xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 7aacf86b)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29 
30 #include "edac_module.h"
31 
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34 
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
39 #define EDAC_MOD_STR      "sbridge_edac"
40 
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)			\
45 	edac_printk(level, "sbridge", fmt, ##arg)
46 
47 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
48 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi)	\
54 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 	0x80, 0x88, 0x90, 0x98, 0xa0,
59 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61 
62 static const u32 ibridge_dram_rule[] = {
63 	0x60, 0x68, 0x70, 0x78, 0x80,
64 	0x88, 0x90, 0x98, 0xa0,	0xa8,
65 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68 
69 static const u32 knl_dram_rule[] = {
70 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76 
77 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79 
80 static char *show_dram_attr(u32 attr)
81 {
82 	switch (attr) {
83 		case 0:
84 			return "DRAM";
85 		case 1:
86 			return "MMCFG";
87 		case 2:
88 			return "NXM";
89 		default:
90 			return "unknown";
91 	}
92 }
93 
94 static const u32 sbridge_interleave_list[] = {
95 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98 
99 static const u32 ibridge_interleave_list[] = {
100 	0x64, 0x6c, 0x74, 0x7c, 0x84,
101 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105 
106 static const u32 knl_interleave_list[] = {
107 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 
114 struct interleave_pkg {
115 	unsigned char start;
116 	unsigned char end;
117 };
118 
119 static const struct interleave_pkg sbridge_interleave_pkg[] = {
120 	{ 0, 2 },
121 	{ 3, 5 },
122 	{ 8, 10 },
123 	{ 11, 13 },
124 	{ 16, 18 },
125 	{ 19, 21 },
126 	{ 24, 26 },
127 	{ 27, 29 },
128 };
129 
130 static const struct interleave_pkg ibridge_interleave_pkg[] = {
131 	{ 0, 3 },
132 	{ 4, 7 },
133 	{ 8, 11 },
134 	{ 12, 15 },
135 	{ 16, 19 },
136 	{ 20, 23 },
137 	{ 24, 27 },
138 	{ 28, 31 },
139 };
140 
141 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
142 			  int interleave)
143 {
144 	return GET_BITFIELD(reg, table[interleave].start,
145 			    table[interleave].end);
146 }
147 
148 /* Devices 12 Function 7 */
149 
150 #define TOLM		0x80
151 #define TOHM		0x84
152 #define HASWELL_TOLM	0xd0
153 #define HASWELL_TOHM_0	0xd4
154 #define HASWELL_TOHM_1	0xd8
155 #define KNL_TOLM	0xd0
156 #define KNL_TOHM_0	0xd4
157 #define KNL_TOHM_1	0xd8
158 
159 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
160 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
161 
162 /* Device 13 Function 6 */
163 
164 #define SAD_TARGET	0xf0
165 
166 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
167 
168 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
169 
170 #define SAD_CONTROL	0xf4
171 
172 /* Device 14 function 0 */
173 
174 static const u32 tad_dram_rule[] = {
175 	0x40, 0x44, 0x48, 0x4c,
176 	0x50, 0x54, 0x58, 0x5c,
177 	0x60, 0x64, 0x68, 0x6c,
178 };
179 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
180 
181 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
182 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
183 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
184 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
185 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
186 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
187 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
188 
189 /* Device 15, function 0 */
190 
191 #define MCMTR			0x7c
192 #define KNL_MCMTR		0x624
193 
194 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
195 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
196 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
197 
198 /* Device 15, function 1 */
199 
200 #define RASENABLES		0xac
201 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
202 
203 /* Device 15, functions 2-5 */
204 
205 static const int mtr_regs[] = {
206 	0x80, 0x84, 0x88,
207 };
208 
209 static const int knl_mtr_reg = 0xb60;
210 
211 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
212 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
213 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
214 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
215 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
216 
217 static const u32 tad_ch_nilv_offset[] = {
218 	0x90, 0x94, 0x98, 0x9c,
219 	0xa0, 0xa4, 0xa8, 0xac,
220 	0xb0, 0xb4, 0xb8, 0xbc,
221 };
222 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
223 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
224 
225 static const u32 rir_way_limit[] = {
226 	0x108, 0x10c, 0x110, 0x114, 0x118,
227 };
228 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
229 
230 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
231 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
232 
233 #define MAX_RIR_WAY	8
234 
235 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
236 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
237 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
238 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
239 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
240 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
241 };
242 
243 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
244 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
245 
246 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
247 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
248 
249 /* Device 16, functions 2-7 */
250 
251 /*
252  * FIXME: Implement the error count reads directly
253  */
254 
255 static const u32 correrrcnt[] = {
256 	0x104, 0x108, 0x10c, 0x110,
257 };
258 
259 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
263 
264 static const u32 correrrthrsld[] = {
265 	0x11c, 0x120, 0x124, 0x128,
266 };
267 
268 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
269 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
270 
271 
272 /* Device 17, function 0 */
273 
274 #define SB_RANK_CFG_A		0x0328
275 
276 #define IB_RANK_CFG_A		0x0320
277 
278 /*
279  * sbridge structs
280  */
281 
282 #define NUM_CHANNELS		4	/* Max channels per MC */
283 #define MAX_DIMMS		3	/* Max DIMMS per channel */
284 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
285 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
286 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
287 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
288 
289 enum type {
290 	SANDY_BRIDGE,
291 	IVY_BRIDGE,
292 	HASWELL,
293 	BROADWELL,
294 	KNIGHTS_LANDING,
295 };
296 
297 enum domain {
298 	IMC0 = 0,
299 	IMC1,
300 	SOCK,
301 };
302 
303 struct sbridge_pvt;
304 struct sbridge_info {
305 	enum type	type;
306 	u32		mcmtr;
307 	u32		rankcfgr;
308 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
309 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
310 	u64		(*rir_limit)(u32 reg);
311 	u64		(*sad_limit)(u32 reg);
312 	u32		(*interleave_mode)(u32 reg);
313 	u32		(*dram_attr)(u32 reg);
314 	const u32	*dram_rule;
315 	const u32	*interleave_list;
316 	const struct interleave_pkg *interleave_pkg;
317 	u8		max_sad;
318 	u8		max_interleave;
319 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
320 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
321 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
322 	struct pci_dev	*pci_vtd;
323 };
324 
325 struct sbridge_channel {
326 	u32		ranks;
327 	u32		dimms;
328 };
329 
330 struct pci_id_descr {
331 	int			dev_id;
332 	int			optional;
333 	enum domain		dom;
334 };
335 
336 struct pci_id_table {
337 	const struct pci_id_descr	*descr;
338 	int				n_devs_per_imc;
339 	int				n_devs_per_sock;
340 	int				n_imcs_per_sock;
341 	enum type			type;
342 };
343 
344 struct sbridge_dev {
345 	struct list_head	list;
346 	u8			bus, mc;
347 	u8			node_id, source_id;
348 	struct pci_dev		**pdev;
349 	enum domain		dom;
350 	int			n_devs;
351 	int			i_devs;
352 	struct mem_ctl_info	*mci;
353 };
354 
355 struct knl_pvt {
356 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
357 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
358 	struct pci_dev          *pci_mc0;
359 	struct pci_dev          *pci_mc1;
360 	struct pci_dev          *pci_mc0_misc;
361 	struct pci_dev          *pci_mc1_misc;
362 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
363 };
364 
365 struct sbridge_pvt {
366 	/* Devices per socket */
367 	struct pci_dev		*pci_ddrio;
368 	struct pci_dev		*pci_sad0, *pci_sad1;
369 	struct pci_dev		*pci_br0, *pci_br1;
370 	/* Devices per memory controller */
371 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
372 	struct pci_dev		*pci_tad[NUM_CHANNELS];
373 
374 	struct sbridge_dev	*sbridge_dev;
375 
376 	struct sbridge_info	info;
377 	struct sbridge_channel	channel[NUM_CHANNELS];
378 
379 	/* Memory type detection */
380 	bool			is_mirrored, is_lockstep, is_close_pg;
381 	bool			is_chan_hash;
382 
383 	/* Memory description */
384 	u64			tolm, tohm;
385 	struct knl_pvt knl;
386 };
387 
388 #define PCI_DESCR(device_id, opt, domain)	\
389 	.dev_id = (device_id),		\
390 	.optional = opt,	\
391 	.dom = domain
392 
393 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
394 		/* Processor Home Agent */
395 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
396 
397 		/* Memory controller */
398 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
399 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
400 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
401 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
402 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
403 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
404 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
405 
406 		/* System Address Decoder */
407 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
408 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
409 
410 		/* Broadcast Registers */
411 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
412 };
413 
414 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
415 	.descr = A,			\
416 	.n_devs_per_imc = N,	\
417 	.n_devs_per_sock = ARRAY_SIZE(A),	\
418 	.n_imcs_per_sock = M,	\
419 	.type = T			\
420 }
421 
422 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
423 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
424 	{0,}			/* 0 terminated list. */
425 };
426 
427 /* This changes depending if 1HA or 2HA:
428  * 1HA:
429  *	0x0eb8 (17.0) is DDRIO0
430  * 2HA:
431  *	0x0ebc (17.4) is DDRIO0
432  */
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
435 
436 /* pci ids */
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
439 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
440 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
441 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
442 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
443 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
454 
455 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
456 		/* Processor Home Agent */
457 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
458 
459 		/* Memory controller */
460 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
461 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
462 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
463 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
464 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
465 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
466 
467 		/* Optional, mode 2HA */
468 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
469 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
470 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
471 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
472 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
473 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
474 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
475 
476 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
477 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
478 
479 		/* System Address Decoder */
480 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
481 
482 		/* Broadcast Registers */
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
485 
486 };
487 
488 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
489 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
490 	{0,}			/* 0 terminated list. */
491 };
492 
493 /* Haswell support */
494 /* EN processor:
495  *	- 1 IMC
496  *	- 3 DDR3 channels, 2 DPC per channel
497  * EP processor:
498  *	- 1 or 2 IMC
499  *	- 4 DDR4 channels, 3 DPC per channel
500  * EP 4S processor:
501  *	- 2 IMC
502  *	- 4 DDR4 channels, 3 DPC per channel
503  * EX processor:
504  *	- 2 IMC
505  *	- each IMC interfaces with a SMI 2 channel
506  *	- each SMI channel interfaces with a scalable memory buffer
507  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
508  */
509 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
510 #define HASWELL_HASYSDEFEATURE2 0x84
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
519 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
520 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
532 static const struct pci_id_descr pci_dev_descr_haswell[] = {
533 	/* first item must be the HA */
534 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
535 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
536 
537 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
538 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
539 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
540 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
541 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
542 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
543 
544 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
545 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
546 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
547 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
548 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
549 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
550 
551 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
552 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
553 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
554 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
555 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
557 };
558 
559 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
560 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
561 	{0,}			/* 0 terminated list. */
562 };
563 
564 /* Knight's Landing Support */
565 /*
566  * KNL's memory channels are swizzled between memory controllers.
567  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
568  */
569 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
570 
571 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
572 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
573 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
574 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
575 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
576 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
577 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
578 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
579 /* SAD target - 1-29-1 (1 of these) */
580 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
581 /* Caching / Home Agent */
582 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
583 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
585 
586 /*
587  * KNL differs from SB, IB, and Haswell in that it has multiple
588  * instances of the same device with the same device ID, so we handle that
589  * by creating as many copies in the table as we expect to find.
590  * (Like device ID must be grouped together.)
