xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 63dc02bd)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab <mchehab@redhat.com>
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.0.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
54 
55 /*
56  * sbridge Memory Controller Registers
57  */
58 
59 /*
60  * FIXME: For now, let's order by device function, as it makes
61  * easier for driver's development proccess. This table should be
62  * moved to pci_id.h when submitted upstream
63  */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */
75 
76 	/*
77 	 * Currently, unused, but will be needed in the future
78 	 * implementations, as they hold the error counters
79 	 */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */
84 
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 dram_rule[] = {
87 	0x80, 0x88, 0x90, 0x98, 0xa0,
88 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89 };
90 #define MAX_SAD		ARRAY_SIZE(dram_rule)
91 
92 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
93 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
94 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
95 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
96 
97 static char *get_dram_attr(u32 reg)
98 {
99 	switch(DRAM_ATTR(reg)) {
100 		case 0:
101 			return "DRAM";
102 		case 1:
103 			return "MMCFG";
104 		case 2:
105 			return "NXM";
106 		default:
107 			return "unknown";
108 	}
109 }
110 
111 static const u32 interleave_list[] = {
112 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
113 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
114 };
115 #define MAX_INTERLEAVE	ARRAY_SIZE(interleave_list)
116 
117 #define SAD_PKG0(reg)		GET_BITFIELD(reg, 0, 2)
118 #define SAD_PKG1(reg)		GET_BITFIELD(reg, 3, 5)
119 #define SAD_PKG2(reg)		GET_BITFIELD(reg, 8, 10)
120 #define SAD_PKG3(reg)		GET_BITFIELD(reg, 11, 13)
121 #define SAD_PKG4(reg)		GET_BITFIELD(reg, 16, 18)
122 #define SAD_PKG5(reg)		GET_BITFIELD(reg, 19, 21)
123 #define SAD_PKG6(reg)		GET_BITFIELD(reg, 24, 26)
124 #define SAD_PKG7(reg)		GET_BITFIELD(reg, 27, 29)
125 
126 static inline int sad_pkg(u32 reg, int interleave)
127 {
128 	switch (interleave) {
129 	case 0:
130 		return SAD_PKG0(reg);
131 	case 1:
132 		return SAD_PKG1(reg);
133 	case 2:
134 		return SAD_PKG2(reg);
135 	case 3:
136 		return SAD_PKG3(reg);
137 	case 4:
138 		return SAD_PKG4(reg);
139 	case 5:
140 		return SAD_PKG5(reg);
141 	case 6:
142 		return SAD_PKG6(reg);
143 	case 7:
144 		return SAD_PKG7(reg);
145 	default:
146 		return -EINVAL;
147 	}
148 }
149 
150 /* Devices 12 Function 7 */
151 
152 #define TOLM		0x80
153 #define	TOHM		0x84
154 
155 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
156 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
157 
158 /* Device 13 Function 6 */
159 
160 #define SAD_TARGET	0xf0
161 
162 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
163 
164 #define SAD_CONTROL	0xf4
165 
166 #define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)
167 
168 /* Device 14 function 0 */
169 
170 static const u32 tad_dram_rule[] = {
171 	0x40, 0x44, 0x48, 0x4c,
172 	0x50, 0x54, 0x58, 0x5c,
173 	0x60, 0x64, 0x68, 0x6c,
174 };
175 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
176 
177 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
178 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
179 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
180 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
181 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
182 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
183 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
184 
185 /* Device 15, function 0 */
186 
187 #define MCMTR			0x7c
188 
189 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
190 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
191 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
192 
193 /* Device 15, function 1 */
194 
195 #define RASENABLES		0xac
196 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
197 
198 /* Device 15, functions 2-5 */
199 
200 static const int mtr_regs[] = {
201 	0x80, 0x84, 0x88,
202 };
203 
204 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
205 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
206 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
207 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
208 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
209 
210 static const u32 tad_ch_nilv_offset[] = {
211 	0x90, 0x94, 0x98, 0x9c,
212 	0xa0, 0xa4, 0xa8, 0xac,
213 	0xb0, 0xb4, 0xb8, 0xbc,
214 };
215 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
216 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
217 
218 static const u32 rir_way_limit[] = {
219 	0x108, 0x10c, 0x110, 0x114, 0x118,
220 };
221 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
222 
223 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
224 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
225 #define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)
226 
227 #define MAX_RIR_WAY	8
228 
229 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
230 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
231 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
232 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
233 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
234 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
235 };
236 
237 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
238 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
239 
240 /* Device 16, functions 2-7 */
241 
242 /*
243  * FIXME: Implement the error count reads directly
244  */
245 
246 static const u32 correrrcnt[] = {
247 	0x104, 0x108, 0x10c, 0x110,
248 };
249 
250 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
251 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
252 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
253 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
254 
255 static const u32 correrrthrsld[] = {
256 	0x11c, 0x120, 0x124, 0x128,
257 };
258 
259 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
260 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
261 
262 
263 /* Device 17, function 0 */
264 
265 #define RANK_CFG_A		0x0328
266 
267 #define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)
268 
269 /*
270  * sbridge structs
271  */
272 
273 #define NUM_CHANNELS	4
274 #define MAX_DIMMS	3		/* Max DIMMS per channel */
275 
276 struct sbridge_info {
277 	u32	mcmtr;
278 };
279 
280 struct sbridge_channel {
281 	u32		ranks;
282 	u32		dimms;
283 };
284 
285 struct pci_id_descr {
286 	int			dev;
287 	int			func;
288 	int 			dev_id;
289 	int			optional;
290 };
291 
292 struct pci_id_table {
