xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 6774def6)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57 	0x80, 0x88, 0x90, 0x98, 0xa0,
58 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60 
61 static const u32 ibridge_dram_rule[] = {
62 	0x60, 0x68, 0x70, 0x78, 0x80,
63 	0x88, 0x90, 0x98, 0xa0,	0xa8,
64 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67 
68 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
70 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
71 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
72 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
73 
74 static char *get_dram_attr(u32 reg)
75 {
76 	switch(DRAM_ATTR(reg)) {
77 		case 0:
78 			return "DRAM";
79 		case 1:
80 			return "MMCFG";
81 		case 2:
82 			return "NXM";
83 		default:
84 			return "unknown";
85 	}
86 }
87 
88 static const u32 sbridge_interleave_list[] = {
89 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
90 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91 };
92 
93 static const u32 ibridge_interleave_list[] = {
94 	0x64, 0x6c, 0x74, 0x7c, 0x84,
95 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
96 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98 };
99 
100 struct interleave_pkg {
101 	unsigned char start;
102 	unsigned char end;
103 };
104 
105 static const struct interleave_pkg sbridge_interleave_pkg[] = {
106 	{ 0, 2 },
107 	{ 3, 5 },
108 	{ 8, 10 },
109 	{ 11, 13 },
110 	{ 16, 18 },
111 	{ 19, 21 },
112 	{ 24, 26 },
113 	{ 27, 29 },
114 };
115 
116 static const struct interleave_pkg ibridge_interleave_pkg[] = {
117 	{ 0, 3 },
118 	{ 4, 7 },
119 	{ 8, 11 },
120 	{ 12, 15 },
121 	{ 16, 19 },
122 	{ 20, 23 },
123 	{ 24, 27 },
124 	{ 28, 31 },
125 };
126 
127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128 			  int interleave)
129 {
130 	return GET_BITFIELD(reg, table[interleave].start,
131 			    table[interleave].end);
132 }
133 
134 /* Devices 12 Function 7 */
135 
136 #define TOLM		0x80
137 #define	TOHM		0x84
138 #define HASWELL_TOHM_0	0xd4
139 #define HASWELL_TOHM_1	0xd8
140 
141 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
142 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
143 
144 /* Device 13 Function 6 */
145 
146 #define SAD_TARGET	0xf0
147 
148 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
149 
150 #define SAD_CONTROL	0xf4
151 
152 /* Device 14 function 0 */
153 
154 static const u32 tad_dram_rule[] = {
155 	0x40, 0x44, 0x48, 0x4c,
156 	0x50, 0x54, 0x58, 0x5c,
157 	0x60, 0x64, 0x68, 0x6c,
158 };
159 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
160 
161 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
162 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
163 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
164 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
165 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
166 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
167 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
168 
169 /* Device 15, function 0 */
170 
171 #define MCMTR			0x7c
172 
173 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
174 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
175 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
176 
177 /* Device 15, function 1 */
178 
179 #define RASENABLES		0xac
180 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
181 
182 /* Device 15, functions 2-5 */
183 
184 static const int mtr_regs[] = {
185 	0x80, 0x84, 0x88,
186 };
187 
188 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
189 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
190 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
191 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
192 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
193 
194 static const u32 tad_ch_nilv_offset[] = {
195 	0x90, 0x94, 0x98, 0x9c,
196 	0xa0, 0xa4, 0xa8, 0xac,
197 	0xb0, 0xb4, 0xb8, 0xbc,
198 };
199 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
200 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
201 
202 static const u32 rir_way_limit[] = {
203 	0x108, 0x10c, 0x110, 0x114, 0x118,
204 };
205 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
206 
207 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
208 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
209 
210 #define MAX_RIR_WAY	8
211 
212 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
213 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
214 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
215 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
216 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
217 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
218 };
219 
220 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
221 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
222 
223 /* Device 16, functions 2-7 */
224 
225 /*
226  * FIXME: Implement the error count reads directly
227  */
228 
229 static const u32 correrrcnt[] = {
230 	0x104, 0x108, 0x10c, 0x110,
231 };
232 
233 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
234 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
235 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
236 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
237 
238 static const u32 correrrthrsld[] = {
239 	0x11c, 0x120, 0x124, 0x128,
240 };
241 
242 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
243 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
244 
245 
246 /* Device 17, function 0 */
247 
248 #define SB_RANK_CFG_A		0x0328
249 
250 #define IB_RANK_CFG_A		0x0320
251 
252 /*
253  * sbridge structs
254  */
255 
256 #define NUM_CHANNELS		4
257 #define MAX_DIMMS		3	/* Max DIMMS per channel */
258 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
259 
260 enum type {
261 	SANDY_BRIDGE,
262 	IVY_BRIDGE,
263 	HASWELL,
264 };
265 
266 struct sbridge_pvt;
267 struct sbridge_info {
268 	enum type	type;
269 	u32		mcmtr;
270 	u32		rankcfgr;
271 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
272 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
273 	u64		(*rir_limit)(u32 reg);
274 	const u32	*dram_rule;
275 	const u32	*interleave_list;
276 	const struct interleave_pkg *interleave_pkg;
277 	u8		max_sad;
278 	u8		max_interleave;
279 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
280 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
281 	struct pci_dev	*pci_vtd;
282 };
283 
284 struct sbridge_channel {
285 	u32		ranks;
286 	u32		dimms;
287 };
288 
289 struct pci_id_descr {
290 	int			dev_id;
291 	int			optional;
292 };
293 
294 struct pci_id_table {
295 	const struct pci_id_descr	*descr;
296 	int				n_devs;
297 };
298 
299 struct sbridge_dev {
300 	struct list_head	list;
301 	u8			bus, mc;
302 	u8			node_id, source_id;
303 	struct pci_dev		**pdev;
304 	int			n_devs;
305 	struct mem_ctl_info	*mci;
306 };
307 
308 struct sbridge_pvt {
309 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
310 	struct pci_dev		*pci_sad0, *pci_sad1;
311 	struct pci_dev		*pci_ha0, *pci_ha1;
312 	struct pci_dev		*pci_br0, *pci_br1;
313 	struct pci_dev		*pci_ha1_ta;
314 	struct pci_dev		*pci_tad[NUM_CHANNELS];
315 
316 	struct sbridge_dev	*sbridge_dev;
317 
318 	struct sbridge_info	info;
319 	struct sbridge_channel	channel[NUM_CHANNELS];
320 
321 	/* Memory type detection */
322 	bool			is_mirrored, is_lockstep, is_close_pg;
323 
324 	/* Fifo double buffers */
325 	struct mce		mce_entry[MCE_LOG_LEN];
326 	struct mce		mce_outentry[MCE_LOG_LEN];
327 
328 	/* Fifo in/out counters */
329 	unsigned		mce_in, mce_out;
330 
331 	/* Count indicator to show errors not got */
332 	unsigned		mce_overrun;
333 
334 	/* Memory description */
335 	u64			tolm, tohm;
336 };
337 
338 #define PCI_DESCR(device_id, opt)	\
339 	.dev_id = (device_id),		\
340 	.optional = opt
341 
342 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
343 		/* Processor Home Agent */
344 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
345 
346 		/* Memory controller */
347 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
348 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
349 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
350 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
351 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
352 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
353 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
354 
355 		/* System Address Decoder */
356 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
357 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
358 
359 		/* Broadcast Registers */
360 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
361 };
362 
363 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
364 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
365 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
366 	{0,}			/* 0 terminated list. */
367 };
368 
369 /* This changes depending if 1HA or 2HA:
370  * 1HA:
371  *	0x0eb8 (17.0) is DDRIO0
372  * 2HA:
373  *	0x0ebc (17.4) is DDRIO0
374  */
375 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
376 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
377 
378 /* pci ids */
379 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
380 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
381 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
394 
395 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
396 		/* Processor Home Agent */
397 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
398 
399 		/* Memory controller */
400 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
401 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
402 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
403 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
404 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
