xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 95e9fd10)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab <mchehab@redhat.com>
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.0.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
54 
55 /*
56  * sbridge Memory Controller Registers
57  */
58 
59 /*
60  * FIXME: For now, let's order by device function, as it makes
61  * easier for driver's development process. This table should be
62  * moved to pci_id.h when submitted upstream
63  */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */
75 
76 	/*
77 	 * Currently, unused, but will be needed in the future
78 	 * implementations, as they hold the error counters
79 	 */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */
84 
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 dram_rule[] = {
87 	0x80, 0x88, 0x90, 0x98, 0xa0,
88 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89 };
90 #define MAX_SAD		ARRAY_SIZE(dram_rule)
91 
92 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
94 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
95 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
96 
97 static char *get_dram_attr(u32 reg)
98 {
99 	switch(DRAM_ATTR(reg)) {
100 		case 0:
101 			return "DRAM";
102 		case 1:
103 			return "MMCFG";
104 		case 2:
105 			return "NXM";
106 		default:
107 			return "unknown";
108 	}
109 }
110 
111 static const u32 interleave_list[] = {
112 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
113 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
114 };
115 #define MAX_INTERLEAVE	ARRAY_SIZE(interleave_list)
116 
117 #define SAD_PKG0(reg)		GET_BITFIELD(reg, 0, 2)
118 #define SAD_PKG1(reg)		GET_BITFIELD(reg, 3, 5)
119 #define SAD_PKG2(reg)		GET_BITFIELD(reg, 8, 10)
120 #define SAD_PKG3(reg)		GET_BITFIELD(reg, 11, 13)
121 #define SAD_PKG4(reg)		GET_BITFIELD(reg, 16, 18)
122 #define SAD_PKG5(reg)		GET_BITFIELD(reg, 19, 21)
123 #define SAD_PKG6(reg)		GET_BITFIELD(reg, 24, 26)
124 #define SAD_PKG7(reg)		GET_BITFIELD(reg, 27, 29)
125 
126 static inline int sad_pkg(u32 reg, int interleave)
127 {
128 	switch (interleave) {
129 	case 0:
130 		return SAD_PKG0(reg);
131 	case 1:
132 		return SAD_PKG1(reg);
133 	case 2:
134 		return SAD_PKG2(reg);
135 	case 3:
136 		return SAD_PKG3(reg);
137 	case 4:
138 		return SAD_PKG4(reg);
139 	case 5:
140 		return SAD_PKG5(reg);
141 	case 6:
142 		return SAD_PKG6(reg);
143 	case 7:
144 		return SAD_PKG7(reg);
145 	default:
146 		return -EINVAL;
147 	}
148 }
149 
150 /* Devices 12 Function 7 */
151 
152 #define TOLM		0x80
153 #define	TOHM		0x84
154 
155 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
156 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
157 
158 /* Device 13 Function 6 */
159 
160 #define SAD_TARGET	0xf0
161 
162 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
163 
164 #define SAD_CONTROL	0xf4
165 
166 #define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)
167 
168 /* Device 14 function 0 */
169 
170 static const u32 tad_dram_rule[] = {
171 	0x40, 0x44, 0x48, 0x4c,
172 	0x50, 0x54, 0x58, 0x5c,
173 	0x60, 0x64, 0x68, 0x6c,
174 };
175 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
176 
177 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
179 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
180 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
181 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
182 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
183 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
184 
185 /* Device 15, function 0 */
186 
187 #define MCMTR			0x7c
188 
189 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
190 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
191 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
192 
193 /* Device 15, function 1 */
194 
195 #define RASENABLES		0xac
196 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
197 
198 /* Device 15, functions 2-5 */
199 
200 static const int mtr_regs[] = {
201 	0x80, 0x84, 0x88,
202 };
203 
204 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
205 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
206 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
207 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
208 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
209 
210 static const u32 tad_ch_nilv_offset[] = {
211 	0x90, 0x94, 0x98, 0x9c,
212 	0xa0, 0xa4, 0xa8, 0xac,
213 	0xb0, 0xb4, 0xb8, 0xbc,
214 };
215 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
216 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
217 
218 static const u32 rir_way_limit[] = {
219 	0x108, 0x10c, 0x110, 0x114, 0x118,
220 };
221 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
222 
223 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
224 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
225 #define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)
226 
227 #define MAX_RIR_WAY	8
228 
229 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
230 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
235 };
236 
237 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
238 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
239 
240 /* Device 16, functions 2-7 */
241 
242 /*
243  * FIXME: Implement the error count reads directly
244  */
245 
246 static const u32 correrrcnt[] = {
247 	0x104, 0x108, 0x10c, 0x110,
248 };
249 
250 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
251 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
252 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
253 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
254 
255 static const u32 correrrthrsld[] = {
256 	0x11c, 0x120, 0x124, 0x128,
257 };
258 
259 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
261 
262 
263 /* Device 17, function 0 */
264 
265 #define RANK_CFG_A		0x0328
266 
267 #define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)
268 
269 /*
270  * sbridge structs
271  */
272 
273 #define NUM_CHANNELS	4
274 #define MAX_DIMMS	3		/* Max DIMMS per channel */
275 
276 struct sbridge_info {
277 	u32	mcmtr;
278 };
279 
280 struct sbridge_channel {
281 	u32		ranks;
282 	u32		dimms;
283 };
284 
285 struct pci_id_descr {
286 	int			dev;
287 	int			func;
288 	int 			dev_id;
289 	int			optional;
290 };
291 
292 struct pci_id_table {
293 	const struct pci_id_descr	*descr;
294 	int				n_devs;
295 };
296 
297 struct sbridge_dev {
298 	struct list_head	list;
299 	u8			bus, mc;
300 	u8			node_id, source_id;
301 	struct pci_dev		**pdev;
302 	int			n_devs;
303 	struct mem_ctl_info	*mci;
304 };
305 
306 struct sbridge_pvt {
307 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
308 	struct pci_dev		*pci_sad0, *pci_sad1, *pci_ha0;
309 	struct pci_dev		*pci_br;
310 	struct pci_dev		*pci_tad[NUM_CHANNELS];
311 
312 	struct sbridge_dev	*sbridge_dev;
313 
314 	struct sbridge_info	info;
315 	struct sbridge_channel	channel[NUM_CHANNELS];
316 
317 	/* Memory type detection */
318 	bool			is_mirrored, is_lockstep, is_close_pg;
319 
320 	/* Fifo double buffers */
321 	struct mce		mce_entry[MCE_LOG_LEN];