591  */
592 
593 static const struct pci_id_descr pci_dev_descr_knl[] = {
594 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
595 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
596 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
597 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
598 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
599 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
600 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
601 };
602 
603 static const struct pci_id_table pci_dev_descr_knl_table[] = {
604 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
605 	{0,}
606 };
607 
608 /*
609  * Broadwell support
610  *
611  * DE processor:
612  *	- 1 IMC
613  *	- 2 DDR3 channels, 2 DPC per channel
614  * EP processor:
615  *	- 1 or 2 IMC
616  *	- 4 DDR4 channels, 3 DPC per channel
617  * EP 4S processor:
618  *	- 2 IMC
619  *	- 4 DDR4 channels, 3 DPC per channel
620  * EX processor:
621  *	- 2 IMC
622  *	- each IMC interfaces with a SMI 2 channel
623  *	- each SMI channel interfaces with a scalable memory buffer
624  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
625  */
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
632 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
633 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
634 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
635 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
644 
645 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
646 	/* first item must be the HA */
647 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
648 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
649 
650 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
651 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
652 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
653 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
654 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
655 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
656 
657 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
658 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
659 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
660 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
661 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
662 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
663 
664 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
665 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
666 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
667 };
668 
669 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
670 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
671 	{0,}			/* 0 terminated list. */
672 };
673 
674 
675 /****************************************************************************
676 			Ancillary status routines
677  ****************************************************************************/
678 
679 static inline int numrank(enum type type, u32 mtr)
680 {
681 	int ranks = (1 << RANK_CNT_BITS(mtr));
682 	int max = 4;
683 
684 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
685 		max = 8;
686 
687 	if (ranks > max) {
688 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
689 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
690 		return -EINVAL;
691 	}
692 
693 	return ranks;
694 }
695 
696 static inline int numrow(u32 mtr)
697 {
698 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
699 
700 	if (rows < 13 || rows > 18) {
701 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
702 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
703 		return -EINVAL;
704 	}
705 
706 	return 1 << rows;
707 }
708 
709 static inline int numcol(u32 mtr)
710 {
711 	int cols = (COL_WIDTH_BITS(mtr) + 10);
712 
713 	if (cols > 12) {
714 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
715 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
716 		return -EINVAL;
717 	}
718 
719 	return 1 << cols;
720 }
721 
722 static struct sbridge_dev *get_sbridge_dev(u8 bus, enum domain dom, int multi_bus,
723 					   struct sbridge_dev *prev)
724 {
725 	struct sbridge_dev *sbridge_dev;
726 
727 	/*
728 	 * If we have devices scattered across several busses that pertain
729 	 * to the same memory controller, we'll lump them all together.
730 	 */
731 	if (multi_bus) {
732 		return list_first_entry_or_null(&sbridge_edac_list,
733 				struct sbridge_dev, list);
734 	}
735 
736 	sbridge_dev = list_entry(prev ? prev->list.next
737 				      : sbridge_edac_list.next, struct sbridge_dev, list);
738 
739 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
740 		if (sbridge_dev->bus == bus && (dom == SOCK || dom == sbridge_dev->dom))
741 			return sbridge_dev;
742 	}
743 
744 	return NULL;
745 }
746 
747 static struct sbridge_dev *alloc_sbridge_dev(u8 bus, enum domain dom,
748 					     const struct pci_id_table *table)
749 {
750 	struct sbridge_dev *sbridge_dev;
751 
752 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
753 	if (!sbridge_dev)
754 		return NULL;
755 
756 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
757 				    sizeof(*sbridge_dev->pdev),
758 				    GFP_KERNEL);
759 	if (!sbridge_dev->pdev) {
760 		kfree(sbridge_dev);
761 		return NULL;
762 	}
763 
764 	sbridge_dev->bus = bus;
765 	sbridge_dev->dom = dom;
766 	sbridge_dev->n_devs = table->n_devs_per_imc;
767 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
768 
769 	return sbridge_dev;
770 }
771 
772 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
773 {
774 	list_del(&sbridge_dev->list);
775 	kfree(sbridge_dev->pdev);
776 	kfree(sbridge_dev);
777 }
778 
779 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
780 {
781 	u32 reg;
782 
783 	/* Address range is 32:28 */
784 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
785 	return GET_TOLM(reg);
786 }
787 
788 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
789 {
790 	u32 reg;
791 
792 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
793 	return GET_TOHM(reg);
794 }
795 
796 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
797 {
798 	u32 reg;
799 
800 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
801 
802 	return GET_TOLM(reg);
803 }
804 
805 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
806 {
807 	u32 reg;
808 
809 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
810 
811 	return GET_TOHM(reg);
812 }
813 
814 static u64 rir_limit(u32 reg)
815 {
816 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
817 }
818 
819 static u64 sad_limit(u32 reg)
820 {
821 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
822 }
823 
824 static u32 interleave_mode(u32 reg)
825 {
826 	return GET_BITFIELD(reg, 1, 1);
827 }
828 
829 static u32 dram_attr(u32 reg)
830 {
831 	return GET_BITFIELD(reg, 2, 3);
832 }
833 
834 static u64 knl_sad_limit(u32 reg)
835 {
836 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
837 }
838 
839 static u32 knl_interleave_mode(u32 reg)
840 {
841 	return GET_BITFIELD(reg, 1, 2);
842 }
843 
844 static const char * const knl_intlv_mode[] = {
845 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
846 };
847 
848 static const char *get_intlv_mode_str(u32 reg, enum type t)
849 {
850 	if (t == KNIGHTS_LANDING)
851 		return knl_intlv_mode[knl_interleave_mode(reg)];
852 	else
853 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
854 }
855 
856 static u32 dram_attr_knl(u32 reg)
857 {
858 	return GET_BITFIELD(reg, 3, 4);
859 }
860 
861 
862 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
863 {
864 	u32 reg;
865 	enum mem_type mtype;
866 
867 	if (pvt->pci_ddrio) {
868 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
869 				      &reg);
870 		if (GET_BITFIELD(reg, 11, 11))
871 			/* FIXME: Can also be LRDIMM */
872 			mtype = MEM_RDDR3;
873 		else
874 			mtype = MEM_DDR3;
875 	} else
876 		mtype = MEM_UNKNOWN;
877 
878 	return mtype;
879 }
880 
881 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
882 {
883 	u32 reg;
884 	bool registered = false;
885 	enum mem_type mtype = MEM_UNKNOWN;
886 
887 	if (!pvt->pci_ddrio)
888 		goto out;
889 
890 	pci_read_config_dword(pvt->pci_ddrio,
891 			      HASWELL_DDRCRCLKCONTROLS, &reg);
892 	/* Is_Rdimm */
893 	if (GET_BITFIELD(reg, 16, 16))
894 		registered = true;
895 
896 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
897 	if (GET_BITFIELD(reg, 14, 14)) {
898 		if (registered)
899 			mtype = MEM_RDDR4;
900 		else
901 			mtype = MEM_DDR4;
902 	} else {
903 		if (registered)
904 			mtype = MEM_RDDR3;
905 		else
906 			mtype = MEM_DDR3;
907 	}
908 
909 out:
910 	return mtype;
911 }
912 
913 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
914 {
915 	/* for KNL value is fixed */
916 	return DEV_X16;
917 }
918 
919 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
920 {
921 	/* there's no way to figure out */
922 	return DEV_UNKNOWN;
923 }
924 
925 static enum dev_type __ibridge_get_width(u32 mtr)
926 {
927 	enum dev_type type;
928 
929 	switch (mtr) {
930 	case 3:
931 		type = DEV_UNKNOWN;
932 		break;
933 	case 2:
934 		type = DEV_X16;
935 		break;
936 	case 1:
937 		type = DEV_X8;
938 		break;
939 	case 0:
940 		type = DEV_X4;
941 		break;
942 	}
943 
944 	return type;
945 }
946 
947 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
948 {
949 	/*
950 	 * ddr3_width on the documentation but also valid for DDR4 on
951 	 * Haswell
952 	 */
953 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
954 }
955 
956 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
957 {
958 	/* ddr3_width on the documentation but also valid for DDR4 */
959 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
960 }
961 
962 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
963 {
964 	/* DDR4 RDIMMS and LRDIMMS are supported */
965 	return MEM_RDDR4;
966 }
967 
968 static u8 get_node_id(struct sbridge_pvt *pvt)
969 {
970 	u32 reg;
971 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
972 	return GET_BITFIELD(reg, 0, 2);
973 }
974 
975 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
976 {
977 	u32 reg;
978 
979 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
980 	return GET_BITFIELD(reg, 0, 3);
981 }
982 
983 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
984 {
985 	u32 reg;
986 
987 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
988 	return GET_BITFIELD(reg, 0, 2);
989 }
990 
991 
992 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
993 {
994 	u32 reg;
995 
996 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
997 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
998 }
999 
1000 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1001 {
1002 	u64 rc;
1003 	u32 reg;
1004 
1005 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1006 	rc = GET_BITFIELD(reg, 26, 31);
1007 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1008 	rc = ((reg << 6) | rc) << 26;
1009 
1010 	return rc | 0x1ffffff;
1011 }
1012 
1013 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1014 {
1015 	u32 reg;
1016 
1017 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1018 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1019 }
1020 
1021 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1022 {
1023 	u64 rc;
1024 	u32 reg_lo, reg_hi;
1025 
1026 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1027 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1028 	rc = ((u64)reg_hi << 32) | reg_lo;
1029 	return rc | 0x3ffffff;
1030 }
1031 
1032 
1033 static u64 haswell_rir_limit(u32 reg)
1034 {
1035 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1036 }
1037 
1038 static inline u8 sad_pkg_socket(u8 pkg)
1039 {
1040 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1041 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1042 }
1043 
1044 static inline u8 sad_pkg_ha(u8 pkg)
1045 {
1046 	return (pkg >> 2) & 0x1;
1047 }
1048 
1049 static int haswell_chan_hash(int idx, u64 addr)
1050 {
1051 	int i;
1052 
1053 	/*
1054 	 * XOR even bits from 12:26 to bit0 of idx,
1055 	 *     odd bits from 13:27 to bit1
1056 	 */
1057 	for (i = 12; i < 28; i += 2)
1058 		idx ^= (addr >> i) & 3;
1059 
1060 	return idx;
1061 }
1062 
1063 /* Low bits of TAD limit, and some metadata. */
1064 static const u32 knl_tad_dram_limit_lo[] = {
1065 	0x400, 0x500, 0x600, 0x700,
1066 	0x800, 0x900, 0xa00, 0xb00,
1067 };
1068 
1069 /* Low bits of TAD offset. */
1070 static const u32 knl_tad_dram_offset_lo[] = {
1071 	0x404, 0x504, 0x604, 0x704,
1072 	0x804, 0x904, 0xa04, 0xb04,
1073 };
1074 
1075 /* High 16 bits of TAD limit and offset. */
1076 static const u32 knl_tad_dram_hi[] = {
1077 	0x408, 0x508, 0x608, 0x708,
1078 	0x808, 0x908, 0xa08, 0xb08,
1079 };
1080 
1081 /* Number of ways a tad entry is interleaved. */
1082 static const u32 knl_tad_ways[] = {
1083 	8, 6, 4, 3, 2, 1,
1084 };
1085 
1086 /*
1087  * Retrieve the n'th Target Address Decode table entry
1088  * from the memory controller's TAD table.