293 	const struct pci_id_descr	*descr;
294 	int				n_devs;
295 };
296 
297 struct sbridge_dev {
298 	struct list_head	list;
299 	u8			bus, mc;
300 	u8			node_id, source_id;
301 	struct pci_dev		**pdev;
302 	int			n_devs;
303 	struct mem_ctl_info	*mci;
304 };
305 
306 struct sbridge_pvt {
307 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
308 	struct pci_dev		*pci_sad0, *pci_sad1, *pci_ha0;
309 	struct pci_dev		*pci_br;
310 	struct pci_dev		*pci_tad[NUM_CHANNELS];
311 
312 	struct sbridge_dev	*sbridge_dev;
313 
314 	struct sbridge_info	info;
315 	struct sbridge_channel	channel[NUM_CHANNELS];
316 
317 	int 			csrow_map[NUM_CHANNELS][MAX_DIMMS];
318 
319 	/* Memory type detection */
320 	bool			is_mirrored, is_lockstep, is_close_pg;
321 
322 	/* Fifo double buffers */
323 	struct mce		mce_entry[MCE_LOG_LEN];
324 	struct mce		mce_outentry[MCE_LOG_LEN];
325 
326 	/* Fifo in/out counters */
327 	unsigned		mce_in, mce_out;
328 
329 	/* Count indicator to show errors not got */
330 	unsigned		mce_overrun;
331 
332 	/* Memory description */
333 	u64			tolm, tohm;
334 };
335 
336 #define PCI_DESCR(device, function, device_id)	\
337 	.dev = (device),			\
338 	.func = (function),			\
339 	.dev_id = (device_id)
340 
341 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
342 		/* Processor Home Agent */
343 	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)		},
344 
345 		/* Memory controller */
346 	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)		},
347 	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS)		},
348 	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0)	},
349 	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1)	},
350 	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2)	},
351 	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3)	},
352 	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO)	},
353 
354 		/* System Address Decoder */
355 	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0)		},
356 	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1)		},
357 
358 		/* Broadcast Registers */
359 	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR)		},
360 };
361 
362 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
363 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
364 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
365 	{0,}			/* 0 terminated list. */
366 };
367 
368 /*
369  *	pci_device_id	table for which devices we are looking for
370  */
371 static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = {
372 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
373 	{0,}			/* 0 terminated list. */
374 };
375 
376 
377 /****************************************************************************
378 			Anciliary status routines
379  ****************************************************************************/
380 
381 static inline int numrank(u32 mtr)
382 {
383 	int ranks = (1 << RANK_CNT_BITS(mtr));
384 
385 	if (ranks > 4) {
386 		debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
387 			ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
388 		return -EINVAL;
389 	}
390 
391 	return ranks;
392 }
393 
394 static inline int numrow(u32 mtr)
395 {
396 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
397 
398 	if (rows < 13 || rows > 18) {
399 		debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
400 			rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
401 		return -EINVAL;
402 	}
403 
404 	return 1 << rows;
405 }
406 
407 static inline int numcol(u32 mtr)
408 {
409 	int cols = (COL_WIDTH_BITS(mtr) + 10);
410 
411 	if (cols > 12) {
412 		debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
413 			cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
414 		return -EINVAL;
415 	}
416 
417 	return 1 << cols;
418 }
419 
420 static struct sbridge_dev *get_sbridge_dev(u8 bus)
421 {
422 	struct sbridge_dev *sbridge_dev;
423 
424 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
425 		if (sbridge_dev->bus == bus)
426 			return sbridge_dev;
427 	}
428 
429 	return NULL;
430 }
431 
432 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
433 					   const struct pci_id_table *table)
434 {
435 	struct sbridge_dev *sbridge_dev;
436 
437 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
438 	if (!sbridge_dev)
439 		return NULL;
440 
441 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
442 				   GFP_KERNEL);
443 	if (!sbridge_dev->pdev) {
444 		kfree(sbridge_dev);
445 		return NULL;
446 	}
447 
448 	sbridge_dev->bus = bus;
449 	sbridge_dev->n_devs = table->n_devs;
450 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
451 
452 	return sbridge_dev;
453 }
454 
455 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
456 {
457 	list_del(&sbridge_dev->list);
458 	kfree(sbridge_dev->pdev);
459 	kfree(sbridge_dev);
460 }
461 
462 /****************************************************************************
463 			Memory check routines
464  ****************************************************************************/
465 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
466 					  unsigned func)
467 {
468 	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
469 	int i;
470 
471 	if (!sbridge_dev)
472 		return NULL;
473 
474 	for (i = 0; i < sbridge_dev->n_devs; i++) {
475 		if (!sbridge_dev->pdev[i])
476 			continue;
477 
478 		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
479 		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
480 			debugf1("Associated %02x.%02x.%d with %p\n",
481 				bus, slot, func, sbridge_dev->pdev[i]);
482 			return sbridge_dev->pdev[i];
483 		}
484 	}
485 
486 	return NULL;
487 }
488 
489 /**
490  * sbridge_get_active_channels() - gets the number of channels and csrows
491  * bus:		Device bus
492  * @channels:	Number of channels that will be returned
493  * @csrows:	Number of csrows found
494  *
495  * Since EDAC core needs to know in advance the number of available channels
496  * and csrows, in order to allocate memory for csrows/channels, it is needed
497  * to run two similar steps. At the first step, implemented on this function,
498  * it checks the number of csrows/channels present at one socket, identified
499  * by the associated PCI bus.
500  * this is used in order to properly allocate the size of mci components.
501  * Note: one csrow is one dimm.
502  */
503 static int sbridge_get_active_channels(const u8 bus, unsigned *channels,
504 				      unsigned *csrows)
505 {
506 	struct pci_dev *pdev = NULL;
507 	int i, j;
508 	u32 mcmtr;
509 
510 	*channels = 0;
511 	*csrows = 0;
512 
513 	pdev = get_pdev_slot_func(bus, 15, 0);
514 	if (!pdev) {
515 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
516 					"%2x.%02d.%d!!!\n",
517 					bus, 15, 0);
