xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 9c9c7116)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3  *
4  * This driver supports the memory controllers found on the Intel
5  * processor family Sandy Bridge.
6  *
7  * Copyright (c) 2011 by:
8  *	 Mauro Carvalho Chehab
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
26 #include <asm/mce.h>
27 
28 #include "edac_module.h"
29 
30 /* Static vars */
31 static LIST_HEAD(sbridge_edac_list);
32 
33 /*
34  * Alter this version for the module when modifications are made
35  */
36 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
37 #define EDAC_MOD_STR	    "sb_edac"
38 
39 /*
40  * Debug macros
41  */
42 #define sbridge_printk(level, fmt, arg...)			\
43 	edac_printk(level, "sbridge", fmt, ##arg)
44 
45 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
46 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
47 
48 /*
49  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
50  */
51 #define GET_BITFIELD(v, lo, hi)	\
52 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
53 
54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
55 static const u32 sbridge_dram_rule[] = {
56 	0x80, 0x88, 0x90, 0x98, 0xa0,
57 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
58 };
59 
60 static const u32 ibridge_dram_rule[] = {
61 	0x60, 0x68, 0x70, 0x78, 0x80,
62 	0x88, 0x90, 0x98, 0xa0,	0xa8,
63 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
64 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
65 };
66 
67 static const u32 knl_dram_rule[] = {
68 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
69 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
70 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
71 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
72 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
73 };
74 
75 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
76 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
77 
78 static char *show_dram_attr(u32 attr)
79 {
80 	switch (attr) {
81 		case 0:
82 			return "DRAM";
83 		case 1:
84 			return "MMCFG";
85 		case 2:
86 			return "NXM";
87 		default:
88 			return "unknown";
89 	}
90 }
91 
92 static const u32 sbridge_interleave_list[] = {
93 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
94 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
95 };
96 
97 static const u32 ibridge_interleave_list[] = {
98 	0x64, 0x6c, 0x74, 0x7c, 0x84,
99 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
100 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
101 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
102 };
103 
104 static const u32 knl_interleave_list[] = {
105 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
106 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
107 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
108 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
109 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
110 };
111 #define MAX_INTERLEAVE							\
112 	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
113 	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
114 		     ARRAY_SIZE(knl_interleave_list))))
115 
116 struct interleave_pkg {
117 	unsigned char start;
118 	unsigned char end;
119 };
120 
121 static const struct interleave_pkg sbridge_interleave_pkg[] = {
122 	{ 0, 2 },
123 	{ 3, 5 },
124 	{ 8, 10 },
125 	{ 11, 13 },
126 	{ 16, 18 },
127 	{ 19, 21 },
128 	{ 24, 26 },
129 	{ 27, 29 },
130 };
131 
132 static const struct interleave_pkg ibridge_interleave_pkg[] = {
133 	{ 0, 3 },
134 	{ 4, 7 },
135 	{ 8, 11 },
136 	{ 12, 15 },
137 	{ 16, 19 },
138 	{ 20, 23 },
139 	{ 24, 27 },
140 	{ 28, 31 },
141 };
142 
143 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
144 			  int interleave)
145 {
146 	return GET_BITFIELD(reg, table[interleave].start,
147 			    table[interleave].end);
148 }
149 
150 /* Devices 12 Function 7 */
151 
152 #define TOLM		0x80
153 #define TOHM		0x84
154 #define HASWELL_TOLM	0xd0
155 #define HASWELL_TOHM_0	0xd4
156 #define HASWELL_TOHM_1	0xd8
157 #define KNL_TOLM	0xd0
158 #define KNL_TOHM_0	0xd4
159 #define KNL_TOHM_1	0xd8
160 
161 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
162 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
163 
164 /* Device 13 Function 6 */
165 
166 #define SAD_TARGET	0xf0
167 
168 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
169 
170 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
171 
172 #define SAD_CONTROL	0xf4
173 
174 /* Device 14 function 0 */
175 
176 static const u32 tad_dram_rule[] = {
177 	0x40, 0x44, 0x48, 0x4c,
178 	0x50, 0x54, 0x58, 0x5c,
179 	0x60, 0x64, 0x68, 0x6c,
180 };
181 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
182 
183 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
184 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
185 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
186 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
187 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
188 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
189 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
190 
191 /* Device 15, function 0 */
192 
193 #define MCMTR			0x7c
194 #define KNL_MCMTR		0x624
195 
196 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
197 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
198 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
199 
200 /* Device 15, function 1 */
201 
202 #define RASENABLES		0xac
203 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
204 
205 /* Device 15, functions 2-5 */
206 
207 static const int mtr_regs[] = {
208 	0x80, 0x84, 0x88,
209 };
210 
211 static const int knl_mtr_reg = 0xb60;
212 
213 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
214 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
215 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
216 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
217 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
218 
219 static const u32 tad_ch_nilv_offset[] = {
220 	0x90, 0x94, 0x98, 0x9c,
221 	0xa0, 0xa4, 0xa8, 0xac,
222 	0xb0, 0xb4, 0xb8, 0xbc,
223 };
224 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
225 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
226 
227 static const u32 rir_way_limit[] = {
228 	0x108, 0x10c, 0x110, 0x114, 0x118,
229 };
230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
231 
232 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
233 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
234 
235 #define MAX_RIR_WAY	8
236 
237 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
238 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
239 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
240 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
241 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
242 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
243 };
244 
245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
246 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
247 
248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
249 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
250 
251 /* Device 16, functions 2-7 */
252 
253 /*
254  * FIXME: Implement the error count reads directly
255  */
256 
257 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
258 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
259 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
260 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
261 
262 #if 0 /* Currently unused*/
263 static const u32 correrrcnt[] = {
264 	0x104, 0x108, 0x10c, 0x110,
265 };
266 
267 static const u32 correrrthrsld[] = {
268 	0x11c, 0x120, 0x124, 0x128,
269 };
270 #endif
271 
272 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
274 
275 
276 /* Device 17, function 0 */
277 
278 #define SB_RANK_CFG_A		0x0328
279 
280 #define IB_RANK_CFG_A		0x0320
281 
282 /*
283  * sbridge structs
284  */
285 
286 #define NUM_CHANNELS		6	/* Max channels per MC */
287 #define MAX_DIMMS		3	/* Max DIMMS per channel */
288 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
292 
293 enum type {
294 	SANDY_BRIDGE,
295 	IVY_BRIDGE,
296 	HASWELL,
297 	BROADWELL,
298 	KNIGHTS_LANDING,
299 };
300 
301 enum domain {
302 	IMC0 = 0,
303 	IMC1,
304 	SOCK,
305 };
306 
307 enum mirroring_mode {
308 	NON_MIRRORING,
309 	ADDR_RANGE_MIRRORING,
310 	FULL_MIRRORING,
311 };
312 
313 struct sbridge_pvt;
314 struct sbridge_info {
315 	enum type	type;
316 	u32		mcmtr;
317 	u32		rankcfgr;
318 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
319 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
320 	u64		(*rir_limit)(u32 reg);
321 	u64		(*sad_limit)(u32 reg);
322 	u32		(*interleave_mode)(u32 reg);
323 	u32		(*dram_attr)(u32 reg);
324 	const u32	*dram_rule;
325 	const u32	*interleave_list;
326 	const struct interleave_pkg *interleave_pkg;
327 	u8		max_sad;
328 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
329 	u8		(*get_ha)(u8 bank);
330 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
331 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
332 	struct pci_dev	*pci_vtd;
333 };
334 
335 struct sbridge_channel {
336 	u32		ranks;
337 	u32		dimms;
338 };
339 
340 struct pci_id_descr {
341 	int			dev_id;
342 	int			optional;
343 	enum domain		dom;
344 };
345 
346 struct pci_id_table {
347 	const struct pci_id_descr	*descr;
348 	int				n_devs_per_imc;
349 	int				n_devs_per_sock;
350 	int				n_imcs_per_sock;
351 	enum type			type;
352 };
353 
354 struct sbridge_dev {
355 	struct list_head	list;
356 	int			seg;
357 	u8			bus, mc;
358 	u8			node_id, source_id;
359 	struct pci_dev		**pdev;
360 	enum domain		dom;
361 	int			n_devs;
362 	int			i_devs;
363 	struct mem_ctl_info	*mci;
364 };
365 
366 struct knl_pvt {
367 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
368 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
369 	struct pci_dev          *pci_mc0;
370 	struct pci_dev          *pci_mc1;
371 	struct pci_dev          *pci_mc0_misc;
372 	struct pci_dev          *pci_mc1_misc;
373 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
374 };
375 
376 struct sbridge_pvt {
377 	/* Devices per socket */
378 	struct pci_dev		*pci_ddrio;
379 	struct pci_dev		*pci_sad0, *pci_sad1;
380 	struct pci_dev		*pci_br0, *pci_br1;
381 	/* Devices per memory controller */
382 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
383 	struct pci_dev		*pci_tad[NUM_CHANNELS];
384 
385 	struct sbridge_dev	*sbridge_dev;
386 
387 	struct sbridge_info	info;
388 	struct sbridge_channel	channel[NUM_CHANNELS];
389 
390 	/* Memory type detection */
391 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
392 	bool			is_chan_hash;
393 	enum mirroring_mode	mirror_mode;
394 
395 	/* Memory description */
396 	u64			tolm, tohm;
397 	struct knl_pvt knl;
398 };
399 
400 #define PCI_DESCR(device_id, opt, domain)	\
401 	.dev_id = (device_id),		\
402 	.optional = opt,	\
403 	.dom = domain
404 
405 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
406 		/* Processor Home Agent */
407 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
408 
409 		/* Memory controller */
410 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
411 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
412 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
413 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
414 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
415 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
416 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
417 
418 		/* System Address Decoder */
419 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
420 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
421 
422 		/* Broadcast Registers */
423 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
424 };
425 
426 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
427 	.descr = A,			\
428 	.n_devs_per_imc = N,	\
429 	.n_devs_per_sock = ARRAY_SIZE(A),	\
430 	.n_imcs_per_sock = M,	\
431 	.type = T			\
432 }
433 
434 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
435 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
436 	{0,}			/* 0 terminated list. */
437 };
438 
439 /* This changes depending if 1HA or 2HA:
440  * 1HA:
441  *	0x0eb8 (17.0) is DDRIO0
442  * 2HA:
443  *	0x0ebc (17.4) is DDRIO0
444  */
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
447 
448 /* pci ids */
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
466 
467 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
468 		/* Processor Home Agent */
469 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
470 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
471 
472 		/* Memory controller */
473 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
474 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
475 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
476 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
477 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
478 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
479 
480 		/* Optional, mode 2HA */
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
485 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
486 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
487 
488 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
489 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
490 
491 		/* System Address Decoder */
492 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
493 
494 		/* Broadcast Registers */
495 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
496 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
497 
498 };
499 
500 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
501 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
502 	{0,}			/* 0 terminated list. */
503 };
504 
505 /* Haswell support */
506 /* EN processor:
507  *	- 1 IMC
508  *	- 3 DDR3 channels, 2 DPC per channel
509  * EP processor:
510  *	- 1 or 2 IMC
511  *	- 4 DDR4 channels, 3 DPC per channel
512  * EP 4S processor:
513  *	- 2 IMC
514  *	- 4 DDR4 channels, 3 DPC per channel
515  * EX processor:
516  *	- 2 IMC
517  *	- each IMC interfaces with a SMI 2 channel
518  *	- each SMI channel interfaces with a scalable memory buffer
519  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
520  */
521 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
522 #define HASWELL_HASYSDEFEATURE2 0x84
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
544 static const struct pci_id_descr pci_dev_descr_haswell[] = {
545 	/* first item must be the HA */
546 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
547 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
548 
549 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
550 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
551 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
552 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
553 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
554 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
555 
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
557 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
559 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
560 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
561 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
562 
563 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
564 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
565 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
566 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
567 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
568 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
569 };
570 
571 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
572 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
573 	{0,}			/* 0 terminated list. */
574 };
575 
576 /* Knight's Landing Support */
577 /*
578  * KNL's memory channels are swizzled between memory controllers.