405 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
406 
407 		/* System Address Decoder */
408 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
409 
410 		/* Broadcast Registers */
411 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
412 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
413 
414 		/* Optional, mode 2HA */
415 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
416 #if 0
417 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
418 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
419 #endif
420 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
421 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
422 
423 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
424 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
425 };
426 
427 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
428 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
429 	{0,}			/* 0 terminated list. */
430 };
431 
432 /* Haswell support */
433 /* EN processor:
434  *	- 1 IMC
435  *	- 3 DDR3 channels, 2 DPC per channel
436  * EP processor:
437  *	- 1 or 2 IMC
438  *	- 4 DDR4 channels, 3 DPC per channel
439  * EP 4S processor:
440  *	- 2 IMC
441  *	- 4 DDR4 channels, 3 DPC per channel
442  * EX processor:
443  *	- 2 IMC
444  *	- each IMC interfaces with a SMI 2 channel
445  *	- each SMI channel interfaces with a scalable memory buffer
446  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
447  */
448 #define HASWELL_DDRCRCLKCONTROLS 0xa10
449 #define HASWELL_HASYSDEFEATURE2 0x84
450 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
451 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
452 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
453 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
454 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
455 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
456 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
468 static const struct pci_id_descr pci_dev_descr_haswell[] = {
469 	/* first item must be the HA */
470 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
471 
472 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
473 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
474 
475 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
476 
477 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
478 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
479 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
480 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
483 
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
485 
486 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
487 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
488 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
489 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
490 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
491 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
492 };
493 
494 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
495 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
496 	{0,}			/* 0 terminated list. */
497 };
498 
499 /*
500  *	pci_device_id	table for which devices we are looking for
501  */
502 static const struct pci_device_id sbridge_pci_tbl[] = {
503 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
504 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
505 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
506 	{0,}			/* 0 terminated list. */
507 };
508 
509 
510 /****************************************************************************
511 			Ancillary status routines
512  ****************************************************************************/
513 
514 static inline int numrank(enum type type, u32 mtr)
515 {
516 	int ranks = (1 << RANK_CNT_BITS(mtr));
517 	int max = 4;
518 
519 	if (type == HASWELL)
520 		max = 8;
521 
522 	if (ranks > max) {
523 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
524 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
525 		return -EINVAL;
526 	}
527 
528 	return ranks;
529 }
530 
531 static inline int numrow(u32 mtr)
532 {
533 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
534 
535 	if (rows < 13 || rows > 18) {
536 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
537 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
538 		return -EINVAL;
539 	}
540 
541 	return 1 << rows;
542 }
543 
544 static inline int numcol(u32 mtr)
545 {
546 	int cols = (COL_WIDTH_BITS(mtr) + 10);
547 
548 	if (cols > 12) {
549 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
550 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
551 		return -EINVAL;
552 	}
553 
554 	return 1 << cols;
555 }
556 
557 static struct sbridge_dev *get_sbridge_dev(u8 bus)
558 {
559 	struct sbridge_dev *sbridge_dev;
560 
561 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
562 		if (sbridge_dev->bus == bus)
563 			return sbridge_dev;
564 	}
565 
566 	return NULL;
567 }
568 
569 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
570 					   const struct pci_id_table *table)
571 {
572 	struct sbridge_dev *sbridge_dev;
573 
574 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
575 	if (!sbridge_dev)
576 		return NULL;
577 
578 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
579 				   GFP_KERNEL);
580 	if (!sbridge_dev->pdev) {
581 		kfree(sbridge_dev);
582 		return NULL;
583 	}
584 
585 	sbridge_dev->bus = bus;
586 	sbridge_dev->n_devs = table->n_devs;
587 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
588 
589 	return sbridge_dev;
590 }
591 
592 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
593 {
594 	list_del(&sbridge_dev->list);
595 	kfree(sbridge_dev->pdev);
596 	kfree(sbridge_dev);
597 }
598 
599 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
600 {
601 	u32 reg;
602 
603 	/* Address range is 32:28 */
604 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
605 	return GET_TOLM(reg);
606 }
607 
608 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
609 {
610 	u32 reg;
611 
612 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
613 	return GET_TOHM(reg);
614 }
615 
616 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
617 {
618 	u32 reg;
619 
620 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
621 
622 	return GET_TOLM(reg);
623 }
624 
625 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
626 {
627 	u32 reg;
628 
629 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
630 
631 	return GET_TOHM(reg);
632 }
633 
634 static u64 rir_limit(u32 reg)
635 {
636 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
637 }
638 
639 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
640 {
641 	u32 reg;
642 	enum mem_type mtype;
643 
644 	if (pvt->pci_ddrio) {
645 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
646 				      &reg);
647 		if (GET_BITFIELD(reg, 11, 11))
648 			/* FIXME: Can also be LRDIMM */
649 			mtype = MEM_RDDR3;
650 		else
651 			mtype = MEM_DDR3;
652 	} else
653 		mtype = MEM_UNKNOWN;
654 
655 	return mtype;
656 }
657 
658 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
659 {
660 	u32 reg;
661 	bool registered = false;
662 	enum mem_type mtype = MEM_UNKNOWN;
663 
664 	if (!pvt->pci_ddrio)
665 		goto out;
666 
667 	pci_read_config_dword(pvt->pci_ddrio,
668 			      HASWELL_DDRCRCLKCONTROLS, &reg);
669 	/* Is_Rdimm */
670 	if (GET_BITFIELD(reg, 16, 16))
671 		registered = true;
672 
673 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
674 	if (GET_BITFIELD(reg, 14, 14)) {
675 		if (registered)
676 			mtype = MEM_RDDR4;
677 		else
678 			mtype = MEM_DDR4;
679 	} else {
680 		if (registered)
681 			mtype = MEM_RDDR3;
682 		else
683 			mtype = MEM_DDR3;
684 	}
685 
686 out:
687 	return mtype;
688 }
689 
690 static u8 get_node_id(struct sbridge_pvt *pvt)
691 {
692 	u32 reg;
693 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
694 	return GET_BITFIELD(reg, 0, 2);
695 }
696 
697 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
698 {
699 	u32 reg;
700 
701 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
702 	return GET_BITFIELD(reg, 0, 3);
703 }
704 
705 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
706 {
707 	u32 reg;
708 
709 	pci_read_config_dword(pvt->info.pci_vtd, TOLM, &reg);
710 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x1ffffff;
711 }
712 
713 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
714 {
715 	u64 rc;
716 	u32 reg;
717 
718 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
719 	rc = GET_BITFIELD(reg, 26, 31);
720 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
721 	rc = ((reg << 6) | rc) << 26;
722 
723 	return rc | 0x1ffffff;
724 }
725 
726 static u64 haswell_rir_limit(u32 reg)
727 {
728 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
729 }
730 
731 static inline u8 sad_pkg_socket(u8 pkg)
732 {
733 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
734 	return ((pkg >> 3) << 2) | (pkg & 0x3);
735 }
736 
737 static inline u8 sad_pkg_ha(u8 pkg)
738 {
739 	return (pkg >> 2) & 0x1;
740 }
741 
742 /****************************************************************************
743 			Memory check routines
744  ****************************************************************************/
745 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
746 {
747 	struct pci_dev *pdev = NULL;
748 
749 	do {
750 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
751 		if (pdev && pdev->bus->number == bus)
752 			break;
753 	} while (pdev);
754 
755 	return pdev;
756 }
757 
758 /**
759  * check_if_ecc_is_active() - Checks if ECC is active
760  * @bus:	Device bus
761  * @type:	Memory controller type
762  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
763  *	    disabled
764  */
765 static int check_if_ecc_is_active(const u8 bus, enum type type)
766 {
767 	struct pci_dev *pdev = NULL;