518 		return -ENODEV;
519 	}
520 
521 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
522 	if (!IS_ECC_ENABLED(mcmtr)) {
523 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
524 		return -ENODEV;
525 	}
526 
527 	for (i = 0; i < NUM_CHANNELS; i++) {
528 		u32 mtr;
529 
530 		/* Device 15 functions 2 - 5  */
531 		pdev = get_pdev_slot_func(bus, 15, 2 + i);
532 		if (!pdev) {
533 			sbridge_printk(KERN_ERR, "Couldn't find PCI device "
534 						 "%2x.%02d.%d!!!\n",
535 						 bus, 15, 2 + i);
536 			return -ENODEV;
537 		}
538 		(*channels)++;
539 
540 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
541 			pci_read_config_dword(pdev, mtr_regs[j], &mtr);
542 			debugf1("Bus#%02x channel #%d  MTR%d = %x\n", bus, i, j, mtr);
543 			if (IS_DIMM_PRESENT(mtr))
544 				(*csrows)++;
545 		}
546 	}
547 
548 	debugf0("Number of active channels: %d, number of active dimms: %d\n",
549 		*channels, *csrows);
550 
551 	return 0;
552 }
553 
554 static int get_dimm_config(const struct mem_ctl_info *mci)
555 {
556 	struct sbridge_pvt *pvt = mci->pvt_info;
557 	struct csrow_info *csr;
558 	int i, j, banks, ranks, rows, cols, size, npages;
559 	int csrow = 0;
560 	unsigned long last_page = 0;
561 	u32 reg;
562 	enum edac_type mode;
563 	enum mem_type mtype;
564 
565 	pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
566 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
567 
568 	pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
569 	pvt->sbridge_dev->node_id = NODE_ID(reg);
570 	debugf0("mc#%d: Node ID: %d, source ID: %d\n",
571 		pvt->sbridge_dev->mc,
572 		pvt->sbridge_dev->node_id,
573 		pvt->sbridge_dev->source_id);
574 
575 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
576 	if (IS_MIRROR_ENABLED(reg)) {
577 		debugf0("Memory mirror is enabled\n");
578 		pvt->is_mirrored = true;
579 	} else {
580 		debugf0("Memory mirror is disabled\n");
581 		pvt->is_mirrored = false;
582 	}
583 
584 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
585 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
586 		debugf0("Lockstep is enabled\n");
587 		mode = EDAC_S8ECD8ED;
588 		pvt->is_lockstep = true;
589 	} else {
590 		debugf0("Lockstep is disabled\n");
591 		mode = EDAC_S4ECD4ED;
592 		pvt->is_lockstep = false;
593 	}
594 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
595 		debugf0("address map is on closed page mode\n");
596 		pvt->is_close_pg = true;
597 	} else {
598 		debugf0("address map is on open page mode\n");
599 		pvt->is_close_pg = false;
600 	}
601 
602 	pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
603 	if (IS_RDIMM_ENABLED(reg)) {
604 		/* FIXME: Can also be LRDIMM */
605 		debugf0("Memory is registered\n");
606 		mtype = MEM_RDDR3;
607 	} else {
608 		debugf0("Memory is unregistered\n");
609 		mtype = MEM_DDR3;
610 	}
611 
612 	/* On all supported DDR3 DIMM types, there are 8 banks available */
613 	banks = 8;
614 
615 	for (i = 0; i < NUM_CHANNELS; i++) {
616 		u32 mtr;
617 
618 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
619 			pci_read_config_dword(pvt->pci_tad[i],
620 					      mtr_regs[j], &mtr);
621 			debugf4("Channel #%d  MTR%d = %x\n", i, j, mtr);
622 			if (IS_DIMM_PRESENT(mtr)) {
623 				pvt->channel[i].dimms++;
624 
625 				ranks = numrank(mtr);
626 				rows = numrow(mtr);
627 				cols = numcol(mtr);
628 
629 				/* DDR3 has 8 I/O banks */
630 				size = (rows * cols * banks * ranks) >> (20 - 3);
631 				npages = MiB_TO_PAGES(size);
632 
633 				debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
634 					pvt->sbridge_dev->mc, i, j,
635 					size, npages,
636 					banks, ranks, rows, cols);
637 				csr = &mci->csrows[csrow];
638 
639 				csr->first_page = last_page;
640 				csr->last_page = last_page + npages - 1;
641 				csr->page_mask = 0UL;	/* Unused */
642 				csr->nr_pages = npages;
643 				csr->grain = 32;
644 				csr->csrow_idx = csrow;
645 				csr->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
646 				csr->ce_count = 0;
647 				csr->ue_count = 0;
648 				csr->mtype = mtype;
649 				csr->edac_mode = mode;
650 				csr->nr_channels = 1;
651 				csr->channels[0].chan_idx = i;
652 				csr->channels[0].ce_count = 0;
653 				pvt->csrow_map[i][j] = csrow;
654 				snprintf(csr->channels[0].label,
655 					 sizeof(csr->channels[0].label),
656 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
657 					 pvt->sbridge_dev->source_id, i, j);
658 				last_page += npages;
659 				csrow++;
660 			}
661 		}
662 	}
663 
664 	return 0;
665 }
666 
667 static void get_memory_layout(const struct mem_ctl_info *mci)
668 {
669 	struct sbridge_pvt *pvt = mci->pvt_info;
670 	int i, j, k, n_sads, n_tads, sad_interl;
671 	u32 reg;
672 	u64 limit, prv = 0;
673 	u64 tmp_mb;
674 	u32 mb, kb;
675 	u32 rir_way;
676 
677 	/*
678 	 * Step 1) Get TOLM/TOHM ranges
679 	 */
680 
681 	/* Address range is 32:28 */
682 	pci_read_config_dword(pvt->pci_sad1, TOLM,
683 			      &reg);
684 	pvt->tolm = GET_TOLM(reg);
685 	tmp_mb = (1 + pvt->tolm) >> 20;
686 
687 	mb = div_u64_rem(tmp_mb, 1000, &kb);
688 	debugf0("TOLM: %u.%03u GB (0x%016Lx)\n",
689 		mb, kb, (u64)pvt->tolm);
690 
691 	/* Address range is already 45:25 */
692 	pci_read_config_dword(pvt->pci_sad1, TOHM,
693 			      &reg);
694 	pvt->tohm = GET_TOHM(reg);
695 	tmp_mb = (1 + pvt->tohm) >> 20;
696 
697 	mb = div_u64_rem(tmp_mb, 1000, &kb);
698 	debugf0("TOHM: %u.%03u GB (0x%016Lx)",
699 		mb, kb, (u64)pvt->tohm);
700 
701 	/*
702 	 * Step 2) Get SAD range and SAD Interleave list
703 	 * TAD registers contain the interleave wayness. However, it
704 	 * seems simpler to just discover it indirectly, with the
705 	 * algorithm bellow.
706 	 */
707 	prv = 0;
708 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
709 		/* SAD_LIMIT Address range is 45:26 */
710 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
711 				      &reg);
712 		limit = SAD_LIMIT(reg);
713 
714 		if (!DRAM_RULE_ENABLE(reg))
715 			continue;
716 
717 		if (limit <= prv)
718 			break;
719 
720 		tmp_mb = (limit + 1) >> 20;
721 		mb = div_u64_rem(tmp_mb, 1000, &kb);
722 		debugf0("SAD#%d %s up to %u.%03u GB (0x%016Lx) %s reg=0x%08x\n",
723 			n_sads,
724 			get_dram_attr(reg),
725 			mb, kb,
726 			((u64)tmp_mb) << 20L,
727 			INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
728 			reg);
729 		prv = limit;
730 
731 		pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
732 				      &reg);
733 		sad_interl = sad_pkg(reg, 0);
734 		for (j = 0; j < 8; j++) {
735 			if (j > 0 && sad_interl == sad_pkg(reg, j))
736 				break;
737 
738 			debugf0("SAD#%d, interleave #%d: %d\n",
739 			n_sads, j, sad_pkg(reg, j));
740 		}
741 	}
742 
743 	/*
744 	 * Step 3) Get TAD range
745 	 */
746 	prv = 0;