579  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
580  */
581 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
582 
583 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
585 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
587 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
589 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
591 /* SAD target - 1-29-1 (1 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
593 /* Caching / Home Agent */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
595 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
597 
598 /*
599  * KNL differs from SB, IB, and Haswell in that it has multiple
600  * instances of the same device with the same device ID, so we handle that
601  * by creating as many copies in the table as we expect to find.
602  * (Like device ID must be grouped together.)
603  */
604 
605 static const struct pci_id_descr pci_dev_descr_knl[] = {
606 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
607 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
608 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
609 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
610 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
611 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
612 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
613 };
614 
615 static const struct pci_id_table pci_dev_descr_knl_table[] = {
616 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
617 	{0,}
618 };
619 
620 /*
621  * Broadwell support
622  *
623  * DE processor:
624  *	- 1 IMC
625  *	- 2 DDR3 channels, 2 DPC per channel
626  * EP processor:
627  *	- 1 or 2 IMC
628  *	- 4 DDR4 channels, 3 DPC per channel
629  * EP 4S processor:
630  *	- 2 IMC
631  *	- 4 DDR4 channels, 3 DPC per channel
632  * EX processor:
633  *	- 2 IMC
634  *	- each IMC interfaces with a SMI 2 channel
635  *	- each SMI channel interfaces with a scalable memory buffer
636  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
637  */
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
656 
657 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
658 	/* first item must be the HA */
659 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
660 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
661 
662 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
663 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
664 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
665 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
666 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
667 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
668 
669 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
670 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
671 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
672 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
673 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
674 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
675 
676 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
677 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
678 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
679 };
680 
681 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
682 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
683 	{0,}			/* 0 terminated list. */
684 };
685 
686 
687 /****************************************************************************
688 			Ancillary status routines
689  ****************************************************************************/
690 
691 static inline int numrank(enum type type, u32 mtr)
692 {
693 	int ranks = (1 << RANK_CNT_BITS(mtr));
694 	int max = 4;
695 
696 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
697 		max = 8;
698 
699 	if (ranks > max) {
700 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
701 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
702 		return -EINVAL;
703 	}
704 
705 	return ranks;
706 }
707 
708 static inline int numrow(u32 mtr)
709 {
710 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
711 
712 	if (rows < 13 || rows > 18) {
713 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
714 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
715 		return -EINVAL;
716 	}
717 
718 	return 1 << rows;
719 }
720 
721 static inline int numcol(u32 mtr)
722 {
723 	int cols = (COL_WIDTH_BITS(mtr) + 10);
724 
725 	if (cols > 12) {
726 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
727 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
728 		return -EINVAL;
729 	}
730 
731 	return 1 << cols;
732 }
733 
734 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
735 					   int multi_bus,
736 					   struct sbridge_dev *prev)
737 {
738 	struct sbridge_dev *sbridge_dev;
739 
740 	/*
741 	 * If we have devices scattered across several busses that pertain
742 	 * to the same memory controller, we'll lump them all together.
743 	 */
744 	if (multi_bus) {
745 		return list_first_entry_or_null(&sbridge_edac_list,
746 				struct sbridge_dev, list);
747 	}
748 
749 	sbridge_dev = list_entry(prev ? prev->list.next
750 				      : sbridge_edac_list.next, struct sbridge_dev, list);
751 
752 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
753 		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
754 				(dom == SOCK || dom == sbridge_dev->dom))
755 			return sbridge_dev;
756 	}
757 
758 	return NULL;
759 }
760 
761 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
762 					     const struct pci_id_table *table)
763 {
764 	struct sbridge_dev *sbridge_dev;
765 
766 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
767 	if (!sbridge_dev)
768 		return NULL;
769 
770 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
771 				    sizeof(*sbridge_dev->pdev),
772 				    GFP_KERNEL);
773 	if (!sbridge_dev->pdev) {
774 		kfree(sbridge_dev);
775 		return NULL;
776 	}
777 
778 	sbridge_dev->seg = seg;
779 	sbridge_dev->bus = bus;
780 	sbridge_dev->dom = dom;
781 	sbridge_dev->n_devs = table->n_devs_per_imc;
782 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
783 
784 	return sbridge_dev;
785 }
786 
787 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
788 {
789 	list_del(&sbridge_dev->list);
790 	kfree(sbridge_dev->pdev);
791 	kfree(sbridge_dev);
792 }
793 
794 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
795 {
796 	u32 reg;
797 
798 	/* Address range is 32:28 */
799 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
800 	return GET_TOLM(reg);
801 }
802 
803 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
804 {
805 	u32 reg;
806 
807 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
808 	return GET_TOHM(reg);
809 }
810 
811 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
812 {
813 	u32 reg;
814 
815 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
816 
817 	return GET_TOLM(reg);
818 }
819 
820 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
821 {
822 	u32 reg;
823 
824 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
825 
826 	return GET_TOHM(reg);
827 }
828 
829 static u64 rir_limit(u32 reg)
830 {
831 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
832 }
833 
834 static u64 sad_limit(u32 reg)
835 {
836 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
837 }
838 
839 static u32 interleave_mode(u32 reg)
840 {
841 	return GET_BITFIELD(reg, 1, 1);
842 }
843 
844 static u32 dram_attr(u32 reg)
845 {
846 	return GET_BITFIELD(reg, 2, 3);
847 }
848 
849 static u64 knl_sad_limit(u32 reg)
850 {
851 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
852 }
853 
854 static u32 knl_interleave_mode(u32 reg)
855 {
856 	return GET_BITFIELD(reg, 1, 2);
857 }
858 
859 static const char * const knl_intlv_mode[] = {
860 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
861 };
862 
863 static const char *get_intlv_mode_str(u32 reg, enum type t)
864 {
865 	if (t == KNIGHTS_LANDING)
866 		return knl_intlv_mode[knl_interleave_mode(reg)];
867 	else
868 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
869 }
870 
871 static u32 dram_attr_knl(u32 reg)
872 {
873 	return GET_BITFIELD(reg, 3, 4);
874 }
875 
876 
877 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
878 {
879 	u32 reg;
880 	enum mem_type mtype;
881 
882 	if (pvt->pci_ddrio) {
883 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
884 				      &reg);
885 		if (GET_BITFIELD(reg, 11, 11))
886 			/* FIXME: Can also be LRDIMM */
887 			mtype = MEM_RDDR3;
888 		else
889 			mtype = MEM_DDR3;
890 	} else
891 		mtype = MEM_UNKNOWN;
892 
893 	return mtype;
894 }
895 
896 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
897 {
898 	u32 reg;
899 	bool registered = false;
900 	enum mem_type mtype = MEM_UNKNOWN;
901 
902 	if (!pvt->pci_ddrio)
903 		goto out;
904 
905 	pci_read_config_dword(pvt->pci_ddrio,
906 			      HASWELL_DDRCRCLKCONTROLS, &reg);
907 	/* Is_Rdimm */
908 	if (GET_BITFIELD(reg, 16, 16))
909 		registered = true;
910 
911 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
912 	if (GET_BITFIELD(reg, 14, 14)) {
913 		if (registered)
914 			mtype = MEM_RDDR4;
915 		else
916 			mtype = MEM_DDR4;
917 	} else {
918 		if (registered)
919 			mtype = MEM_RDDR3;
920 		else
921 			mtype = MEM_DDR3;
922 	}
923 
924 out:
925 	return mtype;
926 }
927 
928 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
929 {
930 	/* for KNL value is fixed */
931 	return DEV_X16;
932 }
933 
934 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
935 {
936 	/* there's no way to figure out */
937 	return DEV_UNKNOWN;
938 }
939 
940 static enum dev_type __ibridge_get_width(u32 mtr)
941 {
942 	enum dev_type type = DEV_UNKNOWN;
943 
944 	switch (mtr) {
945 	case 2:
946 		type = DEV_X16;
947 		break;
948 	case 1:
949 		type = DEV_X8;
950 		break;
951 	case 0:
952 		type = DEV_X4;
953 		break;
954 	}
955 
956 	return type;
957 }
958 
959 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
960 {
961 	/*
962 	 * ddr3_width on the documentation but also valid for DDR4 on
963 	 * Haswell
964 	 */
965 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
966 }
967 
968 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
969 {
970 	/* ddr3_width on the documentation but also valid for DDR4 */
971 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
972 }
973 
974 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
975 {
976 	/* DDR4 RDIMMS and LRDIMMS are supported */
977 	return MEM_RDDR4;
978 }
979 
980 static u8 get_node_id(struct sbridge_pvt *pvt)
981 {
982 	u32 reg;
983 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
984 	return GET_BITFIELD(reg, 0, 2);
985 }
986 
987 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
988 {
989 	u32 reg;
990 
991 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
992 	return GET_BITFIELD(reg, 0, 3);
993 }
994 
995 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
996 {
997 	u32 reg;
998 
999 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1000 	return GET_BITFIELD(reg, 0, 2);
1001 }
1002 
1003 /*
1004  * Use the reporting bank number to determine which memory
1005  * controller (also known as "ha" for "home agent"). Sandy
1006  * Bridge only has one memory controller per socket, so the
1007  * answer is always zero.
1008  */
1009 static u8 sbridge_get_ha(u8 bank)
1010 {
1011 	return 0;
1012 }
1013 
1014 /*
1015  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1016  * home agent bank (7, 8), or one of the per-channel memory
1017  * controller banks (9 .. 16).
1018  */
1019 static u8 ibridge_get_ha(u8 bank)
1020 {
1021 	switch (bank) {
1022 	case 7 ... 8:
1023 		return bank - 7;
1024 	case 9 ... 16:
1025 		return (bank - 9) / 4;
1026 	default:
1027 		return 0xff;
1028 	}
1029 }
1030 
1031 /* Not used, but included for safety/symmetry */
1032 static u8 knl_get_ha(u8 bank)
1033 {
1034 	return 0xff;
1035 }
1036 
1037 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1038 {
1039 	u32 reg;
1040 
1041 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1042 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1043 }
1044 
1045 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1046 {
1047 	u64 rc;
1048 	u32 reg;
1049 
1050 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1051 	rc = GET_BITFIELD(reg, 26, 31);
1052 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1053 	rc = ((reg << 6) | rc) << 26;
1054 
1055 	return rc | 0x3ffffff;
1056 }
1057 
1058 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1059 {
1060 	u32 reg;
1061 
1062 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1063 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1064 }
1065 
1066 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1067 {
1068 	u64 rc;
1069 	u32 reg_lo, reg_hi;
1070 
1071 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1072 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1073 	rc = ((u64)reg_hi << 32) | reg_lo;
1074 	return rc | 0x3ffffff;
1075 }
1076 
1077 
1078 static u64 haswell_rir_limit(u32 reg)
1079 {
1080 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1081 }
1082 
1083 static inline u8 sad_pkg_socket(u8 pkg)
1084 {
1085 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1086 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1087 }
1088 
1089 static inline u8 sad_pkg_ha(u8 pkg)
1090 {
1091 	return (pkg >> 2) & 0x1;
1092 }
1093 
1094 static int haswell_chan_hash(int idx, u64 addr)
1095 {
1096 	int i;
1097 
1098 	/*
1099 	 * XOR even bits from 12:26 to bit0 of idx,
1100 	 *     odd bits from 13:27 to bit1
1101 	 */
1102 	for (i = 12; i < 28; i += 2)
1103 		idx ^= (addr >> i) & 3;
1104 
1105 	return idx;
1106 }
1107 
1108 /* Low bits of TAD limit, and some metadata. */
1109 static const u32 knl_tad_dram_limit_lo[] = {
1110 	0x400, 0x500, 0x600, 0x700,
1111 	0x800, 0x900, 0xa00, 0xb00,
1112 };
1113 
1114 /* Low bits of TAD offset. */
1115 static const u32 knl_tad_dram_offset_lo[] = {
1116 	0x404, 0x504, 0x604, 0x704,
1117 	0x804, 0x904, 0xa04, 0xb04,
1118 };
1119 
1120 /* High 16 bits of TAD limit and offset. */
1121 static const u32 knl_tad_dram_hi[] = {
1122 	0x408, 0x508, 0x608, 0x708,
1123 	0x808, 0x908, 0xa08, 0xb08,
1124 };
1125 
1126 /* Number of ways a tad entry is interleaved. */
1127 static const u32 knl_tad_ways[] = {
1128 	8, 6, 4, 3, 2, 1,
1129 };
1130 
1131 /*
1132  * Retrieve the n'th Target Address Decode table entry
1133  * from the memory controller's TAD table.
