1254  *       4: mc 12:14 channel 26:27
1255  *       5: mc 15:17 channel 28:29
1256  * reserved: 30:31
1257  *
1258  * Though we have 3 bits to identify the MC, we should only see
1259  * the values 0 or 1.
1260  */
1261 
1262 static u32 knl_get_mc_route(int entry, u32 reg)
1263 {
1264 	int mc, chan;
1265 
1266 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1267 
1268 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1269 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1270 
1271 	return knl_channel_remap(mc, chan);
1272 }
1273 
1274 /*
1275  * Render the EDC_ROUTE register in human-readable form.
1276  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1277  */
1278 static void knl_show_edc_route(u32 reg, char *s)
1279 {
1280 	int i;
1281 
1282 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1283 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1284 		s[i*2+1] = '-';
1285 	}
1286 
1287 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1288 }
1289 
1290 /*
1291  * Render the MC_ROUTE register in human-readable form.
1292  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1293  */
1294 static void knl_show_mc_route(u32 reg, char *s)
1295 {
1296 	int i;
1297 
1298 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1299 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1300 		s[i*2+1] = '-';
1301 	}
1302 
1303 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1304 }
1305 
1306 #define KNL_EDC_ROUTE 0xb8
1307 #define KNL_MC_ROUTE 0xb4
1308 
1309 /* Is this dram rule backed by regular DRAM in flat mode? */
1310 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1311 
1312 /* Is this dram rule cached? */
1313 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1314 
1315 /* Is this rule backed by edc ? */
1316 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1317 
1318 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1319 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1320 
1321 /* Is this rule mod3? */
1322 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1323 
1324 /*
1325  * Figure out how big our RAM modules are.
1326  *
1327  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1328  * have to figure this out from the SAD rules, interleave lists, route tables,
1329  * and TAD rules.
1330  *
1331  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1332  * inspect the TAD rules to figure out how large the SAD regions really are.
1333  *
1334  * When we know the real size of a SAD region and how many ways it's
1335  * interleaved, we know the individual contribution of each channel to
1336  * TAD is size/ways.
1337  *
1338  * Finally, we have to check whether each channel participates in each SAD
1339  * region.
1340  *
1341  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1342  * much memory the channel uses, we know the DIMM is at least that large.
1343  * (The BIOS might possibly choose not to map all available memory, in which
1344  * case we will underreport the size of the DIMM.)
1345  *
1346  * In theory, we could try to determine the EDC sizes as well, but that would
1347  * only work in flat mode, not in cache mode.
1348  *
1349  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1350  *            elements)
1351  */
1352 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1353 {
1354 	u64 sad_base, sad_size, sad_limit = 0;
1355 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1356 	int sad_rule = 0;
1357 	int tad_rule = 0;
1358 	int intrlv_ways, tad_ways;
1359 	u32 first_pkg, pkg;
1360 	int i;
1361 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1362 	u32 dram_rule, interleave_reg;
1363 	u32 mc_route_reg[KNL_MAX_CHAS];
1364 	u32 edc_route_reg[KNL_MAX_CHAS];
1365 	int edram_only;
1366 	char edc_route_string[KNL_MAX_EDCS*2];
1367 	char mc_route_string[KNL_MAX_CHANNELS*2];
1368 	int cur_reg_start;
1369 	int mc;
1370 	int channel;
1371 	int way;
1372 	int participants[KNL_MAX_CHANNELS];
1373 	int participant_count = 0;
1374 
1375 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1376 		mc_sizes[i] = 0;
1377 
1378 	/* Read the EDC route table in each CHA. */
1379 	cur_reg_start = 0;
1380 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1381 		pci_read_config_dword(pvt->knl.pci_cha[i],
1382 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1383 
1384 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1385 			knl_show_edc_route(edc_route_reg[i-1],
1386 					edc_route_string);
1387 			if (cur_reg_start == i-1)
1388 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1389 					cur_reg_start, edc_route_string);
1390 			else
1391 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1392 					cur_reg_start, i-1, edc_route_string);
1393 			cur_reg_start = i;
1394 		}
1395 	}
1396 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1397 	if (cur_reg_start == i-1)
1398 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1399 			cur_reg_start, edc_route_string);
1400 	else
1401 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1402 			cur_reg_start, i-1, edc_route_string);
1403 
1404 	/* Read the MC route table in each CHA. */
1405 	cur_reg_start = 0;
1406 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1407 		pci_read_config_dword(pvt->knl.pci_cha[i],
1408 			KNL_MC_ROUTE, &mc_route_reg[i]);
1409 
1410 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1411 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1412 			if (cur_reg_start == i-1)
1413 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1414 					cur_reg_start, mc_route_string);
1415 			else
1416 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1417 					cur_reg_start, i-1, mc_route_string);
1418 			cur_reg_start = i;
1419 		}
1420 	}
1421 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1422 	if (cur_reg_start == i-1)
1423 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1424 			cur_reg_start, mc_route_string);
1425 	else
1426 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1427 			cur_reg_start, i-1, mc_route_string);
1428 
1429 	/* Process DRAM rules */
1430 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1431 		/* previous limit becomes the new base */
1432 		sad_base = sad_limit;
1433 
1434 		pci_read_config_dword(pvt->pci_sad0,
1435 			pvt->info.dram_rule[sad_rule], &dram_rule);
1436 
1437 		if (!DRAM_RULE_ENABLE(dram_rule))
1438 			break;
1439 
1440 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1441 
1442 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1443 		sad_size = sad_limit - sad_base;
1444 
1445 		pci_read_config_dword(pvt->pci_sad0,
1446 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1447 
1448 		/*
1449 		 * Find out how many ways this dram rule is interleaved.
1450 		 * We stop when we see the first channel again.
1451 		 */
1452 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1453 						interleave_reg, 0);
1454 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1455 			pkg = sad_pkg(pvt->info.interleave_pkg,
1456 						interleave_reg, intrlv_ways);
1457 
1458 			if ((pkg & 0x8) == 0) {
1459 				/*
1460 				 * 0 bit means memory is non-local,
1461 				 * which KNL doesn't support
1462 				 */
1463 				edac_dbg(0, "Unexpected interleave target %d\n",
1464 					pkg);
1465 				return -1;
1466 			}
1467 
1468 			if (pkg == first_pkg)
1469 				break;
1470 		}
1471 		if (KNL_MOD3(dram_rule))
1472 			intrlv_ways *= 3;
1473 
1474 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1475 			sad_rule,
1476 			sad_base,
1477 			sad_limit,
1478 			intrlv_ways,
1479 			edram_only ? ", EDRAM" : "");
1480 
1481 		/*
1482 		 * Find out how big the SAD region really is by iterating
1483 		 * over TAD tables (SAD regions may contain holes).
1484 		 * Each memory controller might have a different TAD table, so
1485 		 * we have to look at both.
1486 		 *
1487 		 * Livespace is the memory that's mapped in this TAD table,
1488 		 * deadspace is the holes (this could be the MMIO hole, or it
1489 		 * could be memory that's mapped by the other TAD table but
1490 		 * not this one).
1491 		 */
1492 		for (mc = 0; mc < 2; mc++) {
1493 			sad_actual_size[mc] = 0;
1494 			tad_livespace = 0;
1495 			for (tad_rule = 0;
1496 					tad_rule < ARRAY_SIZE(
1497 						knl_tad_dram_limit_lo);
1498 					tad_rule++) {
1499 				if (knl_get_tad(pvt,
1500 						tad_rule,
1501 						mc,
1502 						&tad_deadspace,
1503 						&tad_limit,
1504 						&tad_ways))
1505 					break;
1506 
1507 				tad_size = (tad_limit+1) -
1508 					(tad_livespace + tad_deadspace);
1509 				tad_livespace += tad_size;
1510 				tad_base = (tad_limit+1) - tad_size;
1511 
1512 				if (tad_base < sad_base) {
1513 					if (tad_limit > sad_base)
1514 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1515 				} else if (tad_base < sad_limit) {
1516 					if (tad_limit+1 > sad_limit) {
1517 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1518 					} else {
1519 						/* TAD region is completely inside SAD region */
1520 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1521 							tad_rule, tad_base,
1522 							tad_limit, tad_size,
1523 							mc);
1524 						sad_actual_size[mc] += tad_size;
1525 					}
1526 				}
1527 				tad_base = tad_limit+1;
1528 			}
1529 		}
1530 
1531 		for (mc = 0; mc < 2; mc++) {
1532 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1533 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1534 		}
1535 
1536 		/* Ignore EDRAM rule */
1537 		if (edram_only)
1538 			continue;
1539 
1540 		/* Figure out which channels participate in interleave. */
1541 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1542 			participants[channel] = 0;
1543 
1544 		/* For each channel, does at least one CHA have
1545 		 * this channel mapped to the given target?