747 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
748 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
749 				      &reg);
750 		limit = TAD_LIMIT(reg);
751 		if (limit <= prv)
752 			break;
753 		tmp_mb = (limit + 1) >> 20;
754 
755 		mb = div_u64_rem(tmp_mb, 1000, &kb);
756 		debugf0("TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
757 			n_tads, mb, kb,
758 			((u64)tmp_mb) << 20L,
759 			(u32)TAD_SOCK(reg),
760 			(u32)TAD_CH(reg),
761 			(u32)TAD_TGT0(reg),
762 			(u32)TAD_TGT1(reg),
763 			(u32)TAD_TGT2(reg),
764 			(u32)TAD_TGT3(reg),
765 			reg);
766 		prv = limit;
767 	}
768 
769 	/*
770 	 * Step 4) Get TAD offsets, per each channel
771 	 */
772 	for (i = 0; i < NUM_CHANNELS; i++) {
773 		if (!pvt->channel[i].dimms)
774 			continue;
775 		for (j = 0; j < n_tads; j++) {
776 			pci_read_config_dword(pvt->pci_tad[i],
777 					      tad_ch_nilv_offset[j],
778 					      &reg);
779 			tmp_mb = TAD_OFFSET(reg) >> 20;
780 			mb = div_u64_rem(tmp_mb, 1000, &kb);
781 			debugf0("TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
782 				i, j,
783 				mb, kb,
784 				((u64)tmp_mb) << 20L,
785 				reg);
786 		}
787 	}
788 
789 	/*
790 	 * Step 6) Get RIR Wayness/Limit, per each channel
791 	 */
792 	for (i = 0; i < NUM_CHANNELS; i++) {
793 		if (!pvt->channel[i].dimms)
794 			continue;
795 		for (j = 0; j < MAX_RIR_RANGES; j++) {
796 			pci_read_config_dword(pvt->pci_tad[i],
797 					      rir_way_limit[j],
798 					      &reg);
799 
800 			if (!IS_RIR_VALID(reg))
801 				continue;
802 
803 			tmp_mb = RIR_LIMIT(reg) >> 20;
804 			rir_way = 1 << RIR_WAY(reg);
805 			mb = div_u64_rem(tmp_mb, 1000, &kb);
806 			debugf0("CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
807 				i, j,
808 				mb, kb,
809 				((u64)tmp_mb) << 20L,
810 				rir_way,
811 				reg);
812 
813 			for (k = 0; k < rir_way; k++) {
814 				pci_read_config_dword(pvt->pci_tad[i],
815 						      rir_offset[j][k],
816 						      &reg);
817 				tmp_mb = RIR_OFFSET(reg) << 6;
818 
819 				mb = div_u64_rem(tmp_mb, 1000, &kb);
820 				debugf0("CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
821 					i, j, k,
822 					mb, kb,
823 					((u64)tmp_mb) << 20L,
824 					(u32)RIR_RNK_TGT(reg),
825 					reg);
826 			}
827 		}
828 	}
829 }
830 
831 struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
832 {
833 	struct sbridge_dev *sbridge_dev;
834 
835 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
836 		if (sbridge_dev->node_id == node_id)
837 			return sbridge_dev->mci;
838 	}
839 	return NULL;
840 }
841 
842 static int get_memory_error_data(struct mem_ctl_info *mci,
843 				 u64 addr,
844 				 u8 *socket,
845 				 long *channel_mask,
846 				 u8 *rank,
847 				 char *area_type)
848 {
849 	struct mem_ctl_info	*new_mci;
850 	struct sbridge_pvt *pvt = mci->pvt_info;
851 	char			msg[256];
852 	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
853 	int			sad_interl, idx, base_ch;
854 	int			interleave_mode;
855 	unsigned		sad_interleave[MAX_INTERLEAVE];
856 	u32			reg;
857 	u8			ch_way,sck_way;
858 	u32			tad_offset;
859 	u32			rir_way;
860 	u32			mb, kb;
861 	u64			ch_addr, offset, limit, prv = 0;
862 
863 
864 	/*
865 	 * Step 0) Check if the address is at special memory ranges
866 	 * The check bellow is probably enough to fill all cases where
867 	 * the error is not inside a memory, except for the legacy
868 	 * range (e. g. VGA addresses). It is unlikely, however, that the
869 	 * memory controller would generate an error on that range.
870 	 */
871 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
872 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
873 		edac_mc_handle_ce_no_info(mci, msg);
874 		return -EINVAL;
875 	}
876 	if (addr >= (u64)pvt->tohm) {
877 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
878 		edac_mc_handle_ce_no_info(mci, msg);
879 		return -EINVAL;
880 	}
881 
882 	/*
883 	 * Step 1) Get socket
884 	 */
885 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
886 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
887 				      &reg);
888 
889 		if (!DRAM_RULE_ENABLE(reg))
890 			continue;
891 
892 		limit = SAD_LIMIT(reg);
893 		if (limit <= prv) {
894 			sprintf(msg, "Can't discover the memory socket");
895 			edac_mc_handle_ce_no_info(mci, msg);
896 			return -EINVAL;
897 		}
898 		if  (addr <= limit)
899 			break;
900 		prv = limit;
901 	}
902 	if (n_sads == MAX_SAD) {
903 		sprintf(msg, "Can't discover the memory socket");
904 		edac_mc_handle_ce_no_info(mci, msg);
905 		return -EINVAL;
906 	}
907 	area_type = get_dram_attr(reg);
908 	interleave_mode = INTERLEAVE_MODE(reg);
909 
910 	pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
911 			      &reg);
912 	sad_interl = sad_pkg(reg, 0);
913 	for (sad_way = 0; sad_way < 8; sad_way++) {
914 		if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
915 			break;
916 		sad_interleave[sad_way] = sad_pkg(reg, sad_way);
917 		debugf0("SAD interleave #%d: %d\n",
918 			sad_way, sad_interleave[sad_way]);
919 	}
920 	debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
921 		pvt->sbridge_dev->mc,
922 		n_sads,
923 		addr,
924 		limit,
925 		sad_way + 7,
926 		interleave_mode ? "" : "XOR[18:16]");
927 	if (interleave_mode)
928 		idx = ((addr >> 6) ^ (addr >> 16)) & 7;
929 	else
930 		idx = (addr >> 6) & 7;
931 	switch (sad_way) {
932 	case 1:
933 		idx = 0;
934 		break;
935 	case 2:
936 		idx = idx & 1;
937 		break;
938 	case 4:
939 		idx = idx & 3;
940 		break;
941 	case 8:
942 		break;
943 	default:
944 		sprintf(msg, "Can't discover socket interleave");
945 		edac_mc_handle_ce_no_info(mci, msg);
946 		return -EINVAL;
947 	}
948 	*socket = sad_interleave[idx];
949 	debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
950 		idx, sad_way, *socket);
951 
952 	/*
953 	 * Move to the proper node structure, in order to access the
954 	 * right PCI registers
955 	 */
956 	new_mci = get_mci_for_node_id(*socket);
957 	if (!new_mci) {
958 		sprintf(msg, "Struct for socket #%u wasn't initialized",
959 			*socket);
960 		edac_mc_handle_ce_no_info(mci, msg);
961 		return -EINVAL;
962 	}
963 	mci = new_mci;
964 	pvt = mci->pvt_info;
965 
966 	/*
967 	 * Step 2) Get memory channel
968 	 */
969 	prv = 0;
970 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
971 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
972 				      &reg);
973 		limit = TAD_LIMIT(reg);
974 		if (limit <= prv) {
975 			sprintf(msg, "Can't discover the memory channel");
976 			edac_mc_handle_ce_no_info(mci, msg);
977 			return -EINVAL;
978 		}
979 		if  (addr <= limit)
980 			break;
981 		prv = limit;
982 	}
983 	ch_way = TAD_CH(reg) + 1;
984 	sck_way = TAD_SOCK(reg) + 1;
985 	/*
986 	 * FIXME: Is it right to always use channel 0 for offsets?
