1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module 3 * 4 * This driver supports the memory controllers found on the Intel 5 * processor family Sandy Bridge. 6 * 7 * Copyright (c) 2011 by: 8 * Mauro Carvalho Chehab 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/pci.h> 14 #include <linux/pci_ids.h> 15 #include <linux/slab.h> 16 #include <linux/delay.h> 17 #include <linux/edac.h> 18 #include <linux/mmzone.h> 19 #include <linux/smp.h> 20 #include <linux/bitmap.h> 21 #include <linux/math64.h> 22 #include <linux/mod_devicetable.h> 23 #include <asm/cpu_device_id.h> 24 #include <asm/intel-family.h> 25 #include <asm/processor.h> 26 #include <asm/mce.h> 27 28 #include "edac_module.h" 29 30 /* Static vars */ 31 static LIST_HEAD(sbridge_edac_list); 32 33 /* 34 * Alter this version for the module when modifications are made 35 */ 36 #define SBRIDGE_REVISION " Ver: 1.1.2 " 37 #define EDAC_MOD_STR "sb_edac" 38 39 /* 40 * Debug macros 41 */ 42 #define sbridge_printk(level, fmt, arg...) \ 43 edac_printk(level, "sbridge", fmt, ##arg) 44 45 #define sbridge_mc_printk(mci, level, fmt, arg...) \ 46 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) 47 48 /* 49 * Get a bit field at register value <v>, from bit <lo> to bit <hi> 50 */ 51 #define GET_BITFIELD(v, lo, hi) \ 52 (((v) & GENMASK_ULL(hi, lo)) >> (lo)) 53 54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ 55 static const u32 sbridge_dram_rule[] = { 56 0x80, 0x88, 0x90, 0x98, 0xa0, 57 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, 58 }; 59 60 static const u32 ibridge_dram_rule[] = { 61 0x60, 0x68, 0x70, 0x78, 0x80, 62 0x88, 0x90, 0x98, 0xa0, 0xa8, 63 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, 64 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, 65 }; 66 67 static const u32 knl_dram_rule[] = { 68 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */ 69 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */ 70 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */ 71 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */ 72 0x100, 0x108, 0x110, 0x118, /* 20-23 */ 73 }; 74 75 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) 76 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26) 77 78 static char *show_dram_attr(u32 attr) 79 { 80 switch (attr) { 81 case 0: 82 return "DRAM"; 83 case 1: 84 return "MMCFG"; 85 case 2: 86 return "NXM"; 87 default: 88 return "unknown"; 89 } 90 } 91 92 static const u32 sbridge_interleave_list[] = { 93 0x84, 0x8c, 0x94, 0x9c, 0xa4, 94 0xac, 0xb4, 0xbc, 0xc4, 0xcc, 95 }; 96 97 static const u32 ibridge_interleave_list[] = { 98 0x64, 0x6c, 0x74, 0x7c, 0x84, 99 0x8c, 0x94, 0x9c, 0xa4, 0xac, 100 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, 101 0xdc, 0xe4, 0xec, 0xf4, 0xfc, 102 }; 103 104 static const u32 knl_interleave_list[] = { 105 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */ 106 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */ 107 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */ 108 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */ 109 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */ 110 }; 111 #define MAX_INTERLEAVE \ 112 (max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \ 113 max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \ 114 ARRAY_SIZE(knl_interleave_list)))) 115 116 struct interleave_pkg { 117 unsigned char start; 118 unsigned char end; 119 }; 120 121 static const struct interleave_pkg sbridge_interleave_pkg[] = { 122 { 0, 2 }, 123 { 3, 5 }, 124 { 8, 10 }, 125 { 11, 13 }, 126 { 16, 18 }, 127 { 19, 21 }, 128 { 24, 26 }, 129 { 27, 29 }, 130 }; 131 132 static const struct interleave_pkg ibridge_interleave_pkg[] = { 133 { 0, 3 }, 134 { 4, 7 }, 135 { 8, 11 }, 136 { 12, 15 }, 137 { 16, 19 }, 138 { 20, 23 }, 139 { 24, 27 }, 140 { 28, 31 }, 141 }; 142 143 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg, 144 int interleave) 145 { 146 return GET_BITFIELD(reg, table[interleave].start, 147 table[interleave].end); 148 } 149 150 /* Devices 12 Function 7 */ 151 152 #define TOLM 0x80 153 #define TOHM 0x84 154 #define HASWELL_TOLM 0xd0 155 #define HASWELL_TOHM_0 0xd4 156 #define HASWELL_TOHM_1 0xd8 157 #define KNL_TOLM 0xd0 158 #define KNL_TOHM_0 0xd4 159 #define KNL_TOHM_1 0xd8 160 161 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) 162 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) 163 164 /* Device 13 Function 6 */ 165 166 #define SAD_TARGET 0xf0 167 168 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) 169 170 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14) 171 172 #define SAD_CONTROL 0xf4 173 174 /* Device 14 function 0 */ 175 176 static const u32 tad_dram_rule[] = { 177 0x40, 0x44, 0x48, 0x4c, 178 0x50, 0x54, 0x58, 0x5c, 179 0x60, 0x64, 0x68, 0x6c, 180 }; 181 #define MAX_TAD ARRAY_SIZE(tad_dram_rule) 182 183 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) 184 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) 185 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) 186 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) 187 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) 188 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) 189 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) 190 191 /* Device 15, function 0 */ 192 193 #define MCMTR 0x7c 194 #define KNL_MCMTR 0x624 195 196 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) 197 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) 198 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) 199 200 /* Device 15, function 1 */ 201 202 #define RASENABLES 0xac 203 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) 204 205 /* Device 15, functions 2-5 */ 206 207 static const int mtr_regs[] = { 208 0x80, 0x84, 0x88, 209 }; 210 211 static const int knl_mtr_reg = 0xb60; 212 213 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) 214 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) 215 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) 216 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) 217 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) 218 219 static const u32 tad_ch_nilv_offset[] = { 220 0x90, 0x94, 0x98, 0x9c, 221 0xa0, 0xa4, 0xa8, 0xac, 222 0xb0, 0xb4, 0xb8, 0xbc, 223 }; 224 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) 225 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) 226 227 static const u32 rir_way_limit[] = { 228 0x108, 0x10c, 0x110, 0x114, 0x118, 229 }; 230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) 231 232 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) 233 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) 234 235 #define MAX_RIR_WAY 8 236 237 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { 238 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, 239 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, 240 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, 241 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, 242 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, 243 }; 244 245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \ 246 GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19)) 247 248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \ 249 GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14)) 250 251 /* Device 16, functions 2-7 */ 252 253 /* 254 * FIXME: Implement the error count reads directly 255 */ 256 257 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) 258 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) 259 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) 260 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) 261 262 #if 0 /* Currently unused*/ 263 static const u32 correrrcnt[] = { 264 0x104, 0x108, 0x10c, 0x110, 265 }; 266 267 static const u32 correrrthrsld[] = { 268 0x11c, 0x120, 0x124, 0x128, 269 }; 270 #endif 271 272 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) 273 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) 274 275 276 /* Device 17, function 0 */ 277 278 #define SB_RANK_CFG_A 0x0328 279 280 #define IB_RANK_CFG_A 0x0320 281 282 /* 283 * sbridge structs 284 */ 285 286 #define NUM_CHANNELS 6 /* Max channels per MC */ 287 #define MAX_DIMMS 3 /* Max DIMMS per channel */ 288 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */ 289 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */ 290 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */ 291 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */ 292 293 enum type { 294 SANDY_BRIDGE, 295 IVY_BRIDGE, 296 HASWELL, 297 BROADWELL, 298 KNIGHTS_LANDING, 299 }; 300 301 enum domain { 302 IMC0 = 0, 303 IMC1, 304 SOCK, 305 }; 306 307 enum mirroring_mode { 308 NON_MIRRORING, 309 ADDR_RANGE_MIRRORING, 310 FULL_MIRRORING, 311 }; 312 313 struct sbridge_pvt; 314 struct sbridge_info { 315 enum type type; 316 u32 mcmtr; 317 u32 rankcfgr; 318 u64 (*get_tolm)(struct sbridge_pvt *pvt); 319 u64 (*get_tohm)(struct sbridge_pvt *pvt); 320 u64 (*rir_limit)(u32 reg); 321 u64 (*sad_limit)(u32 reg); 322 u32 (*interleave_mode)(u32 reg); 323 u32 (*dram_attr)(u32 reg); 324 const u32 *dram_rule; 325 const u32 *interleave_list; 326 const struct interleave_pkg *interleave_pkg; 327 u8 max_sad; 328 u8 (*get_node_id)(struct sbridge_pvt *pvt); 329 u8 (*get_ha)(u8 bank); 330 enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt); 331 enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr); 332 struct pci_dev *pci_vtd; 333 }; 334 335 struct sbridge_channel { 336 u32 ranks; 337 u32 dimms; 338 }; 339 340 struct pci_id_descr { 341 int dev_id; 342 int optional; 343 enum domain dom; 344 }; 345 346 struct pci_id_table { 347 const struct pci_id_descr *descr; 348 int n_devs_per_imc; 349 int n_devs_per_sock; 350 int n_imcs_per_sock; 351 enum type type; 352 }; 353 354 struct sbridge_dev { 355 struct list_head list; 356 int seg; 357 u8 bus, mc; 358 u8 node_id, source_id; 359 struct pci_dev **pdev; 360 enum domain dom; 361 int n_devs; 362 int i_devs; 363 struct mem_ctl_info *mci; 364 }; 365 366 struct knl_pvt { 367 struct pci_dev *pci_cha[KNL_MAX_CHAS]; 368 struct pci_dev *pci_channel[KNL_MAX_CHANNELS]; 369 struct pci_dev *pci_mc0; 370 struct pci_dev *pci_mc1; 371 struct pci_dev *pci_mc0_misc; 372 struct pci_dev *pci_mc1_misc; 373 struct pci_dev *pci_mc_info; /* tolm, tohm */ 374 }; 375 376 struct sbridge_pvt { 377 /* Devices per socket */ 378 struct pci_dev *pci_ddrio; 379 struct pci_dev *pci_sad0, *pci_sad1; 380 struct pci_dev *pci_br0, *pci_br1; 381 /* Devices per memory controller */ 382 struct pci_dev *pci_ha, *pci_ta, *pci_ras; 383 struct pci_dev *pci_tad[NUM_CHANNELS]; 384 385 struct sbridge_dev *sbridge_dev; 386 387 struct sbridge_info info; 388 struct sbridge_channel channel[NUM_CHANNELS]; 389 390 /* Memory type detection */ 391 bool is_cur_addr_mirrored, is_lockstep, is_close_pg; 392 bool is_chan_hash; 393 enum mirroring_mode mirror_mode; 394 395 /* Memory description */ 396 u64 tolm, tohm; 397 struct knl_pvt knl; 398 }; 399 400 #define PCI_DESCR(device_id, opt, domain) \ 401 .dev_id = (device_id), \ 402 .optional = opt, \ 403 .dom = domain 404 405 static const struct pci_id_descr pci_dev_descr_sbridge[] = { 406 /* Processor Home Agent */ 407 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) }, 408 409 /* Memory controller */ 410 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) }, 411 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) }, 412 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) }, 413 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) }, 414 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) }, 415 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) }, 416 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) }, 417 418 /* System Address Decoder */ 419 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) }, 420 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) }, 421 422 /* Broadcast Registers */ 423 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) }, 424 }; 425 426 #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \ 427 .descr = A, \ 428 .n_devs_per_imc = N, \ 429 .n_devs_per_sock = ARRAY_SIZE(A), \ 430 .n_imcs_per_sock = M, \ 431 .type = T \ 432 } 433 434 static const struct pci_id_table pci_dev_descr_sbridge_table[] = { 435 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE), 436 {0,} /* 0 terminated list. */ 437 }; 438 439 /* This changes depending if 1HA or 2HA: 440 * 1HA: 441 * 0x0eb8 (17.0) is DDRIO0 442 * 2HA: 443 * 0x0ebc (17.4) is DDRIO0 444 */ 445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8 446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc 447 448 /* pci ids */ 449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0 450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8 451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71 452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa 453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab 454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac 455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead 456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8 457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9 458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca 459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60 