1089  *
1090  * @pvt:	driver private data
1091  * @entry:	which entry you want to retrieve
1092  * @mc:		which memory controller (0 or 1)
1093  * @offset:	output tad range offset
1094  * @limit:	output address of first byte above tad range
1095  * @ways:	output number of interleave ways
1096  *
1097  * The offset value has curious semantics.  It's a sort of running total
1098  * of the sizes of all the memory regions that aren't mapped in this
1099  * tad table.
1100  */
1101 static int knl_get_tad(const struct sbridge_pvt *pvt,
1102 		const int entry,
1103 		const int mc,
1104 		u64 *offset,
1105 		u64 *limit,
1106 		int *ways)
1107 {
1108 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1109 	struct pci_dev *pci_mc;
1110 	int way_id;
1111 
1112 	switch (mc) {
1113 	case 0:
1114 		pci_mc = pvt->knl.pci_mc0;
1115 		break;
1116 	case 1:
1117 		pci_mc = pvt->knl.pci_mc1;
1118 		break;
1119 	default:
1120 		WARN_ON(1);
1121 		return -EINVAL;
1122 	}
1123 
1124 	pci_read_config_dword(pci_mc,
1125 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1126 	pci_read_config_dword(pci_mc,
1127 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1128 	pci_read_config_dword(pci_mc,
1129 			knl_tad_dram_hi[entry], &reg_hi);
1130 
1131 	/* Is this TAD entry enabled? */
1132 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1133 		return -ENODEV;
1134 
1135 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1136 
1137 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1138 		*ways = knl_tad_ways[way_id];
1139 	} else {
1140 		*ways = 0;
1141 		sbridge_printk(KERN_ERR,
1142 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1143 				way_id);
1144 		return -ENODEV;
1145 	}
1146 
1147 	/*
1148 	 * The least significant 6 bits of base and limit are truncated.
1149 	 * For limit, we fill the missing bits with 1s.
1150 	 */
1151 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1152 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1153 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1154 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1155 
1156 	return 0;
1157 }
1158 
1159 /* Determine which memory controller is responsible for a given channel. */
1160 static int knl_channel_mc(int channel)
1161 {
1162 	WARN_ON(channel < 0 || channel >= 6);
1163 
1164 	return channel < 3 ? 1 : 0;
1165 }
1166 
1167 /*
1168  * Get the Nth entry from EDC_ROUTE_TABLE register.
1169  * (This is the per-tile mapping of logical interleave targets to
1170  *  physical EDC modules.)
1171  *
1172  * entry 0: 0:2
1173  *       1: 3:5
1174  *       2: 6:8
1175  *       3: 9:11
1176  *       4: 12:14
1177  *       5: 15:17
1178  *       6: 18:20
1179  *       7: 21:23
1180  * reserved: 24:31
1181  */
1182 static u32 knl_get_edc_route(int entry, u32 reg)
1183 {
1184 	WARN_ON(entry >= KNL_MAX_EDCS);
1185 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1186 }
1187 
1188 /*
1189  * Get the Nth entry from MC_ROUTE_TABLE register.
1190  * (This is the per-tile mapping of logical interleave targets to
1191  *  physical DRAM channels modules.)
1192  *
1193  * entry 0: mc 0:2   channel 18:19
1194  *       1: mc 3:5   channel 20:21
1195  *       2: mc 6:8   channel 22:23
1196  *       3: mc 9:11  channel 24:25
1197  *       4: mc 12:14 channel 26:27
1198  *       5: mc 15:17 channel 28:29
1199  * reserved: 30:31
1200  *
1201  * Though we have 3 bits to identify the MC, we should only see
1202  * the values 0 or 1.
1203  */
1204 
1205 static u32 knl_get_mc_route(int entry, u32 reg)
1206 {
1207 	int mc, chan;
1208 
1209 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1210 
1211 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1212 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1213 
1214 	return knl_channel_remap(mc, chan);
1215 }
1216 
1217 /*
1218  * Render the EDC_ROUTE register in human-readable form.
1219  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1220  */
1221 static void knl_show_edc_route(u32 reg, char *s)
1222 {
1223 	int i;
1224 
1225 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1226 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1227 		s[i*2+1] = '-';
1228 	}
1229 
1230 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1231 }
1232 
1233 /*
1234  * Render the MC_ROUTE register in human-readable form.
1235  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1236  */
1237 static void knl_show_mc_route(u32 reg, char *s)
1238 {
1239 	int i;
1240 
1241 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1242 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1243 		s[i*2+1] = '-';
1244 	}
1245 
1246 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1247 }
1248 
1249 #define KNL_EDC_ROUTE 0xb8
1250 #define KNL_MC_ROUTE 0xb4
1251 
1252 /* Is this dram rule backed by regular DRAM in flat mode? */
1253 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1254 
1255 /* Is this dram rule cached? */
1256 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1257 
1258 /* Is this rule backed by edc ? */
1259 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1260 
1261 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1262 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1263 
1264 /* Is this rule mod3? */
1265 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1266 
1267 /*
1268  * Figure out how big our RAM modules are.
1269  *
1270  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1271  * have to figure this out from the SAD rules, interleave lists, route tables,
1272  * and TAD rules.
1273  *
1274  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1275  * inspect the TAD rules to figure out how large the SAD regions really are.
1276  *
1277  * When we know the real size of a SAD region and how many ways it's
1278  * interleaved, we know the individual contribution of each channel to
1279  * TAD is size/ways.
1280  *
1281  * Finally, we have to check whether each channel participates in each SAD
1282  * region.
1283  *
1284  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1285  * much memory the channel uses, we know the DIMM is at least that large.
1286  * (The BIOS might possibly choose not to map all available memory, in which
1287  * case we will underreport the size of the DIMM.)
1288  *
1289  * In theory, we could try to determine the EDC sizes as well, but that would
1290  * only work in flat mode, not in cache mode.
1291  *
1292  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1293  *            elements)
1294  */
1295 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1296 {
1297 	u64 sad_base, sad_size, sad_limit = 0;
1298 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1299 	int sad_rule = 0;
1300 	int tad_rule = 0;
1301 	int intrlv_ways, tad_ways;
1302 	u32 first_pkg, pkg;
1303 	int i;
1304 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1305 	u32 dram_rule, interleave_reg;
1306 	u32 mc_route_reg[KNL_MAX_CHAS];
1307 	u32 edc_route_reg[KNL_MAX_CHAS];
1308 	int edram_only;
1309 	char edc_route_string[KNL_MAX_EDCS*2];
1310 	char mc_route_string[KNL_MAX_CHANNELS*2];
1311 	int cur_reg_start;
1312 	int mc;
1313 	int channel;
1314 	int way;
1315 	int participants[KNL_MAX_CHANNELS];
1316 	int participant_count = 0;
1317 
1318 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1319 		mc_sizes[i] = 0;
1320 
1321 	/* Read the EDC route table in each CHA. */
1322 	cur_reg_start = 0;
1323 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1324 		pci_read_config_dword(pvt->knl.pci_cha[i],
1325 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1326 
1327 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1328 			knl_show_edc_route(edc_route_reg[i-1],
1329 					edc_route_string);
1330 			if (cur_reg_start == i-1)
1331 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1332 					cur_reg_start, edc_route_string);
1333 			else
1334 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1335 					cur_reg_start, i-1, edc_route_string);
1336 			cur_reg_start = i;
1337 		}
1338 	}
1339 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1340 	if (cur_reg_start == i-1)
1341 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1342 			cur_reg_start, edc_route_string);
1343 	else
1344 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1345 			cur_reg_start, i-1, edc_route_string);
1346 
1347 	/* Read the MC route table in each CHA. */
1348 	cur_reg_start = 0;
1349 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1350 		pci_read_config_dword(pvt->knl.pci_cha[i],
1351 			KNL_MC_ROUTE, &mc_route_reg[i]);
1352 
1353 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1354 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1355 			if (cur_reg_start == i-1)
1356 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1357 					cur_reg_start, mc_route_string);
1358 			else
1359 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1360 					cur_reg_start, i-1, mc_route_string);
1361 			cur_reg_start = i;
1362 		}
1363 	}
1364 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1365 	if (cur_reg_start == i-1)
1366 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1367 			cur_reg_start, mc_route_string);
1368 	else
1369 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1370 			cur_reg_start, i-1, mc_route_string);
1371 
1372 	/* Process DRAM rules */
1373 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1374 		/* previous limit becomes the new base */
1375 		sad_base = sad_limit;
1376 
1377 		pci_read_config_dword(pvt->pci_sad0,
1378 			pvt->info.dram_rule[sad_rule], &dram_rule);
1379 
1380 		if (!DRAM_RULE_ENABLE(dram_rule))
1381 			break;
1382 
1383 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1384 
1385 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1386 		sad_size = sad_limit - sad_base;
1387 
1388 		pci_read_config_dword(pvt->pci_sad0,
1389 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1390 
1391 		/*
1392 		 * Find out how many ways this dram rule is interleaved.
1393 		 * We stop when we see the first channel again.
1394 		 */
1395 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1396 						interleave_reg, 0);
1397 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1398 			pkg = sad_pkg(pvt->info.interleave_pkg,
1399 						interleave_reg, intrlv_ways);
1400 
1401 			if ((pkg & 0x8) == 0) {
1402 				/*
1403 				 * 0 bit means memory is non-local,
1404 				 * which KNL doesn't support
1405 				 */
1406 				edac_dbg(0, "Unexpected interleave target %d\n",
1407 					pkg);
1408 				return -1;
1409 			}
1410 
1411 			if (pkg == first_pkg)
1412 				break;
1413 		}
1414 		if (KNL_MOD3(dram_rule))
1415 			intrlv_ways *= 3;
1416 
1417 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1418 			sad_rule,
1419 			sad_base,
1420 			sad_limit,
1421 			intrlv_ways,
1422 			edram_only ? ", EDRAM" : "");
1423 
1424 		/*
1425 		 * Find out how big the SAD region really is by iterating
1426 		 * over TAD tables (SAD regions may contain holes).
1427 		 * Each memory controller might have a different TAD table, so
1428 		 * we have to look at both.
1429 		 *
1430 		 * Livespace is the memory that's mapped in this TAD table,
1431 		 * deadspace is the holes (this could be the MMIO hole, or it
1432 		 * could be memory that's mapped by the other TAD table but
1433 		 * not this one).
1434 		 */
1435 		for (mc = 0; mc < 2; mc++) {
1436 			sad_actual_size[mc] = 0;
1437 			tad_livespace = 0;
1438 			for (tad_rule = 0;
1439 					tad_rule < ARRAY_SIZE(
1440 						knl_tad_dram_limit_lo);
1441 					tad_rule++) {
1442 				if (knl_get_tad(pvt,
1443 						tad_rule,
1444 						mc,
1445 						&tad_deadspace,
1446 						&tad_limit,
1447 						&tad_ways))
1448 					break;
1449 
1450 				tad_size = (tad_limit+1) -
1451 					(tad_livespace + tad_deadspace);
1452 				tad_livespace += tad_size;
1453 				tad_base = (tad_limit+1) - tad_size;
1454 
1455 				if (tad_base < sad_base) {
1456 					if (tad_limit > sad_base)
1457 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1458 				} else if (tad_base < sad_limit) {
1459 					if (tad_limit+1 > sad_limit) {
1460 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1461 					} else {
1462 						/* TAD region is completely inside SAD region */
1463 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1464 							tad_rule, tad_base,
1465 							tad_limit, tad_size,
1466 							mc);
1467 						sad_actual_size[mc] += tad_size;
1468 					}
1469 				}
1470 				tad_base = tad_limit+1;
1471 			}
1472 		}
1473 
1474 		for (mc = 0; mc < 2; mc++) {
1475 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1476 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1477 		}
1478 
1479 		/* Ignore EDRAM rule */
1480 		if (edram_only)
1481 			continue;
1482 
1483 		/* Figure out which channels participate in interleave. */
1484 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1485 			participants[channel] = 0;
1486 
1487 		/* For each channel, does at least one CHA have
1488 		 * this channel mapped to the given target?