1546 		 */
1547 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1548 			for (way = 0; way < intrlv_ways; way++) {
1549 				int target;
1550 				int cha;
1551 
1552 				if (KNL_MOD3(dram_rule))
1553 					target = way;
1554 				else
1555 					target = 0x7 & sad_pkg(
1556 				pvt->info.interleave_pkg, interleave_reg, way);
1557 
1558 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1559 					if (knl_get_mc_route(target,
1560 						mc_route_reg[cha]) == channel
1561 						&& !participants[channel]) {
1562 						participant_count++;
1563 						participants[channel] = 1;
1564 						break;
1565 					}
1566 				}
1567 			}
1568 		}
1569 
1570 		if (participant_count != intrlv_ways)
1571 			edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1572 				participant_count, intrlv_ways);
1573 
1574 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1575 			mc = knl_channel_mc(channel);
1576 			if (participants[channel]) {
1577 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1578 					channel,
1579 					sad_actual_size[mc]/intrlv_ways,
1580 					sad_rule);
1581 				mc_sizes[channel] +=
1582 					sad_actual_size[mc]/intrlv_ways;
1583 			}
1584 		}
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 static int get_dimm_config(struct mem_ctl_info *mci)
1591 {
1592 	struct sbridge_pvt *pvt = mci->pvt_info;
1593 	struct dimm_info *dimm;
1594 	unsigned i, j, banks, ranks, rows, cols, npages;
1595 	u64 size;
1596 	u32 reg;
1597 	enum edac_type mode;
1598 	enum mem_type mtype;
1599 	int channels = pvt->info.type == KNIGHTS_LANDING ?
1600 		KNL_MAX_CHANNELS : NUM_CHANNELS;
1601 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1602 
1603 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1604 		pci_read_config_dword(pvt->pci_ha0, HASWELL_HASYSDEFEATURE2, &reg);
1605 		pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1606 	}
1607 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1608 			pvt->info.type == KNIGHTS_LANDING)
1609 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1610 	else
1611 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1612 
1613 	if (pvt->info.type == KNIGHTS_LANDING)
1614 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1615 	else
1616 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1617 
1618 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1619 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1620 		 pvt->sbridge_dev->mc,
1621 		 pvt->sbridge_dev->node_id,
1622 		 pvt->sbridge_dev->source_id);
1623 
1624 	/* KNL doesn't support mirroring or lockstep,
1625 	 * and is always closed page
1626 	 */
1627 	if (pvt->info.type == KNIGHTS_LANDING) {
1628 		mode = EDAC_S4ECD4ED;
1629 		pvt->is_mirrored = false;
1630 
1631 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1632 			return -1;
1633 	} else {
1634 		pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1635 		if (IS_MIRROR_ENABLED(reg)) {
1636 			edac_dbg(0, "Memory mirror is enabled\n");
1637 			pvt->is_mirrored = true;
1638 		} else {
1639 			edac_dbg(0, "Memory mirror is disabled\n");
1640 			pvt->is_mirrored = false;
1641 		}
1642 
1643 		pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1644 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1645 			edac_dbg(0, "Lockstep is enabled\n");
1646 			mode = EDAC_S8ECD8ED;
1647 			pvt->is_lockstep = true;
1648 		} else {
1649 			edac_dbg(0, "Lockstep is disabled\n");
1650 			mode = EDAC_S4ECD4ED;
1651 			pvt->is_lockstep = false;
1652 		}
1653 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1654 			edac_dbg(0, "address map is on closed page mode\n");
1655 			pvt->is_close_pg = true;
1656 		} else {
1657 			edac_dbg(0, "address map is on open page mode\n");
1658 			pvt->is_close_pg = false;
1659 		}
1660 	}
1661 
1662 	mtype = pvt->info.get_memory_type(pvt);
1663 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1664 		edac_dbg(0, "Memory is registered\n");
1665 	else if (mtype == MEM_UNKNOWN)
1666 		edac_dbg(0, "Cannot determine memory type\n");
1667 	else
1668 		edac_dbg(0, "Memory is unregistered\n");
1669 
1670 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1671 		banks = 16;
1672 	else
1673 		banks = 8;
1674 
1675 	for (i = 0; i < channels; i++) {
1676 		u32 mtr;
1677 
1678 		int max_dimms_per_channel;
1679 
1680 		if (pvt->info.type == KNIGHTS_LANDING) {
1681 			max_dimms_per_channel = 1;
1682 			if (!pvt->knl.pci_channel[i])
1683 				continue;
1684 		} else {
1685 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1686 			if (!pvt->pci_tad[i])
1687 				continue;
1688 		}
1689 
1690 		for (j = 0; j < max_dimms_per_channel; j++) {
1691 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1692 				       i, j, 0);
1693 			if (pvt->info.type == KNIGHTS_LANDING) {
1694 				pci_read_config_dword(pvt->knl.pci_channel[i],
1695 					knl_mtr_reg, &mtr);
1696 			} else {
1697 				pci_read_config_dword(pvt->pci_tad[i],
1698 					mtr_regs[j], &mtr);
1699 			}
1700 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1701 			if (IS_DIMM_PRESENT(mtr)) {
1702 				pvt->channel[i].dimms++;
1703 
1704 				ranks = numrank(pvt->info.type, mtr);
1705 
1706 				if (pvt->info.type == KNIGHTS_LANDING) {
1707 					/* For DDR4, this is fixed. */
1708 					cols = 1 << 10;
1709 					rows = knl_mc_sizes[i] /
1710 						((u64) cols * ranks * banks * 8);
1711 				} else {
1712 					rows = numrow(mtr);
1713 					cols = numcol(mtr);
1714 				}
1715 
1716 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1717 				npages = MiB_TO_PAGES(size);
1718 
1719 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1720 					 pvt->sbridge_dev->mc, i/4, i%4, j,
1721 					 size, npages,
1722 					 banks, ranks, rows, cols);
1723 
1724 				dimm->nr_pages = npages;
1725 				dimm->grain = 32;
1726 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1727 				dimm->mtype = mtype;
1728 				dimm->edac_mode = mode;
1729 				snprintf(dimm->label, sizeof(dimm->label),
1730 					 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1731 					 pvt->sbridge_dev->source_id, i/4, i%4, j);
1732 			}
1733 		}
1734 	}
1735 
1736 	return 0;
1737 }
1738 
1739 static void get_memory_layout(const struct mem_ctl_info *mci)
1740 {
1741 	struct sbridge_pvt *pvt = mci->pvt_info;
1742 	int i, j, k, n_sads, n_tads, sad_interl;
1743 	u32 reg;
1744 	u64 limit, prv = 0;
1745 	u64 tmp_mb;
1746 	u32 gb, mb;
1747 	u32 rir_way;
1748 
1749 	/*
1750 	 * Step 1) Get TOLM/TOHM ranges
1751 	 */
1752 
1753 	pvt->tolm = pvt->info.get_tolm(pvt);
1754 	tmp_mb = (1 + pvt->tolm) >> 20;
1755 
1756 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1757 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1758 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1759 
1760 	/* Address range is already 45:25 */
1761 	pvt->tohm = pvt->info.get_tohm(pvt);
1762 	tmp_mb = (1 + pvt->tohm) >> 20;
1763 
1764 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1765 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1766 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1767 
1768 	/*
1769 	 * Step 2) Get SAD range and SAD Interleave list
1770 	 * TAD registers contain the interleave wayness. However, it
1771 	 * seems simpler to just discover it indirectly, with the
1772 	 * algorithm bellow.