460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68 461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79 462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a 463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b 464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c 465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d 466 467 static const struct pci_id_descr pci_dev_descr_ibridge[] = { 468 /* Processor Home Agent */ 469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) }, 470 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) }, 471 472 /* Memory controller */ 473 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) }, 474 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) }, 475 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) }, 476 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) }, 477 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) }, 478 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) }, 479 480 /* Optional, mode 2HA */ 481 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) }, 482 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) }, 483 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) }, 484 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) }, 485 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) }, 486 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) }, 487 488 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) }, 489 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) }, 490 491 /* System Address Decoder */ 492 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) }, 493 494 /* Broadcast Registers */ 495 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) }, 496 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) }, 497 498 }; 499 500 static const struct pci_id_table pci_dev_descr_ibridge_table[] = { 501 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE), 502 {0,} /* 0 terminated list. */ 503 }; 504 505 /* Haswell support */ 506 /* EN processor: 507 * - 1 IMC 508 * - 3 DDR3 channels, 2 DPC per channel 509 * EP processor: 510 * - 1 or 2 IMC 511 * - 4 DDR4 channels, 3 DPC per channel 512 * EP 4S processor: 513 * - 2 IMC 514 * - 4 DDR4 channels, 3 DPC per channel 515 * EX processor: 516 * - 2 IMC 517 * - each IMC interfaces with a SMI 2 channel 518 * - each SMI channel interfaces with a scalable memory buffer 519 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC 520 */ 521 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */ 522 #define HASWELL_HASYSDEFEATURE2 0x84 523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28 524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0 525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60 526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8 527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71 528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68 529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79 530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc 531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd 532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa 533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab 534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac 535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad 536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a 537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b 538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c 539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d 540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd 541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf 542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9 543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb 544 static const struct pci_id_descr pci_dev_descr_haswell[] = { 545 /* first item must be the HA */ 546 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) }, 547 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) }, 548 549 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) }, 550 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) }, 551 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) }, 552 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) }, 553 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) }, 554 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) }, 555 556 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) }, 557 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) }, 558 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) }, 559 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) }, 560 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) }, 561 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) }, 562 563 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) }, 564 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) }, 565 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) }, 566 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) }, 567 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) }, 568 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) }, 569 }; 570 571 static const struct pci_id_table pci_dev_descr_haswell_table[] = { 572 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL), 573 {0,} /* 0 terminated list. */ 574 }; 575 576 /* Knight's Landing Support */ 577 /* 578 * KNL's memory channels are swizzled between memory controllers. 579 * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2 580 */ 581 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3) 582 583 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */ 584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840 585 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */ 586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843 587 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */ 588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844 589 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */ 590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a 591 /* SAD target - 1-29-1 (1 of these) */ 592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b 593 /* Caching / Home Agent */ 594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c 595 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */ 596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810 597 598 /* 599 * KNL differs from SB, IB, and Haswell in that it has multiple 600 * instances of the same device with the same device ID, so we handle that 601 * by creating as many copies in the table as we expect to find. 602 * (Like device ID must be grouped together.) 603 */ 604 605 static const struct pci_id_descr pci_dev_descr_knl[] = { 606 [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)}, 607 [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) }, 608 [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) }, 609 [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) }, 610 [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) }, 611 [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) }, 612 [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) }, 613 }; 614 615 static const struct pci_id_table pci_dev_descr_knl_table[] = { 616 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING), 617 {0,} 618 }; 619 620 /* 621 * Broadwell support 622 * 623 * DE processor: 624 * - 1 IMC 625 * - 2 DDR3 channels, 2 DPC per channel 626 * EP processor: 627 * - 1 or 2 IMC 628 * - 4 DDR4 channels, 3 DPC per channel 629 * EP 4S processor: 630 * - 2 IMC 631 * - 4 DDR4 channels, 3 DPC per channel 632 * EX processor: 633 * - 2 IMC 634 * - each IMC interfaces with a SMI 2 channel 635 * - each SMI channel interfaces with a scalable memory buffer 636 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC 637 */ 638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28 639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0 640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60 641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8 642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71 643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68 644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79 645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc 646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd 647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa 648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab 649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac 650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad 651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a 652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b 653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c 654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d 655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf 656 657 static const struct pci_id_descr pci_dev_descr_broadwell[] = { 658 /* first item must be the HA */ 659 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) }, 660 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) }, 661 662 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) }, 663 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) }, 664 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) }, 665 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) }, 666 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) }, 667 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) }, 668 669 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) }, 670 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) }, 671 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) }, 672 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) }, 673 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) }, 674 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) }, 675 676 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) }, 677 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) }, 678 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) }, 679 }; 680 681 static const struct pci_id_table pci_dev_descr_broadwell_table[] = { 682 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL), 683 {0,} /* 0 terminated list. */ 684 }; 685 686 687 /**************************************************************************** 688 Ancillary status routines 689 ****************************************************************************/ 690 691 static inline int numrank(enum type type, u32 mtr) 692 { 693 int ranks = (1 << RANK_CNT_BITS(mtr)); 694 int max = 4; 695 696 if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING) 697 max = 8; 698 699 if (ranks > max) { 700 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n", 701 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr); 702 return -EINVAL; 703 } 704 705 return ranks; 706 } 707 708 static inline int numrow(u32 mtr) 709 { 710 int rows = (RANK_WIDTH_BITS(mtr) + 12); 711 712 if (rows < 13 || rows > 18) { 713 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n", 714 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); 715 return -EINVAL; 716 } 717 718 return 1 << rows; 719 } 720 721 static inline int numcol(u32 mtr) 722 { 723 int cols = (COL_WIDTH_BITS(mtr) + 10); 724 725 if (cols > 12) { 726 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n", 727 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); 728 return -EINVAL; 729 } 730 731 return 1 << cols; 732 } 733 734 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom, 735 int multi_bus, 736 struct sbridge_dev *prev) 737 { 738 struct sbridge_dev *sbridge_dev; 739 740 /* 741 * If we have devices scattered across several busses that pertain 742 * to the same memory controller, we'll lump them all together. 