768 	u32 mcmtr, id;
769 
770 	if (type == IVY_BRIDGE)
771 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
772 	else if (type == HASWELL)
773 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
774 	else
775 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
776 
777 	pdev = get_pdev_same_bus(bus, id);
778 	if (!pdev) {
779 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
780 					"%04x:%04x! on bus %02d\n",
781 					PCI_VENDOR_ID_INTEL, id, bus);
782 		return -ENODEV;
783 	}
784 
785 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
786 	if (!IS_ECC_ENABLED(mcmtr)) {
787 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
788 		return -ENODEV;
789 	}
790 	return 0;
791 }
792 
793 static int get_dimm_config(struct mem_ctl_info *mci)
794 {
795 	struct sbridge_pvt *pvt = mci->pvt_info;
796 	struct dimm_info *dimm;
797 	unsigned i, j, banks, ranks, rows, cols, npages;
798 	u64 size;
799 	u32 reg;
800 	enum edac_type mode;
801 	enum mem_type mtype;
802 
803 	if (pvt->info.type == HASWELL)
804 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
805 	else
806 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
807 
808 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
809 
810 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
811 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
812 		 pvt->sbridge_dev->mc,
813 		 pvt->sbridge_dev->node_id,
814 		 pvt->sbridge_dev->source_id);
815 
816 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
817 	if (IS_MIRROR_ENABLED(reg)) {
818 		edac_dbg(0, "Memory mirror is enabled\n");
819 		pvt->is_mirrored = true;
820 	} else {
821 		edac_dbg(0, "Memory mirror is disabled\n");
822 		pvt->is_mirrored = false;
823 	}
824 
825 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
826 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
827 		edac_dbg(0, "Lockstep is enabled\n");
828 		mode = EDAC_S8ECD8ED;
829 		pvt->is_lockstep = true;
830 	} else {
831 		edac_dbg(0, "Lockstep is disabled\n");
832 		mode = EDAC_S4ECD4ED;
833 		pvt->is_lockstep = false;
834 	}
835 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
836 		edac_dbg(0, "address map is on closed page mode\n");
837 		pvt->is_close_pg = true;
838 	} else {
839 		edac_dbg(0, "address map is on open page mode\n");
840 		pvt->is_close_pg = false;
841 	}
842 
843 	mtype = pvt->info.get_memory_type(pvt);
844 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
845 		edac_dbg(0, "Memory is registered\n");
846 	else if (mtype == MEM_UNKNOWN)
847 		edac_dbg(0, "Cannot determine memory type\n");
848 	else
849 		edac_dbg(0, "Memory is unregistered\n");
850 
851 	if (mtype == MEM_DDR4 || MEM_RDDR4)
852 		banks = 16;
853 	else
854 		banks = 8;
855 
856 	for (i = 0; i < NUM_CHANNELS; i++) {
857 		u32 mtr;
858 
859 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
860 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
861 				       i, j, 0);
862 			pci_read_config_dword(pvt->pci_tad[i],
863 					      mtr_regs[j], &mtr);
864 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
865 			if (IS_DIMM_PRESENT(mtr)) {
866 				pvt->channel[i].dimms++;
867 
868 				ranks = numrank(pvt->info.type, mtr);
869 				rows = numrow(mtr);
870 				cols = numcol(mtr);
871 
872 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
873 				npages = MiB_TO_PAGES(size);
874 
875 				edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
876 					 pvt->sbridge_dev->mc, i, j,
877 					 size, npages,
878 					 banks, ranks, rows, cols);
879 
880 				dimm->nr_pages = npages;
881 				dimm->grain = 32;
882 				switch (banks) {
883 				case 16:
884 					dimm->dtype = DEV_X16;
885 					break;
886 				case 8:
887 					dimm->dtype = DEV_X8;
888 					break;
889 				case 4:
890 					dimm->dtype = DEV_X4;
891 					break;
892 				}
893 				dimm->mtype = mtype;
894 				dimm->edac_mode = mode;
895 				snprintf(dimm->label, sizeof(dimm->label),
896 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
897 					 pvt->sbridge_dev->source_id, i, j);
898 			}
899 		}
900 	}
901 
902 	return 0;
903 }
904 
905 static void get_memory_layout(const struct mem_ctl_info *mci)
906 {
907 	struct sbridge_pvt *pvt = mci->pvt_info;
908 	int i, j, k, n_sads, n_tads, sad_interl;
909 	u32 reg;
910 	u64 limit, prv = 0;
911 	u64 tmp_mb;
912 	u32 mb, kb;
913 	u32 rir_way;
914 
915 	/*
916 	 * Step 1) Get TOLM/TOHM ranges
917 	 */
918 
919 	pvt->tolm = pvt->info.get_tolm(pvt);
920 	tmp_mb = (1 + pvt->tolm) >> 20;
921 
922 	mb = div_u64_rem(tmp_mb, 1000, &kb);
923 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
924 
925 	/* Address range is already 45:25 */
926 	pvt->tohm = pvt->info.get_tohm(pvt);
927 	tmp_mb = (1 + pvt->tohm) >> 20;
928 
929 	mb = div_u64_rem(tmp_mb, 1000, &kb);
930 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
931 
932 	/*
933 	 * Step 2) Get SAD range and SAD Interleave list
934 	 * TAD registers contain the interleave wayness. However, it
935 	 * seems simpler to just discover it indirectly, with the
936 	 * algorithm bellow.
937 	 */
938 	prv = 0;
939 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
940 		/* SAD_LIMIT Address range is 45:26 */
941 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
942 				      &reg);
943 		limit = SAD_LIMIT(reg);
944 
945 		if (!DRAM_RULE_ENABLE(reg))
946 			continue;
947 
948 		if (limit <= prv)
949 			break;
950 
951 		tmp_mb = (limit + 1) >> 20;
952 		mb = div_u64_rem(tmp_mb, 1000, &kb);
953 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
954 			 n_sads,
955 			 get_dram_attr(reg),
956 			 mb, kb,
957 			 ((u64)tmp_mb) << 20L,
958 			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
959 			 reg);
960 		prv = limit;
961 
962 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
963 				      &reg);
964 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
965 		for (j = 0; j < 8; j++) {
966 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
967 			if (j > 0 && sad_interl == pkg)
968 				break;
969 
970 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
971 				 n_sads, j, pkg);
972 		}
973 	}
974 
975 	/*
976 	 * Step 3) Get TAD range
977 	 */
978 	prv = 0;
979 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
980 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
981 				      &reg);
982 		limit = TAD_LIMIT(reg);
983 		if (limit <= prv)
984 			break;
985 		tmp_mb = (limit + 1) >> 20;
986 
987 		mb = div_u64_rem(tmp_mb, 1000, &kb);
988 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
989 			 n_tads, mb, kb,
990 			 ((u64)tmp_mb) << 20L,
991 			 (u32)TAD_SOCK(reg),
992 			 (u32)TAD_CH(reg),
993 			 (u32)TAD_TGT0(reg),
994 			 (u32)TAD_TGT1(reg),
995 			 (u32)TAD_TGT2(reg),
996 			 (u32)TAD_TGT3(reg),
997 			 reg);
998 		prv = limit;
999 	}
1000 
1001 	/*
1002 	 * Step 4) Get TAD offsets, per each channel
1003 	 */
1004 	for (i = 0; i < NUM_CHANNELS; i++) {
1005 		if (!pvt->channel[i].dimms)
1006 			continue;
1007 		for (j = 0; j < n_tads; j++) {
1008 			pci_read_config_dword(pvt->pci_tad[i],
1009 					      tad_ch_nilv_offset[j],
1010 					      &reg);
1011 			tmp_mb = TAD_OFFSET(reg) >> 20;
1012 			mb = div_u64_rem(tmp_mb, 1000, &kb);
1013 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1014 				 i, j,
1015 				 mb, kb,
1016 				 ((u64)tmp_mb) << 20L,
1017 				 reg);
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * Step 6) Get RIR Wayness/Limit, per each channel
1023 	 */
1024 	for (i = 0; i < NUM_CHANNELS; i++) {
1025 		if (!pvt->channel[i].dimms)
1026 			continue;
1027 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1028 			pci_read_config_dword(pvt->pci_tad[i],
1029 					      rir_way_limit[j],
1030 					      &reg);
1031 
1032 			if (!IS_RIR_VALID(reg))
1033 				continue;
1034 
1035 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1036 			rir_way = 1 << RIR_WAY(reg);
1037 			mb = div_u64_rem(tmp_mb, 1000, &kb);
1038 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1039 				 i, j,
1040 				 mb, kb,
1041 				 ((u64)tmp_mb) << 20L,
1042 				 rir_way,
1043 				 reg);
1044 
1045 			for (k = 0; k < rir_way; k++) {
1046 				pci_read_config_dword(pvt->pci_tad[i],
1047 						      rir_offset[j][k],
1048 						      &reg);
1049 				tmp_mb = RIR_OFFSET(reg) << 6;
1050 
1051 				mb = div_u64_rem(tmp_mb, 1000, &kb);
1052 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1053 					 i, j, k,
1054 					 mb, kb,
1055 					 ((u64)tmp_mb) << 20L,
1056 					 (u32)RIR_RNK_TGT(reg),
1057 					 reg);
1058 			}
1059 		}
1060 	}
1061 }
1062 
1063 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1064 {
1065 	struct sbridge_dev *sbridge_dev;
1066 
1067 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1068 		if (sbridge_dev->node_id == node_id)
1069 			return sbridge_dev->mci;
1070 	}
1071 	return NULL;
1072 }
1073 
1074 static int get_memory_error_data(struct mem_ctl_info *mci,
1075 				 u64 addr,
1076 				 u8 *socket,
1077 				 long *channel_mask,
1078 				 u8 *rank,
1079 				 char **area_type, char *msg)
1080 {
1081 	struct mem_ctl_info	*new_mci;
1082 	struct sbridge_pvt *pvt = mci->pvt_info;
1083 	struct pci_dev		*pci_ha;
1084 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1085 	int			sad_interl, idx, base_ch;
1086 	int			interleave_mode, shiftup = 0;
1087 	unsigned		sad_interleave[pvt->info.max_interleave];
1088 	u32			reg, dram_rule;
1089 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1090 	u32			tad_offset;
1091 	u32			rir_way;
1092 	u32			mb, kb;
1093 	u64			ch_addr, offset, limit = 0, prv = 0;
1094 
1095 
1096 	/*
1097 	 * Step 0) Check if the address is at special memory ranges
1098 	 * The check bellow is probably enough to fill all cases where
1099 	 * the error is not inside a memory, except for the legacy
1100 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1101 	 * memory controller would generate an error on that range.