1134  *
1135  * @pvt:	driver private data
1136  * @entry:	which entry you want to retrieve
1137  * @mc:		which memory controller (0 or 1)
1138  * @offset:	output tad range offset
1139  * @limit:	output address of first byte above tad range
1140  * @ways:	output number of interleave ways
1141  *
1142  * The offset value has curious semantics.  It's a sort of running total
1143  * of the sizes of all the memory regions that aren't mapped in this
1144  * tad table.
1145  */
1146 static int knl_get_tad(const struct sbridge_pvt *pvt,
1147 		const int entry,
1148 		const int mc,
1149 		u64 *offset,
1150 		u64 *limit,
1151 		int *ways)
1152 {
1153 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1154 	struct pci_dev *pci_mc;
1155 	int way_id;
1156 
1157 	switch (mc) {
1158 	case 0:
1159 		pci_mc = pvt->knl.pci_mc0;
1160 		break;
1161 	case 1:
1162 		pci_mc = pvt->knl.pci_mc1;
1163 		break;
1164 	default:
1165 		WARN_ON(1);
1166 		return -EINVAL;
1167 	}
1168 
1169 	pci_read_config_dword(pci_mc,
1170 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1171 	pci_read_config_dword(pci_mc,
1172 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1173 	pci_read_config_dword(pci_mc,
1174 			knl_tad_dram_hi[entry], &reg_hi);
1175 
1176 	/* Is this TAD entry enabled? */
1177 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1178 		return -ENODEV;
1179 
1180 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1181 
1182 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1183 		*ways = knl_tad_ways[way_id];
1184 	} else {
1185 		*ways = 0;
1186 		sbridge_printk(KERN_ERR,
1187 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1188 				way_id);
1189 		return -ENODEV;
1190 	}
1191 
1192 	/*
1193 	 * The least significant 6 bits of base and limit are truncated.
1194 	 * For limit, we fill the missing bits with 1s.
1195 	 */
1196 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1197 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1198 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1199 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1200 
1201 	return 0;
1202 }
1203 
1204 /* Determine which memory controller is responsible for a given channel. */
1205 static int knl_channel_mc(int channel)
1206 {
1207 	WARN_ON(channel < 0 || channel >= 6);
1208 
1209 	return channel < 3 ? 1 : 0;
1210 }
1211 
1212 /*
1213  * Get the Nth entry from EDC_ROUTE_TABLE register.
1214  * (This is the per-tile mapping of logical interleave targets to
1215  *  physical EDC modules.)
1216  *
1217  * entry 0: 0:2
1218  *       1: 3:5
1219  *       2: 6:8
1220  *       3: 9:11
1221  *       4: 12:14
1222  *       5: 15:17
1223  *       6: 18:20
1224  *       7: 21:23
1225  * reserved: 24:31
1226  */
1227 static u32 knl_get_edc_route(int entry, u32 reg)
1228 {
1229 	WARN_ON(entry >= KNL_MAX_EDCS);
1230 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1231 }
1232 
1233 /*
1234  * Get the Nth entry from MC_ROUTE_TABLE register.
1235  * (This is the per-tile mapping of logical interleave targets to
1236  *  physical DRAM channels modules.)
1237  *
1238  * entry 0: mc 0:2   channel 18:19
1239  *       1: mc 3:5   channel 20:21
1240  *       2: mc 6:8   channel 22:23
1241  *       3: mc 9:11  channel 24:25
1242  *       4: mc 12:14 channel 26:27
1243  *       5: mc 15:17 channel 28:29
1244  * reserved: 30:31
1245  *
1246  * Though we have 3 bits to identify the MC, we should only see
1247  * the values 0 or 1.
1248  */
1249 
1250 static u32 knl_get_mc_route(int entry, u32 reg)
1251 {
1252 	int mc, chan;
1253 
1254 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1255 
1256 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1257 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1258 
1259 	return knl_channel_remap(mc, chan);
1260 }
1261 
1262 /*
1263  * Render the EDC_ROUTE register in human-readable form.
1264  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1265  */
1266 static void knl_show_edc_route(u32 reg, char *s)
1267 {
1268 	int i;
1269 
1270 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1271 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1272 		s[i*2+1] = '-';
1273 	}
1274 
1275 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1276 }
1277 
1278 /*
1279  * Render the MC_ROUTE register in human-readable form.
1280  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1281  */
1282 static void knl_show_mc_route(u32 reg, char *s)
1283 {
1284 	int i;
1285 
1286 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1287 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1288 		s[i*2+1] = '-';
1289 	}
1290 
1291 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1292 }
1293 
1294 #define KNL_EDC_ROUTE 0xb8
1295 #define KNL_MC_ROUTE 0xb4
1296 
1297 /* Is this dram rule backed by regular DRAM in flat mode? */
1298 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1299 
1300 /* Is this dram rule cached? */
1301 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1302 
1303 /* Is this rule backed by edc ? */
1304 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1305 
1306 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1307 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1308 
1309 /* Is this rule mod3? */
1310 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1311 
1312 /*
1313  * Figure out how big our RAM modules are.
1314  *
1315  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1316  * have to figure this out from the SAD rules, interleave lists, route tables,
1317  * and TAD rules.
1318  *
1319  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1320  * inspect the TAD rules to figure out how large the SAD regions really are.
1321  *
1322  * When we know the real size of a SAD region and how many ways it's
1323  * interleaved, we know the individual contribution of each channel to
1324  * TAD is size/ways.
1325  *
1326  * Finally, we have to check whether each channel participates in each SAD
1327  * region.
1328  *
1329  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1330  * much memory the channel uses, we know the DIMM is at least that large.
1331  * (The BIOS might possibly choose not to map all available memory, in which
1332  * case we will underreport the size of the DIMM.)
1333  *
1334  * In theory, we could try to determine the EDC sizes as well, but that would
1335  * only work in flat mode, not in cache mode.
1336  *
1337  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1338  *            elements)
1339  */
1340 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1341 {
1342 	u64 sad_base, sad_limit = 0;
1343 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1344 	int sad_rule = 0;
1345 	int tad_rule = 0;
1346 	int intrlv_ways, tad_ways;
1347 	u32 first_pkg, pkg;
1348 	int i;
1349 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1350 	u32 dram_rule, interleave_reg;
1351 	u32 mc_route_reg[KNL_MAX_CHAS];
1352 	u32 edc_route_reg[KNL_MAX_CHAS];
1353 	int edram_only;
1354 	char edc_route_string[KNL_MAX_EDCS*2];
1355 	char mc_route_string[KNL_MAX_CHANNELS*2];
1356 	int cur_reg_start;
1357 	int mc;
1358 	int channel;
1359 	int participants[KNL_MAX_CHANNELS];
1360 
1361 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1362 		mc_sizes[i] = 0;
1363 
1364 	/* Read the EDC route table in each CHA. */
1365 	cur_reg_start = 0;
1366 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1367 		pci_read_config_dword(pvt->knl.pci_cha[i],
1368 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1369 
1370 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1371 			knl_show_edc_route(edc_route_reg[i-1],
1372 					edc_route_string);
1373 			if (cur_reg_start == i-1)
1374 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1375 					cur_reg_start, edc_route_string);
1376 			else
1377 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1378 					cur_reg_start, i-1, edc_route_string);
1379 			cur_reg_start = i;
1380 		}
1381 	}
1382 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1383 	if (cur_reg_start == i-1)
1384 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1385 			cur_reg_start, edc_route_string);
1386 	else
1387 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1388 			cur_reg_start, i-1, edc_route_string);
1389 
1390 	/* Read the MC route table in each CHA. */
1391 	cur_reg_start = 0;
1392 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1393 		pci_read_config_dword(pvt->knl.pci_cha[i],
1394 			KNL_MC_ROUTE, &mc_route_reg[i]);
1395 
1396 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1397 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1398 			if (cur_reg_start == i-1)
1399 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1400 					cur_reg_start, mc_route_string);
1401 			else
1402 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1403 					cur_reg_start, i-1, mc_route_string);
1404 			cur_reg_start = i;
1405 		}
1406 	}
1407 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1408 	if (cur_reg_start == i-1)
1409 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1410 			cur_reg_start, mc_route_string);
1411 	else
1412 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1413 			cur_reg_start, i-1, mc_route_string);
1414 
1415 	/* Process DRAM rules */
1416 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1417 		/* previous limit becomes the new base */
1418 		sad_base = sad_limit;
1419 
1420 		pci_read_config_dword(pvt->pci_sad0,
1421 			pvt->info.dram_rule[sad_rule], &dram_rule);
1422 
1423 		if (!DRAM_RULE_ENABLE(dram_rule))
1424 			break;
1425 
1426 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1427 
1428 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1429 
1430 		pci_read_config_dword(pvt->pci_sad0,
1431 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1432 
1433 		/*
1434 		 * Find out how many ways this dram rule is interleaved.
1435 		 * We stop when we see the first channel again.
1436 		 */
1437 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1438 						interleave_reg, 0);
1439 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1440 			pkg = sad_pkg(pvt->info.interleave_pkg,
1441 						interleave_reg, intrlv_ways);
1442 
1443 			if ((pkg & 0x8) == 0) {
1444 				/*
1445 				 * 0 bit means memory is non-local,
1446 				 * which KNL doesn't support
1447 				 */
1448 				edac_dbg(0, "Unexpected interleave target %d\n",
1449 					pkg);
1450 				return -1;
1451 			}
1452 
1453 			if (pkg == first_pkg)
1454 				break;
1455 		}
1456 		if (KNL_MOD3(dram_rule))
1457 			intrlv_ways *= 3;
1458 
1459 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1460 			sad_rule,
1461 			sad_base,
1462 			sad_limit,
1463 			intrlv_ways,
1464 			edram_only ? ", EDRAM" : "");
1465 
1466 		/*
1467 		 * Find out how big the SAD region really is by iterating
1468 		 * over TAD tables (SAD regions may contain holes).
1469 		 * Each memory controller might have a different TAD table, so
1470 		 * we have to look at both.
1471 		 *
1472 		 * Livespace is the memory that's mapped in this TAD table,
1473 		 * deadspace is the holes (this could be the MMIO hole, or it
1474 		 * could be memory that's mapped by the other TAD table but
1475 		 * not this one).
1476 		 */
1477 		for (mc = 0; mc < 2; mc++) {
1478 			sad_actual_size[mc] = 0;
1479 			tad_livespace = 0;
1480 			for (tad_rule = 0;
1481 					tad_rule < ARRAY_SIZE(
1482 						knl_tad_dram_limit_lo);
1483 					tad_rule++) {
1484 				if (knl_get_tad(pvt,
1485 						tad_rule,
1486 						mc,
1487 						&tad_deadspace,
1488 						&tad_limit,
1489 						&tad_ways))
1490 					break;
1491 
1492 				tad_size = (tad_limit+1) -
1493 					(tad_livespace + tad_deadspace);
1494 				tad_livespace += tad_size;
1495 				tad_base = (tad_limit+1) - tad_size;
1496 
1497 				if (tad_base < sad_base) {
1498 					if (tad_limit > sad_base)
1499 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1500 				} else if (tad_base < sad_limit) {
1501 					if (tad_limit+1 > sad_limit) {
1502 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1503 					} else {
1504 						/* TAD region is completely inside SAD region */
1505 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1506 							tad_rule, tad_base,
1507 							tad_limit, tad_size,
1508 							mc);
1509 						sad_actual_size[mc] += tad_size;
1510 					}
1511 				}
1512 			}
1513 		}
1514 
1515 		for (mc = 0; mc < 2; mc++) {
1516 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1517 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1518 		}
1519 
1520 		/* Ignore EDRAM rule */
1521 		if (edram_only)
1522 			continue;
1523 
1524 		/* Figure out which channels participate in interleave. */
1525 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1526 			participants[channel] = 0;
1527 
1528 		/* For each channel, does at least one CHA have
1529 		 * this channel mapped to the given target?