1489 		 */
1490 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1491 			for (way = 0; way < intrlv_ways; way++) {
1492 				int target;
1493 				int cha;
1494 
1495 				if (KNL_MOD3(dram_rule))
1496 					target = way;
1497 				else
1498 					target = 0x7 & sad_pkg(
1499 				pvt->info.interleave_pkg, interleave_reg, way);
1500 
1501 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1502 					if (knl_get_mc_route(target,
1503 						mc_route_reg[cha]) == channel
1504 						&& !participants[channel]) {
1505 						participant_count++;
1506 						participants[channel] = 1;
1507 						break;
1508 					}
1509 				}
1510 			}
1511 		}
1512 
1513 		if (participant_count != intrlv_ways)
1514 			edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1515 				participant_count, intrlv_ways);
1516 
1517 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1518 			mc = knl_channel_mc(channel);
1519 			if (participants[channel]) {
1520 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1521 					channel,
1522 					sad_actual_size[mc]/intrlv_ways,
1523 					sad_rule);
1524 				mc_sizes[channel] +=
1525 					sad_actual_size[mc]/intrlv_ways;
1526 			}
1527 		}
1528 	}
1529 
1530 	return 0;
1531 }
1532 
1533 static void get_source_id(struct mem_ctl_info *mci)
1534 {
1535 	struct sbridge_pvt *pvt = mci->pvt_info;
1536 	u32 reg;
1537 
1538 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1539 	    pvt->info.type == KNIGHTS_LANDING)
1540 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1541 	else
1542 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1543 
1544 	if (pvt->info.type == KNIGHTS_LANDING)
1545 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1546 	else
1547 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1548 }
1549 
1550 static int __populate_dimms(struct mem_ctl_info *mci,
1551 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1552 			    enum edac_type mode)
1553 {
1554 	struct sbridge_pvt *pvt = mci->pvt_info;
1555 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1556 							 : NUM_CHANNELS;
1557 	unsigned int i, j, banks, ranks, rows, cols, npages;
1558 	struct dimm_info *dimm;
1559 	enum mem_type mtype;
1560 	u64 size;
1561 
1562 	mtype = pvt->info.get_memory_type(pvt);
1563 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1564 		edac_dbg(0, "Memory is registered\n");
1565 	else if (mtype == MEM_UNKNOWN)
1566 		edac_dbg(0, "Cannot determine memory type\n");
1567 	else
1568 		edac_dbg(0, "Memory is unregistered\n");
1569 
1570 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1571 		banks = 16;
1572 	else
1573 		banks = 8;
1574 
1575 	for (i = 0; i < channels; i++) {
1576 		u32 mtr;
1577 
1578 		int max_dimms_per_channel;
1579 
1580 		if (pvt->info.type == KNIGHTS_LANDING) {
1581 			max_dimms_per_channel = 1;
1582 			if (!pvt->knl.pci_channel[i])
1583 				continue;
1584 		} else {
1585 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1586 			if (!pvt->pci_tad[i])
1587 				continue;
1588 		}
1589 
1590 		for (j = 0; j < max_dimms_per_channel; j++) {
1591 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1592 			if (pvt->info.type == KNIGHTS_LANDING) {
1593 				pci_read_config_dword(pvt->knl.pci_channel[i],
1594 					knl_mtr_reg, &mtr);
1595 			} else {
1596 				pci_read_config_dword(pvt->pci_tad[i],
1597 					mtr_regs[j], &mtr);
1598 			}
1599 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1600 			if (IS_DIMM_PRESENT(mtr)) {
1601 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1602 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1603 						       pvt->sbridge_dev->source_id,
1604 						       pvt->sbridge_dev->dom, i);
1605 					return -ENODEV;
1606 				}
1607 				pvt->channel[i].dimms++;
1608 
1609 				ranks = numrank(pvt->info.type, mtr);
1610 
1611 				if (pvt->info.type == KNIGHTS_LANDING) {
1612 					/* For DDR4, this is fixed. */
1613 					cols = 1 << 10;
1614 					rows = knl_mc_sizes[i] /
1615 						((u64) cols * ranks * banks * 8);
1616 				} else {
1617 					rows = numrow(mtr);
1618 					cols = numcol(mtr);
1619 				}
1620 
1621 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1622 				npages = MiB_TO_PAGES(size);
1623 
1624 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1625 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1626 					 size, npages,
1627 					 banks, ranks, rows, cols);
1628 
1629 				dimm->nr_pages = npages;
1630 				dimm->grain = 32;
1631 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1632 				dimm->mtype = mtype;
1633 				dimm->edac_mode = mode;
1634 				snprintf(dimm->label, sizeof(dimm->label),
1635 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1636 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1637 			}
1638 		}
1639 	}
1640 
1641 	return 0;
1642 }
1643 
1644 static int get_dimm_config(struct mem_ctl_info *mci)
1645 {
1646 	struct sbridge_pvt *pvt = mci->pvt_info;
1647 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1648 	enum edac_type mode;
1649 	u32 reg;
1650 
1651 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1652 		pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
1653 		pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1654 	}
1655 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1656 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1657 		 pvt->sbridge_dev->mc,
1658 		 pvt->sbridge_dev->node_id,
1659 		 pvt->sbridge_dev->source_id);
1660 
1661 	/* KNL doesn't support mirroring or lockstep,
1662 	 * and is always closed page
1663 	 */
1664 	if (pvt->info.type == KNIGHTS_LANDING) {
1665 		mode = EDAC_S4ECD4ED;
1666 		pvt->is_mirrored = false;
1667 
1668 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1669 			return -1;
1670 		pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr);
1671 	} else {
1672 		pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
1673 		if (IS_MIRROR_ENABLED(reg)) {
1674 			edac_dbg(0, "Memory mirror is enabled\n");
1675 			pvt->is_mirrored = true;
1676 		} else {
1677 			edac_dbg(0, "Memory mirror is disabled\n");
1678 			pvt->is_mirrored = false;
1679 		}
1680 
1681 		pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
1682 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1683 			edac_dbg(0, "Lockstep is enabled\n");
1684 			mode = EDAC_S8ECD8ED;
1685 			pvt->is_lockstep = true;
1686 		} else {
1687 			edac_dbg(0, "Lockstep is disabled\n");
1688 			mode = EDAC_S4ECD4ED;
1689 			pvt->is_lockstep = false;
1690 		}
1691 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1692 			edac_dbg(0, "address map is on closed page mode\n");
1693 			pvt->is_close_pg = true;
1694 		} else {
1695 			edac_dbg(0, "address map is on open page mode\n");
1696 			pvt->is_close_pg = false;
1697 		}
1698 	}
1699 
1700 	return __populate_dimms(mci, knl_mc_sizes, mode);
1701 }
1702 
1703 static void get_memory_layout(const struct mem_ctl_info *mci)
1704 {
1705 	struct sbridge_pvt *pvt = mci->pvt_info;
1706 	int i, j, k, n_sads, n_tads, sad_interl;
1707 	u32 reg;
1708 	u64 limit, prv = 0;
1709 	u64 tmp_mb;
1710 	u32 gb, mb;
1711 	u32 rir_way;
1712 
1713 	/*
1714 	 * Step 1) Get TOLM/TOHM ranges
1715 	 */
1716 
1717 	pvt->tolm = pvt->info.get_tolm(pvt);
1718 	tmp_mb = (1 + pvt->tolm) >> 20;
1719 
1720 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1721 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1722 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1723 
1724 	/* Address range is already 45:25 */
1725 	pvt->tohm = pvt->info.get_tohm(pvt);
1726 	tmp_mb = (1 + pvt->tohm) >> 20;
1727 
1728 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1729 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1730 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1731 
1732 	/*
1733 	 * Step 2) Get SAD range and SAD Interleave list
1734 	 * TAD registers contain the interleave wayness. However, it
1735 	 * seems simpler to just discover it indirectly, with the
1736 	 * algorithm bellow.
1737 	 */
1738 	prv = 0;
1739 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1740 		/* SAD_LIMIT Address range is 45:26 */
1741 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1742 				      &reg);
1743 		limit = pvt->info.sad_limit(reg);
1744 
1745 		if (!DRAM_RULE_ENABLE(reg))
1746 			continue;
1747 
1748 		if (limit <= prv)
1749 			break;
1750 
1751 		tmp_mb = (limit + 1) >> 20;
1752 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1753 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1754 			 n_sads,
1755 			 show_dram_attr(pvt->info.dram_attr(reg)),
1756 			 gb, (mb*1000)/1024,
1757 			 ((u64)tmp_mb) << 20L,
1758 			 get_intlv_mode_str(reg, pvt->info.type),
1759 			 reg);
1760 		prv = limit;
1761 
1762 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1763 				      &reg);
1764 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1765 		for (j = 0; j < 8; j++) {
1766 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1767 			if (j > 0 && sad_interl == pkg)
1768 				break;
1769 
1770 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1771 				 n_sads, j, pkg);
1772 		}
1773 	}
1774 
1775 	if (pvt->info.type == KNIGHTS_LANDING)
1776 		return;
1777 
1778 	/*
1779 	 * Step 3) Get TAD range
1780 	 */
1781 	prv = 0;
1782 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1783 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1784 		limit = TAD_LIMIT(reg);
1785 		if (limit <= prv)
1786 			break;
1787 		tmp_mb = (limit + 1) >> 20;
1788 
1789 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1790 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1791 			 n_tads, gb, (mb*1000)/1024,
1792 			 ((u64)tmp_mb) << 20L,
1793 			 (u32)(1 << TAD_SOCK(reg)),
1794 			 (u32)TAD_CH(reg) + 1,
1795 			 (u32)TAD_TGT0(reg),
1796 			 (u32)TAD_TGT1(reg),
1797 			 (u32)TAD_TGT2(reg),
1798 			 (u32)TAD_TGT3(reg),
1799 			 reg);
1800 		prv = limit;
1801 	}
1802 
1803 	/*
1804 	 * Step 4) Get TAD offsets, per each channel
1805 	 */
1806 	for (i = 0; i < NUM_CHANNELS; i++) {
1807 		if (!pvt->channel[i].dimms)
1808 			continue;
1809 		for (j = 0; j < n_tads; j++) {
1810 			pci_read_config_dword(pvt->pci_tad[i],
1811 					      tad_ch_nilv_offset[j],
1812 					      &reg);
1813 			tmp_mb = TAD_OFFSET(reg) >> 20;
1814 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1815 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1816 				 i, j,
1817 				 gb, (mb*1000)/1024,
1818 				 ((u64)tmp_mb) << 20L,
1819 				 reg);
1820 		}
1821 	}
1822 
1823 	/*
1824 	 * Step 6) Get RIR Wayness/Limit, per each channel
1825 	 */
1826 	for (i = 0; i < NUM_CHANNELS; i++) {
1827 		if (!pvt->channel[i].dimms)
1828 			continue;
1829 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1830 			pci_read_config_dword(pvt->pci_tad[i],
1831 					      rir_way_limit[j],
1832 					      &reg);
1833 
1834 			if (!IS_RIR_VALID(reg))
1835 				continue;
1836 
1837 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1838 			rir_way = 1 << RIR_WAY(reg);
1839 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1840 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1841 				 i, j,
1842 				 gb, (mb*1000)/1024,
1843 				 ((u64)tmp_mb) << 20L,
1844 				 rir_way,
1845 				 reg);
1846 
1847 			for (k = 0; k < rir_way; k++) {
1848 				pci_read_config_dword(pvt->pci_tad[i],
1849 						      rir_offset[j][k],
1850 						      &reg);
1851 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1852 
1853 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1854 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1855 					 i, j, k,
1856 					 gb, (mb*1000)/1024,
1857 					 ((u64)tmp_mb) << 20L,
1858 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1859 					 reg);
1860 			}
1861 		}
1862 	}
1863 }
1864 
1865 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1866 {
1867 	struct sbridge_dev *sbridge_dev;
1868 
1869 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1870 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1871 			return sbridge_dev->mci;
1872 	}
1873 	return NULL;
1874 }
1875 
1876 static int get_memory_error_data(struct mem_ctl_info *mci,
1877 				 u64 addr,
1878 				 u8 *socket, u8 *ha,
1879 				 long *channel_mask,
1880 				 u8 *rank,
1881 				 char **area_type, char *msg)
1882 {
1883 	struct mem_ctl_info	*new_mci;
1884 	struct sbridge_pvt *pvt = mci->pvt_info;
1885 	struct pci_dev		*pci_ha;
1886 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1887 	int			sad_interl, idx, base_ch;
1888 	int			interleave_mode, shiftup = 0;
1889 	unsigned		sad_interleave[pvt->info.max_interleave];
1890 	u32			reg, dram_rule;
1891 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1892 	u32			tad_offset;
1893 	u32			rir_way;
1894 	u32			mb, gb;
1895 	u64			ch_addr, offset, limit = 0, prv = 0;
1896 
1897 
1898 	/*
1899 	 * Step 0) Check if the address is at special memory ranges
1900 	 * The check bellow is probably enough to fill all cases where
1901 	 * the error is not inside a memory, except for the legacy
1902 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1903 	 * memory controller would generate an error on that range.