1102 	 */
1103 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1104 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1105 		return -EINVAL;
1106 	}
1107 	if (addr >= (u64)pvt->tohm) {
1108 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1109 		return -EINVAL;
1110 	}
1111 
1112 	/*
1113 	 * Step 1) Get socket
1114 	 */
1115 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1116 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1117 				      &reg);
1118 
1119 		if (!DRAM_RULE_ENABLE(reg))
1120 			continue;
1121 
1122 		limit = SAD_LIMIT(reg);
1123 		if (limit <= prv) {
1124 			sprintf(msg, "Can't discover the memory socket");
1125 			return -EINVAL;
1126 		}
1127 		if  (addr <= limit)
1128 			break;
1129 		prv = limit;
1130 	}
1131 	if (n_sads == pvt->info.max_sad) {
1132 		sprintf(msg, "Can't discover the memory socket");
1133 		return -EINVAL;
1134 	}
1135 	dram_rule = reg;
1136 	*area_type = get_dram_attr(dram_rule);
1137 	interleave_mode = INTERLEAVE_MODE(dram_rule);
1138 
1139 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1140 			      &reg);
1141 
1142 	if (pvt->info.type == SANDY_BRIDGE) {
1143 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1144 		for (sad_way = 0; sad_way < 8; sad_way++) {
1145 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1146 			if (sad_way > 0 && sad_interl == pkg)
1147 				break;
1148 			sad_interleave[sad_way] = pkg;
1149 			edac_dbg(0, "SAD interleave #%d: %d\n",
1150 				 sad_way, sad_interleave[sad_way]);
1151 		}
1152 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1153 			 pvt->sbridge_dev->mc,
1154 			 n_sads,
1155 			 addr,
1156 			 limit,
1157 			 sad_way + 7,
1158 			 !interleave_mode ? "" : "XOR[18:16]");
1159 		if (interleave_mode)
1160 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1161 		else
1162 			idx = (addr >> 6) & 7;
1163 		switch (sad_way) {
1164 		case 1:
1165 			idx = 0;
1166 			break;
1167 		case 2:
1168 			idx = idx & 1;
1169 			break;
1170 		case 4:
1171 			idx = idx & 3;
1172 			break;
1173 		case 8:
1174 			break;
1175 		default:
1176 			sprintf(msg, "Can't discover socket interleave");
1177 			return -EINVAL;
1178 		}
1179 		*socket = sad_interleave[idx];
1180 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1181 			 idx, sad_way, *socket);
1182 	} else if (pvt->info.type == HASWELL) {
1183 		int bits, a7mode = A7MODE(dram_rule);
1184 
1185 		if (a7mode) {
1186 			/* A7 mode swaps P9 with P6 */
1187 			bits = GET_BITFIELD(addr, 7, 8) << 1;
1188 			bits |= GET_BITFIELD(addr, 9, 9);
1189 		} else
1190 			bits = GET_BITFIELD(addr, 7, 9);
1191 
1192 		if (interleave_mode) {
1193 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
1194 			idx = GET_BITFIELD(addr, 16, 18);
1195 			idx ^= bits;
1196 		} else
1197 			idx = bits;
1198 
1199 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1200 		*socket = sad_pkg_socket(pkg);
1201 		sad_ha = sad_pkg_ha(pkg);
1202 
1203 		if (a7mode) {
1204 			/* MCChanShiftUpEnable */
1205 			pci_read_config_dword(pvt->pci_ha0,
1206 					      HASWELL_HASYSDEFEATURE2, &reg);
1207 			shiftup = GET_BITFIELD(reg, 22, 22);
1208 		}
1209 
1210 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1211 			 idx, *socket, sad_ha, shiftup);
1212 	} else {
1213 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1214 		idx = (addr >> 6) & 7;
1215 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1216 		*socket = sad_pkg_socket(pkg);
1217 		sad_ha = sad_pkg_ha(pkg);
1218 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1219 			 idx, *socket, sad_ha);
1220 	}
1221 
1222 	/*
1223 	 * Move to the proper node structure, in order to access the
1224 	 * right PCI registers
1225 	 */
1226 	new_mci = get_mci_for_node_id(*socket);
1227 	if (!new_mci) {
1228 		sprintf(msg, "Struct for socket #%u wasn't initialized",
1229 			*socket);
1230 		return -EINVAL;
1231 	}
1232 	mci = new_mci;
1233 	pvt = mci->pvt_info;
1234 
1235 	/*
1236 	 * Step 2) Get memory channel
1237 	 */
1238 	prv = 0;
1239 	if (pvt->info.type == SANDY_BRIDGE)
1240 		pci_ha = pvt->pci_ha0;
1241 	else {
1242 		if (sad_ha)
1243 			pci_ha = pvt->pci_ha1;
1244 		else
1245 			pci_ha = pvt->pci_ha0;
1246 	}
1247 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1248 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1249 		limit = TAD_LIMIT(reg);
1250 		if (limit <= prv) {
1251 			sprintf(msg, "Can't discover the memory channel");
1252 			return -EINVAL;
1253 		}
1254 		if  (addr <= limit)
1255 			break;
1256 		prv = limit;
1257 	}
1258 	if (n_tads == MAX_TAD) {
1259 		sprintf(msg, "Can't discover the memory channel");
1260 		return -EINVAL;
1261 	}
1262 
1263 	ch_way = TAD_CH(reg) + 1;
1264 	sck_way = TAD_SOCK(reg) + 1;
1265 
1266 	if (ch_way == 3)
1267 		idx = addr >> 6;
1268 	else
1269 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1270 	idx = idx % ch_way;
1271 
1272 	/*
1273 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1274 	 */
1275 	switch (idx) {
1276 	case 0:
1277 		base_ch = TAD_TGT0(reg);
1278 		break;
1279 	case 1:
1280 		base_ch = TAD_TGT1(reg);
1281 		break;
1282 	case 2:
1283 		base_ch = TAD_TGT2(reg);
1284 		break;
1285 	case 3:
1286 		base_ch = TAD_TGT3(reg);
1287 		break;
1288 	default:
1289 		sprintf(msg, "Can't discover the TAD target");
1290 		return -EINVAL;
1291 	}
1292 	*channel_mask = 1 << base_ch;
1293 
1294 	pci_read_config_dword(pvt->pci_tad[base_ch],
1295 				tad_ch_nilv_offset[n_tads],
1296 				&tad_offset);
1297 
1298 	if (pvt->is_mirrored) {
1299 		*channel_mask |= 1 << ((base_ch + 2) % 4);
1300 		switch(ch_way) {
1301 		case 2:
1302 		case 4:
1303 			sck_xch = 1 << sck_way * (ch_way >> 1);
1304 			break;
1305 		default:
1306 			sprintf(msg, "Invalid mirror set. Can't decode addr");
1307 			return -EINVAL;
1308 		}