1530 		 */
1531 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1532 			int target;
1533 			int cha;
1534 
1535 			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1536 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1537 					if (knl_get_mc_route(target,
1538 						mc_route_reg[cha]) == channel
1539 						&& !participants[channel]) {
1540 						participants[channel] = 1;
1541 						break;
1542 					}
1543 				}
1544 			}
1545 		}
1546 
1547 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1548 			mc = knl_channel_mc(channel);
1549 			if (participants[channel]) {
1550 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1551 					channel,
1552 					sad_actual_size[mc]/intrlv_ways,
1553 					sad_rule);
1554 				mc_sizes[channel] +=
1555 					sad_actual_size[mc]/intrlv_ways;
1556 			}
1557 		}
1558 	}
1559 
1560 	return 0;
1561 }
1562 
1563 static void get_source_id(struct mem_ctl_info *mci)
1564 {
1565 	struct sbridge_pvt *pvt = mci->pvt_info;
1566 	u32 reg;
1567 
1568 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1569 	    pvt->info.type == KNIGHTS_LANDING)
1570 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1571 	else
1572 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1573 
1574 	if (pvt->info.type == KNIGHTS_LANDING)
1575 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1576 	else
1577 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1578 }
1579 
1580 static int __populate_dimms(struct mem_ctl_info *mci,
1581 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1582 			    enum edac_type mode)
1583 {
1584 	struct sbridge_pvt *pvt = mci->pvt_info;
1585 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1586 							 : NUM_CHANNELS;
1587 	unsigned int i, j, banks, ranks, rows, cols, npages;
1588 	struct dimm_info *dimm;
1589 	enum mem_type mtype;
1590 	u64 size;
1591 
1592 	mtype = pvt->info.get_memory_type(pvt);
1593 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1594 		edac_dbg(0, "Memory is registered\n");
1595 	else if (mtype == MEM_UNKNOWN)
1596 		edac_dbg(0, "Cannot determine memory type\n");
1597 	else
1598 		edac_dbg(0, "Memory is unregistered\n");
1599 
1600 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1601 		banks = 16;
1602 	else
1603 		banks = 8;
1604 
1605 	for (i = 0; i < channels; i++) {
1606 		u32 mtr;
1607 
1608 		int max_dimms_per_channel;
1609 
1610 		if (pvt->info.type == KNIGHTS_LANDING) {
1611 			max_dimms_per_channel = 1;
1612 			if (!pvt->knl.pci_channel[i])
1613 				continue;
1614 		} else {
1615 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1616 			if (!pvt->pci_tad[i])
1617 				continue;
1618 		}
1619 
1620 		for (j = 0; j < max_dimms_per_channel; j++) {
1621 			dimm = edac_get_dimm(mci, i, j, 0);
1622 			if (pvt->info.type == KNIGHTS_LANDING) {
1623 				pci_read_config_dword(pvt->knl.pci_channel[i],
1624 					knl_mtr_reg, &mtr);
1625 			} else {
1626 				pci_read_config_dword(pvt->pci_tad[i],
1627 					mtr_regs[j], &mtr);
1628 			}
1629 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1630 			if (IS_DIMM_PRESENT(mtr)) {
1631 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1632 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1633 						       pvt->sbridge_dev->source_id,
1634 						       pvt->sbridge_dev->dom, i);
1635 					return -ENODEV;
1636 				}
1637 				pvt->channel[i].dimms++;
1638 
1639 				ranks = numrank(pvt->info.type, mtr);
1640 
1641 				if (pvt->info.type == KNIGHTS_LANDING) {
1642 					/* For DDR4, this is fixed. */
1643 					cols = 1 << 10;
1644 					rows = knl_mc_sizes[i] /
1645 						((u64) cols * ranks * banks * 8);
1646 				} else {
1647 					rows = numrow(mtr);
1648 					cols = numcol(mtr);
1649 				}
1650 
1651 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1652 				npages = MiB_TO_PAGES(size);
1653 
1654 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1655 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1656 					 size, npages,
1657 					 banks, ranks, rows, cols);
1658 
1659 				dimm->nr_pages = npages;
1660 				dimm->grain = 32;
1661 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1662 				dimm->mtype = mtype;
1663 				dimm->edac_mode = mode;
1664 				snprintf(dimm->label, sizeof(dimm->label),
1665 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1666 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1667 			}
1668 		}
1669 	}
1670 
1671 	return 0;
1672 }
1673 
1674 static int get_dimm_config(struct mem_ctl_info *mci)
1675 {
1676 	struct sbridge_pvt *pvt = mci->pvt_info;
1677 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1678 	enum edac_type mode;
1679 	u32 reg;
1680 
1681 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1682 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1683 		 pvt->sbridge_dev->mc,
1684 		 pvt->sbridge_dev->node_id,
1685 		 pvt->sbridge_dev->source_id);
1686 
1687 	/* KNL doesn't support mirroring or lockstep,
1688 	 * and is always closed page
1689 	 */
1690 	if (pvt->info.type == KNIGHTS_LANDING) {
1691 		mode = EDAC_S4ECD4ED;
1692 		pvt->mirror_mode = NON_MIRRORING;
1693 		pvt->is_cur_addr_mirrored = false;
1694 
1695 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1696 			return -1;
1697 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1698 			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1699 			return -ENODEV;
1700 		}
1701 	} else {
1702 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1703 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1704 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1705 				return -ENODEV;
1706 			}
1707 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1708 			if (GET_BITFIELD(reg, 28, 28)) {
1709 				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1710 				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1711 				goto next;
1712 			}
1713 		}
1714 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1715 			edac_dbg(0, "Failed to read RASENABLES register\n");
1716 			return -ENODEV;
1717 		}
1718 		if (IS_MIRROR_ENABLED(reg)) {
1719 			pvt->mirror_mode = FULL_MIRRORING;
1720 			edac_dbg(0, "Full memory mirroring is enabled\n");
1721 		} else {
1722 			pvt->mirror_mode = NON_MIRRORING;
1723 			edac_dbg(0, "Memory mirroring is disabled\n");
1724 		}
1725 
1726 next:
1727 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1728 			edac_dbg(0, "Failed to read MCMTR register\n");
1729 			return -ENODEV;
1730 		}
1731 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1732 			edac_dbg(0, "Lockstep is enabled\n");
1733 			mode = EDAC_S8ECD8ED;
1734 			pvt->is_lockstep = true;
1735 		} else {
1736 			edac_dbg(0, "Lockstep is disabled\n");
1737 			mode = EDAC_S4ECD4ED;
1738 			pvt->is_lockstep = false;
1739 		}
1740 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1741 			edac_dbg(0, "address map is on closed page mode\n");
1742 			pvt->is_close_pg = true;
1743 		} else {
1744 			edac_dbg(0, "address map is on open page mode\n");
1745 			pvt->is_close_pg = false;
1746 		}
1747 	}
1748 
1749 	return __populate_dimms(mci, knl_mc_sizes, mode);
1750 }
1751 
1752 static void get_memory_layout(const struct mem_ctl_info *mci)
1753 {
1754 	struct sbridge_pvt *pvt = mci->pvt_info;
1755 	int i, j, k, n_sads, n_tads, sad_interl;
1756 	u32 reg;
1757 	u64 limit, prv = 0;
1758 	u64 tmp_mb;
1759 	u32 gb, mb;
1760 	u32 rir_way;
1761 
1762 	/*
1763 	 * Step 1) Get TOLM/TOHM ranges
1764 	 */
1765 
1766 	pvt->tolm = pvt->info.get_tolm(pvt);
1767 	tmp_mb = (1 + pvt->tolm) >> 20;
1768 
1769 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1770 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1771 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1772 
1773 	/* Address range is already 45:25 */
1774 	pvt->tohm = pvt->info.get_tohm(pvt);
1775 	tmp_mb = (1 + pvt->tohm) >> 20;
1776 
1777 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1778 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1779 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1780 
1781 	/*
1782 	 * Step 2) Get SAD range and SAD Interleave list
1783 	 * TAD registers contain the interleave wayness. However, it
1784 	 * seems simpler to just discover it indirectly, with the
1785 	 * algorithm bellow.
1786 	 */
1787 	prv = 0;
1788 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1789 		/* SAD_LIMIT Address range is 45:26 */
1790 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1791 				      &reg);
1792 		limit = pvt->info.sad_limit(reg);
1793 
1794 		if (!DRAM_RULE_ENABLE(reg))
1795 			continue;
1796 
1797 		if (limit <= prv)
1798 			break;
1799 
1800 		tmp_mb = (limit + 1) >> 20;
1801 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1802 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1803 			 n_sads,
1804 			 show_dram_attr(pvt->info.dram_attr(reg)),
1805 			 gb, (mb*1000)/1024,
1806 			 ((u64)tmp_mb) << 20L,
1807 			 get_intlv_mode_str(reg, pvt->info.type),
1808 			 reg);
1809 		prv = limit;
1810 
1811 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1812 				      &reg);
1813 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1814 		for (j = 0; j < 8; j++) {
1815 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1816 			if (j > 0 && sad_interl == pkg)
1817 				break;
1818 
1819 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1820 				 n_sads, j, pkg);
1821 		}
1822 	}
1823 
1824 	if (pvt->info.type == KNIGHTS_LANDING)
1825 		return;
1826 
1827 	/*
1828 	 * Step 3) Get TAD range
1829 	 */
1830 	prv = 0;
1831 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1832 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1833 		limit = TAD_LIMIT(reg);
1834 		if (limit <= prv)
1835 			break;
1836 		tmp_mb = (limit + 1) >> 20;
1837 
1838 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1839 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1840 			 n_tads, gb, (mb*1000)/1024,
1841 			 ((u64)tmp_mb) << 20L,
1842 			 (u32)(1 << TAD_SOCK(reg)),
1843 			 (u32)TAD_CH(reg) + 1,
1844 			 (u32)TAD_TGT0(reg),
1845 			 (u32)TAD_TGT1(reg),
1846 			 (u32)TAD_TGT2(reg),
1847 			 (u32)TAD_TGT3(reg),
1848 			 reg);
1849 		prv = limit;
1850 	}
1851 
1852 	/*
1853 	 * Step 4) Get TAD offsets, per each channel
1854 	 */
1855 	for (i = 0; i < NUM_CHANNELS; i++) {
1856 		if (!pvt->channel[i].dimms)
1857 			continue;
1858 		for (j = 0; j < n_tads; j++) {
1859 			pci_read_config_dword(pvt->pci_tad[i],
1860 					      tad_ch_nilv_offset[j],
1861 					      &reg);
1862 			tmp_mb = TAD_OFFSET(reg) >> 20;
1863 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1864 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1865 				 i, j,
1866 				 gb, (mb*1000)/1024,
1867 				 ((u64)tmp_mb) << 20L,
1868 				 reg);
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * Step 6) Get RIR Wayness/Limit, per each channel
1874 	 */
1875 	for (i = 0; i < NUM_CHANNELS; i++) {
1876 		if (!pvt->channel[i].dimms)
1877 			continue;
1878 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1879 			pci_read_config_dword(pvt->pci_tad[i],
1880 					      rir_way_limit[j],
1881 					      &reg);
1882 
1883 			if (!IS_RIR_VALID(reg))
1884 				continue;
1885 
1886 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1887 			rir_way = 1 << RIR_WAY(reg);
1888 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1889 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1890 				 i, j,
1891 				 gb, (mb*1000)/1024,
1892 				 ((u64)tmp_mb) << 20L,
1893 				 rir_way,
1894 				 reg);
1895 
1896 			for (k = 0; k < rir_way; k++) {
1897 				pci_read_config_dword(pvt->pci_tad[i],
1898 						      rir_offset[j][k],
1899 						      &reg);
1900 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1901 
1902 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1903 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1904 					 i, j, k,
1905 					 gb, (mb*1000)/1024,
1906 					 ((u64)tmp_mb) << 20L,
1907 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1908 					 reg);
1909 			}
1910 		}
1911 	}
1912 }
1913 
1914 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1915 {
1916 	struct sbridge_dev *sbridge_dev;
1917 
1918 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1919 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1920 			return sbridge_dev->mci;
1921 	}
1922 	return NULL;
1923 }
1924 
1925 static int get_memory_error_data(struct mem_ctl_info *mci,
1926 				 u64 addr,
1927 				 u8 *socket, u8 *ha,
1928 				 long *channel_mask,
1929 				 u8 *rank,
1930 				 char **area_type, char *msg)
1931 {
1932 	struct mem_ctl_info	*new_mci;
1933 	struct sbridge_pvt *pvt = mci->pvt_info;
1934 	struct pci_dev		*pci_ha;
1935 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1936 	int			sad_interl, idx, base_ch;
1937 	int			interleave_mode, shiftup = 0;
1938 	unsigned int		sad_interleave[MAX_INTERLEAVE];
1939 	u32			reg, dram_rule;
1940 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1941 	u32			tad_offset;
1942 	u32			rir_way;
1943 	u32			mb, gb;
1944 	u64			ch_addr, offset, limit = 0, prv = 0;
1945 
1946 
1947 	/*
1948 	 * Step 0) Check if the address is at special memory ranges
1949 	 * The check bellow is probably enough to fill all cases where
1950 	 * the error is not inside a memory, except for the legacy
1951 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1952 	 * memory controller would generate an error on that range.