1904 	 */
1905 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1906 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1907 		return -EINVAL;
1908 	}
1909 	if (addr >= (u64)pvt->tohm) {
1910 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1911 		return -EINVAL;
1912 	}
1913 
1914 	/*
1915 	 * Step 1) Get socket
1916 	 */
1917 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1918 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1919 				      &reg);
1920 
1921 		if (!DRAM_RULE_ENABLE(reg))
1922 			continue;
1923 
1924 		limit = pvt->info.sad_limit(reg);
1925 		if (limit <= prv) {
1926 			sprintf(msg, "Can't discover the memory socket");
1927 			return -EINVAL;
1928 		}
1929 		if  (addr <= limit)
1930 			break;
1931 		prv = limit;
1932 	}
1933 	if (n_sads == pvt->info.max_sad) {
1934 		sprintf(msg, "Can't discover the memory socket");
1935 		return -EINVAL;
1936 	}
1937 	dram_rule = reg;
1938 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1939 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1940 
1941 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1942 			      &reg);
1943 
1944 	if (pvt->info.type == SANDY_BRIDGE) {
1945 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1946 		for (sad_way = 0; sad_way < 8; sad_way++) {
1947 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1948 			if (sad_way > 0 && sad_interl == pkg)
1949 				break;
1950 			sad_interleave[sad_way] = pkg;
1951 			edac_dbg(0, "SAD interleave #%d: %d\n",
1952 				 sad_way, sad_interleave[sad_way]);
1953 		}
1954 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1955 			 pvt->sbridge_dev->mc,
1956 			 n_sads,
1957 			 addr,
1958 			 limit,
1959 			 sad_way + 7,
1960 			 !interleave_mode ? "" : "XOR[18:16]");
1961 		if (interleave_mode)
1962 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1963 		else
1964 			idx = (addr >> 6) & 7;
1965 		switch (sad_way) {
1966 		case 1:
1967 			idx = 0;
1968 			break;
1969 		case 2:
1970 			idx = idx & 1;
1971 			break;
1972 		case 4:
1973 			idx = idx & 3;
1974 			break;
1975 		case 8:
1976 			break;
1977 		default:
1978 			sprintf(msg, "Can't discover socket interleave");
1979 			return -EINVAL;
1980 		}
1981 		*socket = sad_interleave[idx];
1982 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1983 			 idx, sad_way, *socket);
1984 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1985 		int bits, a7mode = A7MODE(dram_rule);
1986 
1987 		if (a7mode) {
1988 			/* A7 mode swaps P9 with P6 */
1989 			bits = GET_BITFIELD(addr, 7, 8) << 1;
1990 			bits |= GET_BITFIELD(addr, 9, 9);
1991 		} else
1992 			bits = GET_BITFIELD(addr, 6, 8);
1993 
1994 		if (interleave_mode == 0) {
1995 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
1996 			idx = GET_BITFIELD(addr, 16, 18);
1997 			idx ^= bits;
1998 		} else
1999 			idx = bits;
2000 
2001 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2002 		*socket = sad_pkg_socket(pkg);
2003 		sad_ha = sad_pkg_ha(pkg);
2004 
2005 		if (a7mode) {
2006 			/* MCChanShiftUpEnable */
2007 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2008 			shiftup = GET_BITFIELD(reg, 22, 22);
2009 		}
2010 
2011 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2012 			 idx, *socket, sad_ha, shiftup);
2013 	} else {
2014 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2015 		idx = (addr >> 6) & 7;
2016 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2017 		*socket = sad_pkg_socket(pkg);
2018 		sad_ha = sad_pkg_ha(pkg);
2019 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2020 			 idx, *socket, sad_ha);
2021 	}
2022 
2023 	*ha = sad_ha;
2024 
2025 	/*
2026 	 * Move to the proper node structure, in order to access the
2027 	 * right PCI registers
2028 	 */
2029 	new_mci = get_mci_for_node_id(*socket, sad_ha);
2030 	if (!new_mci) {
2031 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2032 			*socket);
2033 		return -EINVAL;
2034 	}
2035 	mci = new_mci;
2036 	pvt = mci->pvt_info;
2037 
2038 	/*
2039 	 * Step 2) Get memory channel
2040 	 */
2041 	prv = 0;
2042 	pci_ha = pvt->pci_ha;
2043 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2044 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2045 		limit = TAD_LIMIT(reg);
2046 		if (limit <= prv) {
2047 			sprintf(msg, "Can't discover the memory channel");
2048 			return -EINVAL;
2049 		}
2050 		if  (addr <= limit)
2051 			break;
2052 		prv = limit;
2053 	}
2054 	if (n_tads == MAX_TAD) {
2055 		sprintf(msg, "Can't discover the memory channel");
2056 		return -EINVAL;
2057 	}
2058 
2059 	ch_way = TAD_CH(reg) + 1;
2060 	sck_way = TAD_SOCK(reg);
2061 
2062 	if (ch_way == 3)
2063 		idx = addr >> 6;
2064 	else {
2065 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2066 		if (pvt->is_chan_hash)
2067 			idx = haswell_chan_hash(idx, addr);
2068 	}
2069 	idx = idx % ch_way;
2070 
2071 	/*
2072 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2073 	 */
2074 	switch (idx) {
2075 	case 0:
2076 		base_ch = TAD_TGT0(reg);
2077 		break;
2078 	case 1:
2079 		base_ch = TAD_TGT1(reg);
2080 		break;
2081 	case 2:
2082 		base_ch = TAD_TGT2(reg);
2083 		break;
2084 	case 3:
2085 		base_ch = TAD_TGT3(reg);
2086 		break;
2087 	default:
2088 		sprintf(msg, "Can't discover the TAD target");
2089 		return -EINVAL;
2090 	}
2091 	*channel_mask = 1 << base_ch;
2092 
2093 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2094 
2095 	if (pvt->is_mirrored) {
2096 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2097 		switch(ch_way) {
2098 		case 2:
2099 		case 4:
2100 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2101 			break;
2102 		default:
2103 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2104 			return -EINVAL;
2105 		}
2106 	} else
2107 		sck_xch = (1 << sck_way) * ch_way;
2108 
2109 	if (pvt->is_lockstep)
2110 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2111 
2112 	offset = TAD_OFFSET(tad_offset);
2113 
2114 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2115 		 n_tads,
2116 		 addr,
2117 		 limit,
2118 		 sck_way,
2119 		 ch_way,
2120 		 offset,
2121 		 idx,
2122 		 base_ch,
2123 		 *channel_mask);
2124 
2125 	/* Calculate channel address */
2126 	/* Remove the TAD offset */
2127 
2128 	if (offset > addr) {
2129 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2130 			offset, addr);
2131 		return -EINVAL;
2132 	}
2133 
2134 	ch_addr = addr - offset;
2135 	ch_addr >>= (6 + shiftup);
2136 	ch_addr /= sck_xch;
2137 	ch_addr <<= (6 + shiftup);
2138 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2139 
2140 	/*
2141 	 * Step 3) Decode rank
2142 	 */
2143 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2144 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2145 
2146 		if (!IS_RIR_VALID(reg))
2147 			continue;
2148 
2149 		limit = pvt->info.rir_limit(reg);
2150 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2151 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2152 			 n_rir,
2153 			 gb, (mb*1000)/1024,
2154 			 limit,
2155 			 1 << RIR_WAY(reg));
2156 		if  (ch_addr <= limit)
2157 			break;
2158 	}
2159 	if (n_rir == MAX_RIR_RANGES) {
2160 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2161 			ch_addr);
2162 		return -EINVAL;
2163 	}
2164 	rir_way = RIR_WAY(reg);
2165 
2166 	if (pvt->is_close_pg)
2167 		idx = (ch_addr >> 6);
2168 	else
2169 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2170 	idx %= 1 << rir_way;
2171 
2172 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2173 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2174 
2175 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2176 		 n_rir,
2177 		 ch_addr,
2178 		 limit,
2179 		 rir_way,
2180 		 idx);
2181 
2182 	return 0;
2183 }
2184 
2185 /****************************************************************************
2186 	Device initialization routines: put/get, init/exit
2187  ****************************************************************************/
2188 
2189 /*
2190  *	sbridge_put_all_devices	'put' all the devices that we have
2191  *				reserved via 'get'
2192  */
2193 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2194 {
2195 	int i;
2196 
2197 	edac_dbg(0, "\n");
2198 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2199 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2200 		if (!pdev)
2201 			continue;
2202 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2203 			 pdev->bus->number,
2204 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2205 		pci_dev_put(pdev);
2206 	}
2207 }
2208 
2209 static void sbridge_put_all_devices(void)
2210 {
2211 	struct sbridge_dev *sbridge_dev, *tmp;
2212 
2213 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2214 		sbridge_put_devices(sbridge_dev);
2215 		free_sbridge_dev(sbridge_dev);
2216 	}
2217 }
2218 
2219 static int sbridge_get_onedevice(struct pci_dev **prev,
2220 				 u8 *num_mc,
2221 				 const struct pci_id_table *table,
2222 				 const unsigned devno,
2223 				 const int multi_bus)
2224 {
2225 	struct sbridge_dev *sbridge_dev = NULL;
2226 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2227 	struct pci_dev *pdev = NULL;
2228 	u8 bus = 0;
2229 	int i = 0;
2230 
2231 	sbridge_printk(KERN_DEBUG,
2232 		"Seeking for: PCI ID %04x:%04x\n",
2233 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2234 
2235 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2236 			      dev_descr->dev_id, *prev);
2237 
2238 	if (!pdev) {
2239 		if (*prev) {
2240 			*prev = pdev;
2241 			return 0;
2242 		}
2243 
2244 		if (dev_descr->optional)
2245 			return 0;
2246 
2247 		/* if the HA wasn't found */
2248 		if (devno == 0)
2249 			return -ENODEV;
2250 
2251 		sbridge_printk(KERN_INFO,
2252 			"Device not found: %04x:%04x\n",
2253 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2254 
2255 		/* End of list, leave */
2256 		return -ENODEV;
2257 	}
2258 	bus = pdev->bus->number;
2259 
2260 next_imc:
2261 	sbridge_dev = get_sbridge_dev(bus, dev_descr->dom, multi_bus, sbridge_dev);
2262 	if (!sbridge_dev) {
2263 
2264 		if (dev_descr->dom == SOCK)
2265 			goto out_imc;
2266 
2267 		sbridge_dev = alloc_sbridge_dev(bus, dev_descr->dom, table);
2268 		if (!sbridge_dev) {
2269 			pci_dev_put(pdev);
2270 			return -ENOMEM;
2271 		}
2272 		(*num_mc)++;
2273 	}
2274 
2275 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2276 		sbridge_printk(KERN_ERR,
2277 			"Duplicated device for %04x:%04x\n",
2278 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2279 		pci_dev_put(pdev);
2280 		return -ENODEV;
2281 	}
2282 
2283 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2284 
2285 	/* pdev belongs to more than one IMC, do extra gets */
2286 	if (++i > 1)
2287 		pci_dev_get(pdev);
2288 
2289 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2290 		goto next_imc;
2291 
2292 out_imc:
2293 	/* Be sure that the device is enabled */
2294 	if (unlikely(pci_enable_device(pdev) < 0)) {
2295 		sbridge_printk(KERN_ERR,
2296 			"Couldn't enable %04x:%04x\n",
2297 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2298 		return -ENODEV;
2299 	}
2300 
2301 	edac_dbg(0, "Detected %04x:%04x\n",
2302 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2303 
2304 	/*
2305 	 * As stated on drivers/pci/search.c, the reference count for
2306 	 * @from is always decremented if it is not %NULL. So, as we need
2307 	 * to get all devices up to null, we need to do a get for the device
2308 	 */
2309 	pci_dev_get(pdev);
2310 
2311 	*prev = pdev;
2312 
2313 	return 0;
2314 }
2315 
2316 /*
2317  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2318  *			     devices we want to reference for this driver.