1309 	} else
1310 		sck_xch = (1 << sck_way) * ch_way;
1311 
1312 	if (pvt->is_lockstep)
1313 		*channel_mask |= 1 << ((base_ch + 1) % 4);
1314 
1315 	offset = TAD_OFFSET(tad_offset);
1316 
1317 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1318 		 n_tads,
1319 		 addr,
1320 		 limit,
1321 		 (u32)TAD_SOCK(reg),
1322 		 ch_way,
1323 		 offset,
1324 		 idx,
1325 		 base_ch,
1326 		 *channel_mask);
1327 
1328 	/* Calculate channel address */
1329 	/* Remove the TAD offset */
1330 
1331 	if (offset > addr) {
1332 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1333 			offset, addr);
1334 		return -EINVAL;
1335 	}
1336 	addr -= offset;
1337 	/* Store the low bits [0:6] of the addr */
1338 	ch_addr = addr & 0x7f;
1339 	/* Remove socket wayness and remove 6 bits */
1340 	addr >>= 6;
1341 	addr = div_u64(addr, sck_xch);
1342 #if 0
1343 	/* Divide by channel way */
1344 	addr = addr / ch_way;
1345 #endif
1346 	/* Recover the last 6 bits */
1347 	ch_addr |= addr << 6;
1348 
1349 	/*
1350 	 * Step 3) Decode rank
1351 	 */
1352 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1353 		pci_read_config_dword(pvt->pci_tad[base_ch],
1354 				      rir_way_limit[n_rir],
1355 				      &reg);
1356 
1357 		if (!IS_RIR_VALID(reg))
1358 			continue;
1359 
1360 		limit = pvt->info.rir_limit(reg);
1361 		mb = div_u64_rem(limit >> 20, 1000, &kb);
1362 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1363 			 n_rir,
1364 			 mb, kb,
1365 			 limit,
1366 			 1 << RIR_WAY(reg));
1367 		if  (ch_addr <= limit)
1368 			break;
1369 	}
1370 	if (n_rir == MAX_RIR_RANGES) {
1371 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1372 			ch_addr);
1373 		return -EINVAL;
1374 	}
1375 	rir_way = RIR_WAY(reg);
1376 
1377 	if (pvt->is_close_pg)
1378 		idx = (ch_addr >> 6);
1379 	else
1380 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1381 	idx %= 1 << rir_way;
1382 
1383 	pci_read_config_dword(pvt->pci_tad[base_ch],
1384 			      rir_offset[n_rir][idx],
1385 			      &reg);
1386 	*rank = RIR_RNK_TGT(reg);
1387 
1388 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1389 		 n_rir,
1390 		 ch_addr,
1391 		 limit,
1392 		 rir_way,
1393 		 idx);
1394 
1395 	return 0;
1396 }
1397 
1398 /****************************************************************************
1399 	Device initialization routines: put/get, init/exit
1400  ****************************************************************************/
1401 
1402 /*
1403  *	sbridge_put_all_devices	'put' all the devices that we have
1404  *				reserved via 'get'
1405  */
1406 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1407 {
1408 	int i;
1409 
1410 	edac_dbg(0, "\n");
1411 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1412 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1413 		if (!pdev)
1414 			continue;
1415 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1416 			 pdev->bus->number,
1417 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1418 		pci_dev_put(pdev);
1419 	}
1420 }
1421 
1422 static void sbridge_put_all_devices(void)
1423 {
1424 	struct sbridge_dev *sbridge_dev, *tmp;
1425 
1426 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1427 		sbridge_put_devices(sbridge_dev);
1428 		free_sbridge_dev(sbridge_dev);
1429 	}
1430 }
1431 
1432 static int sbridge_get_onedevice(struct pci_dev **prev,
1433 				 u8 *num_mc,
1434 				 const struct pci_id_table *table,
1435 				 const unsigned devno)
1436 {
1437 	struct sbridge_dev *sbridge_dev;
1438 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1439 	struct pci_dev *pdev = NULL;
1440 	u8 bus = 0;
1441 
1442 	sbridge_printk(KERN_DEBUG,
1443 		"Seeking for: PCI ID %04x:%04x\n",
1444 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1445 
1446 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1447 			      dev_descr->dev_id, *prev);
1448 
1449 	if (!pdev) {
1450 		if (*prev) {
1451 			*prev = pdev;
1452 			return 0;
1453 		}
1454 
1455 		if (dev_descr->optional)
1456 			return 0;
1457 
1458 		/* if the HA wasn't found */
1459 		if (devno == 0)
1460 			return -ENODEV;
1461 
1462 		sbridge_printk(KERN_INFO,
1463 			"Device not found: %04x:%04x\n",
1464 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1465 
1466 		/* End of list, leave */
1467 		return -ENODEV;
1468 	}
1469 	bus = pdev->bus->number;
1470 
1471 	sbridge_dev = get_sbridge_dev(bus);
1472 	if (!sbridge_dev) {
1473 		sbridge_dev = alloc_sbridge_dev(bus, table);
1474 		if (!sbridge_dev) {
1475 			pci_dev_put(pdev);
1476 			return -ENOMEM;
1477 		}
1478 		(*num_mc)++;
1479 	}
1480 
1481 	if (sbridge_dev->pdev[devno]) {
1482 		sbridge_printk(KERN_ERR,
1483 			"Duplicated device for %04x:%04x\n",
1484 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1485 		pci_dev_put(pdev);
1486 		return -ENODEV;
1487 	}
1488 
1489 	sbridge_dev->pdev[devno] = pdev;
1490 
1491 	/* Be sure that the device is enabled */
1492 	if (unlikely(pci_enable_device(pdev) < 0)) {
1493 		sbridge_printk(KERN_ERR,
1494 			"Couldn't enable %04x:%04x\n",
1495 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1496 		return -ENODEV;
1497 	}
1498 
1499 	edac_dbg(0, "Detected %04x:%04x\n",
1500 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1501 
1502 	/*
1503 	 * As stated on drivers/pci/search.c, the reference count for
1504 	 * @from is always decremented if it is not %NULL. So, as we need
1505 	 * to get all devices up to null, we need to do a get for the device
1506 	 */
1507 	pci_dev_get(pdev);
1508 
1509 	*prev = pdev;
1510 
1511 	return 0;
1512 }
1513 
1514 /*
1515  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1516  *			     devices we want to reference for this driver.
1517  * @num_mc: pointer to the memory controllers count, to be incremented in case
1518  *	    of success.
