xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 4f3db074)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule[] = {
57 	0x80, 0x88, 0x90, 0x98, 0xa0,
58 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
59 };
60 
61 static const u32 ibridge_dram_rule[] = {
62 	0x60, 0x68, 0x70, 0x78, 0x80,
63 	0x88, 0x90, 0x98, 0xa0,	0xa8,
64 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
66 };
67 
68 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
69 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
70 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
71 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
72 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
73 
74 static char *get_dram_attr(u32 reg)
75 {
76 	switch(DRAM_ATTR(reg)) {
77 		case 0:
78 			return "DRAM";
79 		case 1:
80 			return "MMCFG";
81 		case 2:
82 			return "NXM";
83 		default:
84 			return "unknown";
85 	}
86 }
87 
88 static const u32 sbridge_interleave_list[] = {
89 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
90 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
91 };
92 
93 static const u32 ibridge_interleave_list[] = {
94 	0x64, 0x6c, 0x74, 0x7c, 0x84,
95 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
96 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
97 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
98 };
99 
100 struct interleave_pkg {
101 	unsigned char start;
102 	unsigned char end;
103 };
104 
105 static const struct interleave_pkg sbridge_interleave_pkg[] = {
106 	{ 0, 2 },
107 	{ 3, 5 },
108 	{ 8, 10 },
109 	{ 11, 13 },
110 	{ 16, 18 },
111 	{ 19, 21 },
112 	{ 24, 26 },
113 	{ 27, 29 },
114 };
115 
116 static const struct interleave_pkg ibridge_interleave_pkg[] = {
117 	{ 0, 3 },
118 	{ 4, 7 },
119 	{ 8, 11 },
120 	{ 12, 15 },
121 	{ 16, 19 },
122 	{ 20, 23 },
123 	{ 24, 27 },
124 	{ 28, 31 },
125 };
126 
127 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
128 			  int interleave)
129 {
130 	return GET_BITFIELD(reg, table[interleave].start,
131 			    table[interleave].end);
132 }
133 
134 /* Devices 12 Function 7 */
135 
136 #define TOLM		0x80
137 #define	TOHM		0x84
138 #define HASWELL_TOLM	0xd0
139 #define HASWELL_TOHM_0	0xd4
140 #define HASWELL_TOHM_1	0xd8
141 
142 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
143 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
144 
145 /* Device 13 Function 6 */
146 
147 #define SAD_TARGET	0xf0
148 
149 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
150 
151 #define SAD_CONTROL	0xf4
152 
153 /* Device 14 function 0 */
154 
155 static const u32 tad_dram_rule[] = {
156 	0x40, 0x44, 0x48, 0x4c,
157 	0x50, 0x54, 0x58, 0x5c,
158 	0x60, 0x64, 0x68, 0x6c,
159 };
160 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
161 
162 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
163 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
164 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
165 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
166 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
167 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
168 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
169 
170 /* Device 15, function 0 */
171 
172 #define MCMTR			0x7c
173 
174 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
175 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
176 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
177 
178 /* Device 15, function 1 */
179 
180 #define RASENABLES		0xac
181 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
182 
183 /* Device 15, functions 2-5 */
184 
185 static const int mtr_regs[] = {
186 	0x80, 0x84, 0x88,
187 };
188 
189 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
190 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
191 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
192 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
193 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
194 
195 static const u32 tad_ch_nilv_offset[] = {
196 	0x90, 0x94, 0x98, 0x9c,
197 	0xa0, 0xa4, 0xa8, 0xac,
198 	0xb0, 0xb4, 0xb8, 0xbc,
199 };
200 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
201 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
202 
203 static const u32 rir_way_limit[] = {
204 	0x108, 0x10c, 0x110, 0x114, 0x118,
205 };
206 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
207 
208 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
209 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
210 
211 #define MAX_RIR_WAY	8
212 
213 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
214 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
215 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
216 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
217 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
218 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
219 };
220 
221 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
222 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
223 
224 /* Device 16, functions 2-7 */
225 
226 /*
227  * FIXME: Implement the error count reads directly
228  */
229 
230 static const u32 correrrcnt[] = {
231 	0x104, 0x108, 0x10c, 0x110,
232 };
233 
234 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
235 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
236 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
237 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
238 
239 static const u32 correrrthrsld[] = {
240 	0x11c, 0x120, 0x124, 0x128,
241 };
242 
243 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
244 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
245 
246 
247 /* Device 17, function 0 */
248 
249 #define SB_RANK_CFG_A		0x0328
250 
251 #define IB_RANK_CFG_A		0x0320
252 
253 /*
254  * sbridge structs
255  */
256 
257 #define NUM_CHANNELS		4
258 #define MAX_DIMMS		3	/* Max DIMMS per channel */
259 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
260 
261 enum type {
262 	SANDY_BRIDGE,
263 	IVY_BRIDGE,
264 	HASWELL,
265 	BROADWELL,
266 };
267 
268 struct sbridge_pvt;
269 struct sbridge_info {
270 	enum type	type;
271 	u32		mcmtr;
272 	u32		rankcfgr;