322 	struct mce		mce_outentry[MCE_LOG_LEN];
323 
324 	/* Fifo in/out counters */
325 	unsigned		mce_in, mce_out;
326 
327 	/* Count indicator to show errors not got */
328 	unsigned		mce_overrun;
329 
330 	/* Memory description */
331 	u64			tolm, tohm;
332 };
333 
334 #define PCI_DESCR(device, function, device_id)	\
335 	.dev = (device),			\
336 	.func = (function),			\
337 	.dev_id = (device_id)
338 
339 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
340 		/* Processor Home Agent */
341 	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)		},
342 
343 		/* Memory controller */
344 	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)		},
345 	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS)		},
346 	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0)	},
347 	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1)	},
348 	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2)	},
349 	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3)	},
350 	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO)	},
351 
352 		/* System Address Decoder */
353 	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0)		},
354 	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1)		},
355 
356 		/* Broadcast Registers */
357 	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR)		},
358 };
359 
360 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
361 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
362 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
363 	{0,}			/* 0 terminated list. */
364 };
365 
366 /*
367  *	pci_device_id	table for which devices we are looking for
368  */
369 static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
370 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
371 	{0,}			/* 0 terminated list. */
372 };
373 
374 
375 /****************************************************************************
376 			Ancillary status routines
377  ****************************************************************************/
378 
379 static inline int numrank(u32 mtr)
380 {
381 	int ranks = (1 << RANK_CNT_BITS(mtr));
382 
383 	if (ranks > 4) {
384 		edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n",
385 			 ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
386 		return -EINVAL;
387 	}
388 
389 	return ranks;
390 }
391 
392 static inline int numrow(u32 mtr)
393 {
394 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
395 
396 	if (rows < 13 || rows > 18) {
397 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
398 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
399 		return -EINVAL;
400 	}
401 
402 	return 1 << rows;
403 }
404 
405 static inline int numcol(u32 mtr)
406 {
407 	int cols = (COL_WIDTH_BITS(mtr) + 10);
408 
409 	if (cols > 12) {
410 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
411 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
412 		return -EINVAL;
413 	}
414 
415 	return 1 << cols;
416 }
417 
418 static struct sbridge_dev *get_sbridge_dev(u8 bus)
419 {
420 	struct sbridge_dev *sbridge_dev;
421 
422 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
423 		if (sbridge_dev->bus == bus)
424 			return sbridge_dev;
425 	}
426 
427 	return NULL;
428 }
429 
430 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
431 					   const struct pci_id_table *table)
432 {
433 	struct sbridge_dev *sbridge_dev;
434 
435 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
436 	if (!sbridge_dev)
437 		return NULL;
438 
439 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
440 				   GFP_KERNEL);
441 	if (!sbridge_dev->pdev) {
442 		kfree(sbridge_dev);
443 		return NULL;
444 	}
445 
446 	sbridge_dev->bus = bus;
447 	sbridge_dev->n_devs = table->n_devs;
448 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
449 
450 	return sbridge_dev;
451 }
452 
453 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
454 {
455 	list_del(&sbridge_dev->list);
456 	kfree(sbridge_dev->pdev);
457 	kfree(sbridge_dev);
458 }
459 
460 /****************************************************************************
461 			Memory check routines
462  ****************************************************************************/
463 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
464 					  unsigned func)
465 {
466 	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
467 	int i;
468 
469 	if (!sbridge_dev)
470 		return NULL;
471 
472 	for (i = 0; i < sbridge_dev->n_devs; i++) {
473 		if (!sbridge_dev->pdev[i])
474 			continue;
475 
476 		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
477 		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
478 			edac_dbg(1, "Associated %02x.%02x.%d with %p\n",
479 				 bus, slot, func, sbridge_dev->pdev[i]);
480 			return sbridge_dev->pdev[i];
481 		}
482 	}
483 
484 	return NULL;
485 }
486 
487 /**
488  * check_if_ecc_is_active() - Checks if ECC is active
489  * bus:		Device bus
490  */
491 static int check_if_ecc_is_active(const u8 bus)
492 {
493 	struct pci_dev *pdev = NULL;
494 	u32 mcmtr;
495 
496 	pdev = get_pdev_slot_func(bus, 15, 0);
497 	if (!pdev) {
498 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
499 					"%2x.%02d.%d!!!\n",
500 					bus, 15, 0);
501 		return -ENODEV;
502 	}
503 
504 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
505 	if (!IS_ECC_ENABLED(mcmtr)) {
506 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
507 		return -ENODEV;
508 	}
509 	return 0;
510 }
511 
512 static int get_dimm_config(struct mem_ctl_info *mci)
513 {
514 	struct sbridge_pvt *pvt = mci->pvt_info;
515 	struct dimm_info *dimm;
516 	int i, j, banks, ranks, rows, cols, size, npages;
517 	u32 reg;
518 	enum edac_type mode;
519 	enum mem_type mtype;
520 
521 	pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
522 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
523 
524 	pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
525 	pvt->sbridge_dev->node_id = NODE_ID(reg);
526 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
527 		 pvt->sbridge_dev->mc,
528 		 pvt->sbridge_dev->node_id,
529 		 pvt->sbridge_dev->source_id);
530 
531 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
532 	if (IS_MIRROR_ENABLED(reg)) {
533 		edac_dbg(0, "Memory mirror is enabled\n");
534 		pvt->is_mirrored = true;
535 	} else {
536 		edac_dbg(0, "Memory mirror is disabled\n");
537 		pvt->is_mirrored = false;
538 	}
539 
540 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
541 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
542 		edac_dbg(0, "Lockstep is enabled\n");
543 		mode = EDAC_S8ECD8ED;
544 		pvt->is_lockstep = true;
545 	} else {
546 		edac_dbg(0, "Lockstep is disabled\n");
547 		mode = EDAC_S4ECD4ED;
548 		pvt->is_lockstep = false;
549 	}
550 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
551 		edac_dbg(0, "address map is on closed page mode\n");
552 		pvt->is_close_pg = true;
553 	} else {
554 		edac_dbg(0, "address map is on open page mode\n");
555 		pvt->is_close_pg = false;
556 	}
557 
558 	pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, &reg);
559 	if (IS_RDIMM_ENABLED(reg)) {
560 		/* FIXME: Can also be LRDIMM */