1519  * @table: model specific table
1520  *
1521  * returns 0 in case of success or error code
1522  */
1523 static int sbridge_get_all_devices(u8 *num_mc,
1524 				   const struct pci_id_table *table)
1525 {
1526 	int i, rc;
1527 	struct pci_dev *pdev = NULL;
1528 
1529 	while (table && table->descr) {
1530 		for (i = 0; i < table->n_devs; i++) {
1531 			pdev = NULL;
1532 			do {
1533 				rc = sbridge_get_onedevice(&pdev, num_mc,
1534 							   table, i);
1535 				if (rc < 0) {
1536 					if (i == 0) {
1537 						i = table->n_devs;
1538 						break;
1539 					}
1540 					sbridge_put_all_devices();
1541 					return -ENODEV;
1542 				}
1543 			} while (pdev);
1544 		}
1545 		table++;
1546 	}
1547 
1548 	return 0;
1549 }
1550 
1551 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1552 				 struct sbridge_dev *sbridge_dev)
1553 {
1554 	struct sbridge_pvt *pvt = mci->pvt_info;
1555 	struct pci_dev *pdev;
1556 	int i;
1557 
1558 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1559 		pdev = sbridge_dev->pdev[i];
1560 		if (!pdev)
1561 			continue;
1562 
1563 		switch (pdev->device) {
1564 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1565 			pvt->pci_sad0 = pdev;
1566 			break;
1567 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1568 			pvt->pci_sad1 = pdev;
1569 			break;
1570 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1571 			pvt->pci_br0 = pdev;
1572 			break;
1573 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1574 			pvt->pci_ha0 = pdev;
1575 			break;
1576 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1577 			pvt->pci_ta = pdev;
1578 			break;
1579 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1580 			pvt->pci_ras = pdev;
1581 			break;
1582 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1583 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1584 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1585 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1586 		{
1587 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1588 			pvt->pci_tad[id] = pdev;
1589 		}
1590 			break;
1591 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1592 			pvt->pci_ddrio = pdev;
1593 			break;
1594 		default:
1595 			goto error;
1596 		}
1597 
1598 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1599 			 pdev->vendor, pdev->device,
1600 			 sbridge_dev->bus,
1601 			 pdev);
1602 	}
1603 
1604 	/* Check if everything were registered */
1605 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1606 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1607 		goto enodev;
1608 
1609 	for (i = 0; i < NUM_CHANNELS; i++) {
1610 		if (!pvt->pci_tad[i])
1611 			goto enodev;
1612 	}
1613 	return 0;
1614 
1615 enodev:
1616 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1617 	return -ENODEV;
1618 
1619 error:
1620 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1621 		       PCI_VENDOR_ID_INTEL, pdev->device);
1622 	return -EINVAL;
1623 }
1624 
1625 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1626 				 struct sbridge_dev *sbridge_dev)
1627 {
1628 	struct sbridge_pvt *pvt = mci->pvt_info;
1629 	struct pci_dev *pdev, *tmp;
1630 	int i;
1631 	bool mode_2ha = false;
1632 
1633 	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1634 			     PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
1635 	if (tmp) {
1636 		mode_2ha = true;
1637 		pci_dev_put(tmp);
1638 	}
1639 
1640 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1641 		pdev = sbridge_dev->pdev[i];
1642 		if (!pdev)
1643 			continue;
1644 
1645 		switch (pdev->device) {
1646 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1647 			pvt->pci_ha0 = pdev;
1648 			break;
1649 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1650 			pvt->pci_ta = pdev;
1651 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1652 			pvt->pci_ras = pdev;
1653 			break;
1654 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1655 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1656 			/* if we have 2 HAs active, channels 2 and 3
1657 			 * are in other device */
1658 			if (mode_2ha)
1659 				break;
1660 			/* fall through */
1661 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1662 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1663 		{
1664 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1665 			pvt->pci_tad[id] = pdev;
1666 		}
1667 			break;
1668 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1669 			pvt->pci_ddrio = pdev;
1670 			break;
1671 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1672 			if (!mode_2ha)
1673 				pvt->pci_ddrio = pdev;
1674 			break;
1675 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1676 			pvt->pci_sad0 = pdev;
1677 			break;
1678 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1679 			pvt->pci_br0 = pdev;
1680 			break;
1681 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1682 			pvt->pci_br1 = pdev;
1683 			break;
1684 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1685 			pvt->pci_ha1 = pdev;
1686 			break;
1687 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1688 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1689 		{
1690 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
1691 
1692 			/* we shouldn't have this device if we have just one
1693 			 * HA present */
1694 			WARN_ON(!mode_2ha);
1695 			pvt->pci_tad[id] = pdev;
1696 		}
1697 			break;
1698 		default:
1699 			goto error;
1700 		}
1701 
1702 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1703 			 sbridge_dev->bus,
1704 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1705 			 pdev);
1706 	}
1707 
1708 	/* Check if everything were registered */
1709 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1710 	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1711 	    !pvt->pci_ta)
1712 		goto enodev;
1713 
1714 	for (i = 0; i < NUM_CHANNELS; i++) {
1715 		if (!pvt->pci_tad[i])
1716 			goto enodev;
1717 	}
1718 	return 0;
1719 
1720 enodev:
1721 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1722 	return -ENODEV;
1723 
1724 error:
1725 	sbridge_printk(KERN_ERR,
1726 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1727 			pdev->device);
1728 	return -EINVAL;
1729 }
1730 
1731 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1732 				 struct sbridge_dev *sbridge_dev)
1733 {
1734 	struct sbridge_pvt *pvt = mci->pvt_info;
1735 	struct pci_dev *pdev, *tmp;
1736 	int i;
1737 	bool mode_2ha = false;
1738 
1739 	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1740 			     PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
1741 	if (tmp) {
1742 		mode_2ha = true;
1743 		pci_dev_put(tmp);
1744 	}
1745 
1746 	/* there's only one device per system; not tied to any bus */
1747 	if (pvt->info.pci_vtd == NULL)
1748 		/* result will be checked later */
1749 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1750 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1751 						   NULL);
1752 
1753 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1754 		pdev = sbridge_dev->pdev[i];
1755 		if (!pdev)
1756 			continue;
1757 
1758 		switch (pdev->device) {
1759 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1760 			pvt->pci_sad0 = pdev;
1761 			break;
1762 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1763 			pvt->pci_sad1 = pdev;
1764 			break;
1765 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1766 			pvt->pci_ha0 = pdev;
1767 			break;
1768 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1769 			pvt->pci_ta = pdev;
1770 			break;
1771 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1772 			pvt->pci_ras = pdev;
1773 			break;
1774 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1775 			pvt->pci_tad[0] = pdev;
1776 			break;
1777 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1778 			pvt->pci_tad[1] = pdev;
1779 			break;
1780 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1781 			if (!mode_2ha)
1782 				pvt->pci_tad[2] = pdev;
1783 			break;
1784 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1785 			if (!mode_2ha)
1786 				pvt->pci_tad[3] = pdev;
1787 			break;
1788 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1789 			pvt->pci_ddrio = pdev;
1790 			break;
1791 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1792 			pvt->pci_ha1 = pdev;
1793 			break;
1794 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1795 			pvt->pci_ha1_ta = pdev;
1796 			break;
1797 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1798 			if (mode_2ha)
1799 				pvt->pci_tad[2] = pdev;
1800 			break;
1801 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1802 			if (mode_2ha)
1803 				pvt->pci_tad[3] = pdev;
1804 			break;
1805 		default:
1806 			break;
1807 		}
1808 
1809 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1810 			 sbridge_dev->bus,
1811 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1812 			 pdev);
1813 	}
1814 
1815 	/* Check if everything were registered */
1816 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1817 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1818 		goto enodev;
1819 
1820 	for (i = 0; i < NUM_CHANNELS; i++) {
1821 		if (!pvt->pci_tad[i])
1822 			goto enodev;
1823 	}
1824 	return 0;
1825 
1826 enodev:
1827 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1828 	return -ENODEV;
1829 }
1830 
1831 /****************************************************************************
1832 			Error check routines
1833  ****************************************************************************/
1834 
1835 /*
1836  * While Sandy Bridge has error count registers, SMI BIOS read values from
1837  * and resets the counters. So, they are not reliable for the OS to read
1838  * from them. So, we have no option but to just trust on whatever MCE is
1839  * telling us about the errors.
1840  */
1841 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1842 				    const struct mce *m)
1843 {
1844 	struct mem_ctl_info *new_mci;
1845 	struct sbridge_pvt *pvt = mci->pvt_info;
1846 	enum hw_event_mc_err_type tp_event;
1847 	char *type, *optype, msg[256];
1848 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1849 	bool overflow = GET_BITFIELD(m->status, 62, 62);
1850 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1851 	bool recoverable;
1852 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1853 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1854 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1855 	u32 channel = GET_BITFIELD(m->status, 0, 3);
1856 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1857 	long channel_mask, first_channel;
1858 	u8  rank, socket;
1859 	int rc, dimm;
1860 	char *area_type = NULL;
1861 
1862 	if (pvt->info.type == IVY_BRIDGE)
1863 		recoverable = true;
1864 	else
1865 		recoverable = GET_BITFIELD(m->status, 56, 56);
1866 
1867 	if (uncorrected_error) {
1868 		if (ripv) {
1869 			type = "FATAL";
1870 			tp_event = HW_EVENT_ERR_FATAL;
1871 		} else {
1872 			type = "NON_FATAL";
1873 			tp_event = HW_EVENT_ERR_UNCORRECTED;
1874 		}
1875 	} else {
1876 		type = "CORRECTED";
1877 		tp_event = HW_EVENT_ERR_CORRECTED;
1878 	}
1879 
1880 	/*
1881 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1882 	 * memory errors should fit in this mask:
1883 	 *	000f 0000 1mmm cccc (binary)
1884 	 * where:
1885 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
1886 	 *	    won't be shown
1887 	 *	mmm = error type
1888 	 *	cccc = channel
1889 	 * If the mask doesn't match, report an error to the parsing logic
1890 	 */
1891 	if (! ((errcode & 0xef80) == 0x80)) {
1892 		optype = "Can't parse: it is not a mem";
1893 	} else {
1894 		switch (optypenum) {
1895 		case 0:
1896 			optype = "generic undef request error";
1897 			break;
1898 		case 1:
1899 			optype = "memory read error";
1900 			break;
1901 		case 2:
1902 			optype = "memory write error";
1903 			break;
1904 		case 3:
1905 			optype = "addr/cmd error";
1906 			break;
1907 		case 4:
1908 			optype = "memory scrubbing error";
1909 			break;
1910 		default:
1911 			optype = "reserved";
1912 			break;
1913 		}
1914 	}
1915 
1916 	/* Only decode errors with an valid address (ADDRV) */
1917 	if (!GET_BITFIELD(m->status, 58, 58))
1918 		return;
1919 
1920 	rc = get_memory_error_data(mci, m->addr, &socket,
1921 				   &channel_mask, &rank, &area_type, msg);
1922 	if (rc < 0)
1923 		goto err_parsing;
1924 	new_mci = get_mci_for_node_id(socket);
1925 	if (!new_mci) {
1926 		strcpy(msg, "Error: socket got corrupted!");
1927 		goto err_parsing;
1928 	}
1929 	mci = new_mci;
1930 	pvt = mci->pvt_info;
1931 
1932 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1933 
1934 	if (rank < 4)
1935 		dimm = 0;
1936 	else if (rank < 8)
1937 		dimm = 1;
1938 	else
1939 		dimm = 2;
1940 
1941 
1942 	/*
1943 	 * FIXME: On some memory configurations (mirror, lockstep), the
1944 	 * Memory Controller can't point the error to a single DIMM. The
1945 	 * EDAC core should be handling the channel mask, in order to point
1946 	 * to the group of dimm's where the error may be happening.