1773 	 */
1774 	prv = 0;
1775 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1776 		/* SAD_LIMIT Address range is 45:26 */
1777 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1778 				      &reg);
1779 		limit = pvt->info.sad_limit(reg);
1780 
1781 		if (!DRAM_RULE_ENABLE(reg))
1782 			continue;
1783 
1784 		if (limit <= prv)
1785 			break;
1786 
1787 		tmp_mb = (limit + 1) >> 20;
1788 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1789 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1790 			 n_sads,
1791 			 show_dram_attr(pvt->info.dram_attr(reg)),
1792 			 gb, (mb*1000)/1024,
1793 			 ((u64)tmp_mb) << 20L,
1794 			 get_intlv_mode_str(reg, pvt->info.type),
1795 			 reg);
1796 		prv = limit;
1797 
1798 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1799 				      &reg);
1800 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1801 		for (j = 0; j < 8; j++) {
1802 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1803 			if (j > 0 && sad_interl == pkg)
1804 				break;
1805 
1806 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1807 				 n_sads, j, pkg);
1808 		}
1809 	}
1810 
1811 	if (pvt->info.type == KNIGHTS_LANDING)
1812 		return;
1813 
1814 	/*
1815 	 * Step 3) Get TAD range
1816 	 */
1817 	prv = 0;
1818 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1819 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1820 				      &reg);
1821 		limit = TAD_LIMIT(reg);
1822 		if (limit <= prv)
1823 			break;
1824 		tmp_mb = (limit + 1) >> 20;
1825 
1826 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1827 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1828 			 n_tads, gb, (mb*1000)/1024,
1829 			 ((u64)tmp_mb) << 20L,
1830 			 (u32)(1 << TAD_SOCK(reg)),
1831 			 (u32)TAD_CH(reg) + 1,
1832 			 (u32)TAD_TGT0(reg),
1833 			 (u32)TAD_TGT1(reg),
1834 			 (u32)TAD_TGT2(reg),
1835 			 (u32)TAD_TGT3(reg),
1836 			 reg);
1837 		prv = limit;
1838 	}
1839 
1840 	/*
1841 	 * Step 4) Get TAD offsets, per each channel
1842 	 */
1843 	for (i = 0; i < NUM_CHANNELS; i++) {
1844 		if (!pvt->channel[i].dimms)
1845 			continue;
1846 		for (j = 0; j < n_tads; j++) {
1847 			pci_read_config_dword(pvt->pci_tad[i],
1848 					      tad_ch_nilv_offset[j],
1849 					      &reg);
1850 			tmp_mb = TAD_OFFSET(reg) >> 20;
1851 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1852 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1853 				 i, j,
1854 				 gb, (mb*1000)/1024,
1855 				 ((u64)tmp_mb) << 20L,
1856 				 reg);
1857 		}
1858 	}
1859 
1860 	/*
1861 	 * Step 6) Get RIR Wayness/Limit, per each channel
1862 	 */
1863 	for (i = 0; i < NUM_CHANNELS; i++) {
1864 		if (!pvt->channel[i].dimms)
1865 			continue;
1866 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1867 			pci_read_config_dword(pvt->pci_tad[i],
1868 					      rir_way_limit[j],
1869 					      &reg);
1870 
1871 			if (!IS_RIR_VALID(reg))
1872 				continue;
1873 
1874 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1875 			rir_way = 1 << RIR_WAY(reg);
1876 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1877 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1878 				 i, j,
1879 				 gb, (mb*1000)/1024,
1880 				 ((u64)tmp_mb) << 20L,
1881 				 rir_way,
1882 				 reg);
1883 
1884 			for (k = 0; k < rir_way; k++) {
1885 				pci_read_config_dword(pvt->pci_tad[i],
1886 						      rir_offset[j][k],
1887 						      &reg);
1888 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1889 
1890 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1891 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1892 					 i, j, k,
1893 					 gb, (mb*1000)/1024,
1894 					 ((u64)tmp_mb) << 20L,
1895 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1896 					 reg);
1897 			}
1898 		}
1899 	}
1900 }
1901 
1902 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1903 {
1904 	struct sbridge_dev *sbridge_dev;
1905 
1906 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1907 		if (sbridge_dev->node_id == node_id)
1908 			return sbridge_dev->mci;
1909 	}
1910 	return NULL;
1911 }
1912 
1913 static int get_memory_error_data(struct mem_ctl_info *mci,
1914 				 u64 addr,
1915 				 u8 *socket, u8 *ha,
1916 				 long *channel_mask,
1917 				 u8 *rank,
1918 				 char **area_type, char *msg)
1919 {
1920 	struct mem_ctl_info	*new_mci;
1921 	struct sbridge_pvt *pvt = mci->pvt_info;
1922 	struct pci_dev		*pci_ha;
1923 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1924 	int			sad_interl, idx, base_ch;
1925 	int			interleave_mode, shiftup = 0;
1926 	unsigned		sad_interleave[pvt->info.max_interleave];
1927 	u32			reg, dram_rule;
1928 	u8			ch_way, sck_way, pkg, sad_ha = 0, ch_add = 0;
1929 	u32			tad_offset;
1930 	u32			rir_way;
1931 	u32			mb, gb;
1932 	u64			ch_addr, offset, limit = 0, prv = 0;
1933 
1934 
1935 	/*
1936 	 * Step 0) Check if the address is at special memory ranges
1937 	 * The check bellow is probably enough to fill all cases where
1938 	 * the error is not inside a memory, except for the legacy
1939 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1940 	 * memory controller would generate an error on that range.
1941 	 */
1942 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1943 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1944 		return -EINVAL;
1945 	}
1946 	if (addr >= (u64)pvt->tohm) {
1947 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1948 		return -EINVAL;
1949 	}
1950 
1951 	/*
1952 	 * Step 1) Get socket
1953 	 */
1954 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1955 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1956 				      &reg);
1957 
1958 		if (!DRAM_RULE_ENABLE(reg))
1959 			continue;
1960 
1961 		limit = pvt->info.sad_limit(reg);
1962 		if (limit <= prv) {
1963 			sprintf(msg, "Can't discover the memory socket");
1964 			return -EINVAL;
1965 		}
1966 		if  (addr <= limit)
1967 			break;
1968 		prv = limit;
1969 	}
1970 	if (n_sads == pvt->info.max_sad) {
1971 		sprintf(msg, "Can't discover the memory socket");
1972 		return -EINVAL;
1973 	}
1974 	dram_rule = reg;
1975 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1976 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1977 
1978 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1979 			      &reg);
1980 
1981 	if (pvt->info.type == SANDY_BRIDGE) {
1982 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1983 		for (sad_way = 0; sad_way < 8; sad_way++) {
1984 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1985 			if (sad_way > 0 && sad_interl == pkg)
1986 				break;
1987 			sad_interleave[sad_way] = pkg;
1988 			edac_dbg(0, "SAD interleave #%d: %d\n",
1989 				 sad_way, sad_interleave[sad_way]);
1990 		}
1991 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1992 			 pvt->sbridge_dev->mc,
1993 			 n_sads,
1994 			 addr,
1995 			 limit,
1996 			 sad_way + 7,
1997 			 !interleave_mode ? "" : "XOR[18:16]");
1998 		if (interleave_mode)
1999 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2000 		else
2001 			idx = (addr >> 6) & 7;
2002 		switch (sad_way) {
2003 		case 1:
2004 			idx = 0;
2005 			break;
2006 		case 2:
2007 			idx = idx & 1;
2008 			break;
2009 		case 4:
2010 			idx = idx & 3;
2011 			break;
2012 		case 8:
2013 			break;
2014 		default:
2015 			sprintf(msg, "Can't discover socket interleave");
2016 			return -EINVAL;
2017 		}
2018 		*socket = sad_interleave[idx];
2019 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2020 			 idx, sad_way, *socket);
2021 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2022 		int bits, a7mode = A7MODE(dram_rule);
2023 
2024 		if (a7mode) {
2025 			/* A7 mode swaps P9 with P6 */
2026 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2027 			bits |= GET_BITFIELD(addr, 9, 9);
2028 		} else
2029 			bits = GET_BITFIELD(addr, 6, 8);
2030 
2031 		if (interleave_mode == 0) {
2032 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2033 			idx = GET_BITFIELD(addr, 16, 18);
2034 			idx ^= bits;
2035 		} else
2036 			idx = bits;
2037 
2038 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2039 		*socket = sad_pkg_socket(pkg);
2040 		sad_ha = sad_pkg_ha(pkg);
2041 		if (sad_ha)
2042 			ch_add = 4;
2043 
2044 		if (a7mode) {
2045 			/* MCChanShiftUpEnable */
2046 			pci_read_config_dword(pvt->pci_ha0,
2047 					      HASWELL_HASYSDEFEATURE2, &reg);
2048 			shiftup = GET_BITFIELD(reg, 22, 22);
2049 		}
2050 