561 		edac_dbg(0, "Memory is registered\n");
562 		mtype = MEM_RDDR3;
563 	} else {
564 		edac_dbg(0, "Memory is unregistered\n");
565 		mtype = MEM_DDR3;
566 	}
567 
568 	/* On all supported DDR3 DIMM types, there are 8 banks available */
569 	banks = 8;
570 
571 	for (i = 0; i < NUM_CHANNELS; i++) {
572 		u32 mtr;
573 
574 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
575 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
576 				       i, j, 0);
577 			pci_read_config_dword(pvt->pci_tad[i],
578 					      mtr_regs[j], &mtr);
579 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
580 			if (IS_DIMM_PRESENT(mtr)) {
581 				pvt->channel[i].dimms++;
582 
583 				ranks = numrank(mtr);
584 				rows = numrow(mtr);
585 				cols = numcol(mtr);
586 
587 				/* DDR3 has 8 I/O banks */
588 				size = (rows * cols * banks * ranks) >> (20 - 3);
589 				npages = MiB_TO_PAGES(size);
590 
591 				edac_dbg(0, "mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
592 					 pvt->sbridge_dev->mc, i, j,
593 					 size, npages,
594 					 banks, ranks, rows, cols);
595 
596 				dimm->nr_pages = npages;
597 				dimm->grain = 32;
598 				dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
599 				dimm->mtype = mtype;
600 				dimm->edac_mode = mode;
601 				snprintf(dimm->label, sizeof(dimm->label),
602 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
603 					 pvt->sbridge_dev->source_id, i, j);
604 			}
605 		}
606 	}
607 
608 	return 0;
609 }
610 
611 static void get_memory_layout(const struct mem_ctl_info *mci)
612 {
613 	struct sbridge_pvt *pvt = mci->pvt_info;
614 	int i, j, k, n_sads, n_tads, sad_interl;
615 	u32 reg;
616 	u64 limit, prv = 0;
617 	u64 tmp_mb;
618 	u32 mb, kb;
619 	u32 rir_way;
620 
621 	/*
622 	 * Step 1) Get TOLM/TOHM ranges
623 	 */
624 
625 	/* Address range is 32:28 */
626 	pci_read_config_dword(pvt->pci_sad1, TOLM,
627 			      &reg);
628 	pvt->tolm = GET_TOLM(reg);
629 	tmp_mb = (1 + pvt->tolm) >> 20;
630 
631 	mb = div_u64_rem(tmp_mb, 1000, &kb);
632 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
633 
634 	/* Address range is already 45:25 */
635 	pci_read_config_dword(pvt->pci_sad1, TOHM,
636 			      &reg);
637 	pvt->tohm = GET_TOHM(reg);
638 	tmp_mb = (1 + pvt->tohm) >> 20;
639 
640 	mb = div_u64_rem(tmp_mb, 1000, &kb);
641 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm);
642 
643 	/*
644 	 * Step 2) Get SAD range and SAD Interleave list
645 	 * TAD registers contain the interleave wayness. However, it
646 	 * seems simpler to just discover it indirectly, with the
647 	 * algorithm bellow.
648 	 */
649 	prv = 0;
650 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
651 		/* SAD_LIMIT Address range is 45:26 */
652 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
653 				      &reg);
654 		limit = SAD_LIMIT(reg);
655 
656 		if (!DRAM_RULE_ENABLE(reg))
657 			continue;
658 
659 		if (limit <= prv)
660 			break;
661 
662 		tmp_mb = (limit + 1) >> 20;
663 		mb = div_u64_rem(tmp_mb, 1000, &kb);
664 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
665 			 n_sads,
666 			 get_dram_attr(reg),
667 			 mb, kb,
668 			 ((u64)tmp_mb) << 20L,
669 			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
670 			 reg);
671 		prv = limit;
672 
673 		pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
674 				      &reg);
675 		sad_interl = sad_pkg(reg, 0);
676 		for (j = 0; j < 8; j++) {
677 			if (j > 0 && sad_interl == sad_pkg(reg, j))
678 				break;
679 
680 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
681 				 n_sads, j, sad_pkg(reg, j));
682 		}
683 	}
684 
685 	/*
686 	 * Step 3) Get TAD range
687 	 */
688 	prv = 0;
689 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
690 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
691 				      &reg);
692 		limit = TAD_LIMIT(reg);
693 		if (limit <= prv)
694 			break;
695 		tmp_mb = (limit + 1) >> 20;
696 
697 		mb = div_u64_rem(tmp_mb, 1000, &kb);
698 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
699 			 n_tads, mb, kb,
700 			 ((u64)tmp_mb) << 20L,
701 			 (u32)TAD_SOCK(reg),
702 			 (u32)TAD_CH(reg),
703 			 (u32)TAD_TGT0(reg),
704 			 (u32)TAD_TGT1(reg),
705 			 (u32)TAD_TGT2(reg),
706 			 (u32)TAD_TGT3(reg),
707 			 reg);
708 		prv = limit;
709 	}
710 
711 	/*
712 	 * Step 4) Get TAD offsets, per each channel
713 	 */
714 	for (i = 0; i < NUM_CHANNELS; i++) {
715 		if (!pvt->channel[i].dimms)
716 			continue;
717 		for (j = 0; j < n_tads; j++) {
718 			pci_read_config_dword(pvt->pci_tad[i],
719 					      tad_ch_nilv_offset[j],
720 					      &reg);
721 			tmp_mb = TAD_OFFSET(reg) >> 20;
722 			mb = div_u64_rem(tmp_mb, 1000, &kb);
723 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
724 				 i, j,
725 				 mb, kb,
726 				 ((u64)tmp_mb) << 20L,
727 				 reg);
728 		}
729 	}
730 
731 	/*
732 	 * Step 6) Get RIR Wayness/Limit, per each channel
733 	 */
734 	for (i = 0; i < NUM_CHANNELS; i++) {
735 		if (!pvt->channel[i].dimms)
736 			continue;
737 		for (j = 0; j < MAX_RIR_RANGES; j++) {
738 			pci_read_config_dword(pvt->pci_tad[i],
739 					      rir_way_limit[j],
740 					      &reg);
741 
742 			if (!IS_RIR_VALID(reg))
743 				continue;
744 
745 			tmp_mb = RIR_LIMIT(reg) >> 20;
746 			rir_way = 1 << RIR_WAY(reg);
747 			mb = div_u64_rem(tmp_mb, 1000, &kb);
748 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
749 				 i, j,
750 				 mb, kb,
751 				 ((u64)tmp_mb) << 20L,
752 				 rir_way,
753 				 reg);
754 
755 			for (k = 0; k < rir_way; k++) {
756 				pci_read_config_dword(pvt->pci_tad[i],
757 						      rir_offset[j][k],
758 						      &reg);
759 				tmp_mb = RIR_OFFSET(reg) << 6;
760 
761 				mb = div_u64_rem(tmp_mb, 1000, &kb);
762 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
763 					 i, j, k,
764 					 mb, kb,
765 					 ((u64)tmp_mb) << 20L,
766 					 (u32)RIR_RNK_TGT(reg),
767 					 reg);
768 			}
769 		}
770 	}
771 }
772 
773 struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
774 {
775 	struct sbridge_dev *sbridge_dev;
776 
777 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
778 		if (sbridge_dev->node_id == node_id)
779 			return sbridge_dev->mci;
780 	}
781 	return NULL;
782 }
783 
784 static int get_memory_error_data(struct mem_ctl_info *mci,
785 				 u64 addr,
786 				 u8 *socket,
787 				 long *channel_mask,
788 				 u8 *rank,
789 				 char **area_type, char *msg)
790 {
791 	struct mem_ctl_info	*new_mci;
792 	struct sbridge_pvt *pvt = mci->pvt_info;
793 	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
794 	int			sad_interl, idx, base_ch;
795 	int			interleave_mode;
796 	unsigned		sad_interleave[MAX_INTERLEAVE];
797 	u32			reg;
798 	u8			ch_way,sck_way;
799 	u32			tad_offset;
800 	u32			rir_way;
801 	u32			mb, kb;
802 	u64			ch_addr, offset, limit, prv = 0;
803 
804 
805 	/*
806 	 * Step 0) Check if the address is at special memory ranges
807 	 * The check bellow is probably enough to fill all cases where
808 	 * the error is not inside a memory, except for the legacy
809 	 * range (e. g. VGA addresses). It is unlikely, however, that the
810 	 * memory controller would generate an error on that range.