1947 	 */
1948 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
1949 		channel = first_channel;
1950 
1951 	snprintf(msg, sizeof(msg),
1952 		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1953 		 overflow ? " OVERFLOW" : "",
1954 		 (uncorrected_error && recoverable) ? " recoverable" : "",
1955 		 area_type,
1956 		 mscod, errcode,
1957 		 socket,
1958 		 channel_mask,
1959 		 rank);
1960 
1961 	edac_dbg(0, "%s\n", msg);
1962 
1963 	/* FIXME: need support for channel mask */
1964 
1965 	if (channel == CHANNEL_UNSPECIFIED)
1966 		channel = -1;
1967 
1968 	/* Call the helper to output message */
1969 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
1970 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1971 			     channel, dimm, -1,
1972 			     optype, msg);
1973 	return;
1974 err_parsing:
1975 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
1976 			     -1, -1, -1,
1977 			     msg, "");
1978 
1979 }
1980 
1981 /*
1982  *	sbridge_check_error	Retrieve and process errors reported by the
1983  *				hardware. Called by the Core module.
1984  */
1985 static void sbridge_check_error(struct mem_ctl_info *mci)
1986 {
1987 	struct sbridge_pvt *pvt = mci->pvt_info;
1988 	int i;
1989 	unsigned count = 0;
1990 	struct mce *m;
1991 
1992 	/*
1993 	 * MCE first step: Copy all mce errors into a temporary buffer
1994 	 * We use a double buffering here, to reduce the risk of
1995 	 * loosing an error.
1996 	 */
1997 	smp_rmb();
1998 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1999 		% MCE_LOG_LEN;
2000 	if (!count)
2001 		return;
2002 
2003 	m = pvt->mce_outentry;
2004 	if (pvt->mce_in + count > MCE_LOG_LEN) {
2005 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
2006 
2007 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2008 		smp_wmb();
2009 		pvt->mce_in = 0;
2010 		count -= l;
2011 		m += l;
2012 	}
2013 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2014 	smp_wmb();
2015 	pvt->mce_in += count;
2016 
2017 	smp_rmb();
2018 	if (pvt->mce_overrun) {
2019 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2020 			      pvt->mce_overrun);
2021 		smp_wmb();
2022 		pvt->mce_overrun = 0;
2023 	}
2024 
2025 	/*
2026 	 * MCE second step: parse errors and display
2027 	 */
2028 	for (i = 0; i < count; i++)
2029 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2030 }
2031 
2032 /*
2033  * sbridge_mce_check_error	Replicates mcelog routine to get errors
2034  *				This routine simply queues mcelog errors, and
2035  *				return. The error itself should be handled later
2036  *				by sbridge_check_error.
2037  * WARNING: As this routine should be called at NMI time, extra care should
2038  * be taken to avoid deadlocks, and to be as fast as possible.
2039  */
2040 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2041 				   void *data)
2042 {
2043 	struct mce *mce = (struct mce *)data;
2044 	struct mem_ctl_info *mci;
2045 	struct sbridge_pvt *pvt;
2046 	char *type;
2047 
2048 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2049 		return NOTIFY_DONE;
2050 
2051 	mci = get_mci_for_node_id(mce->socketid);
2052 	if (!mci)
2053 		return NOTIFY_BAD;
2054 	pvt = mci->pvt_info;
2055 
2056 	/*
2057 	 * Just let mcelog handle it if the error is
2058 	 * outside the memory controller. A memory error
2059 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2060 	 * bit 12 has an special meaning.
2061 	 */
2062 	if ((mce->status & 0xefff) >> 7 != 1)
2063 		return NOTIFY_DONE;
2064 
2065 	if (mce->mcgstatus & MCG_STATUS_MCIP)
2066 		type = "Exception";
2067 	else
2068 		type = "Event";
2069 
2070 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2071 
2072 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2073 			  "Bank %d: %016Lx\n", mce->extcpu, type,
2074 			  mce->mcgstatus, mce->bank, mce->status);
2075 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2076 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2077 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2078 
2079 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2080 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2081 			  mce->time, mce->socketid, mce->apicid);
2082 
2083 	smp_rmb();
2084 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2085 		smp_wmb();
2086 		pvt->mce_overrun++;
2087 		return NOTIFY_DONE;
2088 	}
2089 
2090 	/* Copy memory error at the ringbuffer */
2091 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2092 	smp_wmb();
2093 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2094 
2095 	/* Handle fatal errors immediately */
2096 	if (mce->mcgstatus & 1)
2097 		sbridge_check_error(mci);
2098 
2099 	/* Advice mcelog that the error were handled */
2100 	return NOTIFY_STOP;
2101 }
2102 
2103 static struct notifier_block sbridge_mce_dec = {
2104 	.notifier_call      = sbridge_mce_check_error,
2105 };
2106 
2107 /****************************************************************************
2108 			EDAC register/unregister logic
2109  ****************************************************************************/
2110 
2111 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2112 {
2113 	struct mem_ctl_info *mci = sbridge_dev->mci;
2114 	struct sbridge_pvt *pvt;
2115 
2116 	if (unlikely(!mci || !mci->pvt_info)) {
2117 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2118 
2119 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2120 		return;
2121 	}
2122 
2123 	pvt = mci->pvt_info;
2124 
2125 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2126 		 mci, &sbridge_dev->pdev[0]->dev);
2127 
2128 	/* Remove MC sysfs nodes */
2129 	edac_mc_del_mc(mci->pdev);
2130 
2131 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2132 	kfree(mci->ctl_name);
2133 	edac_mc_free(mci);
2134 	sbridge_dev->mci = NULL;
2135 }
2136 
2137 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2138 {
2139 	struct mem_ctl_info *mci;
2140 	struct edac_mc_layer layers[2];
2141 	struct sbridge_pvt *pvt;
2142 	struct pci_dev *pdev = sbridge_dev->pdev[0];
2143 	int rc;
2144 
2145 	/* Check the number of active and not disabled channels */
2146 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2147 	if (unlikely(rc < 0))
2148 		return rc;
2149 
2150 	/* allocate a new MC control structure */
2151 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
2152 	layers[0].size = NUM_CHANNELS;
2153 	layers[0].is_virt_csrow = false;
2154 	layers[1].type = EDAC_MC_LAYER_SLOT;
2155 	layers[1].size = MAX_DIMMS;
2156 	layers[1].is_virt_csrow = true;
2157 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2158 			    sizeof(*pvt));
2159 
2160 	if (unlikely(!mci))
2161 		return -ENOMEM;
2162 
2163 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2164 		 mci, &pdev->dev);
2165 
2166 	pvt = mci->pvt_info;
2167 	memset(pvt, 0, sizeof(*pvt));
2168 
2169 	/* Associate sbridge_dev and mci for future usage */
2170 	pvt->sbridge_dev = sbridge_dev;
2171 	sbridge_dev->mci = mci;
2172 
2173 	mci->mtype_cap = MEM_FLAG_DDR3;
2174 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
2175 	mci->edac_cap = EDAC_FLAG_NONE;
2176 	mci->mod_name = "sbridge_edac.c";
2177 	mci->mod_ver = SBRIDGE_REVISION;
2178 	mci->dev_name = pci_name(pdev);
2179 	mci->ctl_page_to_phys = NULL;
2180 
2181 	/* Set the function pointer to an actual operation function */
2182 	mci->edac_check = sbridge_check_error;
2183 
2184 	pvt->info.type = type;
2185 	switch (type) {
2186 	case IVY_BRIDGE:
2187 		pvt->info.rankcfgr = IB_RANK_CFG_A;
2188 		pvt->info.get_tolm = ibridge_get_tolm;
2189 		pvt->info.get_tohm = ibridge_get_tohm;