273 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
274 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
275 	u64		(*rir_limit)(u32 reg);
276 	const u32	*dram_rule;
277 	const u32	*interleave_list;
278 	const struct interleave_pkg *interleave_pkg;
279 	u8		max_sad;
280 	u8		max_interleave;
281 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
282 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
283 	struct pci_dev	*pci_vtd;
284 };
285 
286 struct sbridge_channel {
287 	u32		ranks;
288 	u32		dimms;
289 };
290 
291 struct pci_id_descr {
292 	int			dev_id;
293 	int			optional;
294 };
295 
296 struct pci_id_table {
297 	const struct pci_id_descr	*descr;
298 	int				n_devs;
299 };
300 
301 struct sbridge_dev {
302 	struct list_head	list;
303 	u8			bus, mc;
304 	u8			node_id, source_id;
305 	struct pci_dev		**pdev;
306 	int			n_devs;
307 	struct mem_ctl_info	*mci;
308 };
309 
310 struct sbridge_pvt {
311 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
312 	struct pci_dev		*pci_sad0, *pci_sad1;
313 	struct pci_dev		*pci_ha0, *pci_ha1;
314 	struct pci_dev		*pci_br0, *pci_br1;
315 	struct pci_dev		*pci_ha1_ta;
316 	struct pci_dev		*pci_tad[NUM_CHANNELS];
317 
318 	struct sbridge_dev	*sbridge_dev;
319 
320 	struct sbridge_info	info;
321 	struct sbridge_channel	channel[NUM_CHANNELS];
322 
323 	/* Memory type detection */
324 	bool			is_mirrored, is_lockstep, is_close_pg;
325 
326 	/* Fifo double buffers */
327 	struct mce		mce_entry[MCE_LOG_LEN];
328 	struct mce		mce_outentry[MCE_LOG_LEN];
329 
330 	/* Fifo in/out counters */
331 	unsigned		mce_in, mce_out;
332 
333 	/* Count indicator to show errors not got */
334 	unsigned		mce_overrun;
335 
336 	/* Memory description */
337 	u64			tolm, tohm;
338 };
339 
340 #define PCI_DESCR(device_id, opt)	\
341 	.dev_id = (device_id),		\
342 	.optional = opt
343 
344 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
345 		/* Processor Home Agent */
346 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
347 
348 		/* Memory controller */
349 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
350 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
351 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
352 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
353 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
354 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
355 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
356 
357 		/* System Address Decoder */
358 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
359 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
360 
361 		/* Broadcast Registers */
362 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
363 };
364 
365 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
366 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
367 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
368 	{0,}			/* 0 terminated list. */
369 };
370 
371 /* This changes depending if 1HA or 2HA:
372  * 1HA:
373  *	0x0eb8 (17.0) is DDRIO0
374  * 2HA:
375  *	0x0ebc (17.4) is DDRIO0
376  */
377 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
378 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
379 
380 /* pci ids */
381 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
382 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
383 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
384 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
385 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
386 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
387 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
388 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
389 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
390 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
391 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
392 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
393 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
394 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
395 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
396 
397 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
398 		/* Processor Home Agent */
399 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
400 
401 		/* Memory controller */
402 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
403 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
404 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
405 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
406 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
407 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
408 
409 		/* System Address Decoder */
410 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
411 
412 		/* Broadcast Registers */
413 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
414 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
415 
416 		/* Optional, mode 2HA */
417 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
418 #if 0
419 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
420 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
421 #endif
422 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
423 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
424 
425 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
426 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
427 };
428 
429 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
430 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
431 	{0,}			/* 0 terminated list. */
432 };
433 
434 /* Haswell support */
435 /* EN processor:
436  *	- 1 IMC
437  *	- 3 DDR3 channels, 2 DPC per channel
438  * EP processor:
439  *	- 1 or 2 IMC
440  *	- 4 DDR4 channels, 3 DPC per channel
441  * EP 4S processor:
442  *	- 2 IMC
443  *	- 4 DDR4 channels, 3 DPC per channel
444  * EX processor:
445  *	- 2 IMC
446  *	- each IMC interfaces with a SMI 2 channel
447  *	- each SMI channel interfaces with a scalable memory buffer
448  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
449  */
450 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
451 #define HASWELL_HASYSDEFEATURE2 0x84
452 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
453 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