811 	 */
812 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
813 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
814 		return -EINVAL;
815 	}
816 	if (addr >= (u64)pvt->tohm) {
817 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
818 		return -EINVAL;
819 	}
820 
821 	/*
822 	 * Step 1) Get socket
823 	 */
824 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
825 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
826 				      &reg);
827 
828 		if (!DRAM_RULE_ENABLE(reg))
829 			continue;
830 
831 		limit = SAD_LIMIT(reg);
832 		if (limit <= prv) {
833 			sprintf(msg, "Can't discover the memory socket");
834 			return -EINVAL;
835 		}
836 		if  (addr <= limit)
837 			break;
838 		prv = limit;
839 	}
840 	if (n_sads == MAX_SAD) {
841 		sprintf(msg, "Can't discover the memory socket");
842 		return -EINVAL;
843 	}
844 	*area_type = get_dram_attr(reg);
845 	interleave_mode = INTERLEAVE_MODE(reg);
846 
847 	pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
848 			      &reg);
849 	sad_interl = sad_pkg(reg, 0);
850 	for (sad_way = 0; sad_way < 8; sad_way++) {
851 		if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
852 			break;
853 		sad_interleave[sad_way] = sad_pkg(reg, sad_way);
854 		edac_dbg(0, "SAD interleave #%d: %d\n",
855 			 sad_way, sad_interleave[sad_way]);
856 	}
857 	edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
858 		 pvt->sbridge_dev->mc,
859 		 n_sads,
860 		 addr,
861 		 limit,
862 		 sad_way + 7,
863 		 interleave_mode ? "" : "XOR[18:16]");
864 	if (interleave_mode)
865 		idx = ((addr >> 6) ^ (addr >> 16)) & 7;
866 	else
867 		idx = (addr >> 6) & 7;
868 	switch (sad_way) {
869 	case 1:
870 		idx = 0;
871 		break;
872 	case 2:
873 		idx = idx & 1;
874 		break;
875 	case 4:
876 		idx = idx & 3;
877 		break;
878 	case 8:
879 		break;
880 	default:
881 		sprintf(msg, "Can't discover socket interleave");
882 		return -EINVAL;
883 	}
884 	*socket = sad_interleave[idx];
885 	edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
886 		 idx, sad_way, *socket);
887 
888 	/*
889 	 * Move to the proper node structure, in order to access the
890 	 * right PCI registers
891 	 */
892 	new_mci = get_mci_for_node_id(*socket);
893 	if (!new_mci) {
894 		sprintf(msg, "Struct for socket #%u wasn't initialized",
895 			*socket);
896 		return -EINVAL;
897 	}
898 	mci = new_mci;
899 	pvt = mci->pvt_info;
900 
901 	/*
902 	 * Step 2) Get memory channel
903 	 */
904 	prv = 0;
905 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
906 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
907 				      &reg);
908 		limit = TAD_LIMIT(reg);
909 		if (limit <= prv) {
910 			sprintf(msg, "Can't discover the memory channel");
911 			return -EINVAL;
912 		}
913 		if  (addr <= limit)
914 			break;
915 		prv = limit;
916 	}
917 	ch_way = TAD_CH(reg) + 1;
918 	sck_way = TAD_SOCK(reg) + 1;
919 	/*
920 	 * FIXME: Is it right to always use channel 0 for offsets?