2319  * @num_mc: pointer to the memory controllers count, to be incremented in case
2320  *	    of success.
2321  * @table: model specific table
2322  *
2323  * returns 0 in case of success or error code
2324  */
2325 static int sbridge_get_all_devices(u8 *num_mc,
2326 					const struct pci_id_table *table)
2327 {
2328 	int i, rc;
2329 	struct pci_dev *pdev = NULL;
2330 	int allow_dups = 0;
2331 	int multi_bus = 0;
2332 
2333 	if (table->type == KNIGHTS_LANDING)
2334 		allow_dups = multi_bus = 1;
2335 	while (table && table->descr) {
2336 		for (i = 0; i < table->n_devs_per_sock; i++) {
2337 			if (!allow_dups || i == 0 ||
2338 					table->descr[i].dev_id !=
2339 						table->descr[i-1].dev_id) {
2340 				pdev = NULL;
2341 			}
2342 			do {
2343 				rc = sbridge_get_onedevice(&pdev, num_mc,
2344 							   table, i, multi_bus);
2345 				if (rc < 0) {
2346 					if (i == 0) {
2347 						i = table->n_devs_per_sock;
2348 						break;
2349 					}
2350 					sbridge_put_all_devices();
2351 					return -ENODEV;
2352 				}
2353 			} while (pdev && !allow_dups);
2354 		}
2355 		table++;
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 /*
2362  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2363  * the format: XXXa. So we can convert from a device to the corresponding
2364  * channel like this
2365  */
2366 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2367 
2368 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2369 				 struct sbridge_dev *sbridge_dev)
2370 {
2371 	struct sbridge_pvt *pvt = mci->pvt_info;
2372 	struct pci_dev *pdev;
2373 	u8 saw_chan_mask = 0;
2374 	int i;
2375 
2376 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2377 		pdev = sbridge_dev->pdev[i];
2378 		if (!pdev)
2379 			continue;
2380 
2381 		switch (pdev->device) {
2382 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2383 			pvt->pci_sad0 = pdev;
2384 			break;
2385 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2386 			pvt->pci_sad1 = pdev;
2387 			break;
2388 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2389 			pvt->pci_br0 = pdev;
2390 			break;
2391 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2392 			pvt->pci_ha = pdev;
2393 			break;
2394 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2395 			pvt->pci_ta = pdev;
2396 			break;
2397 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2398 			pvt->pci_ras = pdev;
2399 			break;
2400 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2401 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2402 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2403 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2404 		{
2405 			int id = TAD_DEV_TO_CHAN(pdev->device);
2406 			pvt->pci_tad[id] = pdev;
2407 			saw_chan_mask |= 1 << id;
2408 		}
2409 			break;
2410 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2411 			pvt->pci_ddrio = pdev;
2412 			break;
2413 		default:
2414 			goto error;
2415 		}
2416 
2417 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2418 			 pdev->vendor, pdev->device,
2419 			 sbridge_dev->bus,
2420 			 pdev);
2421 	}
2422 
2423 	/* Check if everything were registered */
2424 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2425 	    !pvt->pci_ras || !pvt->pci_ta)
2426 		goto enodev;
2427 
2428 	if (saw_chan_mask != 0x0f)
2429 		goto enodev;
2430 	return 0;
2431 
2432 enodev:
2433 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2434 	return -ENODEV;
2435 
2436 error:
2437 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2438 		       PCI_VENDOR_ID_INTEL, pdev->device);
2439 	return -EINVAL;
2440 }
2441 
2442 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2443 				 struct sbridge_dev *sbridge_dev)
2444 {
2445 	struct sbridge_pvt *pvt = mci->pvt_info;
2446 	struct pci_dev *pdev;
2447 	u8 saw_chan_mask = 0;
2448 	int i;
2449 
2450 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2451 		pdev = sbridge_dev->pdev[i];
2452 		if (!pdev)
2453 			continue;
2454 
2455 		switch (pdev->device) {
2456 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2457 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2458 			pvt->pci_ha = pdev;
2459 			break;
2460 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2461 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2462 			pvt->pci_ta = pdev;
2463 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2464 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2465 			pvt->pci_ras = pdev;
2466 			break;
2467 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2468 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2469 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2470 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2471 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2472 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2473 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2474 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2475 		{
2476 			int id = TAD_DEV_TO_CHAN(pdev->device);
2477 			pvt->pci_tad[id] = pdev;
2478 			saw_chan_mask |= 1 << id;
2479 		}
2480 			break;
2481 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2482 			pvt->pci_ddrio = pdev;
2483 			break;
2484 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2485 			pvt->pci_ddrio = pdev;
2486 			break;
2487 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2488 			pvt->pci_sad0 = pdev;
2489 			break;
2490 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2491 			pvt->pci_br0 = pdev;
2492 			break;
2493 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2494 			pvt->pci_br1 = pdev;
2495 			break;
2496 		default:
2497 			goto error;
2498 		}
2499 
2500 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2501 			 sbridge_dev->bus,
2502 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2503 			 pdev);
2504 	}
2505 
2506 	/* Check if everything were registered */
2507 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2508 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2509 		goto enodev;
2510 
2511 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2512 	    saw_chan_mask != 0x03)   /* -EP */
2513 		goto enodev;
2514 	return 0;
2515 
2516 enodev:
2517 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2518 	return -ENODEV;
2519 
2520 error:
2521 	sbridge_printk(KERN_ERR,
2522 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2523 			pdev->device);
2524 	return -EINVAL;
2525 }
2526 
2527 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2528 				 struct sbridge_dev *sbridge_dev)
2529 {
2530 	struct sbridge_pvt *pvt = mci->pvt_info;
2531 	struct pci_dev *pdev;
2532 	u8 saw_chan_mask = 0;
2533 	int i;
2534 
2535 	/* there's only one device per system; not tied to any bus */
2536 	if (pvt->info.pci_vtd == NULL)
2537 		/* result will be checked later */
2538 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2539 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2540 						   NULL);
2541 
2542 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2543 		pdev = sbridge_dev->pdev[i];
2544 		if (!pdev)
2545 			continue;
2546 
2547 		switch (pdev->device) {
2548 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2549 			pvt->pci_sad0 = pdev;
2550 			break;
2551 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2552 			pvt->pci_sad1 = pdev;
2553 			break;
2554 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2555 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2556 			pvt->pci_ha = pdev;
2557 			break;
2558 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2559 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2560 			pvt->pci_ta = pdev;
2561 			break;
2562 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2563 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2564 			pvt->pci_ras = pdev;
2565 			break;
2566 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2567 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2568 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2569 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2570 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2571 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2572 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2573 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2574 		{
2575 			int id = TAD_DEV_TO_CHAN(pdev->device);
2576 			pvt->pci_tad[id] = pdev;
2577 			saw_chan_mask |= 1 << id;
2578 		}
2579 			break;
2580 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2581 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2582 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2583 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2584 			if (!pvt->pci_ddrio)
2585 				pvt->pci_ddrio = pdev;
2586 			break;
2587 		default:
2588 			break;
2589 		}
2590 
2591 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2592 			 sbridge_dev->bus,
2593 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2594 			 pdev);
2595 	}
2596 
2597 	/* Check if everything were registered */
2598 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2599 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2600 		goto enodev;
2601 
2602 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2603 	    saw_chan_mask != 0x03)   /* -EP */
2604 		goto enodev;
2605 	return 0;
2606 
2607 enodev:
2608 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2609 	return -ENODEV;
2610 }
2611 
2612 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2613 				 struct sbridge_dev *sbridge_dev)
2614 {
2615 	struct sbridge_pvt *pvt = mci->pvt_info;
2616 	struct pci_dev *pdev;
2617 	u8 saw_chan_mask = 0;
2618 	int i;
2619 
2620 	/* there's only one device per system; not tied to any bus */
2621 	if (pvt->info.pci_vtd == NULL)
2622 		/* result will be checked later */
2623 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2624 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2625 						   NULL);
2626 
2627 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2628 		pdev = sbridge_dev->pdev[i];
2629 		if (!pdev)
2630 			continue;
2631 
2632 		switch (pdev->device) {
2633 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2634 			pvt->pci_sad0 = pdev;
2635 			break;
2636 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2637 			pvt->pci_sad1 = pdev;
2638 			break;
2639 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2640 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2641 			pvt->pci_ha = pdev;
2642 			break;
2643 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2644 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2645 			pvt->pci_ta = pdev;
2646 			break;
2647 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2648 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2649 			pvt->pci_ras = pdev;
2650 			break;
2651 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2652 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2653 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2654 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2655 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2656 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2657 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2658 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2659 		{
2660 			int id = TAD_DEV_TO_CHAN(pdev->device);
2661 			pvt->pci_tad[id] = pdev;
2662 			saw_chan_mask |= 1 << id;
2663 		}
2664 			break;
2665 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2666 			pvt->pci_ddrio = pdev;
2667 			break;
2668 		default:
2669 			break;
2670 		}
2671 
2672 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2673 			 sbridge_dev->bus,
2674 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2675 			 pdev);
2676 	}
2677 
2678 	/* Check if everything were registered */
2679 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2680 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2681 		goto enodev;
2682 
2683 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2684 	    saw_chan_mask != 0x03)   /* -EP */
2685 		goto enodev;
2686 	return 0;
2687 
2688 enodev:
2689 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2690 	return -ENODEV;
2691 }
2692 
2693 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2694 			struct sbridge_dev *sbridge_dev)
2695 {
2696 	struct sbridge_pvt *pvt = mci->pvt_info;
2697 	struct pci_dev *pdev;
2698 	int dev, func;
2699 
2700 	int i;
2701 	int devidx;
2702 
2703 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2704 		pdev = sbridge_dev->pdev[i];
2705 		if (!pdev)
2706 			continue;
2707 
2708 		/* Extract PCI device and function. */
2709 		dev = (pdev->devfn >> 3) & 0x1f;
2710 		func = pdev->devfn & 0x7;
2711 
2712 		switch (pdev->device) {
2713 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2714 			if (dev == 8)
2715 				pvt->knl.pci_mc0 = pdev;
2716 			else if (dev == 9)
2717 				pvt->knl.pci_mc1 = pdev;
2718 			else {
2719 				sbridge_printk(KERN_ERR,
2720 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2721 					dev, func);
2722 				continue;
2723 			}
2724 			break;
2725 
2726 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2727 			pvt->pci_sad0 = pdev;
2728 			break;
2729 
2730 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2731 			pvt->pci_sad1 = pdev;
2732 			break;
2733 
2734 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2735 			/* There are one of these per tile, and range from
2736 			 * 1.14.0 to 1.18.5.