743 */ 744 if (multi_bus) { 745 return list_first_entry_or_null(&sbridge_edac_list, 746 struct sbridge_dev, list); 747 } 748 749 sbridge_dev = list_entry(prev ? prev->list.next 750 : sbridge_edac_list.next, struct sbridge_dev, list); 751 752 list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) { 753 if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) && 754 (dom == SOCK || dom == sbridge_dev->dom)) 755 return sbridge_dev; 756 } 757 758 return NULL; 759 } 760 761 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom, 762 const struct pci_id_table *table) 763 { 764 struct sbridge_dev *sbridge_dev; 765 766 sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); 767 if (!sbridge_dev) 768 return NULL; 769 770 sbridge_dev->pdev = kcalloc(table->n_devs_per_imc, 771 sizeof(*sbridge_dev->pdev), 772 GFP_KERNEL); 773 if (!sbridge_dev->pdev) { 774 kfree(sbridge_dev); 775 return NULL; 776 } 777 778 sbridge_dev->seg = seg; 779 sbridge_dev->bus = bus; 780 sbridge_dev->dom = dom; 781 sbridge_dev->n_devs = table->n_devs_per_imc; 782 list_add_tail(&sbridge_dev->list, &sbridge_edac_list); 783 784 return sbridge_dev; 785 } 786 787 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) 788 { 789 list_del(&sbridge_dev->list); 790 kfree(sbridge_dev->pdev); 791 kfree(sbridge_dev); 792 } 793 794 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt) 795 { 796 u32 reg; 797 798 /* Address range is 32:28 */ 799 pci_read_config_dword(pvt->pci_sad1, TOLM, ®); 800 return GET_TOLM(reg); 801 } 802 803 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt) 804 { 805 u32 reg; 806 807 pci_read_config_dword(pvt->pci_sad1, TOHM, ®); 808 return GET_TOHM(reg); 809 } 810 811 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt) 812 { 813 u32 reg; 814 815 pci_read_config_dword(pvt->pci_br1, TOLM, ®); 816 817 return GET_TOLM(reg); 818 } 819 820 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt) 821 { 822 u32 reg; 823 824 pci_read_config_dword(pvt->pci_br1, TOHM, ®); 825 826 return GET_TOHM(reg); 827 } 828 829 static u64 rir_limit(u32 reg) 830 { 831 return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff; 832 } 833 834 static u64 sad_limit(u32 reg) 835 { 836 return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff; 837 } 838 839 static u32 interleave_mode(u32 reg) 840 { 841 return GET_BITFIELD(reg, 1, 1); 842 } 843 844 static u32 dram_attr(u32 reg) 845 { 846 return GET_BITFIELD(reg, 2, 3); 847 } 848 849 static u64 knl_sad_limit(u32 reg) 850 { 851 return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff; 852 } 853 854 static u32 knl_interleave_mode(u32 reg) 855 { 856 return GET_BITFIELD(reg, 1, 2); 857 } 858 859 static const char * const knl_intlv_mode[] = { 860 "[8:6]", "[10:8]", "[14:12]", "[32:30]" 861 }; 862 863 static const char *get_intlv_mode_str(u32 reg, enum type t) 864 { 865 if (t == KNIGHTS_LANDING) 866 return knl_intlv_mode[knl_interleave_mode(reg)]; 867 else 868 return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]"; 869 } 870 871 static u32 dram_attr_knl(u32 reg) 872 { 873 return GET_BITFIELD(reg, 3, 4); 874 } 875 876 877 static enum mem_type get_memory_type(struct sbridge_pvt *pvt) 878 { 879 u32 reg; 880 enum mem_type mtype; 881 882 if (pvt->pci_ddrio) { 883 pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr, 884 ®); 885 if (GET_BITFIELD(reg, 11, 11)) 886 /* FIXME: Can also be LRDIMM */ 887 mtype = MEM_RDDR3; 888 else 889 mtype = MEM_DDR3; 890 } else 891 mtype = MEM_UNKNOWN; 892 893 return mtype; 894 } 895 896 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt) 897 { 898 u32 reg; 899 bool registered = false; 900 enum mem_type mtype = MEM_UNKNOWN; 901 902 if (!pvt->pci_ddrio) 903 goto out; 904 905 pci_read_config_dword(pvt->pci_ddrio, 906 HASWELL_DDRCRCLKCONTROLS, ®); 907 /* Is_Rdimm */ 908 if (GET_BITFIELD(reg, 16, 16)) 909 registered = true; 910 911 pci_read_config_dword(pvt->pci_ta, MCMTR, ®); 912 if (GET_BITFIELD(reg, 14, 14)) { 913 if (registered) 914 mtype = MEM_RDDR4; 915 else 916 mtype = MEM_DDR4; 917 } else { 918 if (registered) 919 mtype = MEM_RDDR3; 920 else 921 mtype = MEM_DDR3; 922 } 923 924 out: 925 return mtype; 926 } 927 928 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr) 929 { 930 /* for KNL value is fixed */ 931 return DEV_X16; 932 } 933 934 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr) 935 { 936 /* there's no way to figure out */ 937 return DEV_UNKNOWN; 938 } 939 940 static enum dev_type __ibridge_get_width(u32 mtr) 941 { 942 enum dev_type type = DEV_UNKNOWN; 943 944 switch (mtr) { 945 case 2: 946 type = DEV_X16; 947 break; 948 case 1: 949 type = DEV_X8; 950 break; 951 case 0: 952 type = DEV_X4; 953 break; 954 } 955 956 return type; 957 } 958 959 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr) 960 { 961 /* 962 * ddr3_width on the documentation but also valid for DDR4 on 963 * Haswell 964 */ 965 return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8)); 966 } 967 968 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr) 969 { 970 /* ddr3_width on the documentation but also valid for DDR4 */ 971 return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9)); 972 } 973 974 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt) 975 { 976 /* DDR4 RDIMMS and LRDIMMS are supported */ 977 return MEM_RDDR4; 978 } 979 980 static u8 get_node_id(struct sbridge_pvt *pvt) 981 { 982 u32 reg; 983 pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, ®); 984 return GET_BITFIELD(reg, 0, 2); 985 } 986 987 static u8 haswell_get_node_id(struct sbridge_pvt *pvt) 988 { 989 u32 reg; 990 991 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); 992 return GET_BITFIELD(reg, 0, 3); 993 } 994 995 static u8 knl_get_node_id(struct sbridge_pvt *pvt) 996 { 997 u32 reg; 998 999 pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, ®); 1000 return GET_BITFIELD(reg, 0, 2); 1001 } 1002 1003 /* 1004 * Use the reporting bank number to determine which memory 1005 * controller (also known as "ha" for "home agent"). Sandy 1006 * Bridge only has one memory controller per socket, so the 1007 * answer is always zero. 1008 */ 1009 static u8 sbridge_get_ha(u8 bank) 1010 { 1011 return 0; 1012 } 1013 1014 /* 1015 * On Ivy Bridge, Haswell and Broadwell the error may be in a 1016 * home agent bank (7, 8), or one of the per-channel memory 1017 * controller banks (9 .. 16). 1018 */ 1019 static u8 ibridge_get_ha(u8 bank) 1020 { 1021 switch (bank) { 1022 case 7 ... 8: 1023 return bank - 7; 1024 case 9 ... 16: 1025 return (bank - 9) / 4; 1026 default: 1027 return 0xff; 1028 } 1029 } 1030 1031 /* Not used, but included for safety/symmetry */ 1032 static u8 knl_get_ha(u8 bank) 1033 { 1034 return 0xff; 1035 } 1036 1037 static u64 haswell_get_tolm(struct sbridge_pvt *pvt) 1038 { 1039 u32 reg; 1040 1041 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, ®); 1042 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; 1043 } 1044 1045 static u64 haswell_get_tohm(struct sbridge_pvt *pvt) 1046 { 1047 u64 rc; 1048 u32 reg; 1049 1050 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, ®); 1051 rc = GET_BITFIELD(reg, 26, 31); 1052 pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, ®); 1053 rc = ((reg << 6) | rc) << 26; 1054 1055 return rc | 0x3ffffff; 1056 } 1057 1058 static u64 knl_get_tolm(struct sbridge_pvt *pvt) 1059 { 1060 u32 reg; 1061 1062 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, ®); 1063 return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff; 1064 } 1065 1066 static u64 knl_get_tohm(struct sbridge_pvt *pvt) 1067 { 1068 u64 rc; 1069 u32 reg_lo, reg_hi; 1070 1071 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, ®_lo); 1072 pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, ®_hi); 1073 rc = ((u64)reg_hi << 32) | reg_lo; 1074 return rc | 0x3ffffff; 1075 } 1076 1077 1078 static u64 haswell_rir_limit(u32 reg) 1079 { 1080 return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1; 1081 } 1082 1083 static inline u8 sad_pkg_socket(u8 pkg) 1084 { 1085 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */ 1086 return ((pkg >> 3) << 2) | (pkg & 0x3); 1087 } 1088 1089 static inline u8 sad_pkg_ha(u8 pkg) 1090 { 1091 return (pkg >> 2) & 0x1; 1092 } 1093 1094 static int haswell_chan_hash(int idx, u64 addr) 1095 { 1096 int i; 1097 1098 /* 1099 * XOR even bits from 12:26 to bit0 of idx, 1100 * odd bits from 13:27 to bit1 1101 */ 1102 for (i = 12; i < 28; i += 2) 1103 idx ^= (addr >> i) & 3; 1104 1105 return idx; 1106 } 1107 1108 /* Low bits of TAD limit, and some metadata. */ 1109 static const u32 knl_tad_dram_limit_lo[] = { 1110 0x400, 0x500, 0x600, 0x700, 1111 0x800, 0x900, 0xa00, 0xb00, 1112 }; 1113 1114 /* Low bits of TAD offset. */ 1115 static const u32 knl_tad_dram_offset_lo[] = { 1116 0x404, 0x504, 0x604, 0x704, 1117 0x804, 0x904, 0xa04, 0xb04, 1118 }; 1119 1120 /* High 16 bits of TAD limit and offset. */ 1121 static const u32 knl_tad_dram_hi[] = { 1122 0x408, 0x508, 0x608, 0x708, 1123 0x808, 0x908, 0xa08, 0xb08, 1124 }; 1125 1126 /* Number of ways a tad entry is interleaved. */ 1127 static const u32 knl_tad_ways[] = { 1128 8, 6, 4, 3, 2, 1, 1129 }; 1130 1131 /* 1132 * Retrieve the n'th Target Address Decode table entry 1133 * from the memory controller's TAD table. 1134 * 1135 * @pvt: driver private data 1136 * @entry: which entry you want to retrieve 1137 * @mc: which memory controller (0 or 1) 1138 * @offset: output tad range offset 1139 * @limit: output address of first byte above tad range 1140 * @ways: output number of interleave ways 1141 * 1142 * The offset value has curious semantics. It's a sort of running total 1143 * of the sizes of all the memory regions that aren't mapped in this 1144 * tad table. 1145 */ 1146 static int knl_get_tad(const struct sbridge_pvt *pvt, 1147 const int entry, 1148 const int mc, 1149 u64 *offset, 1150 u64 *limit, 1151 int *ways) 1152 { 1153 u32 reg_limit_lo, reg_offset_lo, reg_hi; 1154 struct pci_dev *pci_mc; 1155 int way_id; 1156 1157 switch (mc) { 1158 case 0: 1159 pci_mc = pvt->knl.pci_mc0; 1160 break; 1161 case 1: 1162 pci_mc = pvt->knl.pci_mc1; 1163 break; 1164 default: 1165 WARN_ON(1); 1166 return -EINVAL; 1167 } 1168 1169 pci_read_config_dword(pci_mc, 1170 knl_tad_dram_limit_lo[entry], ®_limit_lo); 1171 pci_read_config_dword(pci_mc, 1172 knl_tad_dram_offset_lo[entry], ®_offset_lo); 1173 pci_read_config_dword(pci_mc, 1174 knl_tad_dram_hi[entry], ®_hi); 1175 1176 /* Is this TAD entry enabled? */ 1177 if (!GET_BITFIELD(reg_limit_lo, 0, 0)) 1178 return -ENODEV; 1179 1180 way_id = GET_BITFIELD(reg_limit_lo, 3, 5); 1181 1182 if (way_id < ARRAY_SIZE(knl_tad_ways)) { 1183 *ways = knl_tad_ways[way_id]; 1184 } else { 1185 *ways = 0; 1186 sbridge_printk(KERN_ERR, 1187 "Unexpected value %d in mc_tad_limit_lo wayness field\n", 1188 way_id); 1189 return -ENODEV; 1190 } 1191 1192 /* 1193 * The least significant 6 bits of base and limit are truncated. 1194 * For limit, we fill the missing bits with 1s. 1195 */ 1196 *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) | 1197 ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32); 1198 *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 | 1199 ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32); 1200 1201 return 0; 1202 } 1203 1204 /* Determine which memory controller is responsible for a given channel. */ 1205 static int knl_channel_mc(int channel) 1206 { 1207 WARN_ON(channel < 0 || channel >= 6); 1208 1209 return channel < 3 ? 1 : 0; 1210 } 1211 1212 /* 1213 * Get the Nth entry from EDC_ROUTE_TABLE register. 1214 * (This is the per-tile mapping of logical interleave targets to 1215 * physical EDC modules.) 1216 * 1217 * entry 0: 0:2 1218 * 1: 3:5 1219 * 2: 6:8 1220 * 3: 9:11 1221 * 4: 12:14 1222 * 5: 15:17 1223 * 6: 18:20 1224 * 7: 21:23 1225 * reserved: 24:31 1226 */ 1227 static u32 knl_get_edc_route(int entry, u32 reg) 1228 { 1229 WARN_ON(entry >= KNL_MAX_EDCS); 1230 return GET_BITFIELD(reg, entry*3, (entry*3)+2); 1231 } 1232 1233 /* 1234 * Get the Nth entry from MC_ROUTE_TABLE register. 1235 * (This is the per-tile mapping of logical interleave targets to 1236 * physical DRAM channels modules.) 1237 * 1238 * entry 0: mc 0:2 channel 18:19 1239 * 1: mc 3:5 channel 20:21 1240 * 2: mc 6:8 channel 22:23 1241 * 3: mc 9:11 channel 24:25 1242 * 4: mc 12:14 channel 26:27 1243 * 5: mc 15:17 channel 28:29 1244 * reserved: 30:31 1245 * 1246 * Though we have 3 bits to identify the MC, we should only see 1247 * the values 0 or 1. 1248 */ 1249 1250 static u32 knl_get_mc_route(int entry, u32 reg) 1251 { 1252 int mc, chan; 1253 1254 WARN_ON(entry >= KNL_MAX_CHANNELS); 1255 1256 mc = GET_BITFIELD(reg, entry*3, (entry*3)+2); 1257 chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1); 1258 1259 return knl_channel_remap(mc, chan); 1260 } 1261 1262 /* 1263 * Render the EDC_ROUTE register in human-readable form. 1264 * Output string s should be at least KNL_MAX_EDCS*2 bytes. 1265 */ 1266 static void knl_show_edc_route(u32 reg, char *s) 1267 { 1268 int i; 1269 1270 for (i = 0; i < KNL_MAX_EDCS; i++) { 1271 s[i*2] = knl_get_edc_route(i, reg) + '0'; 1272 s[i*2+1] = '-'; 1273 } 1274 1275 s[KNL_MAX_EDCS*2 - 1] = '\0'; 1276 } 1277 1278 /* 1279 * Render the MC_ROUTE register in human-readable form. 1280 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes. 1281 */ 1282 static void knl_show_mc_route(u32 reg, char *s) 1283 { 1284 int i; 1285 1286 for (i = 0; i < KNL_MAX_CHANNELS; i++) { 1287 s[i*2] = knl_get_mc_route(i, reg) + '0'; 1288 s[i*2+1] = '-'; 1289 } 1290 1291 s[KNL_MAX_CHANNELS*2 - 1] = '\0'; 1292 } 1293 1294 #define KNL_EDC_ROUTE 0xb8 1295 #define KNL_MC_ROUTE 0xb4 1296 1297 /* Is this dram rule backed by regular DRAM in flat mode? */ 1298 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29) 1299 1300 /* Is this dram rule cached? */ 1301 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28) 1302 1303 /* Is this rule backed by edc ? */ 1304 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29) 1305 1306 /* Is this rule backed by DRAM, cacheable in EDRAM? */ 1307 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28) 1308 1309 /* Is this rule mod3? */ 1310 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27) 1311 1312 /* 1313 * Figure out how big our RAM modules are. 1314 * 1315 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we 1316 * have to figure this out from the SAD rules, interleave lists, route tables, 1317 * and TAD rules. 1318 * 1319 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to 1320 * inspect the TAD rules to figure out how large the SAD regions really are. 1321 * 1322 * When we know the real size of a SAD region and how many ways it's 1323 * interleaved, we know the individual contribution of each channel to 1324 * TAD is size/ways. 1325 * 1326 * Finally, we have to check whether each channel participates in each SAD 1327 * region. 