921 	 */
922 	pci_read_config_dword(pvt->pci_tad[0],
923 				tad_ch_nilv_offset[n_tads],
924 				&tad_offset);
925 
926 	if (ch_way == 3)
927 		idx = addr >> 6;
928 	else
929 		idx = addr >> (6 + sck_way);
930 	idx = idx % ch_way;
931 
932 	/*
933 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
934 	 */
935 	switch (idx) {
936 	case 0:
937 		base_ch = TAD_TGT0(reg);
938 		break;
939 	case 1:
940 		base_ch = TAD_TGT1(reg);
941 		break;
942 	case 2:
943 		base_ch = TAD_TGT2(reg);
944 		break;
945 	case 3:
946 		base_ch = TAD_TGT3(reg);
947 		break;
948 	default:
949 		sprintf(msg, "Can't discover the TAD target");
950 		return -EINVAL;
951 	}
952 	*channel_mask = 1 << base_ch;
953 
954 	if (pvt->is_mirrored) {
955 		*channel_mask |= 1 << ((base_ch + 2) % 4);
956 		switch(ch_way) {
957 		case 2:
958 		case 4:
959 			sck_xch = 1 << sck_way * (ch_way >> 1);
960 			break;
961 		default:
962 			sprintf(msg, "Invalid mirror set. Can't decode addr");
963 			return -EINVAL;
964 		}
965 	} else
966 		sck_xch = (1 << sck_way) * ch_way;
967 
968 	if (pvt->is_lockstep)
969 		*channel_mask |= 1 << ((base_ch + 1) % 4);
970 
971 	offset = TAD_OFFSET(tad_offset);
972 
973 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
974 		 n_tads,
975 		 addr,
976 		 limit,
977 		 (u32)TAD_SOCK(reg),
978 		 ch_way,
979 		 offset,
980 		 idx,
981 		 base_ch,
982 		 *channel_mask);
983 
984 	/* Calculate channel address */
985 	/* Remove the TAD offset */
986 
987 	if (offset > addr) {
988 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
989 			offset, addr);
990 		return -EINVAL;
991 	}
992 	addr -= offset;
993 	/* Store the low bits [0:6] of the addr */
994 	ch_addr = addr & 0x7f;
995 	/* Remove socket wayness and remove 6 bits */
996 	addr >>= 6;
997 	addr = div_u64(addr, sck_xch);
998 #if 0
999 	/* Divide by channel way */
1000 	addr = addr / ch_way;
1001 #endif
1002 	/* Recover the last 6 bits */
1003 	ch_addr |= addr << 6;
1004 
1005 	/*
1006 	 * Step 3) Decode rank
1007 	 */
1008 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1009 		pci_read_config_dword(pvt->pci_tad[base_ch],
1010 				      rir_way_limit[n_rir],
1011 				      &reg);
1012 
1013 		if (!IS_RIR_VALID(reg))
1014 			continue;
1015 
1016 		limit = RIR_LIMIT(reg);
1017 		mb = div_u64_rem(limit >> 20, 1000, &kb);
1018 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1019 			 n_rir,
1020 			 mb, kb,
1021 			 limit,
1022 			 1 << RIR_WAY(reg));
1023 		if  (ch_addr <= limit)
1024 			break;
1025 	}
1026 	if (n_rir == MAX_RIR_RANGES) {
1027 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1028 			ch_addr);
1029 		return -EINVAL;
1030 	}
1031 	rir_way = RIR_WAY(reg);
1032 	if (pvt->is_close_pg)
1033 		idx = (ch_addr >> 6);
1034 	else
1035 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1036 	idx %= 1 << rir_way;
1037 
1038 	pci_read_config_dword(pvt->pci_tad[base_ch],
1039 			      rir_offset[n_rir][idx],
1040 			      &reg);
1041 	*rank = RIR_RNK_TGT(reg);
1042 
1043 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1044 		 n_rir,
1045 		 ch_addr,
1046 		 limit,
1047 		 rir_way,
1048 		 idx);
1049 
1050 	return 0;
1051 }
1052 
1053 /****************************************************************************
1054 	Device initialization routines: put/get, init/exit
1055  ****************************************************************************/
1056 
1057 /*
1058  *	sbridge_put_all_devices	'put' all the devices that we have
1059  *				reserved via 'get'
1060  */
1061 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1062 {
1063 	int i;
1064 
1065 	edac_dbg(0, "\n");
1066 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1067 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1068 		if (!pdev)
1069 			continue;
1070 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1071 			 pdev->bus->number,
1072 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1073 		pci_dev_put(pdev);
1074 	}
1075 }
1076 
1077 static void sbridge_put_all_devices(void)
1078 {
1079 	struct sbridge_dev *sbridge_dev, *tmp;
1080 
1081 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1082 		sbridge_put_devices(sbridge_dev);
1083 		free_sbridge_dev(sbridge_dev);
1084 	}
1085 }
1086 
1087 /*
1088  *	sbridge_get_all_devices	Find and perform 'get' operation on the MCH's
1089  *			device/functions we want to reference for this driver
1090  *
1091  *			Need to 'get' device 16 func 1 and func 2
1092  */
1093 static int sbridge_get_onedevice(struct pci_dev **prev,
1094 				 u8 *num_mc,
1095 				 const struct pci_id_table *table,
1096 				 const unsigned devno)
1097 {
1098 	struct sbridge_dev *sbridge_dev;
1099 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1100 
1101 	struct pci_dev *pdev = NULL;
1102 	u8 bus = 0;
1103 
1104 	sbridge_printk(KERN_INFO,
1105 		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1106 		dev_descr->dev, dev_descr->func,
1107 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1108 
1109 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1110 			      dev_descr->dev_id, *prev);
1111 
1112 	if (!pdev) {
1113 		if (*prev) {
1114 			*prev = pdev;
1115 			return 0;
1116 		}
1117 
1118 		if (dev_descr->optional)
1119 			return 0;
1120 
1121 		if (devno == 0)
1122 			return -ENODEV;
1123 
1124 		sbridge_printk(KERN_INFO,
1125 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1126 			dev_descr->dev, dev_descr->func,
1127 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1128 
1129 		/* End of list, leave */
1130 		return -ENODEV;
1131 	}
1132 	bus = pdev->bus->number;
1133 
1134 	sbridge_dev = get_sbridge_dev(bus);
1135 	if (!sbridge_dev) {
1136 		sbridge_dev = alloc_sbridge_dev(bus, table);
1137 		if (!sbridge_dev) {
1138 			pci_dev_put(pdev);
1139 			return -ENOMEM;
1140 		}
1141 		(*num_mc)++;
1142 	}
1143 
1144 	if (sbridge_dev->pdev[devno]) {
1145 		sbridge_printk(KERN_ERR,
1146 			"Duplicated device for "
1147 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1148 			bus, dev_descr->dev, dev_descr->func,
1149 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1150 		pci_dev_put(pdev);
1151 		return -ENODEV;
1152 	}
1153 
1154 	sbridge_dev->pdev[devno] = pdev;
1155 
1156 	/* Sanity check */
1157 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1158 			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1159 		sbridge_printk(KERN_ERR,
1160 			"Device PCI ID %04x:%04x "
1161 			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1162 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1163 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1164 			bus, dev_descr->dev, dev_descr->func);
1165 		return -ENODEV;
1166 	}
1167 
1168 	/* Be sure that the device is enabled */
1169 	if (unlikely(pci_enable_device(pdev) < 0)) {
1170 		sbridge_printk(KERN_ERR,
1171 			"Couldn't enable "
1172 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1173 			bus, dev_descr->dev, dev_descr->func,
1174 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1175 		return -ENODEV;
1176 	}