2737 			 */
2738 			devidx = ((dev-14)*8)+func;
2739 
2740 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2741 				sbridge_printk(KERN_ERR,
2742 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2743 					dev, func);
2744 				continue;
2745 			}
2746 
2747 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2748 
2749 			pvt->knl.pci_cha[devidx] = pdev;
2750 			break;
2751 
2752 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2753 			devidx = -1;
2754 
2755 			/*
2756 			 *  MC0 channels 0-2 are device 9 function 2-4,
2757 			 *  MC1 channels 3-5 are device 8 function 2-4.
2758 			 */
2759 
2760 			if (dev == 9)
2761 				devidx = func-2;
2762 			else if (dev == 8)
2763 				devidx = 3 + (func-2);
2764 
2765 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2766 				sbridge_printk(KERN_ERR,
2767 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2768 					dev, func);
2769 				continue;
2770 			}
2771 
2772 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2773 			pvt->knl.pci_channel[devidx] = pdev;
2774 			break;
2775 
2776 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2777 			pvt->knl.pci_mc_info = pdev;
2778 			break;
2779 
2780 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2781 			pvt->pci_ta = pdev;
2782 			break;
2783 
2784 		default:
2785 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2786 				pdev->device);
2787 			break;
2788 		}
2789 	}
2790 
2791 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2792 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2793 	    !pvt->pci_ta) {
2794 		goto enodev;
2795 	}
2796 
2797 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2798 		if (!pvt->knl.pci_channel[i]) {
2799 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2800 			goto enodev;
2801 		}
2802 	}
2803 
2804 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2805 		if (!pvt->knl.pci_cha[i]) {
2806 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2807 			goto enodev;
2808 		}
2809 	}
2810 
2811 	return 0;
2812 
2813 enodev:
2814 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2815 	return -ENODEV;
2816 }
2817 
2818 /****************************************************************************
2819 			Error check routines
2820  ****************************************************************************/
2821 
2822 /*
2823  * While Sandy Bridge has error count registers, SMI BIOS read values from
2824  * and resets the counters. So, they are not reliable for the OS to read
2825  * from them. So, we have no option but to just trust on whatever MCE is
2826  * telling us about the errors.
2827  */
2828 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2829 				    const struct mce *m)
2830 {
2831 	struct mem_ctl_info *new_mci;
2832 	struct sbridge_pvt *pvt = mci->pvt_info;
2833 	enum hw_event_mc_err_type tp_event;
2834 	char *type, *optype, msg[256];
2835 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2836 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2837 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2838 	bool recoverable;
2839 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2840 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2841 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2842 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2843 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2844 	long channel_mask, first_channel;
2845 	u8  rank, socket, ha;
2846 	int rc, dimm;
2847 	char *area_type = NULL;
2848 
2849 	if (pvt->info.type != SANDY_BRIDGE)
2850 		recoverable = true;
2851 	else
2852 		recoverable = GET_BITFIELD(m->status, 56, 56);
2853 
2854 	if (uncorrected_error) {
2855 		if (ripv) {
2856 			type = "FATAL";
2857 			tp_event = HW_EVENT_ERR_FATAL;
2858 		} else {
2859 			type = "NON_FATAL";
2860 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2861 		}
2862 	} else {
2863 		type = "CORRECTED";
2864 		tp_event = HW_EVENT_ERR_CORRECTED;
2865 	}
2866 
2867 	/*
2868 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2869 	 * memory errors should fit in this mask:
2870 	 *	000f 0000 1mmm cccc (binary)
2871 	 * where:
2872 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2873 	 *	    won't be shown
2874 	 *	mmm = error type
2875 	 *	cccc = channel
2876 	 * If the mask doesn't match, report an error to the parsing logic
2877 	 */
2878 	if (! ((errcode & 0xef80) == 0x80)) {
2879 		optype = "Can't parse: it is not a mem";
2880 	} else {
2881 		switch (optypenum) {
2882 		case 0:
2883 			optype = "generic undef request error";
2884 			break;
2885 		case 1:
2886 			optype = "memory read error";
2887 			break;
2888 		case 2:
2889 			optype = "memory write error";
2890 			break;
2891 		case 3:
2892 			optype = "addr/cmd error";
2893 			break;
2894 		case 4:
2895 			optype = "memory scrubbing error";
2896 			break;
2897 		default:
2898 			optype = "reserved";
2899 			break;
2900 		}
2901 	}
2902 
2903 	/* Only decode errors with an valid address (ADDRV) */
2904 	if (!GET_BITFIELD(m->status, 58, 58))
2905 		return;
2906 
2907 	if (pvt->info.type == KNIGHTS_LANDING) {
2908 		if (channel == 14) {
2909 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2910 				overflow ? " OVERFLOW" : "",
2911 				(uncorrected_error && recoverable)
2912 				? " recoverable" : "",
2913 				mscod, errcode,
2914 				m->bank);
2915 		} else {
2916 			char A = *("A");
2917 
2918 			/*
2919 			 * Reported channel is in range 0-2, so we can't map it
2920 			 * back to mc. To figure out mc we check machine check
2921 			 * bank register that reported this error.
2922 			 * bank15 means mc0 and bank16 means mc1.
2923 			 */
2924 			channel = knl_channel_remap(m->bank == 16, channel);
2925 			channel_mask = 1 << channel;
2926 
2927 			snprintf(msg, sizeof(msg),
2928 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2929 				overflow ? " OVERFLOW" : "",
2930 				(uncorrected_error && recoverable)
2931 				? " recoverable" : " ",
2932 				mscod, errcode, channel, A + channel);
2933 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
2934 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2935 				channel, 0, -1,
2936 				optype, msg);
2937 		}
2938 		return;
2939 	} else {
2940 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2941 				&channel_mask, &rank, &area_type, msg);
2942 	}
2943 
2944 	if (rc < 0)
2945 		goto err_parsing;
2946 	new_mci = get_mci_for_node_id(socket, ha);
2947 	if (!new_mci) {
2948 		strcpy(msg, "Error: socket got corrupted!");
2949 		goto err_parsing;
2950 	}
2951 	mci = new_mci;
2952 	pvt = mci->pvt_info;
2953 
2954 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2955 
2956 	if (rank < 4)
2957 		dimm = 0;
2958 	else if (rank < 8)
2959 		dimm = 1;
2960 	else
2961 		dimm = 2;
2962 
2963 
2964 	/*
2965 	 * FIXME: On some memory configurations (mirror, lockstep), the
2966 	 * Memory Controller can't point the error to a single DIMM. The
2967 	 * EDAC core should be handling the channel mask, in order to point
2968 	 * to the group of dimm's where the error may be happening.
2969 	 */
2970 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2971 		channel = first_channel;
2972 
2973 	snprintf(msg, sizeof(msg),
2974 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
2975 		 overflow ? " OVERFLOW" : "",
2976 		 (uncorrected_error && recoverable) ? " recoverable" : "",
2977 		 area_type,
2978 		 mscod, errcode,
2979 		 socket, ha,
2980 		 channel_mask,
2981 		 rank);
2982 
2983 	edac_dbg(0, "%s\n", msg);
2984 
2985 	/* FIXME: need support for channel mask */
2986 
2987 	if (channel == CHANNEL_UNSPECIFIED)
2988 		channel = -1;
2989 
2990 	/* Call the helper to output message */
2991 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
2992 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2993 			     channel, dimm, -1,
2994 			     optype, msg);
2995 	return;
2996 err_parsing:
2997 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2998 			     -1, -1, -1,
2999 			     msg, "");
3000 
3001 }
3002 
3003 /*
3004  * Check that logging is enabled and that this is the right type
3005  * of error for us to handle.
3006  */
3007 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3008 				   void *data)
3009 {
3010 	struct mce *mce = (struct mce *)data;
3011 	struct mem_ctl_info *mci;
3012 	struct sbridge_pvt *pvt;
3013 	char *type;
3014 
3015 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3016 		return NOTIFY_DONE;
3017 
3018 	mci = get_mci_for_node_id(mce->socketid, IMC0);
3019 	if (!mci)
3020 		return NOTIFY_DONE;
3021 	pvt = mci->pvt_info;
3022 
3023 	/*
3024 	 * Just let mcelog handle it if the error is
3025 	 * outside the memory controller. A memory error
3026 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3027 	 * bit 12 has an special meaning.
3028 	 */
3029 	if ((mce->status & 0xefff) >> 7 != 1)
3030 		return NOTIFY_DONE;
3031 
3032 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3033 		type = "Exception";
3034 	else
3035 		type = "Event";
3036 
3037 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3038 
3039 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3040 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3041 			  mce->mcgstatus, mce->bank, mce->status);
3042 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3043 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3044 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3045 
3046 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3047 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3048 			  mce->time, mce->socketid, mce->apicid);
3049 
3050 	sbridge_mce_output_error(mci, mce);
3051 
3052 	/* Advice mcelog that the error were handled */
3053 	return NOTIFY_STOP;
3054 }
3055 
3056 static struct notifier_block sbridge_mce_dec = {
3057 	.notifier_call	= sbridge_mce_check_error,
3058 	.priority	= MCE_PRIO_EDAC,
3059 };
3060 
3061 /****************************************************************************
3062 			EDAC register/unregister logic
3063  ****************************************************************************/
3064 
3065 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3066 {
3067 	struct mem_ctl_info *mci = sbridge_dev->mci;
3068 	struct sbridge_pvt *pvt;
3069 
3070 	if (unlikely(!mci || !mci->pvt_info)) {
3071 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3072 
3073 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3074 		return;
3075 	}
3076 
3077 	pvt = mci->pvt_info;
3078 
3079 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3080 		 mci, &sbridge_dev->pdev[0]->dev);
3081 
3082 	/* Remove MC sysfs nodes */
3083 	edac_mc_del_mc(mci->pdev);
3084 
3085 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3086 	kfree(mci->ctl_name);
3087 	edac_mc_free(mci);
3088 	sbridge_dev->mci = NULL;
3089 }
3090 
3091 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3092 {
3093 	struct mem_ctl_info *mci;
3094 	struct edac_mc_layer layers[2];
3095 	struct sbridge_pvt *pvt;
3096 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3097 	int rc;
3098 
3099 	/* allocate a new MC control structure */
3100 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3101 	layers[0].size = type == KNIGHTS_LANDING ?