2051 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2052 			 idx, *socket, sad_ha, shiftup);
2053 	} else {
2054 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2055 		idx = (addr >> 6) & 7;
2056 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2057 		*socket = sad_pkg_socket(pkg);
2058 		sad_ha = sad_pkg_ha(pkg);
2059 		if (sad_ha)
2060 			ch_add = 4;
2061 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2062 			 idx, *socket, sad_ha);
2063 	}
2064 
2065 	*ha = sad_ha;
2066 
2067 	/*
2068 	 * Move to the proper node structure, in order to access the
2069 	 * right PCI registers
2070 	 */
2071 	new_mci = get_mci_for_node_id(*socket);
2072 	if (!new_mci) {
2073 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2074 			*socket);
2075 		return -EINVAL;
2076 	}
2077 	mci = new_mci;
2078 	pvt = mci->pvt_info;
2079 
2080 	/*
2081 	 * Step 2) Get memory channel
2082 	 */
2083 	prv = 0;
2084 	if (pvt->info.type == SANDY_BRIDGE)
2085 		pci_ha = pvt->pci_ha0;
2086 	else {
2087 		if (sad_ha)
2088 			pci_ha = pvt->pci_ha1;
2089 		else
2090 			pci_ha = pvt->pci_ha0;
2091 	}
2092 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2093 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2094 		limit = TAD_LIMIT(reg);
2095 		if (limit <= prv) {
2096 			sprintf(msg, "Can't discover the memory channel");
2097 			return -EINVAL;
2098 		}
2099 		if  (addr <= limit)
2100 			break;
2101 		prv = limit;
2102 	}
2103 	if (n_tads == MAX_TAD) {
2104 		sprintf(msg, "Can't discover the memory channel");
2105 		return -EINVAL;
2106 	}
2107 
2108 	ch_way = TAD_CH(reg) + 1;
2109 	sck_way = TAD_SOCK(reg);
2110 
2111 	if (ch_way == 3)
2112 		idx = addr >> 6;
2113 	else {
2114 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2115 		if (pvt->is_chan_hash)
2116 			idx = haswell_chan_hash(idx, addr);
2117 	}
2118 	idx = idx % ch_way;
2119 
2120 	/*
2121 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2122 	 */
2123 	switch (idx) {
2124 	case 0:
2125 		base_ch = TAD_TGT0(reg);
2126 		break;
2127 	case 1:
2128 		base_ch = TAD_TGT1(reg);
2129 		break;
2130 	case 2:
2131 		base_ch = TAD_TGT2(reg);
2132 		break;
2133 	case 3:
2134 		base_ch = TAD_TGT3(reg);
2135 		break;
2136 	default:
2137 		sprintf(msg, "Can't discover the TAD target");
2138 		return -EINVAL;
2139 	}
2140 	*channel_mask = 1 << base_ch;
2141 
2142 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2143 				tad_ch_nilv_offset[n_tads],
2144 				&tad_offset);
2145 
2146 	if (pvt->is_mirrored) {
2147 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2148 		switch(ch_way) {
2149 		case 2:
2150 		case 4:
2151 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2152 			break;
2153 		default:
2154 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2155 			return -EINVAL;
2156 		}
2157 	} else
2158 		sck_xch = (1 << sck_way) * ch_way;
2159 
2160 	if (pvt->is_lockstep)
2161 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2162 
2163 	offset = TAD_OFFSET(tad_offset);
2164 
2165 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2166 		 n_tads,
2167 		 addr,
2168 		 limit,
2169 		 sck_way,
2170 		 ch_way,
2171 		 offset,
2172 		 idx,
2173 		 base_ch,
2174 		 *channel_mask);
2175 
2176 	/* Calculate channel address */
2177 	/* Remove the TAD offset */
2178 
2179 	if (offset > addr) {
2180 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2181 			offset, addr);
2182 		return -EINVAL;
2183 	}
2184 
2185 	ch_addr = addr - offset;
2186 	ch_addr >>= (6 + shiftup);
2187 	ch_addr /= sck_xch;
2188 	ch_addr <<= (6 + shiftup);
2189 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2190 
2191 	/*
2192 	 * Step 3) Decode rank
2193 	 */
2194 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2195 		pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2196 				      rir_way_limit[n_rir],
2197 				      &reg);
2198 
2199 		if (!IS_RIR_VALID(reg))
2200 			continue;
2201 
2202 		limit = pvt->info.rir_limit(reg);
2203 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2204 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2205 			 n_rir,
2206 			 gb, (mb*1000)/1024,
2207 			 limit,
2208 			 1 << RIR_WAY(reg));
2209 		if  (ch_addr <= limit)
2210 			break;
2211 	}
2212 	if (n_rir == MAX_RIR_RANGES) {
2213 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2214 			ch_addr);
2215 		return -EINVAL;
2216 	}
2217 	rir_way = RIR_WAY(reg);
2218 
2219 	if (pvt->is_close_pg)
2220 		idx = (ch_addr >> 6);
2221 	else
2222 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2223 	idx %= 1 << rir_way;
2224 
2225 	pci_read_config_dword(pvt->pci_tad[ch_add + base_ch],
2226 			      rir_offset[n_rir][idx],
2227 			      &reg);
2228 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2229 
2230 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2231 		 n_rir,
2232 		 ch_addr,
2233 		 limit,
2234 		 rir_way,
2235 		 idx);
2236 
2237 	return 0;
2238 }
2239 
2240 /****************************************************************************
2241 	Device initialization routines: put/get, init/exit
2242  ****************************************************************************/
2243 
2244 /*
2245  *	sbridge_put_all_devices	'put' all the devices that we have
2246  *				reserved via 'get'
2247  */
2248 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2249 {
2250 	int i;
2251 
2252 	edac_dbg(0, "\n");
2253 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2254 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2255 		if (!pdev)
2256 			continue;
2257 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2258 			 pdev->bus->number,
2259 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2260 		pci_dev_put(pdev);
2261 	}
2262 }
2263 
2264 static void sbridge_put_all_devices(void)
2265 {
2266 	struct sbridge_dev *sbridge_dev, *tmp;
2267 
2268 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2269 		sbridge_put_devices(sbridge_dev);
2270 		free_sbridge_dev(sbridge_dev);
2271 	}
2272 }
2273 
2274 static int sbridge_get_onedevice(struct pci_dev **prev,
2275 				 u8 *num_mc,
2276 				 const struct pci_id_table *table,
2277 				 const unsigned devno,
2278 				 const int multi_bus)
2279 {
2280 	struct sbridge_dev *sbridge_dev;
2281 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2282 	struct pci_dev *pdev = NULL;
2283 	u8 bus = 0;
2284 
2285 	sbridge_printk(KERN_DEBUG,
2286 		"Seeking for: PCI ID %04x:%04x\n",
2287 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2288 
2289 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2290 			      dev_descr->dev_id, *prev);
2291 
2292 	if (!pdev) {
2293 		if (*prev) {
2294 			*prev = pdev;
2295 			return 0;
2296 		}
2297 
2298 		if (dev_descr->optional)
2299 			return 0;
2300 
2301 		/* if the HA wasn't found */
2302 		if (devno == 0)
2303 			return -ENODEV;
2304 
2305 		sbridge_printk(KERN_INFO,
2306 			"Device not found: %04x:%04x\n",
2307 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2308 
2309 		/* End of list, leave */
2310 		return -ENODEV;
2311 	}
2312 	bus = pdev->bus->number;
2313 
2314 	sbridge_dev = get_sbridge_dev(bus, multi_bus);
2315 	if (!sbridge_dev) {
2316 		sbridge_dev = alloc_sbridge_dev(bus, table);
2317 		if (!sbridge_dev) {
2318 			pci_dev_put(pdev);
2319 			return -ENOMEM;
2320 		}
2321 		(*num_mc)++;
2322 	}
2323 
2324 	if (sbridge_dev->pdev[devno]) {
2325 		sbridge_printk(KERN_ERR,
2326 			"Duplicated device for %04x:%04x\n",
2327 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2328 		pci_dev_put(pdev);
2329 		return -ENODEV;
2330 	}
2331 
2332 	sbridge_dev->pdev[devno] = pdev;
2333 
2334 	/* Be sure that the device is enabled */
2335 	if (unlikely(pci_enable_device(pdev) < 0)) {
2336 		sbridge_printk(KERN_ERR,
2337 			"Couldn't enable %04x:%04x\n",
2338 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2339 		return -ENODEV;
2340 	}
2341 
2342 	edac_dbg(0, "Detected %04x:%04x\n",
2343 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2344 
2345 	/*
2346 	 * As stated on drivers/pci/search.c, the reference count for
2347 	 * @from is always decremented if it is not %NULL. So, as we need
2348 	 * to get all devices up to null, we need to do a get for the device
2349 	 */
2350 	pci_dev_get(pdev);
2351 
2352 	*prev = pdev;
2353 
2354 	return 0;
2355 }
2356 
2357 /*
2358  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2359  *			     devices we want to reference for this driver.