1177 
1178 	edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1179 		 bus, dev_descr->dev, dev_descr->func,
1180 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1181 
1182 	/*
1183 	 * As stated on drivers/pci/search.c, the reference count for
1184 	 * @from is always decremented if it is not %NULL. So, as we need
1185 	 * to get all devices up to null, we need to do a get for the device
1186 	 */
1187 	pci_dev_get(pdev);
1188 
1189 	*prev = pdev;
1190 
1191 	return 0;
1192 }
1193 
1194 static int sbridge_get_all_devices(u8 *num_mc)
1195 {
1196 	int i, rc;
1197 	struct pci_dev *pdev = NULL;
1198 	const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1199 
1200 	while (table && table->descr) {
1201 		for (i = 0; i < table->n_devs; i++) {
1202 			pdev = NULL;
1203 			do {
1204 				rc = sbridge_get_onedevice(&pdev, num_mc,
1205 							   table, i);
1206 				if (rc < 0) {
1207 					if (i == 0) {
1208 						i = table->n_devs;
1209 						break;
1210 					}
1211 					sbridge_put_all_devices();
1212 					return -ENODEV;
1213 				}
1214 			} while (pdev);
1215 		}
1216 		table++;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static int mci_bind_devs(struct mem_ctl_info *mci,
1223 			 struct sbridge_dev *sbridge_dev)
1224 {
1225 	struct sbridge_pvt *pvt = mci->pvt_info;
1226 	struct pci_dev *pdev;
1227 	int i, func, slot;
1228 
1229 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1230 		pdev = sbridge_dev->pdev[i];
1231 		if (!pdev)
1232 			continue;
1233 		slot = PCI_SLOT(pdev->devfn);
1234 		func = PCI_FUNC(pdev->devfn);
1235 		switch (slot) {
1236 		case 12:
1237 			switch (func) {
1238 			case 6:
1239 				pvt->pci_sad0 = pdev;
1240 				break;
1241 			case 7:
1242 				pvt->pci_sad1 = pdev;
1243 				break;
1244 			default:
1245 				goto error;
1246 			}
1247 			break;
1248 		case 13:
1249 			switch (func) {
1250 			case 6:
1251 				pvt->pci_br = pdev;
1252 				break;
1253 			default:
1254 				goto error;
1255 			}
1256 			break;
1257 		case 14:
1258 			switch (func) {
1259 			case 0:
1260 				pvt->pci_ha0 = pdev;
1261 				break;
1262 			default:
1263 				goto error;
1264 			}
1265 			break;
1266 		case 15:
1267 			switch (func) {
1268 			case 0:
1269 				pvt->pci_ta = pdev;
1270 				break;
1271 			case 1:
1272 				pvt->pci_ras = pdev;
1273 				break;
1274 			case 2:
1275 			case 3:
1276 			case 4:
1277 			case 5:
1278 				pvt->pci_tad[func - 2] = pdev;
1279 				break;
1280 			default:
1281 				goto error;
1282 			}
1283 			break;
1284 		case 17:
1285 			switch (func) {
1286 			case 0:
1287 				pvt->pci_ddrio = pdev;
1288 				break;
1289 			default:
1290 				goto error;
1291 			}
1292 			break;
1293 		default:
1294 			goto error;
1295 		}
1296 
1297 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1298 			 sbridge_dev->bus,
1299 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1300 			 pdev);
1301 	}
1302 
1303 	/* Check if everything were registered */
1304 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1305 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta ||
1306 	    !pvt->pci_ddrio)
1307 		goto enodev;
1308 
1309 	for (i = 0; i < NUM_CHANNELS; i++) {
1310 		if (!pvt->pci_tad[i])
1311 			goto enodev;
1312 	}
1313 	return 0;
1314 
1315 enodev:
1316 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1317 	return -ENODEV;
1318 
1319 error:
1320 	sbridge_printk(KERN_ERR, "Device %d, function %d "
1321 		      "is out of the expected range\n",
1322 		      slot, func);
1323 	return -EINVAL;
1324 }
1325 
1326 /****************************************************************************
1327 			Error check routines
1328  ****************************************************************************/
1329 
1330 /*
1331  * While Sandy Bridge has error count registers, SMI BIOS read values from
1332  * and resets the counters. So, they are not reliable for the OS to read
1333  * from them. So, we have no option but to just trust on whatever MCE is
1334  * telling us about the errors.
1335  */
1336 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1337 				    const struct mce *m)
1338 {
1339 	struct mem_ctl_info *new_mci;
1340 	struct sbridge_pvt *pvt = mci->pvt_info;
1341 	enum hw_event_mc_err_type tp_event;
1342 	char *type, *optype, msg[256];
1343 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1344 	bool overflow = GET_BITFIELD(m->status, 62, 62);
1345 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1346 	bool recoverable = GET_BITFIELD(m->status, 56, 56);
1347 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1348 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1349 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1350 	u32 channel = GET_BITFIELD(m->status, 0, 3);
1351 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1352 	long channel_mask, first_channel;
1353 	u8  rank, socket;
1354 	int rc, dimm;
1355 	char *area_type = NULL;
1356 
1357 	if (uncorrected_error) {
1358 		if (ripv) {
1359 			type = "FATAL";
1360 			tp_event = HW_EVENT_ERR_FATAL;
1361 		} else {
1362 			type = "NON_FATAL";
1363 			tp_event = HW_EVENT_ERR_UNCORRECTED;
1364 		}
1365 	} else {
1366 		type = "CORRECTED";
1367 		tp_event = HW_EVENT_ERR_CORRECTED;
1368 	}
1369 
1370 	/*
1371 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1372 	 * memory errors should fit in this mask:
1373 	 *	000f 0000 1mmm cccc (binary)
1374 	 * where:
1375 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
1376 	 *	    won't be shown
1377 	 *	mmm = error type
1378 	 *	cccc = channel
1379 	 * If the mask doesn't match, report an error to the parsing logic
1380 	 */
1381 	if (! ((errcode & 0xef80) == 0x80)) {
1382 		optype = "Can't parse: it is not a mem";
1383 	} else {
1384 		switch (optypenum) {
1385 		case 0:
1386 			optype = "generic undef request error";
1387 			break;
1388 		case 1:
1389 			optype = "memory read error";
1390 			break;
1391 		case 2:
1392 			optype = "memory write error";
1393 			break;
1394 		case 3:
1395 			optype = "addr/cmd error";
1396 			break;
1397 		case 4:
1398 			optype = "memory scrubbing error";
1399 			break;
1400 		default:
1401 			optype = "reserved";
1402 			break;
1403 		}
1404 	}
1405 
1406 	rc = get_memory_error_data(mci, m->addr, &socket,
1407 				   &channel_mask, &rank, &area_type, msg);
1408 	if (rc < 0)
1409 		goto err_parsing;
1410 	new_mci = get_mci_for_node_id(socket);
1411 	if (!new_mci) {
1412 		strcpy(msg, "Error: socket got corrupted!");
1413 		goto err_parsing;
1414 	}
1415 	mci = new_mci;
1416 	pvt = mci->pvt_info;
1417 
1418 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1419 
1420 	if (rank < 4)
1421 		dimm = 0;
1422 	else if (rank < 8)
1423 		dimm = 1;
1424 	else
1425 		dimm = 2;
1426 
1427 
1428 	/*
1429 	 * FIXME: On some memory configurations (mirror, lockstep), the
1430 	 * Memory Controller can't point the error to a single DIMM. The
1431 	 * EDAC core should be handling the channel mask, in order to point
1432 	 * to the group of dimm's where the error may be happening.