1328 * 1329 * Fortunately, KNL only supports one DIMM per channel, so once we know how 1330 * much memory the channel uses, we know the DIMM is at least that large. 1331 * (The BIOS might possibly choose not to map all available memory, in which 1332 * case we will underreport the size of the DIMM.) 1333 * 1334 * In theory, we could try to determine the EDC sizes as well, but that would 1335 * only work in flat mode, not in cache mode. 1336 * 1337 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS 1338 * elements) 1339 */ 1340 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes) 1341 { 1342 u64 sad_base, sad_limit = 0; 1343 u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace; 1344 int sad_rule = 0; 1345 int tad_rule = 0; 1346 int intrlv_ways, tad_ways; 1347 u32 first_pkg, pkg; 1348 int i; 1349 u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */ 1350 u32 dram_rule, interleave_reg; 1351 u32 mc_route_reg[KNL_MAX_CHAS]; 1352 u32 edc_route_reg[KNL_MAX_CHAS]; 1353 int edram_only; 1354 char edc_route_string[KNL_MAX_EDCS*2]; 1355 char mc_route_string[KNL_MAX_CHANNELS*2]; 1356 int cur_reg_start; 1357 int mc; 1358 int channel; 1359 int participants[KNL_MAX_CHANNELS]; 1360 1361 for (i = 0; i < KNL_MAX_CHANNELS; i++) 1362 mc_sizes[i] = 0; 1363 1364 /* Read the EDC route table in each CHA. */ 1365 cur_reg_start = 0; 1366 for (i = 0; i < KNL_MAX_CHAS; i++) { 1367 pci_read_config_dword(pvt->knl.pci_cha[i], 1368 KNL_EDC_ROUTE, &edc_route_reg[i]); 1369 1370 if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) { 1371 knl_show_edc_route(edc_route_reg[i-1], 1372 edc_route_string); 1373 if (cur_reg_start == i-1) 1374 edac_dbg(0, "edc route table for CHA %d: %s\n", 1375 cur_reg_start, edc_route_string); 1376 else 1377 edac_dbg(0, "edc route table for CHA %d-%d: %s\n", 1378 cur_reg_start, i-1, edc_route_string); 1379 cur_reg_start = i; 1380 } 1381 } 1382 knl_show_edc_route(edc_route_reg[i-1], edc_route_string); 1383 if (cur_reg_start == i-1) 1384 edac_dbg(0, "edc route table for CHA %d: %s\n", 1385 cur_reg_start, edc_route_string); 1386 else 1387 edac_dbg(0, "edc route table for CHA %d-%d: %s\n", 1388 cur_reg_start, i-1, edc_route_string); 1389 1390 /* Read the MC route table in each CHA. */ 1391 cur_reg_start = 0; 1392 for (i = 0; i < KNL_MAX_CHAS; i++) { 1393 pci_read_config_dword(pvt->knl.pci_cha[i], 1394 KNL_MC_ROUTE, &mc_route_reg[i]); 1395 1396 if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) { 1397 knl_show_mc_route(mc_route_reg[i-1], mc_route_string); 1398 if (cur_reg_start == i-1) 1399 edac_dbg(0, "mc route table for CHA %d: %s\n", 1400 cur_reg_start, mc_route_string); 1401 else 1402 edac_dbg(0, "mc route table for CHA %d-%d: %s\n", 1403 cur_reg_start, i-1, mc_route_string); 1404 cur_reg_start = i; 1405 } 1406 } 1407 knl_show_mc_route(mc_route_reg[i-1], mc_route_string); 1408 if (cur_reg_start == i-1) 1409 edac_dbg(0, "mc route table for CHA %d: %s\n", 1410 cur_reg_start, mc_route_string); 1411 else 1412 edac_dbg(0, "mc route table for CHA %d-%d: %s\n", 1413 cur_reg_start, i-1, mc_route_string); 1414 1415 /* Process DRAM rules */ 1416 for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) { 1417 /* previous limit becomes the new base */ 1418 sad_base = sad_limit; 1419 1420 pci_read_config_dword(pvt->pci_sad0, 1421 pvt->info.dram_rule[sad_rule], &dram_rule); 1422 1423 if (!DRAM_RULE_ENABLE(dram_rule)) 1424 break; 1425 1426 edram_only = KNL_EDRAM_ONLY(dram_rule); 1427 1428 sad_limit = pvt->info.sad_limit(dram_rule)+1; 1429 1430 pci_read_config_dword(pvt->pci_sad0, 1431 pvt->info.interleave_list[sad_rule], &interleave_reg); 1432 1433 /* 1434 * Find out how many ways this dram rule is interleaved. 1435 * We stop when we see the first channel again. 1436 */ 1437 first_pkg = sad_pkg(pvt->info.interleave_pkg, 1438 interleave_reg, 0); 1439 for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) { 1440 pkg = sad_pkg(pvt->info.interleave_pkg, 1441 interleave_reg, intrlv_ways); 1442 1443 if ((pkg & 0x8) == 0) { 1444 /* 1445 * 0 bit means memory is non-local, 1446 * which KNL doesn't support 1447 */ 1448 edac_dbg(0, "Unexpected interleave target %d\n", 1449 pkg); 1450 return -1; 1451 } 1452 1453 if (pkg == first_pkg) 1454 break; 1455 } 1456 if (KNL_MOD3(dram_rule)) 1457 intrlv_ways *= 3; 1458 1459 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n", 1460 sad_rule, 1461 sad_base, 1462 sad_limit, 1463 intrlv_ways, 1464 edram_only ? ", EDRAM" : ""); 1465 1466 /* 1467 * Find out how big the SAD region really is by iterating 1468 * over TAD tables (SAD regions may contain holes). 1469 * Each memory controller might have a different TAD table, so 1470 * we have to look at both. 1471 * 1472 * Livespace is the memory that's mapped in this TAD table, 1473 * deadspace is the holes (this could be the MMIO hole, or it 1474 * could be memory that's mapped by the other TAD table but 1475 * not this one). 1476 */ 1477 for (mc = 0; mc < 2; mc++) { 1478 sad_actual_size[mc] = 0; 1479 tad_livespace = 0; 1480 for (tad_rule = 0; 1481 tad_rule < ARRAY_SIZE( 1482 knl_tad_dram_limit_lo); 1483 tad_rule++) { 1484 if (knl_get_tad(pvt, 1485 tad_rule, 1486 mc, 1487 &tad_deadspace, 1488 &tad_limit, 1489 &tad_ways)) 1490 break; 1491 1492 tad_size = (tad_limit+1) - 1493 (tad_livespace + tad_deadspace); 1494 tad_livespace += tad_size; 1495 tad_base = (tad_limit+1) - tad_size; 1496 1497 if (tad_base < sad_base) { 1498 if (tad_limit > sad_base) 1499 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n"); 1500 } else if (tad_base < sad_limit) { 1501 if (tad_limit+1 > sad_limit) { 1502 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n"); 1503 } else { 1504 /* TAD region is completely inside SAD region */ 1505 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n", 1506 tad_rule, tad_base, 1507 tad_limit, tad_size, 1508 mc); 1509 sad_actual_size[mc] += tad_size; 1510 } 1511 } 1512 } 1513 } 1514 1515 for (mc = 0; mc < 2; mc++) { 1516 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n", 1517 mc, sad_actual_size[mc], sad_actual_size[mc]); 1518 } 1519 1520 /* Ignore EDRAM rule */ 1521 if (edram_only) 1522 continue; 1523 1524 /* Figure out which channels participate in interleave. */ 1525 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) 1526 participants[channel] = 0; 1527 1528 /* For each channel, does at least one CHA have 1529 * this channel mapped to the given target? 1530 */ 1531 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) { 1532 int target; 1533 int cha; 1534 1535 for (target = 0; target < KNL_MAX_CHANNELS; target++) { 1536 for (cha = 0; cha < KNL_MAX_CHAS; cha++) { 1537 if (knl_get_mc_route(target, 1538 mc_route_reg[cha]) == channel 1539 && !participants[channel]) { 1540 participants[channel] = 1; 1541 break; 1542 } 1543 } 1544 } 1545 } 1546 1547 for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) { 1548 mc = knl_channel_mc(channel); 1549 if (participants[channel]) { 1550 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n", 1551 channel, 1552 sad_actual_size[mc]/intrlv_ways, 1553 sad_rule); 1554 mc_sizes[channel] += 1555 sad_actual_size[mc]/intrlv_ways; 1556 } 1557 } 1558 } 1559 1560 return 0; 1561 } 1562 1563 static void get_source_id(struct mem_ctl_info *mci) 1564 { 1565 struct sbridge_pvt *pvt = mci->pvt_info; 1566 u32 reg; 1567 1568 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL || 1569 pvt->info.type == KNIGHTS_LANDING) 1570 pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, ®); 1571 else 1572 pci_read_config_dword(pvt->pci_br0, SAD_TARGET, ®); 1573 1574 if (pvt->info.type == KNIGHTS_LANDING) 1575 pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg); 1576 else 1577 pvt->sbridge_dev->source_id = SOURCE_ID(reg); 1578 } 1579 1580 static int __populate_dimms(struct mem_ctl_info *mci, 1581 u64 knl_mc_sizes[KNL_MAX_CHANNELS], 1582 enum edac_type mode) 1583 { 1584 struct sbridge_pvt *pvt = mci->pvt_info; 1585 int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS 1586 : NUM_CHANNELS; 1587 unsigned int i, j, banks, ranks, rows, cols, npages; 1588 struct dimm_info *dimm; 1589 enum mem_type mtype; 1590 u64 size; 1591 1592 mtype = pvt->info.get_memory_type(pvt); 1593 if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4) 1594 edac_dbg(0, "Memory is registered\n"); 1595 else if (mtype == MEM_UNKNOWN) 1596 edac_dbg(0, "Cannot determine memory type\n"); 1597 else 1598 edac_dbg(0, "Memory is unregistered\n"); 1599 1600 if (mtype == MEM_DDR4 || mtype == MEM_RDDR4) 1601 banks = 16; 1602 else 1603 banks = 8; 1604 1605 for (i = 0; i < channels; i++) { 1606 u32 mtr; 1607 1608 int max_dimms_per_channel; 1609 1610 if (pvt->info.type == KNIGHTS_LANDING) { 1611 max_dimms_per_channel = 1; 1612 if (!pvt->knl.pci_channel[i]) 1613 continue; 1614 } else { 1615 max_dimms_per_channel = ARRAY_SIZE(mtr_regs); 1616 if (!pvt->pci_tad[i]) 1617 continue; 1618 } 1619 1620 for (j = 0; j < max_dimms_per_channel; j++) { 1621 dimm = edac_get_dimm(mci, i, j, 0); 1622 if (pvt->info.type == KNIGHTS_LANDING) { 1623 pci_read_config_dword(pvt->knl.pci_channel[i], 1624 knl_mtr_reg, &mtr); 1625 } else { 1626 pci_read_config_dword(pvt->pci_tad[i], 1627 mtr_regs[j], &mtr); 1628 } 1629 edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr); 1630 if (IS_DIMM_PRESENT(mtr)) { 1631 if (!IS_ECC_ENABLED(pvt->info.mcmtr)) { 1632 sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n", 1633 pvt->sbridge_dev->source_id, 1634 pvt->sbridge_dev->dom, i); 1635 return -ENODEV; 1636 } 1637 pvt->channel[i].dimms++; 1638 1639 ranks = numrank(pvt->info.type, mtr); 1640 1641 if (pvt->info.type == KNIGHTS_LANDING) { 1642 /* For DDR4, this is fixed. */ 1643 cols = 1 << 10; 1644 rows = knl_mc_sizes[i] / 1645 ((u64) cols * ranks * banks * 8); 1646 } else { 1647 rows = numrow(mtr); 1648 cols = numcol(mtr); 1649 } 1650 1651 size = ((u64)rows * cols * banks * ranks) >> (20 - 3); 1652 npages = MiB_TO_PAGES(size); 1653 1654 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", 1655 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j, 1656 size, npages, 1657 banks, ranks, rows, cols); 1658 1659 dimm->nr_pages = npages; 1660 dimm->grain = 32; 1661 dimm->dtype = pvt->info.get_width(pvt, mtr); 1662 dimm->mtype = mtype; 1663 dimm->edac_mode = mode; 1664 snprintf(dimm->label, sizeof(dimm->label), 1665 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u", 1666 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j); 1667 } 1668 } 1669 } 1670 1671 return 0; 1672 } 1673 1674 static int get_dimm_config(struct mem_ctl_info *mci) 1675 { 1676 struct sbridge_pvt *pvt = mci->pvt_info; 1677 u64 knl_mc_sizes[KNL_MAX_CHANNELS]; 1678 enum edac_type mode; 1679 u32 reg; 1680 1681 pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt); 1682 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n", 1683 pvt->sbridge_dev->mc, 1684 pvt->sbridge_dev->node_id, 1685 pvt->sbridge_dev->source_id); 1686 1687 /* KNL doesn't support mirroring or lockstep, 1688 * and is always closed page 1689 */ 1690 if (pvt->info.type == KNIGHTS_LANDING) { 1691 mode = EDAC_S4ECD4ED; 1692 pvt->mirror_mode = NON_MIRRORING; 1693 pvt->is_cur_addr_mirrored = false; 1694 1695 if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0) 1696 return -1; 1697 if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) { 1698 edac_dbg(0, "Failed to read KNL_MCMTR register\n"); 1699 return -ENODEV; 1700 } 1701 } else { 1702 if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { 1703 if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®)) { 1704 edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n"); 1705 return -ENODEV; 1706 } 1707 pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21); 1708 if (GET_BITFIELD(reg, 28, 28)) { 1709 pvt->mirror_mode = ADDR_RANGE_MIRRORING; 1710 edac_dbg(0, "Address range partial memory mirroring is enabled\n"); 1711 goto next; 1712 } 1713 } 1714 if (pci_read_config_dword(pvt->pci_ras, RASENABLES, ®)) { 1715 edac_dbg(0, "Failed to read RASENABLES register\n"); 1716 return -ENODEV; 1717 } 1718 if (IS_MIRROR_ENABLED(reg)) { 1719 pvt->mirror_mode = FULL_MIRRORING; 1720 edac_dbg(0, "Full memory mirroring is enabled\n"); 1721 } else { 1722 pvt->mirror_mode = NON_MIRRORING; 1723 edac_dbg(0, "Memory mirroring is disabled\n"); 1724 } 1725 1726 next: 1727 if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) { 1728 edac_dbg(0, "Failed to read MCMTR register\n"); 1729 return -ENODEV; 1730 } 1731 if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { 1732 edac_dbg(0, "Lockstep is enabled\n"); 1733 mode = EDAC_S8ECD8ED; 1734 pvt->is_lockstep = true; 1735 } else { 1736 edac_dbg(0, "Lockstep is disabled\n"); 1737 mode = EDAC_S4ECD4ED; 1738 pvt->is_lockstep = false; 1739 } 1740 if (IS_CLOSE_PG(pvt->info.mcmtr)) { 1741 edac_dbg(0, "address map is on closed page mode\n"); 1742 pvt->is_close_pg = true; 1743 } else { 1744 edac_dbg(0, "address map is on open page mode\n"); 1745 pvt->is_close_pg = false; 1746 } 1747 } 1748 1749 return __populate_dimms(mci, knl_mc_sizes, mode); 1750 } 1751 1752 static void get_memory_layout(const struct mem_ctl_info *mci) 1753 { 1754 struct sbridge_pvt *pvt = mci->pvt_info; 1755 int i, j, k, n_sads, n_tads, sad_interl; 1756 u32 reg; 1757 u64 limit, prv = 0; 1758 u64 tmp_mb; 1759 u32 gb, mb; 1760 u32 rir_way; 1761 1762 /* 1763 * Step 1) Get TOLM/TOHM ranges 1764 */ 1765 1766 pvt->tolm = pvt->info.get_tolm(pvt); 1767 tmp_mb = (1 + pvt->tolm) >> 20; 1768 1769 gb = div_u64_rem(tmp_mb, 1024, &mb); 1770 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", 1771 gb, (mb*1000)/1024, (u64)pvt->tolm); 1772 1773 /* Address range is already 45:25 */ 1774 pvt->tohm = pvt->info.get_tohm(pvt); 1775 tmp_mb = (1 + pvt->tohm) >> 20; 1776 1777 gb = div_u64_rem(tmp_mb, 1024, &mb); 1778 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", 1779 gb, (mb*1000)/1024, (u64)pvt->tohm); 1780 1781 /* 1782 * Step 2) Get SAD range and SAD Interleave list 1783 * TAD registers contain the interleave wayness. However, it 1784 * seems simpler to just discover it indirectly, with the 1785 * algorithm bellow. 