2360  * @num_mc: pointer to the memory controllers count, to be incremented in case
2361  *	    of success.
2362  * @table: model specific table
2363  *
2364  * returns 0 in case of success or error code
2365  */
2366 static int sbridge_get_all_devices(u8 *num_mc,
2367 					const struct pci_id_table *table)
2368 {
2369 	int i, rc;
2370 	struct pci_dev *pdev = NULL;
2371 	int allow_dups = 0;
2372 	int multi_bus = 0;
2373 
2374 	if (table->type == KNIGHTS_LANDING)
2375 		allow_dups = multi_bus = 1;
2376 	while (table && table->descr) {
2377 		for (i = 0; i < table->n_devs; i++) {
2378 			if (!allow_dups || i == 0 ||
2379 					table->descr[i].dev_id !=
2380 						table->descr[i-1].dev_id) {
2381 				pdev = NULL;
2382 			}
2383 			do {
2384 				rc = sbridge_get_onedevice(&pdev, num_mc,
2385 							   table, i, multi_bus);
2386 				if (rc < 0) {
2387 					if (i == 0) {
2388 						i = table->n_devs;
2389 						break;
2390 					}
2391 					sbridge_put_all_devices();
2392 					return -ENODEV;
2393 				}
2394 			} while (pdev && !allow_dups);
2395 		}
2396 		table++;
2397 	}
2398 
2399 	return 0;
2400 }
2401 
2402 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2403 				 struct sbridge_dev *sbridge_dev)
2404 {
2405 	struct sbridge_pvt *pvt = mci->pvt_info;
2406 	struct pci_dev *pdev;
2407 	u8 saw_chan_mask = 0;
2408 	int i;
2409 
2410 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2411 		pdev = sbridge_dev->pdev[i];
2412 		if (!pdev)
2413 			continue;
2414 
2415 		switch (pdev->device) {
2416 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2417 			pvt->pci_sad0 = pdev;
2418 			break;
2419 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2420 			pvt->pci_sad1 = pdev;
2421 			break;
2422 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2423 			pvt->pci_br0 = pdev;
2424 			break;
2425 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2426 			pvt->pci_ha0 = pdev;
2427 			break;
2428 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2429 			pvt->pci_ta = pdev;
2430 			break;
2431 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2432 			pvt->pci_ras = pdev;
2433 			break;
2434 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2435 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2436 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2437 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2438 		{
2439 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
2440 			pvt->pci_tad[id] = pdev;
2441 			saw_chan_mask |= 1 << id;
2442 		}
2443 			break;
2444 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2445 			pvt->pci_ddrio = pdev;
2446 			break;
2447 		default:
2448 			goto error;
2449 		}
2450 
2451 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2452 			 pdev->vendor, pdev->device,
2453 			 sbridge_dev->bus,
2454 			 pdev);
2455 	}
2456 
2457 	/* Check if everything were registered */
2458 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
2459 	    !pvt->pci_ras || !pvt->pci_ta)
2460 		goto enodev;
2461 
2462 	if (saw_chan_mask != 0x0f)
2463 		goto enodev;
2464 	return 0;
2465 
2466 enodev:
2467 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2468 	return -ENODEV;
2469 
2470 error:
2471 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2472 		       PCI_VENDOR_ID_INTEL, pdev->device);
2473 	return -EINVAL;
2474 }
2475 
2476 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2477 				 struct sbridge_dev *sbridge_dev)
2478 {
2479 	struct sbridge_pvt *pvt = mci->pvt_info;
2480 	struct pci_dev *pdev;
2481 	u8 saw_chan_mask = 0;
2482 	int i;
2483 
2484 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2485 		pdev = sbridge_dev->pdev[i];
2486 		if (!pdev)
2487 			continue;
2488 
2489 		switch (pdev->device) {
2490 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2491 			pvt->pci_ha0 = pdev;
2492 			break;
2493 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2494 			pvt->pci_ta = pdev;
2495 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2496 			pvt->pci_ras = pdev;
2497 			break;
2498 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2499 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2500 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2501 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2502 		{
2503 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
2504 			pvt->pci_tad[id] = pdev;
2505 			saw_chan_mask |= 1 << id;
2506 		}
2507 			break;
2508 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2509 			pvt->pci_ddrio = pdev;
2510 			break;
2511 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2512 			pvt->pci_ddrio = pdev;
2513 			break;
2514 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2515 			pvt->pci_sad0 = pdev;
2516 			break;
2517 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2518 			pvt->pci_br0 = pdev;
2519 			break;
2520 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2521 			pvt->pci_br1 = pdev;
2522 			break;
2523 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2524 			pvt->pci_ha1 = pdev;
2525 			break;
2526 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2527 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2528 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2529 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2530 		{
2531 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 4;
2532 			pvt->pci_tad[id] = pdev;
2533 			saw_chan_mask |= 1 << id;
2534 		}
2535 			break;
2536 		default:
2537 			goto error;
2538 		}
2539 
2540 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2541 			 sbridge_dev->bus,
2542 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2543 			 pdev);
2544 	}
2545 
2546 	/* Check if everything were registered */
2547 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
2548 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2549 		goto enodev;
2550 
2551 	if (saw_chan_mask != 0x0f && /* -EN */
2552 	    saw_chan_mask != 0x33 && /* -EP */
2553 	    saw_chan_mask != 0xff)   /* -EX */
2554 		goto enodev;
2555 	return 0;
2556 
2557 enodev:
2558 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2559 	return -ENODEV;
2560 
2561 error:
2562 	sbridge_printk(KERN_ERR,
2563 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2564 			pdev->device);
2565 	return -EINVAL;
2566 }
2567 
2568 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2569 				 struct sbridge_dev *sbridge_dev)
2570 {
2571 	struct sbridge_pvt *pvt = mci->pvt_info;
2572 	struct pci_dev *pdev;
2573 	u8 saw_chan_mask = 0;
2574 	int i;
2575 
2576 	/* there's only one device per system; not tied to any bus */
2577 	if (pvt->info.pci_vtd == NULL)
2578 		/* result will be checked later */
2579 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2580 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2581 						   NULL);
2582 
2583 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2584 		pdev = sbridge_dev->pdev[i];
2585 		if (!pdev)
2586 			continue;
2587 
2588 		switch (pdev->device) {
2589 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2590 			pvt->pci_sad0 = pdev;
2591 			break;
2592 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2593 			pvt->pci_sad1 = pdev;
2594 			break;
2595 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2596 			pvt->pci_ha0 = pdev;
2597 			break;
2598 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2599 			pvt->pci_ta = pdev;
2600 			break;
2601 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
2602 			pvt->pci_ras = pdev;
2603 			break;
2604 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2605 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2606 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2607 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2608 		{
2609 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0;
2610 
2611 			pvt->pci_tad[id] = pdev;
2612 			saw_chan_mask |= 1 << id;
2613 		}
2614 			break;
2615 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2616 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2617 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2618 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2619 		{
2620 			int id = pdev->device - PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 + 4;
2621 
2622 			pvt->pci_tad[id] = pdev;
2623 			saw_chan_mask |= 1 << id;
2624 		}
2625 			break;
2626 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2627 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2628 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2629 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2630 			if (!pvt->pci_ddrio)
2631 				pvt->pci_ddrio = pdev;
2632 			break;
2633 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2634 			pvt->pci_ha1 = pdev;
2635 			break;
2636 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2637 			pvt->pci_ha1_ta = pdev;
2638 			break;
2639 		default:
2640 			break;
2641 		}
2642 
2643 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2644 			 sbridge_dev->bus,
2645 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2646 			 pdev);
2647 	}
2648 
2649 	/* Check if everything were registered */
2650 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2651 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2652 		goto enodev;
2653 
2654 	if (saw_chan_mask != 0x0f && /* -EN */
2655 	    saw_chan_mask != 0x33 && /* -EP */
2656 	    saw_chan_mask != 0xff)   /* -EX */
2657 		goto enodev;
2658 	return 0;
2659 
2660 enodev:
2661 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2662 	return -ENODEV;
2663 }
2664 
2665 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2666 				 struct sbridge_dev *sbridge_dev)
2667 {
2668 	struct sbridge_pvt *pvt = mci->pvt_info;