454 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
455 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
456 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
457 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
458 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
459 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
460 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
461 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
462 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
463 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
464 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
465 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
466 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
467 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
468 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
469 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
470 static const struct pci_id_descr pci_dev_descr_haswell[] = {
471 	/* first item must be the HA */
472 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
473 
474 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
475 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
476 
477 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
478 
479 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
480 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
485 
486 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
487 
488 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
489 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
490 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
491 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
492 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
493 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
494 };
495 
496 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
497 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
498 	{0,}			/* 0 terminated list. */
499 };
500 
501 /*
502  * Broadwell support
503  *
504  * DE processor:
505  *	- 1 IMC
506  *	- 2 DDR3 channels, 2 DPC per channel
507  */
508 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
509 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
510 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
511 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
512 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
513 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
514 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
515 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
516 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
517 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
518 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
519 
520 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
521 	/* first item must be the HA */
522 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0)		},
523 
524 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0)	},
525 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0)	},
526 
527 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0)	},
528 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL, 0)	},
529 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0)	},
530 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0)	},
531 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 0)	},
532 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 0)	},
533 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1)	},
534 };
535 
536 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
537 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell),
538 	{0,}			/* 0 terminated list. */
539 };
540 
541 /*
542  *	pci_device_id	table for which devices we are looking for
543  */
544 static const struct pci_device_id sbridge_pci_tbl[] = {
545 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)},
546 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
547 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
548 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0)},
549 	{0,}			/* 0 terminated list. */
550 };
551 
552 
553 /****************************************************************************
554 			Ancillary status routines
555  ****************************************************************************/
556 
557 static inline int numrank(enum type type, u32 mtr)
558 {
559 	int ranks = (1 << RANK_CNT_BITS(mtr));
560 	int max = 4;
561 
562 	if (type == HASWELL)
563 		max = 8;
564 
565 	if (ranks > max) {
566 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
567 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
568 		return -EINVAL;
569 	}
570 
571 	return ranks;
572 }
573 
574 static inline int numrow(u32 mtr)
575 {
576 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
577 
578 	if (rows < 13 || rows > 18) {
579 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
580 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
581 		return -EINVAL;
582 	}
583 
584 	return 1 << rows;
585 }
586 
587 static inline int numcol(u32 mtr)
588 {
589 	int cols = (COL_WIDTH_BITS(mtr) + 10);
590 
591 	if (cols > 12) {
592 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
593 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
594 		return -EINVAL;
595 	}
596 
597 	return 1 << cols;
598 }
599 
600 static struct sbridge_dev *get_sbridge_dev(u8 bus)
601 {
602 	struct sbridge_dev *sbridge_dev;
603 
604 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
605 		if (sbridge_dev->bus == bus)
606 			return sbridge_dev;
607 	}
608 
609 	return NULL;
610 }
611 
612 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
613 					   const struct pci_id_table *table)
614 {
615 	struct sbridge_dev *sbridge_dev;
616 
617 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
618 	if (!sbridge_dev)
619 		return NULL;
620 
621 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
622 				   GFP_KERNEL);
623 	if (!sbridge_dev->pdev) {
624 		kfree(sbridge_dev);
625 		return NULL;
626 	}
627 
628 	sbridge_dev->bus = bus;
629 	sbridge_dev->n_devs = table->n_devs;
630 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
631 
632 	return sbridge_dev;