1953 	 */
1954 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1955 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1956 		return -EINVAL;
1957 	}
1958 	if (addr >= (u64)pvt->tohm) {
1959 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1960 		return -EINVAL;
1961 	}
1962 
1963 	/*
1964 	 * Step 1) Get socket
1965 	 */
1966 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1967 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1968 				      &reg);
1969 
1970 		if (!DRAM_RULE_ENABLE(reg))
1971 			continue;
1972 
1973 		limit = pvt->info.sad_limit(reg);
1974 		if (limit <= prv) {
1975 			sprintf(msg, "Can't discover the memory socket");
1976 			return -EINVAL;
1977 		}
1978 		if  (addr <= limit)
1979 			break;
1980 		prv = limit;
1981 	}
1982 	if (n_sads == pvt->info.max_sad) {
1983 		sprintf(msg, "Can't discover the memory socket");
1984 		return -EINVAL;
1985 	}
1986 	dram_rule = reg;
1987 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1988 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1989 
1990 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1991 			      &reg);
1992 
1993 	if (pvt->info.type == SANDY_BRIDGE) {
1994 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1995 		for (sad_way = 0; sad_way < 8; sad_way++) {
1996 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1997 			if (sad_way > 0 && sad_interl == pkg)
1998 				break;
1999 			sad_interleave[sad_way] = pkg;
2000 			edac_dbg(0, "SAD interleave #%d: %d\n",
2001 				 sad_way, sad_interleave[sad_way]);
2002 		}
2003 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2004 			 pvt->sbridge_dev->mc,
2005 			 n_sads,
2006 			 addr,
2007 			 limit,
2008 			 sad_way + 7,
2009 			 !interleave_mode ? "" : "XOR[18:16]");
2010 		if (interleave_mode)
2011 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2012 		else
2013 			idx = (addr >> 6) & 7;
2014 		switch (sad_way) {
2015 		case 1:
2016 			idx = 0;
2017 			break;
2018 		case 2:
2019 			idx = idx & 1;
2020 			break;
2021 		case 4:
2022 			idx = idx & 3;
2023 			break;
2024 		case 8:
2025 			break;
2026 		default:
2027 			sprintf(msg, "Can't discover socket interleave");
2028 			return -EINVAL;
2029 		}
2030 		*socket = sad_interleave[idx];
2031 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2032 			 idx, sad_way, *socket);
2033 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2034 		int bits, a7mode = A7MODE(dram_rule);
2035 
2036 		if (a7mode) {
2037 			/* A7 mode swaps P9 with P6 */
2038 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2039 			bits |= GET_BITFIELD(addr, 9, 9);
2040 		} else
2041 			bits = GET_BITFIELD(addr, 6, 8);
2042 
2043 		if (interleave_mode == 0) {
2044 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2045 			idx = GET_BITFIELD(addr, 16, 18);
2046 			idx ^= bits;
2047 		} else
2048 			idx = bits;
2049 
2050 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2051 		*socket = sad_pkg_socket(pkg);
2052 		sad_ha = sad_pkg_ha(pkg);
2053 
2054 		if (a7mode) {
2055 			/* MCChanShiftUpEnable */
2056 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2057 			shiftup = GET_BITFIELD(reg, 22, 22);
2058 		}
2059 
2060 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2061 			 idx, *socket, sad_ha, shiftup);
2062 	} else {
2063 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2064 		idx = (addr >> 6) & 7;
2065 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2066 		*socket = sad_pkg_socket(pkg);
2067 		sad_ha = sad_pkg_ha(pkg);
2068 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2069 			 idx, *socket, sad_ha);
2070 	}
2071 
2072 	*ha = sad_ha;
2073 
2074 	/*
2075 	 * Move to the proper node structure, in order to access the
2076 	 * right PCI registers
2077 	 */
2078 	new_mci = get_mci_for_node_id(*socket, sad_ha);
2079 	if (!new_mci) {
2080 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2081 			*socket);
2082 		return -EINVAL;
2083 	}
2084 	mci = new_mci;
2085 	pvt = mci->pvt_info;
2086 
2087 	/*
2088 	 * Step 2) Get memory channel
2089 	 */
2090 	prv = 0;
2091 	pci_ha = pvt->pci_ha;
2092 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2093 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2094 		limit = TAD_LIMIT(reg);
2095 		if (limit <= prv) {
2096 			sprintf(msg, "Can't discover the memory channel");
2097 			return -EINVAL;
2098 		}
2099 		if  (addr <= limit)
2100 			break;
2101 		prv = limit;
2102 	}
2103 	if (n_tads == MAX_TAD) {
2104 		sprintf(msg, "Can't discover the memory channel");
2105 		return -EINVAL;
2106 	}
2107 
2108 	ch_way = TAD_CH(reg) + 1;
2109 	sck_way = TAD_SOCK(reg);
2110 
2111 	if (ch_way == 3)
2112 		idx = addr >> 6;
2113 	else {
2114 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2115 		if (pvt->is_chan_hash)
2116 			idx = haswell_chan_hash(idx, addr);
2117 	}
2118 	idx = idx % ch_way;
2119 
2120 	/*
2121 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2122 	 */
2123 	switch (idx) {
2124 	case 0:
2125 		base_ch = TAD_TGT0(reg);
2126 		break;
2127 	case 1:
2128 		base_ch = TAD_TGT1(reg);
2129 		break;
2130 	case 2:
2131 		base_ch = TAD_TGT2(reg);
2132 		break;
2133 	case 3:
2134 		base_ch = TAD_TGT3(reg);
2135 		break;
2136 	default:
2137 		sprintf(msg, "Can't discover the TAD target");
2138 		return -EINVAL;
2139 	}
2140 	*channel_mask = 1 << base_ch;
2141 
2142 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2143 
2144 	if (pvt->mirror_mode == FULL_MIRRORING ||
2145 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2146 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2147 		switch(ch_way) {
2148 		case 2:
2149 		case 4:
2150 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2151 			break;
2152 		default:
2153 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2154 			return -EINVAL;
2155 		}
2156 
2157 		pvt->is_cur_addr_mirrored = true;
2158 	} else {
2159 		sck_xch = (1 << sck_way) * ch_way;
2160 		pvt->is_cur_addr_mirrored = false;
2161 	}
2162 
2163 	if (pvt->is_lockstep)
2164 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2165 
2166 	offset = TAD_OFFSET(tad_offset);
2167 
2168 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2169 		 n_tads,
2170 		 addr,
2171 		 limit,
2172 		 sck_way,
2173 		 ch_way,
2174 		 offset,
2175 		 idx,
2176 		 base_ch,
2177 		 *channel_mask);
2178 
2179 	/* Calculate channel address */
2180 	/* Remove the TAD offset */
2181 
2182 	if (offset > addr) {
2183 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2184 			offset, addr);
2185 		return -EINVAL;
2186 	}
2187 
2188 	ch_addr = addr - offset;
2189 	ch_addr >>= (6 + shiftup);
2190 	ch_addr /= sck_xch;
2191 	ch_addr <<= (6 + shiftup);
2192 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2193 
2194 	/*
2195 	 * Step 3) Decode rank
2196 	 */
2197 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2198 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2199 
2200 		if (!IS_RIR_VALID(reg))
2201 			continue;
2202 
2203 		limit = pvt->info.rir_limit(reg);
2204 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2205 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2206 			 n_rir,
2207 			 gb, (mb*1000)/1024,
2208 			 limit,
2209 			 1 << RIR_WAY(reg));
2210 		if  (ch_addr <= limit)
2211 			break;
2212 	}
2213 	if (n_rir == MAX_RIR_RANGES) {
2214 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2215 			ch_addr);
2216 		return -EINVAL;
2217 	}
2218 	rir_way = RIR_WAY(reg);
2219 
2220 	if (pvt->is_close_pg)
2221 		idx = (ch_addr >> 6);
2222 	else
2223 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2224 	idx %= 1 << rir_way;
2225 
2226 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2227 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2228 
2229 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2230 		 n_rir,
2231 		 ch_addr,
2232 		 limit,
2233 		 rir_way,
2234 		 idx);
2235 
2236 	return 0;
2237 }
2238 
2239 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2240 					  const struct mce *m, u8 *socket,
2241 					  u8 *ha, long *channel_mask,
2242 					  char *msg)
2243 {
2244 	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2245 	struct mem_ctl_info *new_mci;
2246 	struct sbridge_pvt *pvt;
2247 	struct pci_dev *pci_ha;
2248 	bool tad0;
2249 
2250 	if (channel >= NUM_CHANNELS) {
2251 		sprintf(msg, "Invalid channel 0x%x", channel);
2252 		return -EINVAL;
2253 	}
2254 
2255 	pvt = mci->pvt_info;
2256 	if (!pvt->info.get_ha) {
2257 		sprintf(msg, "No get_ha()");
2258 		return -EINVAL;
2259 	}
2260 	*ha = pvt->info.get_ha(m->bank);
2261 	if (*ha != 0 && *ha != 1) {
2262 		sprintf(msg, "Impossible bank %d", m->bank);
2263 		return -EINVAL;
2264 	}
2265 
2266 	*socket = m->socketid;
2267 	new_mci = get_mci_for_node_id(*socket, *ha);
2268 	if (!new_mci) {
2269 		strcpy(msg, "mci socket got corrupted!");
2270 		return -EINVAL;
2271 	}
2272 
2273 	pvt = new_mci->pvt_info;
2274 	pci_ha = pvt->pci_ha;
2275 	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2276 	tad0 = m->addr <= TAD_LIMIT(reg);
2277 
2278 	*channel_mask = 1 << channel;
2279 	if (pvt->mirror_mode == FULL_MIRRORING ||
2280 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2281 		*channel_mask |= 1 << ((channel + 2) % 4);
2282 		pvt->is_cur_addr_mirrored = true;
2283 	} else {
2284 		pvt->is_cur_addr_mirrored = false;
2285 	}
2286 
2287 	if (pvt->is_lockstep)
2288 		*channel_mask |= 1 << ((channel + 1) % 4);
2289 
2290 	return 0;
2291 }
2292 
2293 /****************************************************************************
2294 	Device initialization routines: put/get, init/exit
2295  ****************************************************************************/
2296 
2297 /*
2298  *	sbridge_put_all_devices	'put' all the devices that we have
2299  *				reserved via 'get'
2300  */
2301 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2302 {
2303 	int i;
2304 
2305 	edac_dbg(0, "\n");
2306 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2307 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2308 		if (!pdev)
2309 			continue;
2310 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2311 			 pdev->bus->number,
2312 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2313 		pci_dev_put(pdev);
2314 	}
2315 }
2316 
2317 static void sbridge_put_all_devices(void)
2318 {
2319 	struct sbridge_dev *sbridge_dev, *tmp;
2320 
2321 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2322 		sbridge_put_devices(sbridge_dev);
2323 		free_sbridge_dev(sbridge_dev);
2324 	}
2325 }
2326 
2327 static int sbridge_get_onedevice(struct pci_dev **prev,
2328 				 u8 *num_mc,
2329 				 const struct pci_id_table *table,
2330 				 const unsigned devno,
2331 				 const int multi_bus)
2332 {
2333 	struct sbridge_dev *sbridge_dev = NULL;
2334 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2335 	struct pci_dev *pdev = NULL;
2336 	int seg = 0;
2337 	u8 bus = 0;
2338 	int i = 0;
2339 
2340 	sbridge_printk(KERN_DEBUG,
2341 		"Seeking for: PCI ID %04x:%04x\n",
2342 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2343 
2344 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2345 			      dev_descr->dev_id, *prev);
2346 
2347 	if (!pdev) {
2348 		if (*prev) {
2349 			*prev = pdev;
2350 			return 0;
2351 		}
2352 
2353 		if (dev_descr->optional)
2354 			return 0;
2355 
2356 		/* if the HA wasn't found */
2357 		if (devno == 0)
2358 			return -ENODEV;
2359 
2360 		sbridge_printk(KERN_INFO,
2361 			"Device not found: %04x:%04x\n",
2362 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2363 
2364 		/* End of list, leave */
2365 		return -ENODEV;
2366 	}
2367 	seg = pci_domain_nr(pdev->bus);
2368 	bus = pdev->bus->number;
2369 
2370 next_imc:
2371 	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2372 				      multi_bus, sbridge_dev);
2373 	if (!sbridge_dev) {
2374 		/* If the HA1 wasn't found, don't create EDAC second memory controller */
2375 		if (dev_descr->dom == IMC1 && devno != 1) {
2376 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2377 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2378 			pci_dev_put(pdev);
2379 			return 0;
2380 		}
2381 
2382 		if (dev_descr->dom == SOCK)
2383 			goto out_imc;
2384 
2385 		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2386 		if (!sbridge_dev) {
2387 			pci_dev_put(pdev);
2388 			return -ENOMEM;
2389 		}
2390 		(*num_mc)++;
2391 	}
2392 
2393 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2394 		sbridge_printk(KERN_ERR,
2395 			"Duplicated device for %04x:%04x\n",
2396 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2397 		pci_dev_put(pdev);
2398 		return -ENODEV;
2399 	}
2400 
2401 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2402 
2403 	/* pdev belongs to more than one IMC, do extra gets */
2404 	if (++i > 1)
2405 		pci_dev_get(pdev);
2406 
2407 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2408 		goto next_imc;
2409 
2410 out_imc:
2411 	/* Be sure that the device is enabled */
2412 	if (unlikely(pci_enable_device(pdev) < 0)) {
2413 		sbridge_printk(KERN_ERR,
2414 			"Couldn't enable %04x:%04x\n",
2415 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2416 		return -ENODEV;
2417 	}
2418 
2419 	edac_dbg(0, "Detected %04x:%04x\n",
2420 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2421 
2422 	/*
2423 	 * As stated on drivers/pci/search.c, the reference count for
2424 	 * @from is always decremented if it is not %NULL. So, as we need
2425 	 * to get all devices up to null, we need to do a get for the device
2426 	 */
2427 	pci_dev_get(pdev);
2428 
2429 	*prev = pdev;
2430 
2431 	return 0;