1433 	 */
1434 	snprintf(msg, sizeof(msg),
1435 		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1436 		 overflow ? " OVERFLOW" : "",
1437 		 (uncorrected_error && recoverable) ? " recoverable" : "",
1438 		 area_type,
1439 		 mscod, errcode,
1440 		 socket,
1441 		 channel_mask,
1442 		 rank);
1443 
1444 	edac_dbg(0, "%s\n", msg);
1445 
1446 	/* FIXME: need support for channel mask */
1447 
1448 	/* Call the helper to output message */
1449 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
1450 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1451 			     channel, dimm, -1,
1452 			     optype, msg);
1453 	return;
1454 err_parsing:
1455 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1456 			     -1, -1, -1,
1457 			     msg, "");
1458 
1459 }
1460 
1461 /*
1462  *	sbridge_check_error	Retrieve and process errors reported by the
1463  *				hardware. Called by the Core module.
1464  */
1465 static void sbridge_check_error(struct mem_ctl_info *mci)
1466 {
1467 	struct sbridge_pvt *pvt = mci->pvt_info;
1468 	int i;
1469 	unsigned count = 0;
1470 	struct mce *m;
1471 
1472 	/*
1473 	 * MCE first step: Copy all mce errors into a temporary buffer
1474 	 * We use a double buffering here, to reduce the risk of
1475 	 * loosing an error.
1476 	 */
1477 	smp_rmb();
1478 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1479 		% MCE_LOG_LEN;
1480 	if (!count)
1481 		return;
1482 
1483 	m = pvt->mce_outentry;
1484 	if (pvt->mce_in + count > MCE_LOG_LEN) {
1485 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1486 
1487 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1488 		smp_wmb();
1489 		pvt->mce_in = 0;
1490 		count -= l;
1491 		m += l;
1492 	}
1493 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1494 	smp_wmb();
1495 	pvt->mce_in += count;
1496 
1497 	smp_rmb();
1498 	if (pvt->mce_overrun) {
1499 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1500 			      pvt->mce_overrun);
1501 		smp_wmb();
1502 		pvt->mce_overrun = 0;
1503 	}
1504 
1505 	/*
1506 	 * MCE second step: parse errors and display
1507 	 */
1508 	for (i = 0; i < count; i++)
1509 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1510 }
1511 
1512 /*
1513  * sbridge_mce_check_error	Replicates mcelog routine to get errors
1514  *				This routine simply queues mcelog errors, and
1515  *				return. The error itself should be handled later
1516  *				by sbridge_check_error.
1517  * WARNING: As this routine should be called at NMI time, extra care should
1518  * be taken to avoid deadlocks, and to be as fast as possible.
1519  */
1520 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1521 				   void *data)
1522 {
1523 	struct mce *mce = (struct mce *)data;
1524 	struct mem_ctl_info *mci;
1525 	struct sbridge_pvt *pvt;
1526 
1527 	mci = get_mci_for_node_id(mce->socketid);
1528 	if (!mci)
1529 		return NOTIFY_BAD;
1530 	pvt = mci->pvt_info;
1531 
1532 	/*
1533 	 * Just let mcelog handle it if the error is
1534 	 * outside the memory controller. A memory error
1535 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1536 	 * bit 12 has an special meaning.
1537 	 */
1538 	if ((mce->status & 0xefff) >> 7 != 1)
1539 		return NOTIFY_DONE;
1540 
1541 	printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1542 
1543 	printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1544 	       mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1545 	printk("TSC %llx ", mce->tsc);
1546 	printk("ADDR %llx ", mce->addr);
1547 	printk("MISC %llx ", mce->misc);
1548 
1549 	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1550 		mce->cpuvendor, mce->cpuid, mce->time,
1551 		mce->socketid, mce->apicid);
1552 
1553 	/* Only handle if it is the right mc controller */
1554 	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1555 		return NOTIFY_DONE;
1556 
1557 	smp_rmb();
1558 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1559 		smp_wmb();
1560 		pvt->mce_overrun++;
1561 		return NOTIFY_DONE;
1562 	}
1563 
1564 	/* Copy memory error at the ringbuffer */
1565 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1566 	smp_wmb();
1567 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1568 
1569 	/* Handle fatal errors immediately */
1570 	if (mce->mcgstatus & 1)
1571 		sbridge_check_error(mci);
1572 
1573 	/* Advice mcelog that the error were handled */
1574 	return NOTIFY_STOP;
1575 }
1576 
1577 static struct notifier_block sbridge_mce_dec = {
1578 	.notifier_call      = sbridge_mce_check_error,
1579 };
1580 
1581 /****************************************************************************
1582 			EDAC register/unregister logic
1583  ****************************************************************************/
1584 
1585 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1586 {
1587 	struct mem_ctl_info *mci = sbridge_dev->mci;
1588 	struct sbridge_pvt *pvt;
1589 
1590 	if (unlikely(!mci || !mci->pvt_info)) {
1591 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
1592 
1593 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1594 		return;
1595 	}
1596 
1597 	pvt = mci->pvt_info;
1598 
1599 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
1600 		 mci, &sbridge_dev->pdev[0]->dev);
1601 
1602 	/* Remove MC sysfs nodes */
1603 	edac_mc_del_mc(mci->pdev);
1604 
1605 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
1606 	kfree(mci->ctl_name);
1607 	edac_mc_free(mci);
1608 	sbridge_dev->mci = NULL;
1609 }
1610 
1611 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1612 {
1613 	struct mem_ctl_info *mci;
1614 	struct edac_mc_layer layers[2];
1615 	struct sbridge_pvt *pvt;
1616 	int rc;
1617 
1618 	/* Check the number of active and not disabled channels */
1619 	rc = check_if_ecc_is_active(sbridge_dev->bus);
1620 	if (unlikely(rc < 0))
1621 		return rc;
1622 
1623 	/* allocate a new MC control structure */
1624 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1625 	layers[0].size = NUM_CHANNELS;
1626 	layers[0].is_virt_csrow = false;