3102 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3103 	layers[0].is_virt_csrow = false;
3104 	layers[1].type = EDAC_MC_LAYER_SLOT;
3105 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3106 	layers[1].is_virt_csrow = true;
3107 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3108 			    sizeof(*pvt));
3109 
3110 	if (unlikely(!mci))
3111 		return -ENOMEM;
3112 
3113 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3114 		 mci, &pdev->dev);
3115 
3116 	pvt = mci->pvt_info;
3117 	memset(pvt, 0, sizeof(*pvt));
3118 
3119 	/* Associate sbridge_dev and mci for future usage */
3120 	pvt->sbridge_dev = sbridge_dev;
3121 	sbridge_dev->mci = mci;
3122 
3123 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3124 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3125 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3126 	mci->edac_cap = EDAC_FLAG_NONE;
3127 	mci->mod_name = "sb_edac.c";
3128 	mci->mod_ver = SBRIDGE_REVISION;
3129 	mci->dev_name = pci_name(pdev);
3130 	mci->ctl_page_to_phys = NULL;
3131 
3132 	pvt->info.type = type;
3133 	switch (type) {
3134 	case IVY_BRIDGE:
3135 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3136 		pvt->info.get_tolm = ibridge_get_tolm;
3137 		pvt->info.get_tohm = ibridge_get_tohm;
3138 		pvt->info.dram_rule = ibridge_dram_rule;
3139 		pvt->info.get_memory_type = get_memory_type;
3140 		pvt->info.get_node_id = get_node_id;
3141 		pvt->info.rir_limit = rir_limit;
3142 		pvt->info.sad_limit = sad_limit;
3143 		pvt->info.interleave_mode = interleave_mode;
3144 		pvt->info.dram_attr = dram_attr;
3145 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3146 		pvt->info.interleave_list = ibridge_interleave_list;
3147 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3148 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3149 		pvt->info.get_width = ibridge_get_width;
3150 
3151 		/* Store pci devices at mci for faster access */
3152 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3153 		if (unlikely(rc < 0))
3154 			goto fail0;
3155 		get_source_id(mci);
3156 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3157 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3158 		break;
3159 	case SANDY_BRIDGE:
3160 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3161 		pvt->info.get_tolm = sbridge_get_tolm;
3162 		pvt->info.get_tohm = sbridge_get_tohm;
3163 		pvt->info.dram_rule = sbridge_dram_rule;
3164 		pvt->info.get_memory_type = get_memory_type;
3165 		pvt->info.get_node_id = get_node_id;
3166 		pvt->info.rir_limit = rir_limit;
3167 		pvt->info.sad_limit = sad_limit;
3168 		pvt->info.interleave_mode = interleave_mode;
3169 		pvt->info.dram_attr = dram_attr;
3170 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3171 		pvt->info.interleave_list = sbridge_interleave_list;
3172 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3173 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3174 		pvt->info.get_width = sbridge_get_width;
3175 
3176 		/* Store pci devices at mci for faster access */
3177 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3178 		if (unlikely(rc < 0))
3179 			goto fail0;
3180 		get_source_id(mci);
3181 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3182 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3183 		break;
3184 	case HASWELL:
3185 		/* rankcfgr isn't used */
3186 		pvt->info.get_tolm = haswell_get_tolm;
3187 		pvt->info.get_tohm = haswell_get_tohm;
3188 		pvt->info.dram_rule = ibridge_dram_rule;
3189 		pvt->info.get_memory_type = haswell_get_memory_type;
3190 		pvt->info.get_node_id = haswell_get_node_id;
3191 		pvt->info.rir_limit = haswell_rir_limit;
3192 		pvt->info.sad_limit = sad_limit;
3193 		pvt->info.interleave_mode = interleave_mode;
3194 		pvt->info.dram_attr = dram_attr;
3195 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3196 		pvt->info.interleave_list = ibridge_interleave_list;
3197 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3198 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3199 		pvt->info.get_width = ibridge_get_width;
3200 
3201 		/* Store pci devices at mci for faster access */
3202 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3203 		if (unlikely(rc < 0))
3204 			goto fail0;
3205 		get_source_id(mci);
3206 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3207 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3208 		break;
3209 	case BROADWELL:
3210 		/* rankcfgr isn't used */
3211 		pvt->info.get_tolm = haswell_get_tolm;
3212 		pvt->info.get_tohm = haswell_get_tohm;
3213 		pvt->info.dram_rule = ibridge_dram_rule;
3214 		pvt->info.get_memory_type = haswell_get_memory_type;
3215 		pvt->info.get_node_id = haswell_get_node_id;
3216 		pvt->info.rir_limit = haswell_rir_limit;
3217 		pvt->info.sad_limit = sad_limit;
3218 		pvt->info.interleave_mode = interleave_mode;
3219 		pvt->info.dram_attr = dram_attr;
3220 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3221 		pvt->info.interleave_list = ibridge_interleave_list;
3222 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3223 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3224 		pvt->info.get_width = broadwell_get_width;
3225 
3226 		/* Store pci devices at mci for faster access */
3227 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3228 		if (unlikely(rc < 0))
3229 			goto fail0;
3230 		get_source_id(mci);
3231 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3232 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3233 		break;
3234 	case KNIGHTS_LANDING:
3235 		/* pvt->info.rankcfgr == ??? */
3236 		pvt->info.get_tolm = knl_get_tolm;
3237 		pvt->info.get_tohm = knl_get_tohm;
3238 		pvt->info.dram_rule = knl_dram_rule;
3239 		pvt->info.get_memory_type = knl_get_memory_type;
3240 		pvt->info.get_node_id = knl_get_node_id;
3241 		pvt->info.rir_limit = NULL;
3242 		pvt->info.sad_limit = knl_sad_limit;
3243 		pvt->info.interleave_mode = knl_interleave_mode;
3244 		pvt->info.dram_attr = dram_attr_knl;
3245 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3246 		pvt->info.interleave_list = knl_interleave_list;
3247 		pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3248 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3249 		pvt->info.get_width = knl_get_width;
3250 
3251 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3252 		if (unlikely(rc < 0))
3253 			goto fail0;
3254 		get_source_id(mci);
3255 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3256 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3257 		break;
3258 	}
3259 
3260 	/* Get dimm basic config and the memory layout */
3261 	rc = get_dimm_config(mci);
3262 	if (rc < 0) {
3263 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3264 		goto fail;
3265 	}
3266 	get_memory_layout(mci);
3267 
3268 	/* record ptr to the generic device */
3269 	mci->pdev = &pdev->dev;
3270 
3271 	/* add this new MC control structure to EDAC's list of MCs */
3272 	if (unlikely(edac_mc_add_mc(mci))) {
3273 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3274 		rc = -EINVAL;
3275 		goto fail;
3276 	}
3277 
3278 	return 0;
3279 
3280 fail:
3281 	kfree(mci->ctl_name);
3282 fail0:
3283 	edac_mc_free(mci);
3284 	sbridge_dev->mci = NULL;
3285 	return rc;
3286 }
3287 
3288 #define ICPU(model, table) \
3289 	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3290 
3291 static const struct x86_cpu_id sbridge_cpuids[] = {
3292 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
3293 	ICPU(INTEL_FAM6_IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
3294 	ICPU(INTEL_FAM6_HASWELL_X,	  pci_dev_descr_haswell_table),
3295 	ICPU(INTEL_FAM6_BROADWELL_X,	  pci_dev_descr_broadwell_table),
3296 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3297 	ICPU(INTEL_FAM6_XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3298 	ICPU(INTEL_FAM6_XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3299 	{ }
3300 };
3301 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3302 
3303 /*
3304  *	sbridge_probe	Get all devices and register memory controllers
3305  *			present.
3306  *	return:
3307  *		0 for FOUND a device
3308  *		< 0 for error code
3309  */
3310 
3311 static int sbridge_probe(const struct x86_cpu_id *id)
3312 {
3313 	int rc = -ENODEV;
3314 	u8 mc, num_mc = 0;
3315 	struct sbridge_dev *sbridge_dev;
3316 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3317 
3318 	/* get the pci devices we want to reserve for our use */
3319 	rc = sbridge_get_all_devices(&num_mc, ptable);
3320 
3321 	if (unlikely(rc < 0)) {
3322 		edac_dbg(0, "couldn't get all devices\n");
3323 		goto fail0;
3324 	}
3325 
3326 	mc = 0;
3327 
3328 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3329 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3330 			 mc, mc + 1, num_mc);
3331 
3332 		sbridge_dev->mc = mc++;
3333 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3334 		if (unlikely(rc < 0))
3335 			goto fail1;
3336 	}
3337 
3338 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3339 
3340 	return 0;
3341 
3342 fail1:
3343 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3344 		sbridge_unregister_mci(sbridge_dev);
3345 
3346 	sbridge_put_all_devices();
3347 fail0:
3348 	return rc;
3349 }
3350 
3351 /*
3352  *	sbridge_remove	cleanup
3353  *
3354  */
3355 static void sbridge_remove(void)
3356 {
3357 	struct sbridge_dev *sbridge_dev;
3358 
3359 	edac_dbg(0, "\n");
3360 
3361 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3362 		sbridge_unregister_mci(sbridge_dev);
3363 
3364 	/* Release PCI resources */
3365 	sbridge_put_all_devices();
3366 }
3367 
3368 /*
3369  *	sbridge_init		Module entry function
3370  *			Try to initialize this module for its devices
3371  */
3372 static int __init sbridge_init(void)
3373 {
3374 	const struct x86_cpu_id *id;
3375 	int rc;
3376 
3377 	edac_dbg(2, "\n");
3378 
3379 	id = x86_match_cpu(sbridge_cpuids);
3380 	if (!id)
3381 		return -ENODEV;
3382 
3383 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3384 	opstate_init();
3385 
3386 	rc = sbridge_probe(id);
3387 
3388 	if (rc >= 0) {
3389 		mce_register_decode_chain(&sbridge_mce_dec);
3390 		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3391 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3392 		return 0;
3393 	}
3394 
3395 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3396 		      rc);
3397 
3398 	return rc;
3399 }
3400 
3401 /*
3402  *	sbridge_exit()	Module exit function
3403  *			Unregister the driver
3404  */
3405 static void __exit sbridge_exit(void)
3406 {
3407 	edac_dbg(2, "\n");
3408 	sbridge_remove();
3409 	mce_unregister_decode_chain(&sbridge_mce_dec);
3410 }
3411 
3412 module_init(sbridge_init);
3413 module_exit(sbridge_exit);
3414 
3415 module_param(edac_op_state, int, 0444);
3416 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3417 
3418 MODULE_LICENSE("GPL");
3419 MODULE_AUTHOR("Mauro Carvalho Chehab");
3420 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3421 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3422 		   SBRIDGE_REVISION);
3423