2432 }
2433 
2434 /*
2435  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2436  *			     devices we want to reference for this driver.
2437  * @num_mc: pointer to the memory controllers count, to be incremented in case
2438  *	    of success.
2439  * @table: model specific table
2440  *
2441  * returns 0 in case of success or error code
2442  */
2443 static int sbridge_get_all_devices(u8 *num_mc,
2444 					const struct pci_id_table *table)
2445 {
2446 	int i, rc;
2447 	struct pci_dev *pdev = NULL;
2448 	int allow_dups = 0;
2449 	int multi_bus = 0;
2450 
2451 	if (table->type == KNIGHTS_LANDING)
2452 		allow_dups = multi_bus = 1;
2453 	while (table && table->descr) {
2454 		for (i = 0; i < table->n_devs_per_sock; i++) {
2455 			if (!allow_dups || i == 0 ||
2456 					table->descr[i].dev_id !=
2457 						table->descr[i-1].dev_id) {
2458 				pdev = NULL;
2459 			}
2460 			do {
2461 				rc = sbridge_get_onedevice(&pdev, num_mc,
2462 							   table, i, multi_bus);
2463 				if (rc < 0) {
2464 					if (i == 0) {
2465 						i = table->n_devs_per_sock;
2466 						break;
2467 					}
2468 					sbridge_put_all_devices();
2469 					return -ENODEV;
2470 				}
2471 			} while (pdev && !allow_dups);
2472 		}
2473 		table++;
2474 	}
2475 
2476 	return 0;
2477 }
2478 
2479 /*
2480  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2481  * the format: XXXa. So we can convert from a device to the corresponding
2482  * channel like this
2483  */
2484 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2485 
2486 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2487 				 struct sbridge_dev *sbridge_dev)
2488 {
2489 	struct sbridge_pvt *pvt = mci->pvt_info;
2490 	struct pci_dev *pdev;
2491 	u8 saw_chan_mask = 0;
2492 	int i;
2493 
2494 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2495 		pdev = sbridge_dev->pdev[i];
2496 		if (!pdev)
2497 			continue;
2498 
2499 		switch (pdev->device) {
2500 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2501 			pvt->pci_sad0 = pdev;
2502 			break;
2503 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2504 			pvt->pci_sad1 = pdev;
2505 			break;
2506 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2507 			pvt->pci_br0 = pdev;
2508 			break;
2509 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2510 			pvt->pci_ha = pdev;
2511 			break;
2512 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2513 			pvt->pci_ta = pdev;
2514 			break;
2515 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2516 			pvt->pci_ras = pdev;
2517 			break;
2518 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2519 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2520 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2521 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2522 		{
2523 			int id = TAD_DEV_TO_CHAN(pdev->device);
2524 			pvt->pci_tad[id] = pdev;
2525 			saw_chan_mask |= 1 << id;
2526 		}
2527 			break;
2528 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2529 			pvt->pci_ddrio = pdev;
2530 			break;
2531 		default:
2532 			goto error;
2533 		}
2534 
2535 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2536 			 pdev->vendor, pdev->device,
2537 			 sbridge_dev->bus,
2538 			 pdev);
2539 	}
2540 
2541 	/* Check if everything were registered */
2542 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2543 	    !pvt->pci_ras || !pvt->pci_ta)
2544 		goto enodev;
2545 
2546 	if (saw_chan_mask != 0x0f)
2547 		goto enodev;
2548 	return 0;
2549 
2550 enodev:
2551 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2552 	return -ENODEV;
2553 
2554 error:
2555 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2556 		       PCI_VENDOR_ID_INTEL, pdev->device);
2557 	return -EINVAL;
2558 }
2559 
2560 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2561 				 struct sbridge_dev *sbridge_dev)
2562 {
2563 	struct sbridge_pvt *pvt = mci->pvt_info;
2564 	struct pci_dev *pdev;
2565 	u8 saw_chan_mask = 0;
2566 	int i;
2567 
2568 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2569 		pdev = sbridge_dev->pdev[i];
2570 		if (!pdev)
2571 			continue;
2572 
2573 		switch (pdev->device) {
2574 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2575 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2576 			pvt->pci_ha = pdev;
2577 			break;
2578 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2579 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2580 			pvt->pci_ta = pdev;
2581 			break;
2582 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2583 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2584 			pvt->pci_ras = pdev;
2585 			break;
2586 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2587 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2588 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2589 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2590 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2591 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2592 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2593 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2594 		{
2595 			int id = TAD_DEV_TO_CHAN(pdev->device);
2596 			pvt->pci_tad[id] = pdev;
2597 			saw_chan_mask |= 1 << id;
2598 		}
2599 			break;
2600 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2601 			pvt->pci_ddrio = pdev;
2602 			break;
2603 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2604 			pvt->pci_ddrio = pdev;
2605 			break;
2606 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2607 			pvt->pci_sad0 = pdev;
2608 			break;
2609 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2610 			pvt->pci_br0 = pdev;
2611 			break;
2612 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2613 			pvt->pci_br1 = pdev;
2614 			break;
2615 		default:
2616 			goto error;
2617 		}
2618 
2619 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2620 			 sbridge_dev->bus,
2621 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2622 			 pdev);
2623 	}
2624 
2625 	/* Check if everything were registered */
2626 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2627 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2628 		goto enodev;
2629 
2630 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2631 	    saw_chan_mask != 0x03)   /* -EP */
2632 		goto enodev;
2633 	return 0;
2634 
2635 enodev:
2636 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2637 	return -ENODEV;
2638 
2639 error:
2640 	sbridge_printk(KERN_ERR,
2641 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2642 			pdev->device);
2643 	return -EINVAL;
2644 }
2645 
2646 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2647 				 struct sbridge_dev *sbridge_dev)
2648 {
2649 	struct sbridge_pvt *pvt = mci->pvt_info;
2650 	struct pci_dev *pdev;
2651 	u8 saw_chan_mask = 0;
2652 	int i;
2653 
2654 	/* there's only one device per system; not tied to any bus */
2655 	if (pvt->info.pci_vtd == NULL)
2656 		/* result will be checked later */
2657 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2658 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2659 						   NULL);
2660 
2661 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2662 		pdev = sbridge_dev->pdev[i];
2663 		if (!pdev)
2664 			continue;
2665 
2666 		switch (pdev->device) {
2667 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2668 			pvt->pci_sad0 = pdev;
2669 			break;
2670 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2671 			pvt->pci_sad1 = pdev;
2672 			break;
2673 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2674 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2675 			pvt->pci_ha = pdev;
2676 			break;
2677 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2678 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2679 			pvt->pci_ta = pdev;
2680 			break;
2681 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2682 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2683 			pvt->pci_ras = pdev;
2684 			break;
2685 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2686 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2687 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2688 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2689 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2690 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2691 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2692 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2693 		{
2694 			int id = TAD_DEV_TO_CHAN(pdev->device);
2695 			pvt->pci_tad[id] = pdev;
2696 			saw_chan_mask |= 1 << id;
2697 		}
2698 			break;
2699 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2700 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2701 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2702 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2703 			if (!pvt->pci_ddrio)
2704 				pvt->pci_ddrio = pdev;
2705 			break;
2706 		default:
2707 			break;
2708 		}
2709 
2710 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2711 			 sbridge_dev->bus,
2712 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2713 			 pdev);
2714 	}
2715 
2716 	/* Check if everything were registered */
2717 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2718 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2719 		goto enodev;
2720 
2721 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2722 	    saw_chan_mask != 0x03)   /* -EP */
2723 		goto enodev;
2724 	return 0;
2725 
2726 enodev:
2727 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2728 	return -ENODEV;
2729 }
2730 
2731 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2732 				 struct sbridge_dev *sbridge_dev)
2733 {
2734 	struct sbridge_pvt *pvt = mci->pvt_info;
2735 	struct pci_dev *pdev;
2736 	u8 saw_chan_mask = 0;
2737 	int i;
2738 
2739 	/* there's only one device per system; not tied to any bus */
2740 	if (pvt->info.pci_vtd == NULL)
2741 		/* result will be checked later */
2742 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2743 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2744 						   NULL);
2745 
2746 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2747 		pdev = sbridge_dev->pdev[i];
2748 		if (!pdev)
2749 			continue;
2750 
2751 		switch (pdev->device) {
2752 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2753 			pvt->pci_sad0 = pdev;
2754 			break;
2755 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2756 			pvt->pci_sad1 = pdev;
2757 			break;
2758 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2759 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2760 			pvt->pci_ha = pdev;
2761 			break;
2762 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2763 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2764 			pvt->pci_ta = pdev;
2765 			break;
2766 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2767 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2768 			pvt->pci_ras = pdev;
2769 			break;
2770 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2771 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2772 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2773 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2774 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2775 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2776 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2777 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2778 		{
2779 			int id = TAD_DEV_TO_CHAN(pdev->device);
2780 			pvt->pci_tad[id] = pdev;
2781 			saw_chan_mask |= 1 << id;
2782 		}
2783 			break;
2784 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2785 			pvt->pci_ddrio = pdev;
2786 			break;
2787 		default:
2788 			break;
2789 		}
2790 
2791 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2792 			 sbridge_dev->bus,
2793 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2794 			 pdev);
2795 	}
2796 
2797 	/* Check if everything were registered */
2798 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2799 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2800 		goto enodev;
2801 
2802 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2803 	    saw_chan_mask != 0x03)   /* -EP */
2804 		goto enodev;
2805 	return 0;
2806 
2807 enodev:
2808 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2809 	return -ENODEV;
2810 }
2811 
2812 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2813 			struct sbridge_dev *sbridge_dev)
2814 {
2815 	struct sbridge_pvt *pvt = mci->pvt_info;
2816 	struct pci_dev *pdev;
2817 	int dev, func;
2818 
2819 	int i;
2820 	int devidx;
2821 
2822 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2823 		pdev = sbridge_dev->pdev[i];
2824 		if (!pdev)
2825 			continue;
2826 
2827 		/* Extract PCI device and function. */
2828 		dev = (pdev->devfn >> 3) & 0x1f;
2829 		func = pdev->devfn & 0x7;
2830 
2831 		switch (pdev->device) {
2832 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2833 			if (dev == 8)
2834 				pvt->knl.pci_mc0 = pdev;
2835 			else if (dev == 9)
2836 				pvt->knl.pci_mc1 = pdev;
2837 			else {
2838 				sbridge_printk(KERN_ERR,
2839 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2840 					dev, func);
2841 				continue;
2842 			}
2843 			break;
2844 
2845 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2846 			pvt->pci_sad0 = pdev;
2847 			break;
2848 
2849 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2850 			pvt->pci_sad1 = pdev;
2851 			break;
2852 
2853 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2854 			/* There are one of these per tile, and range from
2855 			 * 1.14.0 to 1.18.5.