987 	 */
988 	pci_read_config_dword(pvt->pci_tad[0],
989 				tad_ch_nilv_offset[n_tads],
990 				&tad_offset);
991 
992 	if (ch_way == 3)
993 		idx = addr >> 6;
994 	else
995 		idx = addr >> (6 + sck_way);
996 	idx = idx % ch_way;
997 
998 	/*
999 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1000 	 */
1001 	switch (idx) {
1002 	case 0:
1003 		base_ch = TAD_TGT0(reg);
1004 		break;
1005 	case 1:
1006 		base_ch = TAD_TGT1(reg);
1007 		break;
1008 	case 2:
1009 		base_ch = TAD_TGT2(reg);
1010 		break;
1011 	case 3:
1012 		base_ch = TAD_TGT3(reg);
1013 		break;
1014 	default:
1015 		sprintf(msg, "Can't discover the TAD target");
1016 		edac_mc_handle_ce_no_info(mci, msg);
1017 		return -EINVAL;
1018 	}
1019 	*channel_mask = 1 << base_ch;
1020 
1021 	if (pvt->is_mirrored) {
1022 		*channel_mask |= 1 << ((base_ch + 2) % 4);
1023 		switch(ch_way) {
1024 		case 2:
1025 		case 4:
1026 			sck_xch = 1 << sck_way * (ch_way >> 1);
1027 			break;
1028 		default:
1029 			sprintf(msg, "Invalid mirror set. Can't decode addr");
1030 			edac_mc_handle_ce_no_info(mci, msg);
1031 			return -EINVAL;
1032 		}
1033 	} else
1034 		sck_xch = (1 << sck_way) * ch_way;
1035 
1036 	if (pvt->is_lockstep)
1037 		*channel_mask |= 1 << ((base_ch + 1) % 4);
1038 
1039 	offset = TAD_OFFSET(tad_offset);
1040 
1041 	debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1042 		n_tads,
1043 		addr,
1044 		limit,
1045 		(u32)TAD_SOCK(reg),
1046 		ch_way,
1047 		offset,
1048 		idx,
1049 		base_ch,
1050 		*channel_mask);
1051 
1052 	/* Calculate channel address */
1053 	/* Remove the TAD offset */
1054 
1055 	if (offset > addr) {
1056 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1057 			offset, addr);
1058 		edac_mc_handle_ce_no_info(mci, msg);
1059 		return -EINVAL;
1060 	}
1061 	addr -= offset;
1062 	/* Store the low bits [0:6] of the addr */
1063 	ch_addr = addr & 0x7f;
1064 	/* Remove socket wayness and remove 6 bits */
1065 	addr >>= 6;
1066 	addr = div_u64(addr, sck_xch);
1067 #if 0
1068 	/* Divide by channel way */
1069 	addr = addr / ch_way;
1070 #endif
1071 	/* Recover the last 6 bits */
1072 	ch_addr |= addr << 6;
1073 
1074 	/*
1075 	 * Step 3) Decode rank
1076 	 */
1077 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1078 		pci_read_config_dword(pvt->pci_tad[base_ch],
1079 				      rir_way_limit[n_rir],
1080 				      &reg);
1081 
1082 		if (!IS_RIR_VALID(reg))
1083 			continue;
1084 
1085 		limit = RIR_LIMIT(reg);
1086 		mb = div_u64_rem(limit >> 20, 1000, &kb);
1087 		debugf0("RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1088 			n_rir,
1089 			mb, kb,
1090 			limit,
1091 			1 << RIR_WAY(reg));
1092 		if  (ch_addr <= limit)
1093 			break;
1094 	}
1095 	if (n_rir == MAX_RIR_RANGES) {
1096 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1097 			ch_addr);
1098 		edac_mc_handle_ce_no_info(mci, msg);
1099 		return -EINVAL;
1100 	}
1101 	rir_way = RIR_WAY(reg);
1102 	if (pvt->is_close_pg)
1103 		idx = (ch_addr >> 6);
1104 	else
1105 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1106 	idx %= 1 << rir_way;
1107 
1108 	pci_read_config_dword(pvt->pci_tad[base_ch],
1109 			      rir_offset[n_rir][idx],
1110 			      &reg);
1111 	*rank = RIR_RNK_TGT(reg);
1112 
1113 	debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1114 		n_rir,
1115 		ch_addr,
1116 		limit,
1117 		rir_way,
1118 		idx);
1119 
1120 	return 0;
1121 }
1122 
1123 /****************************************************************************
1124 	Device initialization routines: put/get, init/exit
1125  ****************************************************************************/
1126 
1127 /*
1128  *	sbridge_put_all_devices	'put' all the devices that we have
1129  *				reserved via 'get'
1130  */
1131 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1132 {
1133 	int i;
1134 
1135 	debugf0(__FILE__ ": %s()\n", __func__);
1136 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1137 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1138 		if (!pdev)
1139 			continue;
1140 		debugf0("Removing dev %02x:%02x.%d\n",
1141 			pdev->bus->number,
1142 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1143 		pci_dev_put(pdev);
1144 	}
1145 }
1146 
1147 static void sbridge_put_all_devices(void)
1148 {
1149 	struct sbridge_dev *sbridge_dev, *tmp;
1150 
1151 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1152 		sbridge_put_devices(sbridge_dev);
1153 		free_sbridge_dev(sbridge_dev);
1154 	}
1155 }
1156 
1157 /*
1158  *	sbridge_get_all_devices	Find and perform 'get' operation on the MCH's
1159  *			device/functions we want to reference for this driver
1160  *
1161  *			Need to 'get' device 16 func 1 and func 2
1162  */
1163 static int sbridge_get_onedevice(struct pci_dev **prev,
1164 				 u8 *num_mc,
1165 				 const struct pci_id_table *table,
1166 				 const unsigned devno)
1167 {
1168 	struct sbridge_dev *sbridge_dev;
1169 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1170 
1171 	struct pci_dev *pdev = NULL;
1172 	u8 bus = 0;
1173 
1174 	sbridge_printk(KERN_INFO,
1175 		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1176 		dev_descr->dev, dev_descr->func,
1177 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1178 
1179 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1180 			      dev_descr->dev_id, *prev);
1181 
1182 	if (!pdev) {
1183 		if (*prev) {
1184 			*prev = pdev;
1185 			return 0;
1186 		}
1187 
1188 		if (dev_descr->optional)
1189 			return 0;
1190 
1191 		if (devno == 0)
1192 			return -ENODEV;
1193 
1194 		sbridge_printk(KERN_INFO,
1195 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1196 			dev_descr->dev, dev_descr->func,
1197 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1198 
1199 		/* End of list, leave */
1200 		return -ENODEV;
1201 	}
1202 	bus = pdev->bus->number;
1203 
1204 	sbridge_dev = get_sbridge_dev(bus);
1205 	if (!sbridge_dev) {
1206 		sbridge_dev = alloc_sbridge_dev(bus, table);
1207 		if (!sbridge_dev) {
1208 			pci_dev_put(pdev);
1209 			return -ENOMEM;
1210 		}
1211 		(*num_mc)++;
1212 	}
1213 
1214 	if (sbridge_dev->pdev[devno]) {
1215 		sbridge_printk(KERN_ERR,
1216 			"Duplicated device for "
1217 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1218 			bus, dev_descr->dev, dev_descr->func,
1219 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1220 		pci_dev_put(pdev);
1221 		return -ENODEV;
1222 	}
1223 
1224 	sbridge_dev->pdev[devno] = pdev;
1225 
1226 	/* Sanity check */
1227 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1228 			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1229 		sbridge_printk(KERN_ERR,
1230 			"Device PCI ID %04x:%04x "
1231 			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1232 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1233 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1234 			bus, dev_descr->dev, dev_descr->func);
1235 		return -ENODEV;
1236 	}
1237 
1238 	/* Be sure that the device is enabled */
1239 	if (unlikely(pci_enable_device(pdev) < 0)) {