1786 */ 1787 prv = 0; 1788 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { 1789 /* SAD_LIMIT Address range is 45:26 */ 1790 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], 1791 ®); 1792 limit = pvt->info.sad_limit(reg); 1793 1794 if (!DRAM_RULE_ENABLE(reg)) 1795 continue; 1796 1797 if (limit <= prv) 1798 break; 1799 1800 tmp_mb = (limit + 1) >> 20; 1801 gb = div_u64_rem(tmp_mb, 1024, &mb); 1802 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n", 1803 n_sads, 1804 show_dram_attr(pvt->info.dram_attr(reg)), 1805 gb, (mb*1000)/1024, 1806 ((u64)tmp_mb) << 20L, 1807 get_intlv_mode_str(reg, pvt->info.type), 1808 reg); 1809 prv = limit; 1810 1811 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], 1812 ®); 1813 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); 1814 for (j = 0; j < 8; j++) { 1815 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j); 1816 if (j > 0 && sad_interl == pkg) 1817 break; 1818 1819 edac_dbg(0, "SAD#%d, interleave #%d: %d\n", 1820 n_sads, j, pkg); 1821 } 1822 } 1823 1824 if (pvt->info.type == KNIGHTS_LANDING) 1825 return; 1826 1827 /* 1828 * Step 3) Get TAD range 1829 */ 1830 prv = 0; 1831 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { 1832 pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], ®); 1833 limit = TAD_LIMIT(reg); 1834 if (limit <= prv) 1835 break; 1836 tmp_mb = (limit + 1) >> 20; 1837 1838 gb = div_u64_rem(tmp_mb, 1024, &mb); 1839 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", 1840 n_tads, gb, (mb*1000)/1024, 1841 ((u64)tmp_mb) << 20L, 1842 (u32)(1 << TAD_SOCK(reg)), 1843 (u32)TAD_CH(reg) + 1, 1844 (u32)TAD_TGT0(reg), 1845 (u32)TAD_TGT1(reg), 1846 (u32)TAD_TGT2(reg), 1847 (u32)TAD_TGT3(reg), 1848 reg); 1849 prv = limit; 1850 } 1851 1852 /* 1853 * Step 4) Get TAD offsets, per each channel 1854 */ 1855 for (i = 0; i < NUM_CHANNELS; i++) { 1856 if (!pvt->channel[i].dimms) 1857 continue; 1858 for (j = 0; j < n_tads; j++) { 1859 pci_read_config_dword(pvt->pci_tad[i], 1860 tad_ch_nilv_offset[j], 1861 ®); 1862 tmp_mb = TAD_OFFSET(reg) >> 20; 1863 gb = div_u64_rem(tmp_mb, 1024, &mb); 1864 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", 1865 i, j, 1866 gb, (mb*1000)/1024, 1867 ((u64)tmp_mb) << 20L, 1868 reg); 1869 } 1870 } 1871 1872 /* 1873 * Step 6) Get RIR Wayness/Limit, per each channel 1874 */ 1875 for (i = 0; i < NUM_CHANNELS; i++) { 1876 if (!pvt->channel[i].dimms) 1877 continue; 1878 for (j = 0; j < MAX_RIR_RANGES; j++) { 1879 pci_read_config_dword(pvt->pci_tad[i], 1880 rir_way_limit[j], 1881 ®); 1882 1883 if (!IS_RIR_VALID(reg)) 1884 continue; 1885 1886 tmp_mb = pvt->info.rir_limit(reg) >> 20; 1887 rir_way = 1 << RIR_WAY(reg); 1888 gb = div_u64_rem(tmp_mb, 1024, &mb); 1889 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", 1890 i, j, 1891 gb, (mb*1000)/1024, 1892 ((u64)tmp_mb) << 20L, 1893 rir_way, 1894 reg); 1895 1896 for (k = 0; k < rir_way; k++) { 1897 pci_read_config_dword(pvt->pci_tad[i], 1898 rir_offset[j][k], 1899 ®); 1900 tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6; 1901 1902 gb = div_u64_rem(tmp_mb, 1024, &mb); 1903 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", 1904 i, j, k, 1905 gb, (mb*1000)/1024, 1906 ((u64)tmp_mb) << 20L, 1907 (u32)RIR_RNK_TGT(pvt->info.type, reg), 1908 reg); 1909 } 1910 } 1911 } 1912 } 1913 1914 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha) 1915 { 1916 struct sbridge_dev *sbridge_dev; 1917 1918 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { 1919 if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha) 1920 return sbridge_dev->mci; 1921 } 1922 return NULL; 1923 } 1924 1925 static int get_memory_error_data(struct mem_ctl_info *mci, 1926 u64 addr, 1927 u8 *socket, u8 *ha, 1928 long *channel_mask, 1929 u8 *rank, 1930 char **area_type, char *msg) 1931 { 1932 struct mem_ctl_info *new_mci; 1933 struct sbridge_pvt *pvt = mci->pvt_info; 1934 struct pci_dev *pci_ha; 1935 int n_rir, n_sads, n_tads, sad_way, sck_xch; 1936 int sad_interl, idx, base_ch; 1937 int interleave_mode, shiftup = 0; 1938 unsigned int sad_interleave[MAX_INTERLEAVE]; 1939 u32 reg, dram_rule; 1940 u8 ch_way, sck_way, pkg, sad_ha = 0; 1941 u32 tad_offset; 1942 u32 rir_way; 1943 u32 mb, gb; 1944 u64 ch_addr, offset, limit = 0, prv = 0; 1945 1946 1947 /* 1948 * Step 0) Check if the address is at special memory ranges 1949 * The check bellow is probably enough to fill all cases where 1950 * the error is not inside a memory, except for the legacy 1951 * range (e. g. VGA addresses). It is unlikely, however, that the 1952 * memory controller would generate an error on that range. 1953 */ 1954 if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { 1955 sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); 1956 return -EINVAL; 1957 } 1958 if (addr >= (u64)pvt->tohm) { 1959 sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); 1960 return -EINVAL; 1961 } 1962 1963 /* 1964 * Step 1) Get socket 1965 */ 1966 for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) { 1967 pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads], 1968 ®); 1969 1970 if (!DRAM_RULE_ENABLE(reg)) 1971 continue; 1972 1973 limit = pvt->info.sad_limit(reg); 1974 if (limit <= prv) { 1975 sprintf(msg, "Can't discover the memory socket"); 1976 return -EINVAL; 1977 } 1978 if (addr <= limit) 1979 break; 1980 prv = limit; 1981 } 1982 if (n_sads == pvt->info.max_sad) { 1983 sprintf(msg, "Can't discover the memory socket"); 1984 return -EINVAL; 1985 } 1986 dram_rule = reg; 1987 *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule)); 1988 interleave_mode = pvt->info.interleave_mode(dram_rule); 1989 1990 pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads], 1991 ®); 1992 1993 if (pvt->info.type == SANDY_BRIDGE) { 1994 sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0); 1995 for (sad_way = 0; sad_way < 8; sad_way++) { 1996 u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way); 1997 if (sad_way > 0 && sad_interl == pkg) 1998 break; 1999 sad_interleave[sad_way] = pkg; 2000 edac_dbg(0, "SAD interleave #%d: %d\n", 2001 sad_way, sad_interleave[sad_way]); 2002 } 2003 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", 2004 pvt->sbridge_dev->mc, 2005 n_sads, 2006 addr, 2007 limit, 2008 sad_way + 7, 2009 !interleave_mode ? "" : "XOR[18:16]"); 2010 if (interleave_mode) 2011 idx = ((addr >> 6) ^ (addr >> 16)) & 7; 2012 else 2013 idx = (addr >> 6) & 7; 2014 switch (sad_way) { 2015 case 1: 2016 idx = 0; 2017 break; 2018 case 2: 2019 idx = idx & 1; 2020 break; 2021 case 4: 2022 idx = idx & 3; 2023 break; 2024 case 8: 2025 break; 2026 default: 2027 sprintf(msg, "Can't discover socket interleave"); 2028 return -EINVAL; 2029 } 2030 *socket = sad_interleave[idx]; 2031 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n", 2032 idx, sad_way, *socket); 2033 } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) { 2034 int bits, a7mode = A7MODE(dram_rule); 2035 2036 if (a7mode) { 2037 /* A7 mode swaps P9 with P6 */ 2038 bits = GET_BITFIELD(addr, 7, 8) << 1; 2039 bits |= GET_BITFIELD(addr, 9, 9); 2040 } else 2041 bits = GET_BITFIELD(addr, 6, 8); 2042 2043 if (interleave_mode == 0) { 2044 /* interleave mode will XOR {8,7,6} with {18,17,16} */ 2045 idx = GET_BITFIELD(addr, 16, 18); 2046 idx ^= bits; 2047 } else 2048 idx = bits; 2049 2050 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); 2051 *socket = sad_pkg_socket(pkg); 2052 sad_ha = sad_pkg_ha(pkg); 2053 2054 if (a7mode) { 2055 /* MCChanShiftUpEnable */ 2056 pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, ®); 2057 shiftup = GET_BITFIELD(reg, 22, 22); 2058 } 2059 2060 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n", 2061 idx, *socket, sad_ha, shiftup); 2062 } else { 2063 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */ 2064 idx = (addr >> 6) & 7; 2065 pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx); 2066 *socket = sad_pkg_socket(pkg); 2067 sad_ha = sad_pkg_ha(pkg); 2068 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n", 2069 idx, *socket, sad_ha); 2070 } 2071 2072 *ha = sad_ha; 2073 2074 /* 2075 * Move to the proper node structure, in order to access the 2076 * right PCI registers 2077 */ 2078 new_mci = get_mci_for_node_id(*socket, sad_ha); 2079 if (!new_mci) { 2080 sprintf(msg, "Struct for socket #%u wasn't initialized", 2081 *socket); 2082 return -EINVAL; 2083 } 2084 mci = new_mci; 2085 pvt = mci->pvt_info; 2086 2087 /* 2088 * Step 2) Get memory channel 2089 */ 2090 prv = 0; 2091 pci_ha = pvt->pci_ha; 2092 for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { 2093 pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], ®); 2094 limit = TAD_LIMIT(reg); 2095 if (limit <= prv) { 2096 sprintf(msg, "Can't discover the memory channel"); 2097 return -EINVAL; 2098 } 2099 if (addr <= limit) 2100 break; 2101 prv = limit; 2102 } 2103 if (n_tads == MAX_TAD) { 2104 sprintf(msg, "Can't discover the memory channel"); 2105 return -EINVAL; 2106 } 2107 2108 ch_way = TAD_CH(reg) + 1; 2109 sck_way = TAD_SOCK(reg); 2110 2111 if (ch_way == 3) 2112 idx = addr >> 6; 2113 else { 2114 idx = (addr >> (6 + sck_way + shiftup)) & 0x3; 2115 if (pvt->is_chan_hash) 2116 idx = haswell_chan_hash(idx, addr); 2117 } 2118 idx = idx % ch_way; 2119 2120 /* 2121 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? 2122 */ 2123 switch (idx) { 2124 case 0: 2125 base_ch = TAD_TGT0(reg); 2126 break; 2127 case 1: 2128 base_ch = TAD_TGT1(reg); 2129 break; 2130 case 2: 2131 base_ch = TAD_TGT2(reg); 2132 break; 2133 case 3: 2134 base_ch = TAD_TGT3(reg); 2135 break; 2136 default: 2137 sprintf(msg, "Can't discover the TAD target"); 2138 return -EINVAL; 2139 } 2140 *channel_mask = 1 << base_ch; 2141 2142 pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset); 2143 2144 if (pvt->mirror_mode == FULL_MIRRORING || 2145 (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) { 2146 *channel_mask |= 1 << ((base_ch + 2) % 4); 2147 switch(ch_way) { 2148 case 2: 2149 case 4: 2150 sck_xch = (1 << sck_way) * (ch_way >> 1); 2151 break; 2152 default: 2153 sprintf(msg, "Invalid mirror set. Can't decode addr"); 2154 return -EINVAL; 2155 } 2156 2157 pvt->is_cur_addr_mirrored = true; 2158 } else { 2159 sck_xch = (1 << sck_way) * ch_way; 2160 pvt->is_cur_addr_mirrored = false; 2161 } 2162 2163 if (pvt->is_lockstep) 2164 *channel_mask |= 1 << ((base_ch + 1) % 4); 2165 2166 offset = TAD_OFFSET(tad_offset); 2167 2168 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", 2169 n_tads, 2170 addr, 2171 limit, 2172 sck_way, 2173 ch_way, 2174 offset, 2175 idx, 2176 base_ch, 2177 *channel_mask); 2178 2179 /* Calculate channel address */ 2180 /* Remove the TAD offset */ 2181 2182 if (offset > addr) { 2183 sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", 2184 offset, addr); 2185 return -EINVAL; 2186 } 2187 2188 ch_addr = addr - offset; 2189 ch_addr >>= (6 + shiftup); 2190 ch_addr /= sck_xch; 2191 ch_addr <<= (6 + shiftup); 2192 ch_addr |= addr & ((1 << (6 + shiftup)) - 1); 2193 2194 /* 2195 * Step 3) Decode rank 2196 */ 2197 for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { 2198 pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], ®); 2199 2200 if (!IS_RIR_VALID(reg)) 2201 continue; 2202 2203 limit = pvt->info.rir_limit(reg); 2204 gb = div_u64_rem(limit >> 20, 1024, &mb); 2205 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", 2206 n_rir, 2207 gb, (mb*1000)/1024, 2208 limit, 2209 1 << RIR_WAY(reg)); 2210 if (ch_addr <= limit) 2211 break; 2212 } 2213 if (n_rir == MAX_RIR_RANGES) { 2214 sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", 2215 ch_addr); 2216 return -EINVAL; 2217 } 2218 rir_way = RIR_WAY(reg); 2219 2220 if (pvt->is_close_pg) 2221 idx = (ch_addr >> 6); 2222 else 2223 idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ 2224 idx %= 1 << rir_way; 2225 2226 pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], ®); 2227 *rank = RIR_RNK_TGT(pvt->info.type, reg); 2228 2229 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", 2230 n_rir, 2231 ch_addr, 2232 limit, 2233 rir_way, 2234 idx); 2235 2236 return 0; 2237 } 2238 2239 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci, 2240 const struct mce *m, u8 *socket, 2241 u8 *ha, long *channel_mask, 2242 char *msg) 2243 { 2244 u32 reg, channel = GET_BITFIELD(m->status, 0, 3); 2245 struct mem_ctl_info *new_mci; 2246 struct sbridge_pvt *pvt; 2247 struct pci_dev *pci_ha; 2248 bool tad0; 2249 2250 if (channel >= NUM_CHANNELS) { 2251 sprintf(msg, "Invalid channel 0x%x", channel); 2252 return -EINVAL; 2253 } 2254 2255 pvt = mci->pvt_info; 2256 if (!pvt->info.get_ha) { 2257 sprintf(msg, "No get_ha()"); 2258 return -EINVAL; 2259 } 2260 *ha = pvt->info.get_ha(m->bank); 2261 if (*ha != 0 && *ha != 1) { 2262 sprintf(msg, "Impossible bank %d", m->bank); 2263 return -EINVAL; 2264 } 2265 2266 *socket = m->socketid; 2267 new_mci = get_mci_for_node_id(*socket, *ha); 2268 if (!new_mci) { 2269 strcpy(msg, "mci socket got corrupted!"); 2270 return -EINVAL; 2271 } 2272 2273 pvt = new_mci->pvt_info; 2274 pci_ha = pvt->pci_ha; 2275 pci_read_config_dword(pci_ha, tad_dram_rule[0], ®); 2276 tad0 = m->addr <= TAD_LIMIT(reg); 2277 2278 *channel_mask = 1 << channel; 2279 if (pvt->mirror_mode == FULL_MIRRORING || 2280 (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) { 2281 *channel_mask |= 1 << ((channel + 2) % 4); 2282 pvt->is_cur_addr_mirrored = true; 2283 } else { 2284 pvt->is_cur_addr_mirrored = false; 2285 } 2286 2287 if (pvt->is_lockstep) 2288 *channel_mask |= 1 << ((channel + 1) % 4); 2289 2290 return 0; 2291 } 2292 2293 /**************************************************************************** 2294 Device initialization routines: put/get, init/exit 2295 ****************************************************************************/ 2296 2297 /* 2298 * sbridge_put_all_devices 'put' all the devices that we have 2299 * reserved via 'get' 2300 */ 2301 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) 2302 { 2303 int i; 2304 2305 edac_dbg(0, "\n"); 2306 for (i = 0; i < sbridge_dev->n_devs; i++) { 2307 struct pci_dev *pdev = sbridge_dev->pdev[i]; 2308 if (!pdev) 2309 continue; 2310 edac_dbg(0, "Removing dev %02x:%02x.