2190 		pvt->info.dram_rule = ibridge_dram_rule;
2191 		pvt->info.get_memory_type = get_memory_type;
2192 		pvt->info.get_node_id = get_node_id;
2193 		pvt->info.rir_limit = rir_limit;
2194 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2195 		pvt->info.interleave_list = ibridge_interleave_list;
2196 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2197 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2198 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2199 
2200 		/* Store pci devices at mci for faster access */
2201 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2202 		if (unlikely(rc < 0))
2203 			goto fail0;
2204 		break;
2205 	case SANDY_BRIDGE:
2206 		pvt->info.rankcfgr = SB_RANK_CFG_A;
2207 		pvt->info.get_tolm = sbridge_get_tolm;
2208 		pvt->info.get_tohm = sbridge_get_tohm;
2209 		pvt->info.dram_rule = sbridge_dram_rule;
2210 		pvt->info.get_memory_type = get_memory_type;
2211 		pvt->info.get_node_id = get_node_id;
2212 		pvt->info.rir_limit = rir_limit;
2213 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2214 		pvt->info.interleave_list = sbridge_interleave_list;
2215 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2216 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
2217 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2218 
2219 		/* Store pci devices at mci for faster access */
2220 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2221 		if (unlikely(rc < 0))
2222 			goto fail0;
2223 		break;
2224 	case HASWELL:
2225 		/* rankcfgr isn't used */
2226 		pvt->info.get_tolm = haswell_get_tolm;
2227 		pvt->info.get_tohm = haswell_get_tohm;
2228 		pvt->info.dram_rule = ibridge_dram_rule;
2229 		pvt->info.get_memory_type = haswell_get_memory_type;
2230 		pvt->info.get_node_id = haswell_get_node_id;
2231 		pvt->info.rir_limit = haswell_rir_limit;
2232 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2233 		pvt->info.interleave_list = ibridge_interleave_list;
2234 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2235 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2236 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2237 
2238 		/* Store pci devices at mci for faster access */
2239 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
2240 		if (unlikely(rc < 0))
2241 			goto fail0;
2242 		break;
2243 	}
2244 
2245 	/* Get dimm basic config and the memory layout */
2246 	get_dimm_config(mci);
2247 	get_memory_layout(mci);
2248 
2249 	/* record ptr to the generic device */
2250 	mci->pdev = &pdev->dev;
2251 
2252 	/* add this new MC control structure to EDAC's list of MCs */
2253 	if (unlikely(edac_mc_add_mc(mci))) {
2254 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2255 		rc = -EINVAL;
2256 		goto fail0;
2257 	}
2258 
2259 	return 0;
2260 
2261 fail0:
2262 	kfree(mci->ctl_name);
2263 	edac_mc_free(mci);
2264 	sbridge_dev->mci = NULL;
2265 	return rc;
2266 }
2267 
2268 /*
2269  *	sbridge_probe	Probe for ONE instance of device to see if it is
2270  *			present.
2271  *	return:
2272  *		0 for FOUND a device
2273  *		< 0 for error code
2274  */
2275 
2276 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2277 {
2278 	int rc = -ENODEV;
2279 	u8 mc, num_mc = 0;
2280 	struct sbridge_dev *sbridge_dev;
2281 	enum type type = SANDY_BRIDGE;
2282 
2283 	/* get the pci devices we want to reserve for our use */
2284 	mutex_lock(&sbridge_edac_lock);
2285 
2286 	/*
2287 	 * All memory controllers are allocated at the first pass.
2288 	 */
2289 	if (unlikely(probed >= 1)) {
2290 		mutex_unlock(&sbridge_edac_lock);
2291 		return -ENODEV;
2292 	}
2293 	probed++;
2294 
2295 	switch (pdev->device) {
2296 	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2297 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2298 		type = IVY_BRIDGE;
2299 		break;
2300 	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2301 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2302 		type = SANDY_BRIDGE;
2303 		break;
2304 	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2305 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2306 		type = HASWELL;
2307 		break;
2308 	}
2309 	if (unlikely(rc < 0))
2310 		goto fail0;
2311 	mc = 0;
2312 
2313 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2314 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2315 			 mc, mc + 1, num_mc);
2316 
2317 		sbridge_dev->mc = mc++;
2318 		rc = sbridge_register_mci(sbridge_dev, type);
2319 		if (unlikely(rc < 0))
2320 			goto fail1;
2321 	}
2322 
2323 	sbridge_printk(KERN_INFO, "Driver loaded.\n");
2324 
2325 	mutex_unlock(&sbridge_edac_lock);
2326 	return 0;
2327 
2328 fail1:
2329 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2330 		sbridge_unregister_mci(sbridge_dev);
2331 
2332 	sbridge_put_all_devices();
2333 fail0:
2334 	mutex_unlock(&sbridge_edac_lock);
2335 	return rc;
2336 }
2337 
2338 /*
2339  *	sbridge_remove	destructor for one instance of device
2340  *
2341  */
2342 static void sbridge_remove(struct pci_dev *pdev)
2343 {
2344 	struct sbridge_dev *sbridge_dev;
2345 
2346 	edac_dbg(0, "\n");
2347 
2348 	/*
2349 	 * we have a trouble here: pdev value for removal will be wrong, since
2350 	 * it will point to the X58 register used to detect that the machine
2351 	 * is a Nehalem or upper design. However, due to the way several PCI
2352 	 * devices are grouped together to provide MC functionality, we need
2353 	 * to use a different method for releasing the devices
2354 	 */
2355 
2356 	mutex_lock(&sbridge_edac_lock);
2357 
2358 	if (unlikely(!probed)) {
2359 		mutex_unlock(&sbridge_edac_lock);
2360 		return;
2361 	}
2362 
2363 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2364 		sbridge_unregister_mci(sbridge_dev);
2365 
2366 	/* Release PCI resources */
2367 	sbridge_put_all_devices();
2368 
2369 	probed--;
2370 
2371 	mutex_unlock(&sbridge_edac_lock);
2372 }
2373 
2374 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2375 
2376 /*
2377  *	sbridge_driver	pci_driver structure for this module
2378  *
2379  */
2380 static struct pci_driver sbridge_driver = {
2381 	.name     = "sbridge_edac",
2382 	.probe    = sbridge_probe,
2383 	.remove   = sbridge_remove,
2384 	.id_table = sbridge_pci_tbl,
2385 };
2386 
2387 /*
2388  *	sbridge_init		Module entry function
2389  *			Try to initialize this module for its devices
2390  */
2391 static int __init sbridge_init(void)
2392 {
2393 	int pci_rc;
2394 
2395 	edac_dbg(2, "\n");
2396 
2397 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
2398 	opstate_init();
2399 
2400 	pci_rc = pci_register_driver(&sbridge_driver);
2401 	if (pci_rc >= 0) {
2402 		mce_register_decode_chain(&sbridge_mce_dec);
2403 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2404 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2405 		return 0;
2406 	}
2407 
2408 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2409 		      pci_rc);
2410 
2411 	return pci_rc;
2412 }
2413 
2414 /*
2415  *	sbridge_exit()	Module exit function
2416  *			Unregister the driver
2417  */
2418 static void __exit sbridge_exit(void)
2419 {
2420 	edac_dbg(2, "\n");
2421 	pci_unregister_driver(&sbridge_driver);
2422 	mce_unregister_decode_chain(&sbridge_mce_dec);
2423 }
2424 
2425 module_init(sbridge_init);
2426 module_exit(sbridge_exit);
2427 
2428 module_param(edac_op_state, int, 0444);
2429 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2430 
2431 MODULE_LICENSE("GPL");
2432 MODULE_AUTHOR("Mauro Carvalho Chehab");
2433 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2434 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2435 		   SBRIDGE_REVISION);
2436