1240 		sbridge_printk(KERN_ERR,
1241 			"Couldn't enable "
1242 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1243 			bus, dev_descr->dev, dev_descr->func,
1244 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1245 		return -ENODEV;
1246 	}
1247 
1248 	debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1249 		bus, dev_descr->dev,
1250 		dev_descr->func,
1251 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1252 
1253 	/*
1254 	 * As stated on drivers/pci/search.c, the reference count for
1255 	 * @from is always decremented if it is not %NULL. So, as we need
1256 	 * to get all devices up to null, we need to do a get for the device
1257 	 */
1258 	pci_dev_get(pdev);
1259 
1260 	*prev = pdev;
1261 
1262 	return 0;
1263 }
1264 
1265 static int sbridge_get_all_devices(u8 *num_mc)
1266 {
1267 	int i, rc;
1268 	struct pci_dev *pdev = NULL;
1269 	const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1270 
1271 	while (table && table->descr) {
1272 		for (i = 0; i < table->n_devs; i++) {
1273 			pdev = NULL;
1274 			do {
1275 				rc = sbridge_get_onedevice(&pdev, num_mc,
1276 							   table, i);
1277 				if (rc < 0) {
1278 					if (i == 0) {
1279 						i = table->n_devs;
1280 						break;
1281 					}
1282 					sbridge_put_all_devices();
1283 					return -ENODEV;
1284 				}
1285 			} while (pdev);
1286 		}
1287 		table++;
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 static int mci_bind_devs(struct mem_ctl_info *mci,
1294 			 struct sbridge_dev *sbridge_dev)
1295 {
1296 	struct sbridge_pvt *pvt = mci->pvt_info;
1297 	struct pci_dev *pdev;
1298 	int i, func, slot;
1299 
1300 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1301 		pdev = sbridge_dev->pdev[i];
1302 		if (!pdev)
1303 			continue;
1304 		slot = PCI_SLOT(pdev->devfn);
1305 		func = PCI_FUNC(pdev->devfn);
1306 		switch (slot) {
1307 		case 12:
1308 			switch (func) {
1309 			case 6:
1310 				pvt->pci_sad0 = pdev;
1311 				break;
1312 			case 7:
1313 				pvt->pci_sad1 = pdev;
1314 				break;
1315 			default:
1316 				goto error;
1317 			}
1318 			break;
1319 		case 13:
1320 			switch (func) {
1321 			case 6:
1322 				pvt->pci_br = pdev;
1323 				break;
1324 			default:
1325 				goto error;
1326 			}
1327 			break;
1328 		case 14:
1329 			switch (func) {
1330 			case 0:
1331 				pvt->pci_ha0 = pdev;
1332 				break;
1333 			default:
1334 				goto error;
1335 			}
1336 			break;
1337 		case 15:
1338 			switch (func) {
1339 			case 0:
1340 				pvt->pci_ta = pdev;
1341 				break;
1342 			case 1:
1343 				pvt->pci_ras = pdev;
1344 				break;
1345 			case 2:
1346 			case 3:
1347 			case 4:
1348 			case 5:
1349 				pvt->pci_tad[func - 2] = pdev;
1350 				break;
1351 			default:
1352 				goto error;
1353 			}
1354 			break;
1355 		case 17:
1356 			switch (func) {
1357 			case 0:
1358 				pvt->pci_ddrio = pdev;
1359 				break;
1360 			default:
1361 				goto error;
1362 			}
1363 			break;
1364 		default:
1365 			goto error;
1366 		}
1367 
1368 		debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
1369 			sbridge_dev->bus,
1370 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1371 			pdev);
1372 	}
1373 
1374 	/* Check if everything were registered */
1375 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1376 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta ||
1377 	    !pvt->pci_ddrio)
1378 		goto enodev;
1379 
1380 	for (i = 0; i < NUM_CHANNELS; i++) {
1381 		if (!pvt->pci_tad[i])
1382 			goto enodev;
1383 	}
1384 	return 0;
1385 
1386 enodev:
1387 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1388 	return -ENODEV;
1389 
1390 error:
1391 	sbridge_printk(KERN_ERR, "Device %d, function %d "
1392 		      "is out of the expected range\n",
1393 		      slot, func);
1394 	return -EINVAL;
1395 }
1396 
1397 /****************************************************************************
1398 			Error check routines
1399  ****************************************************************************/
1400 
1401 /*
1402  * While Sandy Bridge has error count registers, SMI BIOS read values from
1403  * and resets the counters. So, they are not reliable for the OS to read
1404  * from them. So, we have no option but to just trust on whatever MCE is
1405  * telling us about the errors.
1406  */
1407 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1408 				    const struct mce *m)
1409 {
1410 	struct mem_ctl_info *new_mci;
1411 	struct sbridge_pvt *pvt = mci->pvt_info;
1412 	char *type, *optype, *msg, *recoverable_msg;
1413 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1414 	bool overflow = GET_BITFIELD(m->status, 62, 62);
1415 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1416 	bool recoverable = GET_BITFIELD(m->status, 56, 56);
1417 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1418 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1419 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1420 	u32 channel = GET_BITFIELD(m->status, 0, 3);
1421 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1422 	long channel_mask, first_channel;
1423 	u8  rank, socket;
1424 	int csrow, rc, dimm;
1425 	char *area_type = "Unknown";
1426 
1427 	if (ripv)
1428 		type = "NON_FATAL";
1429 	else
1430 		type = "FATAL";
1431 
1432 	/*
1433 	 * According with Table 15-9 of the Intel Archictecture spec vol 3A,
1434 	 * memory errors should fit in this mask:
1435 	 *	000f 0000 1mmm cccc (binary)
1436 	 * where:
1437 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
1438 	 *	    won't be shown
1439 	 *	mmm = error type
1440 	 *	cccc = channel
1441 	 * If the mask doesn't match, report an error to the parsing logic
1442 	 */
1443 	if (! ((errcode & 0xef80) == 0x80)) {
1444 		optype = "Can't parse: it is not a mem";
1445 	} else {
1446 		switch (optypenum) {
1447 		case 0:
1448 			optype = "generic undef request";
1449 			break;
1450 		case 1:
1451 			optype = "memory read";
1452 			break;
1453 		case 2:
1454 			optype = "memory write";
1455 			break;
1456 		case 3:
1457 			optype = "addr/cmd";
1458 			break;
1459 		case 4:
1460 			optype = "memory scrubbing";
1461 			break;
1462 		default:
1463 			optype = "reserved";
1464 			break;
1465 		}
1466 	}
1467 
1468 	rc = get_memory_error_data(mci, m->addr, &socket,
1469 				   &channel_mask, &rank, area_type);
1470 	if (rc < 0)
1471 		return;
1472 	new_mci = get_mci_for_node_id(socket);
1473 	if (!new_mci) {
1474 		edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!");
1475 		return;
1476 	}
1477 	mci = new_mci;
1478 	pvt = mci->pvt_info;
1479 
1480 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1481 
1482 	if (rank < 4)
1483 		dimm = 0;
1484 	else if (rank < 8)
1485 		dimm = 1;
1486 	else
1487 		dimm = 2;
1488 
1489 	csrow = pvt->csrow_map[first_channel][dimm];
1490 
1491 	if (uncorrected_error && recoverable)
1492 		recoverable_msg = " recoverable";
1493 	else
1494 		recoverable_msg = "";
1495 
1496 	/*
1497 	 * FIXME: What should we do with "channel" information on mcelog?