2669 	struct pci_dev *pdev;
2670 	u8 saw_chan_mask = 0;
2671 	int i;
2672 
2673 	/* there's only one device per system; not tied to any bus */
2674 	if (pvt->info.pci_vtd == NULL)
2675 		/* result will be checked later */
2676 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2677 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2678 						   NULL);
2679 
2680 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2681 		pdev = sbridge_dev->pdev[i];
2682 		if (!pdev)
2683 			continue;
2684 
2685 		switch (pdev->device) {
2686 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2687 			pvt->pci_sad0 = pdev;
2688 			break;
2689 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2690 			pvt->pci_sad1 = pdev;
2691 			break;
2692 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2693 			pvt->pci_ha0 = pdev;
2694 			break;
2695 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2696 			pvt->pci_ta = pdev;
2697 			break;
2698 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
2699 			pvt->pci_ras = pdev;
2700 			break;
2701 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2702 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2703 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2704 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2705 		{
2706 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0;
2707 			pvt->pci_tad[id] = pdev;
2708 			saw_chan_mask |= 1 << id;
2709 		}
2710 			break;
2711 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2712 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2713 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2714 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2715 		{
2716 			int id = pdev->device - PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 + 4;
2717 			pvt->pci_tad[id] = pdev;
2718 			saw_chan_mask |= 1 << id;
2719 		}
2720 			break;
2721 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2722 			pvt->pci_ddrio = pdev;
2723 			break;
2724 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2725 			pvt->pci_ha1 = pdev;
2726 			break;
2727 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2728 			pvt->pci_ha1_ta = pdev;
2729 			break;
2730 		default:
2731 			break;
2732 		}
2733 
2734 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2735 			 sbridge_dev->bus,
2736 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2737 			 pdev);
2738 	}
2739 
2740 	/* Check if everything were registered */
2741 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
2742 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2743 		goto enodev;
2744 
2745 	if (saw_chan_mask != 0x0f && /* -EN */
2746 	    saw_chan_mask != 0x33 && /* -EP */
2747 	    saw_chan_mask != 0xff)   /* -EX */
2748 		goto enodev;
2749 	return 0;
2750 
2751 enodev:
2752 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2753 	return -ENODEV;
2754 }
2755 
2756 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2757 			struct sbridge_dev *sbridge_dev)
2758 {
2759 	struct sbridge_pvt *pvt = mci->pvt_info;
2760 	struct pci_dev *pdev;
2761 	int dev, func;
2762 
2763 	int i;
2764 	int devidx;
2765 
2766 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2767 		pdev = sbridge_dev->pdev[i];
2768 		if (!pdev)
2769 			continue;
2770 
2771 		/* Extract PCI device and function. */
2772 		dev = (pdev->devfn >> 3) & 0x1f;
2773 		func = pdev->devfn & 0x7;
2774 
2775 		switch (pdev->device) {
2776 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2777 			if (dev == 8)
2778 				pvt->knl.pci_mc0 = pdev;
2779 			else if (dev == 9)
2780 				pvt->knl.pci_mc1 = pdev;
2781 			else {
2782 				sbridge_printk(KERN_ERR,
2783 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2784 					dev, func);
2785 				continue;
2786 			}
2787 			break;
2788 
2789 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2790 			pvt->pci_sad0 = pdev;
2791 			break;
2792 
2793 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2794 			pvt->pci_sad1 = pdev;
2795 			break;
2796 
2797 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2798 			/* There are one of these per tile, and range from
2799 			 * 1.14.0 to 1.18.5.
2800 			 */
2801 			devidx = ((dev-14)*8)+func;
2802 
2803 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2804 				sbridge_printk(KERN_ERR,
2805 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2806 					dev, func);
2807 				continue;
2808 			}
2809 
2810 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2811 
2812 			pvt->knl.pci_cha[devidx] = pdev;
2813 			break;
2814 
2815 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL:
2816 			devidx = -1;
2817 
2818 			/*
2819 			 *  MC0 channels 0-2 are device 9 function 2-4,
2820 			 *  MC1 channels 3-5 are device 8 function 2-4.
2821 			 */
2822 
2823 			if (dev == 9)
2824 				devidx = func-2;
2825 			else if (dev == 8)
2826 				devidx = 3 + (func-2);
2827 
2828 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2829 				sbridge_printk(KERN_ERR,
2830 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2831 					dev, func);
2832 				continue;
2833 			}
2834 
2835 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2836 			pvt->knl.pci_channel[devidx] = pdev;
2837 			break;
2838 
2839 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2840 			pvt->knl.pci_mc_info = pdev;
2841 			break;
2842 
2843 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2844 			pvt->pci_ta = pdev;
2845 			break;
2846 
2847 		default:
2848 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2849 				pdev->device);
2850 			break;
2851 		}
2852 	}
2853 
2854 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2855 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2856 	    !pvt->pci_ta) {
2857 		goto enodev;
2858 	}
2859 
2860 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2861 		if (!pvt->knl.pci_channel[i]) {
2862 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2863 			goto enodev;
2864 		}
2865 	}
2866 
2867 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2868 		if (!pvt->knl.pci_cha[i]) {
2869 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2870 			goto enodev;
2871 		}
2872 	}
2873 
2874 	return 0;
2875 
2876 enodev:
2877 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2878 	return -ENODEV;
2879 }
2880 
2881 /****************************************************************************
2882 			Error check routines
2883  ****************************************************************************/
2884 
2885 /*
2886  * While Sandy Bridge has error count registers, SMI BIOS read values from
2887  * and resets the counters. So, they are not reliable for the OS to read
2888  * from them. So, we have no option but to just trust on whatever MCE is
2889  * telling us about the errors.
2890  */
2891 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2892 				    const struct mce *m)
2893 {
2894 	struct mem_ctl_info *new_mci;
2895 	struct sbridge_pvt *pvt = mci->pvt_info;
2896 	enum hw_event_mc_err_type tp_event;
2897 	char *type, *optype, msg[256];
2898 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2899 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2900 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2901 	bool recoverable;
2902 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2903 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2904 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2905 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2906 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2907 	long channel_mask, first_channel;
2908 	u8  rank, socket, ha;
2909 	int rc, dimm;
2910 	char *area_type = NULL;
2911 
2912 	if (pvt->info.type != SANDY_BRIDGE)
2913 		recoverable = true;
2914 	else
2915 		recoverable = GET_BITFIELD(m->status, 56, 56);
2916 
2917 	if (uncorrected_error) {
2918 		if (ripv) {
2919 			type = "FATAL";
2920 			tp_event = HW_EVENT_ERR_FATAL;
2921 		} else {
2922 			type = "NON_FATAL";
2923 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2924 		}
2925 	} else {
2926 		type = "CORRECTED";
2927 		tp_event = HW_EVENT_ERR_CORRECTED;
2928 	}
2929 
2930 	/*
2931 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2932 	 * memory errors should fit in this mask:
2933 	 *	000f 0000 1mmm cccc (binary)
2934 	 * where:
2935 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2936 	 *	    won't be shown
2937 	 *	mmm = error type
2938 	 *	cccc = channel
2939 	 * If the mask doesn't match, report an error to the parsing logic
2940 	 */
2941 	if (! ((errcode & 0xef80) == 0x80)) {
2942 		optype = "Can't parse: it is not a mem";
2943 	} else {
2944 		switch (optypenum) {
2945 		case 0:
2946 			optype = "generic undef request error";
2947 			break;
2948 		case 1:
2949 			optype = "memory read error";
2950 			break;
2951 		case 2:
2952 			optype = "memory write error";
2953 			break;
2954 		case 3:
2955 			optype = "addr/cmd error";
2956 			break;
2957 		case 4:
2958 			optype = "memory scrubbing error";
2959 			break;
2960 		default:
2961 			optype = "reserved";
2962 			break;
2963 		}
2964 	}
2965 
2966 	/* Only decode errors with an valid address (ADDRV) */
2967 	if (!GET_BITFIELD(m->status, 58, 58))
2968 		return;
2969 
2970 	if (pvt->info.type == KNIGHTS_LANDING) {
2971 		if (channel == 14) {
2972 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2973 				overflow ? " OVERFLOW" : "",
2974 				(uncorrected_error && recoverable)
2975 				? " recoverable" : "",
2976 				mscod, errcode,
2977 				m->bank);
2978 		} else {
2979 			char A = *("A");
2980 
2981 			/*
2982 			 * Reported channel is in range 0-2, so we can't map it
2983 			 * back to mc. To figure out mc we check machine check
2984 			 * bank register that reported this error.