%d\n", 2311 pdev->bus->number, 2312 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 2313 pci_dev_put(pdev); 2314 } 2315 } 2316 2317 static void sbridge_put_all_devices(void) 2318 { 2319 struct sbridge_dev *sbridge_dev, *tmp; 2320 2321 list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { 2322 sbridge_put_devices(sbridge_dev); 2323 free_sbridge_dev(sbridge_dev); 2324 } 2325 } 2326 2327 static int sbridge_get_onedevice(struct pci_dev **prev, 2328 u8 *num_mc, 2329 const struct pci_id_table *table, 2330 const unsigned devno, 2331 const int multi_bus) 2332 { 2333 struct sbridge_dev *sbridge_dev = NULL; 2334 const struct pci_id_descr *dev_descr = &table->descr[devno]; 2335 struct pci_dev *pdev = NULL; 2336 int seg = 0; 2337 u8 bus = 0; 2338 int i = 0; 2339 2340 sbridge_printk(KERN_DEBUG, 2341 "Seeking for: PCI ID %04x:%04x\n", 2342 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 2343 2344 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 2345 dev_descr->dev_id, *prev); 2346 2347 if (!pdev) { 2348 if (*prev) { 2349 *prev = pdev; 2350 return 0; 2351 } 2352 2353 if (dev_descr->optional) 2354 return 0; 2355 2356 /* if the HA wasn't found */ 2357 if (devno == 0) 2358 return -ENODEV; 2359 2360 sbridge_printk(KERN_INFO, 2361 "Device not found: %04x:%04x\n", 2362 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 2363 2364 /* End of list, leave */ 2365 return -ENODEV; 2366 } 2367 seg = pci_domain_nr(pdev->bus); 2368 bus = pdev->bus->number; 2369 2370 next_imc: 2371 sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom, 2372 multi_bus, sbridge_dev); 2373 if (!sbridge_dev) { 2374 /* If the HA1 wasn't found, don't create EDAC second memory controller */ 2375 if (dev_descr->dom == IMC1 && devno != 1) { 2376 edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n", 2377 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 2378 pci_dev_put(pdev); 2379 return 0; 2380 } 2381 2382 if (dev_descr->dom == SOCK) 2383 goto out_imc; 2384 2385 sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table); 2386 if (!sbridge_dev) { 2387 pci_dev_put(pdev); 2388 return -ENOMEM; 2389 } 2390 (*num_mc)++; 2391 } 2392 2393 if (sbridge_dev->pdev[sbridge_dev->i_devs]) { 2394 sbridge_printk(KERN_ERR, 2395 "Duplicated device for %04x:%04x\n", 2396 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 2397 pci_dev_put(pdev); 2398 return -ENODEV; 2399 } 2400 2401 sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev; 2402 2403 /* pdev belongs to more than one IMC, do extra gets */ 2404 if (++i > 1) 2405 pci_dev_get(pdev); 2406 2407 if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock) 2408 goto next_imc; 2409 2410 out_imc: 2411 /* Be sure that the device is enabled */ 2412 if (unlikely(pci_enable_device(pdev) < 0)) { 2413 sbridge_printk(KERN_ERR, 2414 "Couldn't enable %04x:%04x\n", 2415 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 2416 return -ENODEV; 2417 } 2418 2419 edac_dbg(0, "Detected %04x:%04x\n", 2420 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 2421 2422 /* 2423 * As stated on drivers/pci/search.c, the reference count for 2424 * @from is always decremented if it is not %NULL. So, as we need 2425 * to get all devices up to null, we need to do a get for the device 2426 */ 2427 pci_dev_get(pdev); 2428 2429 *prev = pdev; 2430 2431 return 0; 2432 } 2433 2434 /* 2435 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's 2436 * devices we want to reference for this driver. 2437 * @num_mc: pointer to the memory controllers count, to be incremented in case 2438 * of success. 2439 * @table: model specific table 2440 * 2441 * returns 0 in case of success or error code 2442 */ 2443 static int sbridge_get_all_devices(u8 *num_mc, 2444 const struct pci_id_table *table) 2445 { 2446 int i, rc; 2447 struct pci_dev *pdev = NULL; 2448 int allow_dups = 0; 2449 int multi_bus = 0; 2450 2451 if (table->type == KNIGHTS_LANDING) 2452 allow_dups = multi_bus = 1; 2453 while (table && table->descr) { 2454 for (i = 0; i < table->n_devs_per_sock; i++) { 2455 if (!allow_dups || i == 0 || 2456 table->descr[i].dev_id != 2457 table->descr[i-1].dev_id) { 2458 pdev = NULL; 2459 } 2460 do { 2461 rc = sbridge_get_onedevice(&pdev, num_mc, 2462 table, i, multi_bus); 2463 if (rc < 0) { 2464 if (i == 0) { 2465 i = table->n_devs_per_sock; 2466 break; 2467 } 2468 sbridge_put_all_devices(); 2469 return -ENODEV; 2470 } 2471 } while (pdev && !allow_dups); 2472 } 2473 table++; 2474 } 2475 2476 return 0; 2477 } 2478 2479 /* 2480 * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in 2481 * the format: XXXa. So we can convert from a device to the corresponding 2482 * channel like this 2483 */ 2484 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa) 2485 2486 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci, 2487 struct sbridge_dev *sbridge_dev) 2488 { 2489 struct sbridge_pvt *pvt = mci->pvt_info; 2490 struct pci_dev *pdev; 2491 u8 saw_chan_mask = 0; 2492 int i; 2493 2494 for (i = 0; i < sbridge_dev->n_devs; i++) { 2495 pdev = sbridge_dev->pdev[i]; 2496 if (!pdev) 2497 continue; 2498 2499 switch (pdev->device) { 2500 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0: 2501 pvt->pci_sad0 = pdev; 2502 break; 2503 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1: 2504 pvt->pci_sad1 = pdev; 2505 break; 2506 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR: 2507 pvt->pci_br0 = pdev; 2508 break; 2509 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0: 2510 pvt->pci_ha = pdev; 2511 break; 2512 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA: 2513 pvt->pci_ta = pdev; 2514 break; 2515 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS: 2516 pvt->pci_ras = pdev; 2517 break; 2518 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0: 2519 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1: 2520 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2: 2521 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3: 2522 { 2523 int id = TAD_DEV_TO_CHAN(pdev->device); 2524 pvt->pci_tad[id] = pdev; 2525 saw_chan_mask |= 1 << id; 2526 } 2527 break; 2528 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO: 2529 pvt->pci_ddrio = pdev; 2530 break; 2531 default: 2532 goto error; 2533 } 2534 2535 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n", 2536 pdev->vendor, pdev->device, 2537 sbridge_dev->bus, 2538 pdev); 2539 } 2540 2541 /* Check if everything were registered */ 2542 if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha || 2543 !pvt->pci_ras || !pvt->pci_ta) 2544 goto enodev; 2545 2546 if (saw_chan_mask != 0x0f) 2547 goto enodev; 2548 return 0; 2549 2550 enodev: 2551 sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); 2552 return -ENODEV; 2553 2554 error: 2555 sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n", 2556 PCI_VENDOR_ID_INTEL, pdev->device); 2557 return -EINVAL; 2558 } 2559 2560 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci, 2561 struct sbridge_dev *sbridge_dev) 2562 { 2563 struct sbridge_pvt *pvt = mci->pvt_info; 2564 struct pci_dev *pdev; 2565 u8 saw_chan_mask = 0; 2566 int i; 2567 2568 for (i = 0; i < sbridge_dev->n_devs; i++) { 2569 pdev = sbridge_dev->pdev[i]; 2570 if (!pdev) 2571 continue; 2572 2573 switch (pdev->device) { 2574 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0: 2575 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1: 2576 pvt->pci_ha = pdev; 2577 break; 2578 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA: 2579 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA: 2580 pvt->pci_ta = pdev; 2581 break; 2582 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS: 2583 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS: 2584 pvt->pci_ras = pdev; 2585 break; 2586 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0: 2587 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1: 2588 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2: 2589 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3: 2590 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0: 2591 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1: 2592 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2: 2593 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3: 2594 { 2595 int id = TAD_DEV_TO_CHAN(pdev->device); 2596 pvt->pci_tad[id] = pdev; 2597 saw_chan_mask |= 1 << id; 2598 } 2599 break; 2600 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0: 2601 pvt->pci_ddrio = pdev; 2602 break; 2603 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0: 2604 pvt->pci_ddrio = pdev; 2605 break; 2606 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD: 2607 pvt->pci_sad0 = pdev; 2608 break; 2609 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0: 2610 pvt->pci_br0 = pdev; 2611 break; 2612 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1: 2613 pvt->pci_br1 = pdev; 2614 break; 2615 default: 2616 goto error; 2617 } 2618 2619 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", 2620 sbridge_dev->bus, 2621 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 2622 pdev); 2623 } 2624 2625 /* Check if everything were registered */ 2626 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 || 2627 !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta) 2628 goto enodev; 2629 2630 if (saw_chan_mask != 0x0f && /* -EN/-EX */ 2631 saw_chan_mask != 0x03) /* -EP */ 2632 goto enodev; 2633 return 0; 2634 2635 enodev: 2636 sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); 2637 return -ENODEV; 2638 2639 error: 2640 sbridge_printk(KERN_ERR, 2641 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL, 2642 pdev->device); 2643 return -EINVAL; 2644 } 2645 2646 static int haswell_mci_bind_devs(struct mem_ctl_info *mci, 2647 struct sbridge_dev *sbridge_dev) 2648 { 2649 struct sbridge_pvt *pvt = mci->pvt_info; 2650 struct pci_dev *pdev; 2651 u8 saw_chan_mask = 0; 2652 int i; 2653 2654 /* there's only one device per system; not tied to any bus */ 2655 if (pvt->info.pci_vtd == NULL) 2656 /* result will be checked later */ 2657 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, 2658 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC, 2659 NULL); 2660 2661 for (i = 0; i < sbridge_dev->n_devs; i++) { 2662 pdev = sbridge_dev->pdev[i]; 2663 if (!pdev) 2664 continue; 2665 2666 switch (pdev->device) { 2667 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0: 2668 pvt->pci_sad0 = pdev; 2669 break; 2670 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1: 2671 pvt->pci_sad1 = pdev; 2672 break; 2673 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0: 2674 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1: 2675 pvt->pci_ha = pdev; 2676 break; 2677 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA: 2678 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA: 2679 pvt->pci_ta = pdev; 2680 break; 2681 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM: 2682 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM: 2683 pvt->pci_ras = pdev; 2684 break; 2685 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0: 2686 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1: 2687 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2: 2688 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3: 2689 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0: 2690 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1: 2691 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2: 2692 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3: 2693 { 2694 int id = TAD_DEV_TO_CHAN(pdev->device); 2695 pvt->pci_tad[id] = pdev; 