1498 	 * Probably, we can just discard it, as the channel information
1499 	 * comes from the get_memory_error_data() address decoding
1500 	 */
1501 	msg = kasprintf(GFP_ATOMIC,
1502 			"%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), "
1503 			"addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n",
1504 			core_err_cnt,
1505 			area_type,
1506 			optype,
1507 			type,
1508 			recoverable_msg,
1509 			overflow ? "OVERFLOW" : "",
1510 			m->cpu,
1511 			mscod, errcode,
1512 			channel,		/* 1111b means not specified */
1513 			(long long) m->addr,
1514 			socket,
1515 			first_channel,		/* This is the real channel on SB */
1516 			channel_mask,
1517 			rank);
1518 
1519 	debugf0("%s", msg);
1520 
1521 	/* Call the helper to output message */
1522 	if (uncorrected_error)
1523 		edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg);
1524 	else
1525 		edac_mc_handle_fbd_ce(mci, csrow, 0, msg);
1526 
1527 	kfree(msg);
1528 }
1529 
1530 /*
1531  *	sbridge_check_error	Retrieve and process errors reported by the
1532  *				hardware. Called by the Core module.
1533  */
1534 static void sbridge_check_error(struct mem_ctl_info *mci)
1535 {
1536 	struct sbridge_pvt *pvt = mci->pvt_info;
1537 	int i;
1538 	unsigned count = 0;
1539 	struct mce *m;
1540 
1541 	/*
1542 	 * MCE first step: Copy all mce errors into a temporary buffer
1543 	 * We use a double buffering here, to reduce the risk of
1544 	 * loosing an error.
1545 	 */
1546 	smp_rmb();
1547 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1548 		% MCE_LOG_LEN;
1549 	if (!count)
1550 		return;
1551 
1552 	m = pvt->mce_outentry;
1553 	if (pvt->mce_in + count > MCE_LOG_LEN) {
1554 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1555 
1556 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1557 		smp_wmb();
1558 		pvt->mce_in = 0;
1559 		count -= l;
1560 		m += l;
1561 	}
1562 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1563 	smp_wmb();
1564 	pvt->mce_in += count;
1565 
1566 	smp_rmb();
1567 	if (pvt->mce_overrun) {
1568 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1569 			      pvt->mce_overrun);
1570 		smp_wmb();
1571 		pvt->mce_overrun = 0;
1572 	}
1573 
1574 	/*
1575 	 * MCE second step: parse errors and display
1576 	 */
1577 	for (i = 0; i < count; i++)
1578 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1579 }
1580 
1581 /*
1582  * sbridge_mce_check_error	Replicates mcelog routine to get errors
1583  *				This routine simply queues mcelog errors, and
1584  *				return. The error itself should be handled later
1585  *				by sbridge_check_error.
1586  * WARNING: As this routine should be called at NMI time, extra care should
1587  * be taken to avoid deadlocks, and to be as fast as possible.
1588  */
1589 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1590 				   void *data)
1591 {
1592 	struct mce *mce = (struct mce *)data;
1593 	struct mem_ctl_info *mci;
1594 	struct sbridge_pvt *pvt;
1595 
1596 	mci = get_mci_for_node_id(mce->socketid);
1597 	if (!mci)
1598 		return NOTIFY_BAD;
1599 	pvt = mci->pvt_info;
1600 
1601 	/*
1602 	 * Just let mcelog handle it if the error is
1603 	 * outside the memory controller. A memory error
1604 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1605 	 * bit 12 has an special meaning.
1606 	 */
1607 	if ((mce->status & 0xefff) >> 7 != 1)
1608 		return NOTIFY_DONE;
1609 
1610 	printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1611 
1612 	printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1613 	       mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1614 	printk("TSC %llx ", mce->tsc);
1615 	printk("ADDR %llx ", mce->addr);
1616 	printk("MISC %llx ", mce->misc);
1617 
1618 	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1619 		mce->cpuvendor, mce->cpuid, mce->time,
1620 		mce->socketid, mce->apicid);
1621 
1622 	/* Only handle if it is the right mc controller */
1623 	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1624 		return NOTIFY_DONE;
1625 
1626 	smp_rmb();
1627 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1628 		smp_wmb();
1629 		pvt->mce_overrun++;
1630 		return NOTIFY_DONE;
1631 	}
1632 
1633 	/* Copy memory error at the ringbuffer */
1634 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1635 	smp_wmb();
1636 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1637 
1638 	/* Handle fatal errors immediately */
1639 	if (mce->mcgstatus & 1)
1640 		sbridge_check_error(mci);
1641 
1642 	/* Advice mcelog that the error were handled */
1643 	return NOTIFY_STOP;
1644 }
1645 
1646 static struct notifier_block sbridge_mce_dec = {
1647 	.notifier_call      = sbridge_mce_check_error,
1648 };
1649 
1650 /****************************************************************************
1651 			EDAC register/unregister logic
1652  ****************************************************************************/
1653 
1654 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1655 {
1656 	struct mem_ctl_info *mci = sbridge_dev->mci;
1657 	struct sbridge_pvt *pvt;
1658 
1659 	if (unlikely(!mci || !mci->pvt_info)) {
1660 		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
1661 			__func__, &sbridge_dev->pdev[0]->dev);
1662 
1663 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1664 		return;
1665 	}
1666 
1667 	pvt = mci->pvt_info;
1668 
1669 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1670 		__func__, mci, &sbridge_dev->pdev[0]->dev);
1671 
1672 	mce_unregister_decode_chain(&sbridge_mce_dec);
1673 
1674 	/* Remove MC sysfs nodes */
1675 	edac_mc_del_mc(mci->dev);
1676 
1677 	debugf1("%s: free mci struct\n", mci->ctl_name);
1678 	kfree(mci->ctl_name);
1679 	edac_mc_free(mci);
1680 	sbridge_dev->mci = NULL;
1681 }
1682 
1683 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1684 {
1685 	struct mem_ctl_info *mci;
1686 	struct sbridge_pvt *pvt;
1687 	int rc, channels, csrows;
1688 
1689 	/* Check the number of active and not disabled channels */