2856 			 */
2857 			devidx = ((dev-14)*8)+func;
2858 
2859 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2860 				sbridge_printk(KERN_ERR,
2861 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2862 					dev, func);
2863 				continue;
2864 			}
2865 
2866 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2867 
2868 			pvt->knl.pci_cha[devidx] = pdev;
2869 			break;
2870 
2871 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2872 			devidx = -1;
2873 
2874 			/*
2875 			 *  MC0 channels 0-2 are device 9 function 2-4,
2876 			 *  MC1 channels 3-5 are device 8 function 2-4.
2877 			 */
2878 
2879 			if (dev == 9)
2880 				devidx = func-2;
2881 			else if (dev == 8)
2882 				devidx = 3 + (func-2);
2883 
2884 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2885 				sbridge_printk(KERN_ERR,
2886 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2887 					dev, func);
2888 				continue;
2889 			}
2890 
2891 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2892 			pvt->knl.pci_channel[devidx] = pdev;
2893 			break;
2894 
2895 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2896 			pvt->knl.pci_mc_info = pdev;
2897 			break;
2898 
2899 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2900 			pvt->pci_ta = pdev;
2901 			break;
2902 
2903 		default:
2904 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2905 				pdev->device);
2906 			break;
2907 		}
2908 	}
2909 
2910 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2911 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2912 	    !pvt->pci_ta) {
2913 		goto enodev;
2914 	}
2915 
2916 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2917 		if (!pvt->knl.pci_channel[i]) {
2918 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2919 			goto enodev;
2920 		}
2921 	}
2922 
2923 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2924 		if (!pvt->knl.pci_cha[i]) {
2925 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2926 			goto enodev;
2927 		}
2928 	}
2929 
2930 	return 0;
2931 
2932 enodev:
2933 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2934 	return -ENODEV;
2935 }
2936 
2937 /****************************************************************************
2938 			Error check routines
2939  ****************************************************************************/
2940 
2941 /*
2942  * While Sandy Bridge has error count registers, SMI BIOS read values from
2943  * and resets the counters. So, they are not reliable for the OS to read
2944  * from them. So, we have no option but to just trust on whatever MCE is
2945  * telling us about the errors.
2946  */
2947 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2948 				    const struct mce *m)
2949 {
2950 	struct mem_ctl_info *new_mci;
2951 	struct sbridge_pvt *pvt = mci->pvt_info;
2952 	enum hw_event_mc_err_type tp_event;
2953 	char *optype, msg[256];
2954 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2955 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2956 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2957 	bool recoverable;
2958 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2959 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2960 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2961 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2962 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2963 	/*
2964 	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2965 	 * A value 6 is for cache line aligned address, a value 12 is for page
2966 	 * aligned address reported by patrol scrubber.
2967 	 */
2968 	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2969 	long channel_mask, first_channel;
2970 	u8  rank = 0xff, socket, ha;
2971 	int rc, dimm;
2972 	char *area_type = "DRAM";
2973 
2974 	if (pvt->info.type != SANDY_BRIDGE)
2975 		recoverable = true;
2976 	else
2977 		recoverable = GET_BITFIELD(m->status, 56, 56);
2978 
2979 	if (uncorrected_error) {
2980 		core_err_cnt = 1;
2981 		if (ripv) {
2982 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2983 		} else {
2984 			tp_event = HW_EVENT_ERR_FATAL;
2985 		}
2986 	} else {
2987 		tp_event = HW_EVENT_ERR_CORRECTED;
2988 	}
2989 
2990 	/*
2991 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2992 	 * memory errors should fit in this mask:
2993 	 *	000f 0000 1mmm cccc (binary)
2994 	 * where:
2995 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2996 	 *	    won't be shown
2997 	 *	mmm = error type
2998 	 *	cccc = channel
2999 	 * If the mask doesn't match, report an error to the parsing logic
3000 	 */
3001 	switch (optypenum) {
3002 	case 0:
3003 		optype = "generic undef request error";
3004 		break;
3005 	case 1:
3006 		optype = "memory read error";
3007 		break;
3008 	case 2:
3009 		optype = "memory write error";
3010 		break;
3011 	case 3:
3012 		optype = "addr/cmd error";
3013 		break;
3014 	case 4:
3015 		optype = "memory scrubbing error";
3016 		break;
3017 	default:
3018 		optype = "reserved";
3019 		break;
3020 	}
3021 
3022 	if (pvt->info.type == KNIGHTS_LANDING) {
3023 		if (channel == 14) {
3024 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3025 				overflow ? " OVERFLOW" : "",
3026 				(uncorrected_error && recoverable)
3027 				? " recoverable" : "",
3028 				mscod, errcode,
3029 				m->bank);
3030 		} else {
3031 			char A = *("A");
3032 
3033 			/*
3034 			 * Reported channel is in range 0-2, so we can't map it
3035 			 * back to mc. To figure out mc we check machine check
3036 			 * bank register that reported this error.
3037 			 * bank15 means mc0 and bank16 means mc1.
3038 			 */
3039 			channel = knl_channel_remap(m->bank == 16, channel);
3040 			channel_mask = 1 << channel;
3041 
3042 			snprintf(msg, sizeof(msg),
3043 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3044 				overflow ? " OVERFLOW" : "",
3045 				(uncorrected_error && recoverable)
3046 				? " recoverable" : " ",
3047 				mscod, errcode, channel, A + channel);
3048 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3049 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3050 				channel, 0, -1,
3051 				optype, msg);
3052 		}
3053 		return;
3054 	} else if (lsb < 12) {
3055 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3056 					   &channel_mask, &rank,
3057 					   &area_type, msg);
3058 	} else {
3059 		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3060 						    &channel_mask, msg);
3061 	}
3062 
3063 	if (rc < 0)
3064 		goto err_parsing;
3065 	new_mci = get_mci_for_node_id(socket, ha);
3066 	if (!new_mci) {
3067 		strcpy(msg, "Error: socket got corrupted!");
3068 		goto err_parsing;
3069 	}
3070 	mci = new_mci;
3071 	pvt = mci->pvt_info;
3072 
3073 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3074 
3075 	if (rank == 0xff)
3076 		dimm = -1;
3077 	else if (rank < 4)
3078 		dimm = 0;
3079 	else if (rank < 8)
3080 		dimm = 1;
3081 	else
3082 		dimm = 2;
3083 
3084 	/*
3085 	 * FIXME: On some memory configurations (mirror, lockstep), the
3086 	 * Memory Controller can't point the error to a single DIMM. The
3087 	 * EDAC core should be handling the channel mask, in order to point
3088 	 * to the group of dimm's where the error may be happening.
3089 	 */
3090 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3091 		channel = first_channel;
3092 
3093 	snprintf(msg, sizeof(msg),
3094 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3095 		 overflow ? " OVERFLOW" : "",
3096 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3097 		 area_type,
3098 		 mscod, errcode,
3099 		 socket, ha,
3100 		 channel_mask,
3101 		 rank);
3102 
3103 	edac_dbg(0, "%s\n", msg);
3104 
3105 	/* FIXME: need support for channel mask */
3106 
3107 	if (channel == CHANNEL_UNSPECIFIED)
3108 		channel = -1;
3109 
3110 	/* Call the helper to output message */
3111 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3112 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3113 			     channel, dimm, -1,
3114 			     optype, msg);
3115 	return;
3116 err_parsing:
3117 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3118 			     -1, -1, -1,
3119 			     msg, "");
3120 
3121 }
3122 
3123 /*
3124  * Check that logging is enabled and that this is the right type
3125  * of error for us to handle.
3126  */
3127 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3128 				   void *data)
3129 {
3130 	struct mce *mce = (struct mce *)data;
3131 	struct mem_ctl_info *mci;
3132 	char *type;
3133 
3134 	if (mce->kflags & MCE_HANDLED_CEC)
3135 		return NOTIFY_DONE;
3136 
3137 	/*
3138 	 * Just let mcelog handle it if the error is
3139 	 * outside the memory controller. A memory error
3140 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3141 	 * bit 12 has an special meaning.
3142 	 */
3143 	if ((mce->status & 0xefff) >> 7 != 1)
3144 		return NOTIFY_DONE;
3145 
3146 	/* Check ADDRV bit in STATUS */
3147 	if (!GET_BITFIELD(mce->status, 58, 58))
3148 		return NOTIFY_DONE;
3149 
3150 	/* Check MISCV bit in STATUS */
3151 	if (!GET_BITFIELD(mce->status, 59, 59))
3152 		return NOTIFY_DONE;
3153 
3154 	/* Check address type in MISC (physical address only) */
3155 	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3156 		return NOTIFY_DONE;
3157 
3158 	mci = get_mci_for_node_id(mce->socketid, IMC0);
3159 	if (!mci)
3160 		return NOTIFY_DONE;
3161 
3162 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3163 		type = "Exception";
3164 	else
3165 		type = "Event";
3166 
3167 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3168 
3169 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3170 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3171 			  mce->mcgstatus, mce->bank, mce->status);
3172 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3173 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3174 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3175 
3176 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3177 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3178 			  mce->time, mce->socketid, mce->apicid);
3179 
3180 	sbridge_mce_output_error(mci, mce);
3181 
3182 	/* Advice mcelog that the error were handled */
3183 	mce->kflags |= MCE_HANDLED_EDAC;
3184 	return NOTIFY_OK;
3185 }
3186 
3187 static struct notifier_block sbridge_mce_dec = {
3188 	.notifier_call	= sbridge_mce_check_error,
3189 	.priority	= MCE_PRIO_EDAC,
3190 };
3191 
3192 /****************************************************************************
3193 			EDAC register/unregister logic
3194  ****************************************************************************/
3195 
3196 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3197 {
3198 	struct mem_ctl_info *mci = sbridge_dev->mci;
3199 
3200 	if (unlikely(!mci || !mci->pvt_info)) {
3201 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3202 
3203 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3204 		return;
3205 	}
3206 
3207 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3208 		 mci, &sbridge_dev->pdev[0]->dev);
3209 
3210 	/* Remove MC sysfs nodes */
3211 	edac_mc_del_mc(mci->pdev);
3212 
3213 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3214 	kfree(mci->ctl_name);
3215 	edac_mc_free(mci);
3216 	sbridge_dev->mci = NULL;
3217 }
3218 
3219 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3220 {
3221 	struct mem_ctl_info *mci;
3222 	struct edac_mc_layer layers[2];
3223 	struct sbridge_pvt *pvt;
3224 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3225 	int rc;
3226 
3227 	/* allocate a new MC control structure */
3228 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3229 	layers[0].size = type == KNIGHTS_LANDING ?