2696 saw_chan_mask |= 1 << id; 2697 } 2698 break; 2699 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0: 2700 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1: 2701 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2: 2702 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3: 2703 if (!pvt->pci_ddrio) 2704 pvt->pci_ddrio = pdev; 2705 break; 2706 default: 2707 break; 2708 } 2709 2710 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", 2711 sbridge_dev->bus, 2712 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 2713 pdev); 2714 } 2715 2716 /* Check if everything were registered */ 2717 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 || 2718 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd) 2719 goto enodev; 2720 2721 if (saw_chan_mask != 0x0f && /* -EN/-EX */ 2722 saw_chan_mask != 0x03) /* -EP */ 2723 goto enodev; 2724 return 0; 2725 2726 enodev: 2727 sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); 2728 return -ENODEV; 2729 } 2730 2731 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci, 2732 struct sbridge_dev *sbridge_dev) 2733 { 2734 struct sbridge_pvt *pvt = mci->pvt_info; 2735 struct pci_dev *pdev; 2736 u8 saw_chan_mask = 0; 2737 int i; 2738 2739 /* there's only one device per system; not tied to any bus */ 2740 if (pvt->info.pci_vtd == NULL) 2741 /* result will be checked later */ 2742 pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL, 2743 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC, 2744 NULL); 2745 2746 for (i = 0; i < sbridge_dev->n_devs; i++) { 2747 pdev = sbridge_dev->pdev[i]; 2748 if (!pdev) 2749 continue; 2750 2751 switch (pdev->device) { 2752 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0: 2753 pvt->pci_sad0 = pdev; 2754 break; 2755 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1: 2756 pvt->pci_sad1 = pdev; 2757 break; 2758 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0: 2759 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1: 2760 pvt->pci_ha = pdev; 2761 break; 2762 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA: 2763 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA: 2764 pvt->pci_ta = pdev; 2765 break; 2766 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM: 2767 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM: 2768 pvt->pci_ras = pdev; 2769 break; 2770 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0: 2771 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1: 2772 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2: 2773 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3: 2774 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0: 2775 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1: 2776 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2: 2777 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3: 2778 { 2779 int id = TAD_DEV_TO_CHAN(pdev->device); 2780 pvt->pci_tad[id] = pdev; 2781 saw_chan_mask |= 1 << id; 2782 } 2783 break; 2784 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0: 2785 pvt->pci_ddrio = pdev; 2786 break; 2787 default: 2788 break; 2789 } 2790 2791 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", 2792 sbridge_dev->bus, 2793 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 2794 pdev); 2795 } 2796 2797 /* Check if everything were registered */ 2798 if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 || 2799 !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd) 2800 goto enodev; 2801 2802 if (saw_chan_mask != 0x0f && /* -EN/-EX */ 2803 saw_chan_mask != 0x03) /* -EP */ 2804 goto enodev; 2805 return 0; 2806 2807 enodev: 2808 sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); 2809 return -ENODEV; 2810 } 2811 2812 static int knl_mci_bind_devs(struct mem_ctl_info *mci, 2813 struct sbridge_dev *sbridge_dev) 2814 { 2815 struct sbridge_pvt *pvt = mci->pvt_info; 2816 struct pci_dev *pdev; 2817 int dev, func; 2818 2819 int i; 2820 int devidx; 2821 2822 for (i = 0; i < sbridge_dev->n_devs; i++) { 2823 pdev = sbridge_dev->pdev[i]; 2824 if (!pdev) 2825 continue; 2826 2827 /* Extract PCI device and function. */ 2828 dev = (pdev->devfn >> 3) & 0x1f; 2829 func = pdev->devfn & 0x7; 2830 2831 switch (pdev->device) { 2832 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC: 2833 if (dev == 8) 2834 pvt->knl.pci_mc0 = pdev; 2835 else if (dev == 9) 2836 pvt->knl.pci_mc1 = pdev; 2837 else { 2838 sbridge_printk(KERN_ERR, 2839 "Memory controller in unexpected place! (dev %d, fn %d)\n", 2840 dev, func); 2841 continue; 2842 } 2843 break; 2844 2845 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0: 2846 pvt->pci_sad0 = pdev; 2847 break; 2848 2849 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1: 2850 pvt->pci_sad1 = pdev; 2851 break; 2852 2853 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA: 2854 /* There are one of these per tile, and range from 2855 * 1.14.0 to 1.18.5. 2856 */ 2857 devidx = ((dev-14)*8)+func; 2858 2859 if (devidx < 0 || devidx >= KNL_MAX_CHAS) { 2860 sbridge_printk(KERN_ERR, 2861 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n", 2862 dev, func); 2863 continue; 2864 } 2865 2866 WARN_ON(pvt->knl.pci_cha[devidx] != NULL); 2867 2868 pvt->knl.pci_cha[devidx] = pdev; 2869 break; 2870 2871 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN: 2872 devidx = -1; 2873 2874 /* 2875 * MC0 channels 0-2 are device 9 function 2-4, 2876 * MC1 channels 3-5 are device 8 function 2-4. 2877 */ 2878 2879 if (dev == 9) 2880 devidx = func-2; 2881 else if (dev == 8) 2882 devidx = 3 + (func-2); 2883 2884 if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) { 2885 sbridge_printk(KERN_ERR, 2886 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n", 2887 dev, func); 2888 continue; 2889 } 2890 2891 WARN_ON(pvt->knl.pci_channel[devidx] != NULL); 2892 pvt->knl.pci_channel[devidx] = pdev; 2893 break; 2894 2895 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM: 2896 pvt->knl.pci_mc_info = pdev; 2897 break; 2898 2899 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA: 2900 pvt->pci_ta = pdev; 2901 break; 2902 2903 default: 2904 sbridge_printk(KERN_ERR, "Unexpected device %d\n", 2905 pdev->device); 2906 break; 2907 } 2908 } 2909 2910 if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 || 2911 !pvt->pci_sad0 || !pvt->pci_sad1 || 2912 !pvt->pci_ta) { 2913 goto enodev; 2914 } 2915 2916 for (i = 0; i < KNL_MAX_CHANNELS; i++) { 2917 if (!pvt->knl.pci_channel[i]) { 2918 sbridge_printk(KERN_ERR, "Missing channel %d\n", i); 2919 goto enodev; 2920 } 2921 } 2922 2923 for (i = 0; i < KNL_MAX_CHAS; i++) { 2924 if (!pvt->knl.pci_cha[i]) { 2925 sbridge_printk(KERN_ERR, "Missing CHA %d\n", i); 2926 goto enodev; 2927 } 2928 } 2929 2930 return 0; 2931 2932 enodev: 2933 sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); 2934 return -ENODEV; 2935 } 2936 2937 /**************************************************************************** 2938 Error check routines 2939 ****************************************************************************/ 2940 2941 /* 2942 * While Sandy Bridge has error count registers, SMI BIOS read values from 2943 * and resets the counters. So, they are not reliable for the OS to read 2944 * from them. So, we have no option but to just trust on whatever MCE is 2945 * telling us about the errors. 2946 */ 2947 static void sbridge_mce_output_error(struct mem_ctl_info *mci, 2948 const struct mce *m) 2949 { 2950 struct mem_ctl_info *new_mci; 2951 struct sbridge_pvt *pvt = mci->pvt_info; 2952 enum hw_event_mc_err_type tp_event; 2953 char *optype, msg[256]; 2954 bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); 2955 bool overflow = GET_BITFIELD(m->status, 62, 62); 2956 bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); 2957 bool recoverable; 2958 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); 2959 u32 mscod = GET_BITFIELD(m->status, 16, 31); 2960 u32 errcode = GET_BITFIELD(m->status, 0, 15); 2961 u32 channel = GET_BITFIELD(m->status, 0, 3); 2962 u32 optypenum = GET_BITFIELD(m->status, 4, 6); 2963 /* 2964 * Bits 5-0 of MCi_MISC give the least significant bit that is valid. 2965 * A value 6 is for cache line aligned address, a value 12 is for page 2966 * aligned address reported by patrol scrubber. 2967 */ 2968 u32 lsb = GET_BITFIELD(m->misc, 0, 5); 2969 long channel_mask, first_channel; 2970 u8 rank = 0xff, socket, ha; 2971 int rc, dimm; 2972 char *area_type = "DRAM"; 2973 2974 if (pvt->info.type != SANDY_BRIDGE) 2975 recoverable = true; 2976 else 2977 recoverable = GET_BITFIELD(m->status, 56, 56); 2978 2979 if (uncorrected_error) { 2980 core_err_cnt = 1; 2981 if (ripv) { 2982 tp_event = HW_EVENT_ERR_UNCORRECTED; 2983 } else { 2984 tp_event = HW_EVENT_ERR_FATAL; 2985 } 2986 } else { 2987 tp_event = HW_EVENT_ERR_CORRECTED; 2988 } 2989 2990 /* 2991 * According with Table 15-9 of the Intel Architecture spec vol 3A, 2992 * memory errors should fit in this mask: 2993 * 000f 0000 1mmm cccc (binary) 2994 * where: 2995 * f = Correction Report Filtering Bit. If 1, subsequent errors 2996 * won't be shown 2997 * mmm = error type 2998 * cccc = channel 2999 * If the mask doesn't match, report an error to the parsing logic 3000 */ 3001 switch (optypenum) { 3002 case 0: 3003 optype = "generic undef request error"; 3004 break; 3005 case 1: 3006 optype = "memory read error"; 3007 break; 3008 case 2: 3009 optype = "memory write error"; 3010 break; 3011 case 3: 3012 optype = "addr/cmd error"; 3013 break; 3014 case 4: 3015 optype = "memory scrubbing error"; 3016 break; 3017 default: 3018 optype = "reserved"; 3019 break; 3020 } 3021 3022 if (pvt->info.type == KNIGHTS_LANDING) { 3023 if (channel == 14) { 3024 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n", 3025 overflow ? " OVERFLOW" : "", 3026 (uncorrected_error && recoverable) 3027 ? " recoverable" : "", 3028 mscod, errcode, 3029 m->bank); 3030 } else { 3031 char A = *("A"); 3032 3033 /* 3034 * Reported channel is in range 0-2, so we can't map it 3035 * back to mc. To figure out mc we check machine check 3036 * bank register that reported this error. 3037 * bank15 means mc0 and bank16 means mc1. 3038 */ 3039 channel = knl_channel_remap(m->bank == 16, channel); 3040 channel_mask = 1 << channel; 3041 3042 snprintf(msg, sizeof(msg), 3043 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)", 3044 overflow ? " OVERFLOW" : "", 3045 (uncorrected_error && recoverable) 3046 ? " recoverable" : " ", 3047 mscod, errcode, channel, A + channel); 3048 edac_mc_handle_error(tp_event, mci, core_err_cnt, 3049 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, 3050 channel, 0, -1, 3051 optype, msg); 3052 } 3053 return; 3054 } else if (lsb < 12) { 3055 rc = get_memory_error_data(mci, m->addr, &socket, &ha, 3056 &channel_mask, &rank, 3057 &area_type, msg); 3058 } else { 3059 rc = get_memory_error_data_from_mce(mci, m, &socket, &ha, 3060 &channel_mask, msg); 3061 } 3062 3063 if (rc < 0) 3064 goto err_parsing; 3065 new_mci = get_mci_for_node_id(socket, ha); 3066 if (!new_mci) { 3067 strcpy(msg, "Error: socket got corrupted!"); 3068 goto err_parsing; 3069 } 3070 mci = new_mci; 3071 pvt = mci->pvt_info; 3072 3073 first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); 3074 3075 if (rank == 0xff) 3076 dimm = -1; 3077 else if (rank < 4) 3078 dimm = 0; 3079 else if (rank < 8) 3080 dimm = 1; 3081 else 3082 dimm = 2; 3083 3084 /* 3085 * FIXME: On some memory configurations (mirror, lockstep), the 3086 * Memory Controller can't point the error to a single DIMM. The 3087 * EDAC core should be handling the channel mask, in order to point 3088 * to the group of dimm's where the error may be happening. 3089 */ 3090 if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg) 3091 channel = first_channel; 3092 3093 snprintf(msg, sizeof(msg), 3094 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d", 3095 overflow ? " OVERFLOW" : "", 3096 (uncorrected_error && recoverable) ? " recoverable" : "", 3097 area_type, 3098 mscod, errcode, 3099 socket, ha, 3100 channel_mask, 3101 rank); 3102 3103 edac_dbg(0, "%s\n", msg); 3104 3105 /* FIXME: need support for channel mask */ 3106 3107 if (channel == CHANNEL_UNSPECIFIED) 3108 channel = -1; 3109 3110 /* Call the helper to output message */ 3111 edac_mc_handle_error(tp_event, mci, core_err_cnt, 3112 m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, 3113 channel, dimm, -1, 3114 optype, msg); 3115 return; 3116 err_parsing: 3117 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, 3118 -1, -1, -1, 3119 msg, ""); 3120 3121 } 3122 3123 /* 3124 * Check that logging is enabled and that this is the right type 3125 * of error for us to handle. 3126 */ 3127 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, 3128 void *data) 3129 { 3130 struct mce *mce = (struct mce *)data; 3131 struct mem_ctl_info *mci; 3132 char *type; 3133 3134 if (mce->kflags & MCE_HANDLED_CEC) 3135 return NOTIFY_DONE; 3136 3137 /* 3138 * Just let mcelog handle it if the error is 3139 * outside the memory controller. A memory error 3140 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. 3141 * bit 12 has an special meaning. 