1690 	rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows);
1691 	if (unlikely(rc < 0))
1692 		return rc;
1693 
1694 	/* allocate a new MC control structure */
1695 	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc);
1696 	if (unlikely(!mci))
1697 		return -ENOMEM;
1698 
1699 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1700 		__func__, mci, &sbridge_dev->pdev[0]->dev);
1701 
1702 	pvt = mci->pvt_info;
1703 	memset(pvt, 0, sizeof(*pvt));
1704 
1705 	/* Associate sbridge_dev and mci for future usage */
1706 	pvt->sbridge_dev = sbridge_dev;
1707 	sbridge_dev->mci = mci;
1708 
1709 	mci->mtype_cap = MEM_FLAG_DDR3;
1710 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1711 	mci->edac_cap = EDAC_FLAG_NONE;
1712 	mci->mod_name = "sbridge_edac.c";
1713 	mci->mod_ver = SBRIDGE_REVISION;
1714 	mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1715 	mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1716 	mci->ctl_page_to_phys = NULL;
1717 
1718 	/* Set the function pointer to an actual operation function */
1719 	mci->edac_check = sbridge_check_error;
1720 
1721 	/* Store pci devices at mci for faster access */
1722 	rc = mci_bind_devs(mci, sbridge_dev);
1723 	if (unlikely(rc < 0))
1724 		goto fail0;
1725 
1726 	/* Get dimm basic config and the memory layout */
1727 	get_dimm_config(mci);
1728 	get_memory_layout(mci);
1729 
1730 	/* record ptr to the generic device */
1731 	mci->dev = &sbridge_dev->pdev[0]->dev;
1732 
1733 	/* add this new MC control structure to EDAC's list of MCs */
1734 	if (unlikely(edac_mc_add_mc(mci))) {
1735 		debugf0("MC: " __FILE__
1736 			": %s(): failed edac_mc_add_mc()\n", __func__);
1737 		rc = -EINVAL;
1738 		goto fail0;
1739 	}
1740 
1741 	mce_register_decode_chain(&sbridge_mce_dec);
1742 	return 0;
1743 
1744 fail0:
1745 	kfree(mci->ctl_name);
1746 	edac_mc_free(mci);
1747 	sbridge_dev->mci = NULL;
1748 	return rc;
1749 }
1750 
1751 /*
1752  *	sbridge_probe	Probe for ONE instance of device to see if it is
1753  *			present.
1754  *	return:
1755  *		0 for FOUND a device
1756  *		< 0 for error code
1757  */
1758 
1759 static int __devinit sbridge_probe(struct pci_dev *pdev,
1760 				  const struct pci_device_id *id)
1761 {
1762 	int rc;
1763 	u8 mc, num_mc = 0;
1764 	struct sbridge_dev *sbridge_dev;
1765 
1766 	/* get the pci devices we want to reserve for our use */
1767 	mutex_lock(&sbridge_edac_lock);
1768 
1769 	/*
1770 	 * All memory controllers are allocated at the first pass.
1771 	 */
1772 	if (unlikely(probed >= 1)) {
1773 		mutex_unlock(&sbridge_edac_lock);
1774 		return -ENODEV;
1775 	}
1776 	probed++;
1777 
1778 	rc = sbridge_get_all_devices(&num_mc);
1779 	if (unlikely(rc < 0))
1780 		goto fail0;
1781 	mc = 0;
1782 
1783 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1784 		debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
1785 		sbridge_dev->mc = mc++;
1786 		rc = sbridge_register_mci(sbridge_dev);
1787 		if (unlikely(rc < 0))
1788 			goto fail1;
1789 	}
1790 
1791 	sbridge_printk(KERN_INFO, "Driver loaded.\n");
1792 
1793 	mutex_unlock(&sbridge_edac_lock);
1794 	return 0;
1795 
1796 fail1:
1797 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1798 		sbridge_unregister_mci(sbridge_dev);
1799 
1800 	sbridge_put_all_devices();
1801 fail0:
1802 	mutex_unlock(&sbridge_edac_lock);
1803 	return rc;
1804 }
1805 
1806 /*
1807  *	sbridge_remove	destructor for one instance of device
1808  *
1809  */
1810 static void __devexit sbridge_remove(struct pci_dev *pdev)
1811 {
1812 	struct sbridge_dev *sbridge_dev;
1813 
1814 	debugf0(__FILE__ ": %s()\n", __func__);
1815 
1816 	/*
1817 	 * we have a trouble here: pdev value for removal will be wrong, since
1818 	 * it will point to the X58 register used to detect that the machine
1819 	 * is a Nehalem or upper design. However, due to the way several PCI
1820 	 * devices are grouped together to provide MC functionality, we need
1821 	 * to use a different method for releasing the devices
1822 	 */
1823 
1824 	mutex_lock(&sbridge_edac_lock);
1825 
1826 	if (unlikely(!probed)) {
1827 		mutex_unlock(&sbridge_edac_lock);
1828 		return;
1829 	}
1830 
1831 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1832 		sbridge_unregister_mci(sbridge_dev);
1833 
1834 	/* Release PCI resources */
1835 	sbridge_put_all_devices();
1836 
1837 	probed--;
1838 
1839 	mutex_unlock(&sbridge_edac_lock);
1840 }
1841 
1842 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1843 
1844 /*
1845  *	sbridge_driver	pci_driver structure for this module
1846  *
1847  */
1848 static struct pci_driver sbridge_driver = {
1849 	.name     = "sbridge_edac",
1850 	.probe    = sbridge_probe,
1851 	.remove   = __devexit_p(sbridge_remove),
1852 	.id_table = sbridge_pci_tbl,
1853 };
1854 
1855 /*
1856  *	sbridge_init		Module entry function
1857  *			Try to initialize this module for its devices
1858  */
1859 static int __init sbridge_init(void)
1860 {
1861 	int pci_rc;
1862 
1863 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1864 
1865 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1866 	opstate_init();
1867 
1868 	pci_rc = pci_register_driver(&sbridge_driver);
1869 
1870 	if (pci_rc >= 0)
1871 		return 0;
1872 
1873 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1874 		      pci_rc);
1875 
1876 	return pci_rc;
1877 }
1878 
1879 /*
1880  *	sbridge_exit()	Module exit function
1881  *			Unregister the driver
1882  */
1883 static void __exit sbridge_exit(void)
1884 {
1885 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1886 	pci_unregister_driver(&sbridge_driver);
1887 }
1888 
1889 module_init(sbridge_init);
1890 module_exit(sbridge_exit);
1891 
1892 module_param(edac_op_state, int, 0444);
1893 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1894 
1895 MODULE_LICENSE("GPL");
1896 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1897 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1898 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1899 		   SBRIDGE_REVISION);
1900