2985 			 * bank15 means mc0 and bank16 means mc1.
2986 			 */
2987 			channel = knl_channel_remap(m->bank == 16, channel);
2988 			channel_mask = 1 << channel;
2989 
2990 			snprintf(msg, sizeof(msg),
2991 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2992 				overflow ? " OVERFLOW" : "",
2993 				(uncorrected_error && recoverable)
2994 				? " recoverable" : " ",
2995 				mscod, errcode, channel, A + channel);
2996 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
2997 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2998 				channel, 0, -1,
2999 				optype, msg);
3000 		}
3001 		return;
3002 	} else {
3003 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3004 				&channel_mask, &rank, &area_type, msg);
3005 	}
3006 
3007 	if (rc < 0)
3008 		goto err_parsing;
3009 	new_mci = get_mci_for_node_id(socket);
3010 	if (!new_mci) {
3011 		strcpy(msg, "Error: socket got corrupted!");
3012 		goto err_parsing;
3013 	}
3014 	mci = new_mci;
3015 	pvt = mci->pvt_info;
3016 
3017 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3018 
3019 	if (rank < 4)
3020 		dimm = 0;
3021 	else if (rank < 8)
3022 		dimm = 1;
3023 	else
3024 		dimm = 2;
3025 
3026 
3027 	/*
3028 	 * FIXME: On some memory configurations (mirror, lockstep), the
3029 	 * Memory Controller can't point the error to a single DIMM. The
3030 	 * EDAC core should be handling the channel mask, in order to point
3031 	 * to the group of dimm's where the error may be happening.
3032 	 */
3033 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
3034 		channel = first_channel;
3035 
3036 	snprintf(msg, sizeof(msg),
3037 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3038 		 overflow ? " OVERFLOW" : "",
3039 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3040 		 area_type,
3041 		 mscod, errcode,
3042 		 socket, ha,
3043 		 channel_mask,
3044 		 rank);
3045 
3046 	edac_dbg(0, "%s\n", msg);
3047 
3048 	/* FIXME: need support for channel mask */
3049 
3050 	if (channel == CHANNEL_UNSPECIFIED)
3051 		channel = -1;
3052 
3053 	/* Call the helper to output message */
3054 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3055 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3056 			     4*ha+channel, dimm, -1,
3057 			     optype, msg);
3058 	return;
3059 err_parsing:
3060 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3061 			     -1, -1, -1,
3062 			     msg, "");
3063 
3064 }
3065 
3066 /*
3067  * Check that logging is enabled and that this is the right type
3068  * of error for us to handle.
3069  */
3070 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3071 				   void *data)
3072 {
3073 	struct mce *mce = (struct mce *)data;
3074 	struct mem_ctl_info *mci;
3075 	struct sbridge_pvt *pvt;
3076 	char *type;
3077 
3078 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3079 		return NOTIFY_DONE;
3080 
3081 	mci = get_mci_for_node_id(mce->socketid);
3082 	if (!mci)
3083 		return NOTIFY_DONE;
3084 	pvt = mci->pvt_info;
3085 
3086 	/*
3087 	 * Just let mcelog handle it if the error is
3088 	 * outside the memory controller. A memory error
3089 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3090 	 * bit 12 has an special meaning.
3091 	 */
3092 	if ((mce->status & 0xefff) >> 7 != 1)
3093 		return NOTIFY_DONE;
3094 
3095 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3096 		type = "Exception";
3097 	else
3098 		type = "Event";
3099 
3100 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3101 
3102 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3103 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3104 			  mce->mcgstatus, mce->bank, mce->status);
3105 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3106 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3107 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3108 
3109 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3110 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3111 			  mce->time, mce->socketid, mce->apicid);
3112 
3113 	sbridge_mce_output_error(mci, mce);
3114 
3115 	/* Advice mcelog that the error were handled */
3116 	return NOTIFY_STOP;
3117 }
3118 
3119 static struct notifier_block sbridge_mce_dec = {
3120 	.notifier_call	= sbridge_mce_check_error,
3121 	.priority	= MCE_PRIO_EDAC,
3122 };
3123 
3124 /****************************************************************************
3125 			EDAC register/unregister logic
3126  ****************************************************************************/
3127 
3128 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3129 {
3130 	struct mem_ctl_info *mci = sbridge_dev->mci;
3131 	struct sbridge_pvt *pvt;
3132 
3133 	if (unlikely(!mci || !mci->pvt_info)) {
3134 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3135 
3136 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3137 		return;
3138 	}
3139 
3140 	pvt = mci->pvt_info;
3141 
3142 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3143 		 mci, &sbridge_dev->pdev[0]->dev);
3144 
3145 	/* Remove MC sysfs nodes */
3146 	edac_mc_del_mc(mci->pdev);
3147 
3148 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3149 	kfree(mci->ctl_name);
3150 	edac_mc_free(mci);
3151 	sbridge_dev->mci = NULL;
3152 }
3153 
3154 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3155 {
3156 	struct mem_ctl_info *mci;
3157 	struct edac_mc_layer layers[2];
3158 	struct sbridge_pvt *pvt;
3159 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3160 	int rc;
3161 
3162 	/* Check the number of active and not disabled channels */
3163 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
3164 	if (unlikely(rc < 0))
3165 		return rc;
3166 
3167 	/* allocate a new MC control structure */
3168 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3169 	layers[0].size = type == KNIGHTS_LANDING ?