3142 */ 3143 if ((mce->status & 0xefff) >> 7 != 1) 3144 return NOTIFY_DONE; 3145 3146 /* Check ADDRV bit in STATUS */ 3147 if (!GET_BITFIELD(mce->status, 58, 58)) 3148 return NOTIFY_DONE; 3149 3150 /* Check MISCV bit in STATUS */ 3151 if (!GET_BITFIELD(mce->status, 59, 59)) 3152 return NOTIFY_DONE; 3153 3154 /* Check address type in MISC (physical address only) */ 3155 if (GET_BITFIELD(mce->misc, 6, 8) != 2) 3156 return NOTIFY_DONE; 3157 3158 mci = get_mci_for_node_id(mce->socketid, IMC0); 3159 if (!mci) 3160 return NOTIFY_DONE; 3161 3162 if (mce->mcgstatus & MCG_STATUS_MCIP) 3163 type = "Exception"; 3164 else 3165 type = "Event"; 3166 3167 sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n"); 3168 3169 sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx " 3170 "Bank %d: %016Lx\n", mce->extcpu, type, 3171 mce->mcgstatus, mce->bank, mce->status); 3172 sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc); 3173 sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr); 3174 sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc); 3175 3176 sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET " 3177 "%u APIC %x\n", mce->cpuvendor, mce->cpuid, 3178 mce->time, mce->socketid, mce->apicid); 3179 3180 sbridge_mce_output_error(mci, mce); 3181 3182 /* Advice mcelog that the error were handled */ 3183 mce->kflags |= MCE_HANDLED_EDAC; 3184 return NOTIFY_OK; 3185 } 3186 3187 static struct notifier_block sbridge_mce_dec = { 3188 .notifier_call = sbridge_mce_check_error, 3189 .priority = MCE_PRIO_EDAC, 3190 }; 3191 3192 /**************************************************************************** 3193 EDAC register/unregister logic 3194 ****************************************************************************/ 3195 3196 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) 3197 { 3198 struct mem_ctl_info *mci = sbridge_dev->mci; 3199 3200 if (unlikely(!mci || !mci->pvt_info)) { 3201 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev); 3202 3203 sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); 3204 return; 3205 } 3206 3207 edac_dbg(0, "MC: mci = %p, dev = %p\n", 3208 mci, &sbridge_dev->pdev[0]->dev); 3209 3210 /* Remove MC sysfs nodes */ 3211 edac_mc_del_mc(mci->pdev); 3212 3213 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 3214 kfree(mci->ctl_name); 3215 edac_mc_free(mci); 3216 sbridge_dev->mci = NULL; 3217 } 3218 3219 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type) 3220 { 3221 struct mem_ctl_info *mci; 3222 struct edac_mc_layer layers[2]; 3223 struct sbridge_pvt *pvt; 3224 struct pci_dev *pdev = sbridge_dev->pdev[0]; 3225 int rc; 3226 3227 /* allocate a new MC control structure */ 3228 layers[0].type = EDAC_MC_LAYER_CHANNEL; 3229 layers[0].size = type == KNIGHTS_LANDING ? 3230 KNL_MAX_CHANNELS : NUM_CHANNELS; 3231 layers[0].is_virt_csrow = false; 3232 layers[1].type = EDAC_MC_LAYER_SLOT; 3233 layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS; 3234 layers[1].is_virt_csrow = true; 3235 mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, 3236 sizeof(*pvt)); 3237 3238 if (unlikely(!mci)) 3239 return -ENOMEM; 3240 3241 edac_dbg(0, "MC: mci = %p, dev = %p\n", 3242 mci, &pdev->dev); 3243 3244 pvt = mci->pvt_info; 3245 memset(pvt, 0, sizeof(*pvt)); 3246 3247 /* Associate sbridge_dev and mci for future usage */ 3248 pvt->sbridge_dev = sbridge_dev; 3249 sbridge_dev->mci = mci; 3250 3251 mci->mtype_cap = type == KNIGHTS_LANDING ? 3252 MEM_FLAG_DDR4 : MEM_FLAG_DDR3; 3253 mci->edac_ctl_cap = EDAC_FLAG_NONE; 3254 mci->edac_cap = EDAC_FLAG_NONE; 3255 mci->mod_name = EDAC_MOD_STR; 3256 mci->dev_name = pci_name(pdev); 3257 mci->ctl_page_to_phys = NULL; 3258 3259 pvt->info.type = type; 3260 switch (type) { 3261 case IVY_BRIDGE: 3262 pvt->info.rankcfgr = IB_RANK_CFG_A; 3263 pvt->info.get_tolm = ibridge_get_tolm; 3264 pvt->info.get_tohm = ibridge_get_tohm; 3265 pvt->info.dram_rule = ibridge_dram_rule; 3266 pvt->info.get_memory_type = get_memory_type; 3267 pvt->info.get_node_id = get_node_id; 3268 pvt->info.get_ha = ibridge_get_ha; 3269 pvt->info.rir_limit = rir_limit; 3270 pvt->info.sad_limit = sad_limit; 3271 pvt->info.interleave_mode = interleave_mode; 3272 pvt->info.dram_attr = dram_attr; 3273 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); 3274 pvt->info.interleave_list = ibridge_interleave_list; 3275 pvt->info.interleave_pkg = ibridge_interleave_pkg; 3276 pvt->info.get_width = ibridge_get_width; 3277 3278 /* Store pci devices at mci for faster access */ 3279 rc = ibridge_mci_bind_devs(mci, sbridge_dev); 3280 if (unlikely(rc < 0)) 3281 goto fail0; 3282 get_source_id(mci); 3283 mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d", 3284 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); 3285 break; 3286 case SANDY_BRIDGE: 3287 pvt->info.rankcfgr = SB_RANK_CFG_A; 3288 pvt->info.get_tolm = sbridge_get_tolm; 3289 pvt->info.get_tohm = sbridge_get_tohm; 3290 pvt->info.dram_rule = sbridge_dram_rule; 3291 pvt->info.get_memory_type = get_memory_type; 3292 pvt->info.get_node_id = get_node_id; 3293 pvt->info.get_ha = sbridge_get_ha; 3294 pvt->info.rir_limit = rir_limit; 3295 pvt->info.sad_limit = sad_limit; 3296 pvt->info.interleave_mode = interleave_mode; 3297 pvt->info.dram_attr = dram_attr; 3298 pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule); 3299 pvt->info.interleave_list = sbridge_interleave_list; 3300 pvt->info.interleave_pkg = sbridge_interleave_pkg; 3301 pvt->info.get_width = sbridge_get_width; 3302 3303 /* Store pci devices at mci for faster access */ 3304 rc = sbridge_mci_bind_devs(mci, sbridge_dev); 3305 if (unlikely(rc < 0)) 3306 goto fail0; 3307 get_source_id(mci); 3308 mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d", 3309 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); 3310 break; 3311 case HASWELL: 3312 /* rankcfgr isn't used */ 3313 pvt->info.get_tolm = haswell_get_tolm; 3314 pvt->info.get_tohm = haswell_get_tohm; 3315 pvt->info.dram_rule = ibridge_dram_rule; 3316 pvt->info.get_memory_type = haswell_get_memory_type; 3317 pvt->info.get_node_id = haswell_get_node_id; 3318 pvt->info.get_ha = ibridge_get_ha; 3319 pvt->info.rir_limit = haswell_rir_limit; 3320 pvt->info.sad_limit = sad_limit; 3321 pvt->info.interleave_mode = interleave_mode; 3322 pvt->info.dram_attr = dram_attr; 3323 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); 3324 pvt->info.interleave_list = ibridge_interleave_list; 3325 pvt->info.interleave_pkg = ibridge_interleave_pkg; 3326 pvt->info.get_width = ibridge_get_width; 3327 3328 /* Store pci devices at mci for faster access */ 3329 rc = haswell_mci_bind_devs(mci, sbridge_dev); 3330 if (unlikely(rc < 0)) 3331 goto fail0; 3332 get_source_id(mci); 3333 mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d", 3334 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); 3335 break; 3336 case BROADWELL: 3337 /* rankcfgr isn't used */ 3338 pvt->info.get_tolm = haswell_get_tolm; 3339 pvt->info.get_tohm = haswell_get_tohm; 3340 pvt->info.dram_rule = ibridge_dram_rule; 3341 pvt->info.get_memory_type = haswell_get_memory_type; 3342 pvt->info.get_node_id = haswell_get_node_id; 3343 pvt->info.get_ha = ibridge_get_ha; 3344 pvt->info.rir_limit = haswell_rir_limit; 3345 pvt->info.sad_limit = sad_limit; 3346 pvt->info.interleave_mode = interleave_mode; 3347 pvt->info.dram_attr = dram_attr; 3348 pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule); 3349 pvt->info.interleave_list = ibridge_interleave_list; 3350 pvt->info.interleave_pkg = ibridge_interleave_pkg; 3351 pvt->info.get_width = broadwell_get_width; 3352 3353 /* Store pci devices at mci for faster access */ 3354 rc = broadwell_mci_bind_devs(mci, sbridge_dev); 3355 if (unlikely(rc < 0)) 3356 goto fail0; 3357 get_source_id(mci); 3358 mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d", 3359 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); 3360 break; 3361 case KNIGHTS_LANDING: 3362 /* pvt->info.rankcfgr == ??? */ 3363 pvt->info.get_tolm = knl_get_tolm; 3364 pvt->info.get_tohm = knl_get_tohm; 3365 pvt->info.dram_rule = knl_dram_rule; 3366 pvt->info.get_memory_type = knl_get_memory_type; 3367 pvt->info.get_node_id = knl_get_node_id; 3368 pvt->info.get_ha = knl_get_ha; 3369 pvt->info.rir_limit = NULL; 3370 pvt->info.sad_limit = knl_sad_limit; 3371 pvt->info.interleave_mode = knl_interleave_mode; 3372 pvt->info.dram_attr = dram_attr_knl; 3373 pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule); 3374 pvt->info.interleave_list = knl_interleave_list; 3375 pvt->info.interleave_pkg = ibridge_interleave_pkg; 3376 pvt->info.get_width = knl_get_width; 3377 3378 rc = knl_mci_bind_devs(mci, sbridge_dev); 3379 if (unlikely(rc < 0)) 3380 goto fail0; 3381 get_source_id(mci); 3382 mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d", 3383 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom); 3384 break; 3385 } 3386 3387 if (!mci->ctl_name) { 3388 rc = -ENOMEM; 3389 goto fail0; 3390 } 3391 3392 /* Get dimm basic config and the memory layout */ 3393 rc = get_dimm_config(mci); 3394 if (rc < 0) { 3395 edac_dbg(0, "MC: failed to get_dimm_config()\n"); 3396 goto fail; 3397 } 3398 get_memory_layout(mci); 3399 3400 /* record ptr to the generic device */ 3401 mci->pdev = &pdev->dev; 3402 3403 /* add this new MC control structure to EDAC's list of MCs */ 3404 if (unlikely(edac_mc_add_mc(mci))) { 3405 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 3406 rc = -EINVAL; 3407 goto fail; 3408 } 3409 3410 return 0; 3411 3412 fail: 3413 kfree(mci->ctl_name); 3414 fail0: 3415 edac_mc_free(mci); 3416 sbridge_dev->mci = NULL; 3417 return rc; 3418 } 3419 3420 static const struct x86_cpu_id sbridge_cpuids[] = { 3421 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table), 3422 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &pci_dev_descr_ibridge_table), 3423 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &pci_dev_descr_haswell_table), 3424 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &pci_dev_descr_broadwell_table), 3425 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &pci_dev_descr_broadwell_table), 3426 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &pci_dev_descr_knl_table), 3427 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &pci_dev_descr_knl_table), 3428 { } 3429 }; 3430 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids); 3431 3432 /* 3433 * sbridge_probe Get all devices and register memory controllers 3434 * present. 3435 * return: 3436 * 0 for FOUND a device 3437 * < 0 for error code 3438 */ 3439 3440 static int sbridge_probe(const struct x86_cpu_id *id) 3441 { 3442 int rc = -ENODEV; 3443 u8 mc, num_mc = 0; 3444 struct sbridge_dev *sbridge_dev; 3445 struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data; 3446 3447 /* get the pci devices we want to reserve for our use */ 3448 rc = sbridge_get_all_devices(&num_mc, ptable); 3449 3450 if (unlikely(rc < 0)) { 3451 edac_dbg(0, "couldn't get all devices\n"); 3452 goto fail0; 3453 } 3454 3455 mc = 0; 3456 3457 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { 3458 edac_dbg(0, "Registering MC#%d (%d of %d)\n", 3459 mc, mc + 1, num_mc); 3460 3461 sbridge_dev->mc = mc++; 3462 rc = sbridge_register_mci(sbridge_dev, ptable->type); 3463 if (unlikely(rc < 0)) 3464 goto fail1; 3465 } 3466 3467 sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION); 3468 3469 return 0; 3470 3471 fail1: 3472 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) 3473 sbridge_unregister_mci(sbridge_dev); 3474 3475 sbridge_put_all_devices(); 3476 fail0: 3477 return rc; 3478 } 3479 3480 /* 3481 * sbridge_remove cleanup 3482 * 3483 */ 3484 static void sbridge_remove(void) 3485 { 3486 struct sbridge_dev *sbridge_dev; 3487 3488 edac_dbg(0, "\n"); 3489 3490 list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) 3491 sbridge_unregister_mci(sbridge_dev); 3492 3493 /* Release PCI resources */ 3494 sbridge_put_all_devices(); 3495 } 3496 3497 /* 3498 * sbridge_init Module entry function 3499 * Try to initialize this module for its devices 3500 */ 3501 static int __init sbridge_init(void) 3502 { 3503 const struct x86_cpu_id *id; 3504 const char *owner; 3505 int rc; 3506 3507 edac_dbg(2, "\n"); 3508 3509 owner = edac_get_owner(); 3510 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) 3511 return -EBUSY; 3512 3513 if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR)) 3514 return -ENODEV; 3515 3516 id = x86_match_cpu(sbridge_cpuids); 3517 if (!id) 3518 return -ENODEV; 3519 3520 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 3521 opstate_init(); 3522 3523 rc = sbridge_probe(id); 3524 3525 if (rc >= 0) { 3526 mce_register_decode_chain(&sbridge_mce_dec); 3527 return 0; 3528 } 3529 3530 sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", 3531 rc); 3532 3533 return rc; 3534 } 3535 3536 /* 3537 * sbridge_exit() Module exit function 3538 * Unregister the driver 3539 */ 3540 static void __exit sbridge_exit(void) 3541 { 3542 edac_dbg(2, "\n"); 3543 sbridge_remove(); 3544 mce_unregister_decode_chain(&sbridge_mce_dec); 3545 } 3546 3547 module_init(sbridge_init); 3548 module_exit(sbridge_exit); 3549 3550 module_param(edac_op_state, int, 0444); 3551 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 3552 3553 MODULE_LICENSE("GPL"); 3554 MODULE_AUTHOR("Mauro Carvalho Chehab"); 3555 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)"); 3556 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - " 3557 SBRIDGE_REVISION); 3558