3230 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3231 	layers[0].is_virt_csrow = false;
3232 	layers[1].type = EDAC_MC_LAYER_SLOT;
3233 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3234 	layers[1].is_virt_csrow = true;
3235 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3236 			    sizeof(*pvt));
3237 
3238 	if (unlikely(!mci))
3239 		return -ENOMEM;
3240 
3241 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3242 		 mci, &pdev->dev);
3243 
3244 	pvt = mci->pvt_info;
3245 	memset(pvt, 0, sizeof(*pvt));
3246 
3247 	/* Associate sbridge_dev and mci for future usage */
3248 	pvt->sbridge_dev = sbridge_dev;
3249 	sbridge_dev->mci = mci;
3250 
3251 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3252 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3253 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3254 	mci->edac_cap = EDAC_FLAG_NONE;
3255 	mci->mod_name = EDAC_MOD_STR;
3256 	mci->dev_name = pci_name(pdev);
3257 	mci->ctl_page_to_phys = NULL;
3258 
3259 	pvt->info.type = type;
3260 	switch (type) {
3261 	case IVY_BRIDGE:
3262 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3263 		pvt->info.get_tolm = ibridge_get_tolm;
3264 		pvt->info.get_tohm = ibridge_get_tohm;
3265 		pvt->info.dram_rule = ibridge_dram_rule;
3266 		pvt->info.get_memory_type = get_memory_type;
3267 		pvt->info.get_node_id = get_node_id;
3268 		pvt->info.get_ha = ibridge_get_ha;
3269 		pvt->info.rir_limit = rir_limit;
3270 		pvt->info.sad_limit = sad_limit;
3271 		pvt->info.interleave_mode = interleave_mode;
3272 		pvt->info.dram_attr = dram_attr;
3273 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3274 		pvt->info.interleave_list = ibridge_interleave_list;
3275 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3276 		pvt->info.get_width = ibridge_get_width;
3277 
3278 		/* Store pci devices at mci for faster access */
3279 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3280 		if (unlikely(rc < 0))
3281 			goto fail0;
3282 		get_source_id(mci);
3283 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3284 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3285 		break;
3286 	case SANDY_BRIDGE:
3287 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3288 		pvt->info.get_tolm = sbridge_get_tolm;
3289 		pvt->info.get_tohm = sbridge_get_tohm;
3290 		pvt->info.dram_rule = sbridge_dram_rule;
3291 		pvt->info.get_memory_type = get_memory_type;
3292 		pvt->info.get_node_id = get_node_id;
3293 		pvt->info.get_ha = sbridge_get_ha;
3294 		pvt->info.rir_limit = rir_limit;
3295 		pvt->info.sad_limit = sad_limit;
3296 		pvt->info.interleave_mode = interleave_mode;
3297 		pvt->info.dram_attr = dram_attr;
3298 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3299 		pvt->info.interleave_list = sbridge_interleave_list;
3300 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3301 		pvt->info.get_width = sbridge_get_width;
3302 
3303 		/* Store pci devices at mci for faster access */
3304 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3305 		if (unlikely(rc < 0))
3306 			goto fail0;
3307 		get_source_id(mci);
3308 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3309 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3310 		break;
3311 	case HASWELL:
3312 		/* rankcfgr isn't used */
3313 		pvt->info.get_tolm = haswell_get_tolm;
3314 		pvt->info.get_tohm = haswell_get_tohm;
3315 		pvt->info.dram_rule = ibridge_dram_rule;
3316 		pvt->info.get_memory_type = haswell_get_memory_type;
3317 		pvt->info.get_node_id = haswell_get_node_id;
3318 		pvt->info.get_ha = ibridge_get_ha;
3319 		pvt->info.rir_limit = haswell_rir_limit;
3320 		pvt->info.sad_limit = sad_limit;
3321 		pvt->info.interleave_mode = interleave_mode;
3322 		pvt->info.dram_attr = dram_attr;
3323 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3324 		pvt->info.interleave_list = ibridge_interleave_list;
3325 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3326 		pvt->info.get_width = ibridge_get_width;
3327 
3328 		/* Store pci devices at mci for faster access */
3329 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3330 		if (unlikely(rc < 0))
3331 			goto fail0;
3332 		get_source_id(mci);
3333 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3334 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3335 		break;
3336 	case BROADWELL:
3337 		/* rankcfgr isn't used */
3338 		pvt->info.get_tolm = haswell_get_tolm;
3339 		pvt->info.get_tohm = haswell_get_tohm;
3340 		pvt->info.dram_rule = ibridge_dram_rule;
3341 		pvt->info.get_memory_type = haswell_get_memory_type;
3342 		pvt->info.get_node_id = haswell_get_node_id;
3343 		pvt->info.get_ha = ibridge_get_ha;
3344 		pvt->info.rir_limit = haswell_rir_limit;
3345 		pvt->info.sad_limit = sad_limit;
3346 		pvt->info.interleave_mode = interleave_mode;
3347 		pvt->info.dram_attr = dram_attr;
3348 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3349 		pvt->info.interleave_list = ibridge_interleave_list;
3350 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3351 		pvt->info.get_width = broadwell_get_width;
3352 
3353 		/* Store pci devices at mci for faster access */
3354 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3355 		if (unlikely(rc < 0))
3356 			goto fail0;
3357 		get_source_id(mci);
3358 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3359 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3360 		break;
3361 	case KNIGHTS_LANDING:
3362 		/* pvt->info.rankcfgr == ??? */
3363 		pvt->info.get_tolm = knl_get_tolm;
3364 		pvt->info.get_tohm = knl_get_tohm;
3365 		pvt->info.dram_rule = knl_dram_rule;
3366 		pvt->info.get_memory_type = knl_get_memory_type;
3367 		pvt->info.get_node_id = knl_get_node_id;
3368 		pvt->info.get_ha = knl_get_ha;
3369 		pvt->info.rir_limit = NULL;
3370 		pvt->info.sad_limit = knl_sad_limit;
3371 		pvt->info.interleave_mode = knl_interleave_mode;
3372 		pvt->info.dram_attr = dram_attr_knl;
3373 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3374 		pvt->info.interleave_list = knl_interleave_list;
3375 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3376 		pvt->info.get_width = knl_get_width;
3377 
3378 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3379 		if (unlikely(rc < 0))
3380 			goto fail0;
3381 		get_source_id(mci);
3382 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3383 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3384 		break;
3385 	}
3386 
3387 	if (!mci->ctl_name) {
3388 		rc = -ENOMEM;
3389 		goto fail0;
3390 	}
3391 
3392 	/* Get dimm basic config and the memory layout */
3393 	rc = get_dimm_config(mci);
3394 	if (rc < 0) {
3395 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3396 		goto fail;
3397 	}
3398 	get_memory_layout(mci);
3399 
3400 	/* record ptr to the generic device */
3401 	mci->pdev = &pdev->dev;
3402 
3403 	/* add this new MC control structure to EDAC's list of MCs */
3404 	if (unlikely(edac_mc_add_mc(mci))) {
3405 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3406 		rc = -EINVAL;
3407 		goto fail;
3408 	}
3409 
3410 	return 0;
3411 
3412 fail:
3413 	kfree(mci->ctl_name);
3414 fail0:
3415 	edac_mc_free(mci);
3416 	sbridge_dev->mci = NULL;
3417 	return rc;
3418 }
3419 
3420 static const struct x86_cpu_id sbridge_cpuids[] = {
3421 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
3422 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,	  &pci_dev_descr_ibridge_table),
3423 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,	  &pci_dev_descr_haswell_table),
3424 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,	  &pci_dev_descr_broadwell_table),
3425 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,	  &pci_dev_descr_broadwell_table),
3426 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
3427 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
3428 	{ }
3429 };
3430 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3431 
3432 /*
3433  *	sbridge_probe	Get all devices and register memory controllers
3434  *			present.
3435  *	return:
3436  *		0 for FOUND a device
3437  *		< 0 for error code
3438  */
3439 
3440 static int sbridge_probe(const struct x86_cpu_id *id)
3441 {
3442 	int rc;
3443 	u8 mc, num_mc = 0;
3444 	struct sbridge_dev *sbridge_dev;
3445 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3446 
3447 	/* get the pci devices we want to reserve for our use */
3448 	rc = sbridge_get_all_devices(&num_mc, ptable);
3449 
3450 	if (unlikely(rc < 0)) {
3451 		edac_dbg(0, "couldn't get all devices\n");
3452 		goto fail0;
3453 	}
3454 
3455 	mc = 0;
3456 
3457 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3458 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3459 			 mc, mc + 1, num_mc);
3460 
3461 		sbridge_dev->mc = mc++;
3462 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3463 		if (unlikely(rc < 0))
3464 			goto fail1;
3465 	}
3466 
3467 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3468 
3469 	return 0;
3470 
3471 fail1:
3472 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3473 		sbridge_unregister_mci(sbridge_dev);
3474 
3475 	sbridge_put_all_devices();
3476 fail0:
3477 	return rc;
3478 }
3479 
3480 /*
3481  *	sbridge_remove	cleanup
3482  *
3483  */
3484 static void sbridge_remove(void)
3485 {
3486 	struct sbridge_dev *sbridge_dev;
3487 
3488 	edac_dbg(0, "\n");
3489 
3490 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3491 		sbridge_unregister_mci(sbridge_dev);
3492 
3493 	/* Release PCI resources */
3494 	sbridge_put_all_devices();
3495 }
3496 
3497 /*
3498  *	sbridge_init		Module entry function
3499  *			Try to initialize this module for its devices
3500  */
3501 static int __init sbridge_init(void)
3502 {
3503 	const struct x86_cpu_id *id;
3504 	const char *owner;
3505 	int rc;
3506 
3507 	edac_dbg(2, "\n");
3508 
3509 	owner = edac_get_owner();
3510 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3511 		return -EBUSY;
3512 
3513 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3514 		return -ENODEV;
3515 
3516 	id = x86_match_cpu(sbridge_cpuids);
3517 	if (!id)
3518 		return -ENODEV;
3519 
3520 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3521 	opstate_init();
3522 
3523 	rc = sbridge_probe(id);
3524 
3525 	if (rc >= 0) {
3526 		mce_register_decode_chain(&sbridge_mce_dec);
3527 		return 0;
3528 	}
3529 
3530 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3531 		      rc);
3532 
3533 	return rc;
3534 }
3535 
3536 /*
3537  *	sbridge_exit()	Module exit function
3538  *			Unregister the driver
3539  */
3540 static void __exit sbridge_exit(void)
3541 {
3542 	edac_dbg(2, "\n");
3543 	sbridge_remove();
3544 	mce_unregister_decode_chain(&sbridge_mce_dec);
3545 }
3546 
3547 module_init(sbridge_init);
3548 module_exit(sbridge_exit);
3549 
3550 module_param(edac_op_state, int, 0444);
3551 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3552 
3553 MODULE_LICENSE("GPL");
3554 MODULE_AUTHOR("Mauro Carvalho Chehab");
3555 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3556 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3557 		   SBRIDGE_REVISION);
3558