1627 	layers[1].type = EDAC_MC_LAYER_SLOT;
1628 	layers[1].size = MAX_DIMMS;
1629 	layers[1].is_virt_csrow = true;
1630 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
1631 			    sizeof(*pvt));
1632 
1633 	if (unlikely(!mci))
1634 		return -ENOMEM;
1635 
1636 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
1637 		 mci, &sbridge_dev->pdev[0]->dev);
1638 
1639 	pvt = mci->pvt_info;
1640 	memset(pvt, 0, sizeof(*pvt));
1641 
1642 	/* Associate sbridge_dev and mci for future usage */
1643 	pvt->sbridge_dev = sbridge_dev;
1644 	sbridge_dev->mci = mci;
1645 
1646 	mci->mtype_cap = MEM_FLAG_DDR3;
1647 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1648 	mci->edac_cap = EDAC_FLAG_NONE;
1649 	mci->mod_name = "sbridge_edac.c";
1650 	mci->mod_ver = SBRIDGE_REVISION;
1651 	mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1652 	mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1653 	mci->ctl_page_to_phys = NULL;
1654 
1655 	/* Set the function pointer to an actual operation function */
1656 	mci->edac_check = sbridge_check_error;
1657 
1658 	/* Store pci devices at mci for faster access */
1659 	rc = mci_bind_devs(mci, sbridge_dev);
1660 	if (unlikely(rc < 0))
1661 		goto fail0;
1662 
1663 	/* Get dimm basic config and the memory layout */
1664 	get_dimm_config(mci);
1665 	get_memory_layout(mci);
1666 
1667 	/* record ptr to the generic device */
1668 	mci->pdev = &sbridge_dev->pdev[0]->dev;
1669 
1670 	/* add this new MC control structure to EDAC's list of MCs */
1671 	if (unlikely(edac_mc_add_mc(mci))) {
1672 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1673 		rc = -EINVAL;
1674 		goto fail0;
1675 	}
1676 
1677 	return 0;
1678 
1679 fail0:
1680 	kfree(mci->ctl_name);
1681 	edac_mc_free(mci);
1682 	sbridge_dev->mci = NULL;
1683 	return rc;
1684 }
1685 
1686 /*
1687  *	sbridge_probe	Probe for ONE instance of device to see if it is
1688  *			present.
1689  *	return:
1690  *		0 for FOUND a device
1691  *		< 0 for error code
1692  */
1693 
1694 static int __devinit sbridge_probe(struct pci_dev *pdev,
1695 				  const struct pci_device_id *id)
1696 {
1697 	int rc;
1698 	u8 mc, num_mc = 0;
1699 	struct sbridge_dev *sbridge_dev;
1700 
1701 	/* get the pci devices we want to reserve for our use */
1702 	mutex_lock(&sbridge_edac_lock);
1703 
1704 	/*
1705 	 * All memory controllers are allocated at the first pass.
1706 	 */
1707 	if (unlikely(probed >= 1)) {
1708 		mutex_unlock(&sbridge_edac_lock);
1709 		return -ENODEV;
1710 	}
1711 	probed++;
1712 
1713 	rc = sbridge_get_all_devices(&num_mc);
1714 	if (unlikely(rc < 0))
1715 		goto fail0;
1716 	mc = 0;
1717 
1718 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1719 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
1720 			 mc, mc + 1, num_mc);
1721 		sbridge_dev->mc = mc++;
1722 		rc = sbridge_register_mci(sbridge_dev);
1723 		if (unlikely(rc < 0))
1724 			goto fail1;
1725 	}
1726 
1727 	sbridge_printk(KERN_INFO, "Driver loaded.\n");
1728 
1729 	mutex_unlock(&sbridge_edac_lock);
1730 	return 0;
1731 
1732 fail1:
1733 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1734 		sbridge_unregister_mci(sbridge_dev);
1735 
1736 	sbridge_put_all_devices();
1737 fail0:
1738 	mutex_unlock(&sbridge_edac_lock);
1739 	return rc;
1740 }
1741 
1742 /*
1743  *	sbridge_remove	destructor for one instance of device
1744  *
1745  */
1746 static void __devexit sbridge_remove(struct pci_dev *pdev)
1747 {
1748 	struct sbridge_dev *sbridge_dev;
1749 
1750 	edac_dbg(0, "\n");
1751 
1752 	/*
1753 	 * we have a trouble here: pdev value for removal will be wrong, since
1754 	 * it will point to the X58 register used to detect that the machine
1755 	 * is a Nehalem or upper design. However, due to the way several PCI
1756 	 * devices are grouped together to provide MC functionality, we need
1757 	 * to use a different method for releasing the devices
1758 	 */
1759 
1760 	mutex_lock(&sbridge_edac_lock);
1761 
1762 	if (unlikely(!probed)) {
1763 		mutex_unlock(&sbridge_edac_lock);
1764 		return;
1765 	}
1766 
1767 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1768 		sbridge_unregister_mci(sbridge_dev);
1769 
1770 	/* Release PCI resources */
1771 	sbridge_put_all_devices();
1772 
1773 	probed--;
1774 
1775 	mutex_unlock(&sbridge_edac_lock);
1776 }
1777 
1778 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1779 
1780 /*
1781  *	sbridge_driver	pci_driver structure for this module
1782  *
1783  */
1784 static struct pci_driver sbridge_driver = {
1785 	.name     = "sbridge_edac",
1786 	.probe    = sbridge_probe,
1787 	.remove   = __devexit_p(sbridge_remove),
1788 	.id_table = sbridge_pci_tbl,
1789 };
1790 
1791 /*
1792  *	sbridge_init		Module entry function
1793  *			Try to initialize this module for its devices
1794  */
1795 static int __init sbridge_init(void)
1796 {
1797 	int pci_rc;
1798 
1799 	edac_dbg(2, "\n");
1800 
1801 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1802 	opstate_init();
1803 
1804 	pci_rc = pci_register_driver(&sbridge_driver);
1805 
1806 	if (pci_rc >= 0) {
1807 		mce_register_decode_chain(&sbridge_mce_dec);
1808 		return 0;
1809 	}
1810 
1811 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1812 		      pci_rc);
1813 
1814 	return pci_rc;
1815 }
1816 
1817 /*
1818  *	sbridge_exit()	Module exit function
1819  *			Unregister the driver
1820  */
1821 static void __exit sbridge_exit(void)
1822 {
1823 	edac_dbg(2, "\n");
1824 	pci_unregister_driver(&sbridge_driver);
1825 	mce_unregister_decode_chain(&sbridge_mce_dec);
1826 }
1827 
1828 module_init(sbridge_init);
1829 module_exit(sbridge_exit);
1830 
1831 module_param(edac_op_state, int, 0444);
1832 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1833 
1834 MODULE_LICENSE("GPL");
1835 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1836 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1837 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1838 		   SBRIDGE_REVISION);
1839