3170 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3171 	layers[0].is_virt_csrow = false;
3172 	layers[1].type = EDAC_MC_LAYER_SLOT;
3173 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3174 	layers[1].is_virt_csrow = true;
3175 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3176 			    sizeof(*pvt));
3177 
3178 	if (unlikely(!mci))
3179 		return -ENOMEM;
3180 
3181 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3182 		 mci, &pdev->dev);
3183 
3184 	pvt = mci->pvt_info;
3185 	memset(pvt, 0, sizeof(*pvt));
3186 
3187 	/* Associate sbridge_dev and mci for future usage */
3188 	pvt->sbridge_dev = sbridge_dev;
3189 	sbridge_dev->mci = mci;
3190 
3191 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3192 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3193 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3194 	mci->edac_cap = EDAC_FLAG_NONE;
3195 	mci->mod_name = "sbridge_edac.c";
3196 	mci->mod_ver = SBRIDGE_REVISION;
3197 	mci->dev_name = pci_name(pdev);
3198 	mci->ctl_page_to_phys = NULL;
3199 
3200 	pvt->info.type = type;
3201 	switch (type) {
3202 	case IVY_BRIDGE:
3203 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3204 		pvt->info.get_tolm = ibridge_get_tolm;
3205 		pvt->info.get_tohm = ibridge_get_tohm;
3206 		pvt->info.dram_rule = ibridge_dram_rule;
3207 		pvt->info.get_memory_type = get_memory_type;
3208 		pvt->info.get_node_id = get_node_id;
3209 		pvt->info.rir_limit = rir_limit;
3210 		pvt->info.sad_limit = sad_limit;
3211 		pvt->info.interleave_mode = interleave_mode;
3212 		pvt->info.dram_attr = dram_attr;
3213 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3214 		pvt->info.interleave_list = ibridge_interleave_list;
3215 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3216 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3217 		pvt->info.get_width = ibridge_get_width;
3218 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
3219 
3220 		/* Store pci devices at mci for faster access */
3221 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3222 		if (unlikely(rc < 0))
3223 			goto fail0;
3224 		break;
3225 	case SANDY_BRIDGE:
3226 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3227 		pvt->info.get_tolm = sbridge_get_tolm;
3228 		pvt->info.get_tohm = sbridge_get_tohm;
3229 		pvt->info.dram_rule = sbridge_dram_rule;
3230 		pvt->info.get_memory_type = get_memory_type;
3231 		pvt->info.get_node_id = get_node_id;
3232 		pvt->info.rir_limit = rir_limit;
3233 		pvt->info.sad_limit = sad_limit;
3234 		pvt->info.interleave_mode = interleave_mode;
3235 		pvt->info.dram_attr = dram_attr;
3236 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3237 		pvt->info.interleave_list = sbridge_interleave_list;
3238 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3239 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3240 		pvt->info.get_width = sbridge_get_width;
3241 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
3242 
3243 		/* Store pci devices at mci for faster access */
3244 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3245 		if (unlikely(rc < 0))
3246 			goto fail0;
3247 		break;
3248 	case HASWELL:
3249 		/* rankcfgr isn't used */
3250 		pvt->info.get_tolm = haswell_get_tolm;
3251 		pvt->info.get_tohm = haswell_get_tohm;
3252 		pvt->info.dram_rule = ibridge_dram_rule;
3253 		pvt->info.get_memory_type = haswell_get_memory_type;
3254 		pvt->info.get_node_id = haswell_get_node_id;
3255 		pvt->info.rir_limit = haswell_rir_limit;
3256 		pvt->info.sad_limit = sad_limit;
3257 		pvt->info.interleave_mode = interleave_mode;
3258 		pvt->info.dram_attr = dram_attr;
3259 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3260 		pvt->info.interleave_list = ibridge_interleave_list;
3261 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3262 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3263 		pvt->info.get_width = ibridge_get_width;
3264 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
3265 
3266 		/* Store pci devices at mci for faster access */
3267 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3268 		if (unlikely(rc < 0))
3269 			goto fail0;
3270 		break;
3271 	case BROADWELL:
3272 		/* rankcfgr isn't used */
3273 		pvt->info.get_tolm = haswell_get_tolm;
3274 		pvt->info.get_tohm = haswell_get_tohm;
3275 		pvt->info.dram_rule = ibridge_dram_rule;
3276 		pvt->info.get_memory_type = haswell_get_memory_type;
3277 		pvt->info.get_node_id = haswell_get_node_id;
3278 		pvt->info.rir_limit = haswell_rir_limit;
3279 		pvt->info.sad_limit = sad_limit;
3280 		pvt->info.interleave_mode = interleave_mode;
3281 		pvt->info.dram_attr = dram_attr;
3282 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3283 		pvt->info.interleave_list = ibridge_interleave_list;
3284 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3285 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3286 		pvt->info.get_width = broadwell_get_width;
3287 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
3288 
3289 		/* Store pci devices at mci for faster access */
3290 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3291 		if (unlikely(rc < 0))
3292 			goto fail0;
3293 		break;
3294 	case KNIGHTS_LANDING:
3295 		/* pvt->info.rankcfgr == ??? */
3296 		pvt->info.get_tolm = knl_get_tolm;
3297 		pvt->info.get_tohm = knl_get_tohm;
3298 		pvt->info.dram_rule = knl_dram_rule;
3299 		pvt->info.get_memory_type = knl_get_memory_type;
3300 		pvt->info.get_node_id = knl_get_node_id;
3301 		pvt->info.rir_limit = NULL;
3302 		pvt->info.sad_limit = knl_sad_limit;
3303 		pvt->info.interleave_mode = knl_interleave_mode;
3304 		pvt->info.dram_attr = dram_attr_knl;
3305 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3306 		pvt->info.interleave_list = knl_interleave_list;
3307 		pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3308 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3309 		pvt->info.get_width = knl_get_width;
3310 		mci->ctl_name = kasprintf(GFP_KERNEL,
3311 			"Knights Landing Socket#%d", mci->mc_idx);
3312 
3313 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3314 		if (unlikely(rc < 0))
3315 			goto fail0;
3316 		break;
3317 	}
3318 
3319 	/* Get dimm basic config and the memory layout */
3320 	get_dimm_config(mci);
3321 	get_memory_layout(mci);
3322 
3323 	/* record ptr to the generic device */
3324 	mci->pdev = &pdev->dev;
3325 
3326 	/* add this new MC control structure to EDAC's list of MCs */
3327 	if (unlikely(edac_mc_add_mc(mci))) {
3328 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3329 		rc = -EINVAL;
3330 		goto fail0;
3331 	}
3332 
3333 	return 0;
3334 
3335 fail0:
3336 	kfree(mci->ctl_name);
3337 	edac_mc_free(mci);
3338 	sbridge_dev->mci = NULL;
3339 	return rc;
3340 }
3341 
3342 #define ICPU(model, table) \
3343 	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3344 
3345 static const struct x86_cpu_id sbridge_cpuids[] = {
3346 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
3347 	ICPU(INTEL_FAM6_IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
3348 	ICPU(INTEL_FAM6_HASWELL_X,	  pci_dev_descr_haswell_table),
3349 	ICPU(INTEL_FAM6_BROADWELL_X,	  pci_dev_descr_broadwell_table),
3350 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3351 	ICPU(INTEL_FAM6_XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3352 	ICPU(INTEL_FAM6_XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3353 	{ }
3354 };
3355 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3356 
3357 /*
3358  *	sbridge_probe	Get all devices and register memory controllers
3359  *			present.
3360  *	return:
3361  *		0 for FOUND a device
3362  *		< 0 for error code
3363  */
3364 
3365 static int sbridge_probe(const struct x86_cpu_id *id)
3366 {
3367 	int rc = -ENODEV;
3368 	u8 mc, num_mc = 0;
3369 	struct sbridge_dev *sbridge_dev;
3370 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3371 
3372 	/* get the pci devices we want to reserve for our use */
3373 	rc = sbridge_get_all_devices(&num_mc, ptable);
3374 
3375 	if (unlikely(rc < 0)) {
3376 		edac_dbg(0, "couldn't get all devices\n");
3377 		goto fail0;
3378 	}
3379 
3380 	mc = 0;
3381 
3382 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3383 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3384 			 mc, mc + 1, num_mc);
3385 
3386 		sbridge_dev->mc = mc++;
3387 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3388 		if (unlikely(rc < 0))
3389 			goto fail1;
3390 	}
3391 
3392 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3393 
3394 	return 0;
3395 
3396 fail1:
3397 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3398 		sbridge_unregister_mci(sbridge_dev);
3399 
3400 	sbridge_put_all_devices();
3401 fail0:
3402 	return rc;
3403 }
3404 
3405 /*
3406  *	sbridge_remove	cleanup
3407  *
3408  */
3409 static void sbridge_remove(void)
3410 {
3411 	struct sbridge_dev *sbridge_dev;
3412 
3413 	edac_dbg(0, "\n");
3414 
3415 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3416 		sbridge_unregister_mci(sbridge_dev);
3417 
3418 	/* Release PCI resources */
3419 	sbridge_put_all_devices();
3420 }
3421 
3422 /*
3423  *	sbridge_init		Module entry function
3424  *			Try to initialize this module for its devices
3425  */
3426 static int __init sbridge_init(void)
3427 {
3428 	const struct x86_cpu_id *id;
3429 	int rc;
3430 
3431 	edac_dbg(2, "\n");
3432 
3433 	id = x86_match_cpu(sbridge_cpuids);
3434 	if (!id)
3435 		return -ENODEV;
3436 
3437 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3438 	opstate_init();
3439 
3440 	rc = sbridge_probe(id);
3441 
3442 	if (rc >= 0) {
3443 		mce_register_decode_chain(&sbridge_mce_dec);
3444 		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3445 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3446 		return 0;
3447 	}
3448 
3449 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3450 		      rc);
3451 
3452 	return rc;
3453 }
3454 
3455 /*
3456  *	sbridge_exit()	Module exit function
3457  *			Unregister the driver
3458  */
3459 static void __exit sbridge_exit(void)
3460 {
3461 	edac_dbg(2, "\n");
3462 	sbridge_remove();
3463 	mce_unregister_decode_chain(&sbridge_mce_dec);
3464 }
3465 
3466 module_init(sbridge_init);
3467 module_exit(sbridge_exit);
3468 
3469 module_param(edac_op_state, int, 0444);
3470 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3471 
3472 MODULE_LICENSE("GPL");
3473 MODULE_AUTHOR("Mauro Carvalho Chehab");
3474 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3475 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3476 		   SBRIDGE_REVISION);
3477