633 }
634 
635 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
636 {
637 	list_del(&sbridge_dev->list);
638 	kfree(sbridge_dev->pdev);
639 	kfree(sbridge_dev);
640 }
641 
642 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
643 {
644 	u32 reg;
645 
646 	/* Address range is 32:28 */
647 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
648 	return GET_TOLM(reg);
649 }
650 
651 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
652 {
653 	u32 reg;
654 
655 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
656 	return GET_TOHM(reg);
657 }
658 
659 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
660 {
661 	u32 reg;
662 
663 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
664 
665 	return GET_TOLM(reg);
666 }
667 
668 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
669 {
670 	u32 reg;
671 
672 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
673 
674 	return GET_TOHM(reg);
675 }
676 
677 static u64 rir_limit(u32 reg)
678 {
679 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
680 }
681 
682 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
683 {
684 	u32 reg;
685 	enum mem_type mtype;
686 
687 	if (pvt->pci_ddrio) {
688 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
689 				      &reg);
690 		if (GET_BITFIELD(reg, 11, 11))
691 			/* FIXME: Can also be LRDIMM */
692 			mtype = MEM_RDDR3;
693 		else
694 			mtype = MEM_DDR3;
695 	} else
696 		mtype = MEM_UNKNOWN;
697 
698 	return mtype;
699 }
700 
701 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
702 {
703 	u32 reg;
704 	bool registered = false;
705 	enum mem_type mtype = MEM_UNKNOWN;
706 
707 	if (!pvt->pci_ddrio)
708 		goto out;
709 
710 	pci_read_config_dword(pvt->pci_ddrio,
711 			      HASWELL_DDRCRCLKCONTROLS, &reg);
712 	/* Is_Rdimm */
713 	if (GET_BITFIELD(reg, 16, 16))
714 		registered = true;
715 
716 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
717 	if (GET_BITFIELD(reg, 14, 14)) {
718 		if (registered)
719 			mtype = MEM_RDDR4;
720 		else
721 			mtype = MEM_DDR4;
722 	} else {
723 		if (registered)
724 			mtype = MEM_RDDR3;
725 		else
726 			mtype = MEM_DDR3;
727 	}
728 
729 out:
730 	return mtype;
731 }
732 
733 static u8 get_node_id(struct sbridge_pvt *pvt)
734 {
735 	u32 reg;
736 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
737 	return GET_BITFIELD(reg, 0, 2);
738 }
739 
740 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
741 {
742 	u32 reg;
743 
744 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
745 	return GET_BITFIELD(reg, 0, 3);
746 }
747 
748 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
749 {
750 	u32 reg;
751 
752 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
753 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
754 }
755 
756 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
757 {
758 	u64 rc;
759 	u32 reg;
760 
761 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
762 	rc = GET_BITFIELD(reg, 26, 31);
763 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
764 	rc = ((reg << 6) | rc) << 26;
765 
766 	return rc | 0x1ffffff;
767 }
768 
769 static u64 haswell_rir_limit(u32 reg)
770 {
771 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
772 }
773 
774 static inline u8 sad_pkg_socket(u8 pkg)
775 {
776 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
777 	return ((pkg >> 3) << 2) | (pkg & 0x3);
778 }
779 
780 static inline u8 sad_pkg_ha(u8 pkg)
781 {
782 	return (pkg >> 2) & 0x1;
783 }
784 
785 /****************************************************************************
786 			Memory check routines
787  ****************************************************************************/
788 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
789 {
790 	struct pci_dev *pdev = NULL;
791 
792 	do {
793 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
794 		if (pdev && pdev->bus->number == bus)
795 			break;
796 	} while (pdev);
797 
798 	return pdev;
799 }
800 
801 /**
802  * check_if_ecc_is_active() - Checks if ECC is active
803  * @bus:	Device bus
804  * @type:	Memory controller type
805  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
806  *	    disabled
807  */
808 static int check_if_ecc_is_active(const u8 bus, enum type type)
809 {
810 	struct pci_dev *pdev = NULL;
811 	u32 mcmtr, id;
812 
813 	switch (type) {
814 	case IVY_BRIDGE:
815 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
816 		break;
817 	case HASWELL:
818 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
819 		break;
820 	case SANDY_BRIDGE:
821 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
822 		break;
823 	case BROADWELL:
824 		id = PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA;
825 		break;
826 	default:
827 		return -ENODEV;
828 	}
829 
830 	pdev = get_pdev_same_bus(bus, id);
831 	if (!pdev) {
832 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
833 					"%04x:%04x! on bus %02d\n",
834 					PCI_VENDOR_ID_INTEL, id, bus);
835 		return -ENODEV;
836 	}
837 
838 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
839 	if (!IS_ECC_ENABLED(mcmtr)) {
840 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
841 		return -ENODEV;
842 	}
843 	return 0;
844 }
845 
846 static int get_dimm_config(struct mem_ctl_info *mci)
847 {
848 	struct sbridge_pvt *pvt = mci->pvt_info;
849 	struct dimm_info *dimm;
850 	unsigned i, j, banks, ranks, rows, cols, npages;
851 	u64 size;
852 	u32 reg;
853 	enum edac_type mode;
854 	enum mem_type mtype;
855 
856 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL)
857 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
858 	else
859 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
860 
861 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
862 
863 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
864 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
865 		 pvt->sbridge_dev->mc,
866 		 pvt->sbridge_dev->node_id,
867 		 pvt->sbridge_dev->source_id);
868 
869 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
870 	if (IS_MIRROR_ENABLED(reg)) {
871 		edac_dbg(0, "Memory mirror is enabled\n");
872 		pvt->is_mirrored = true;
873 	} else {
874 		edac_dbg(0, "Memory mirror is disabled\n");
875 		pvt->is_mirrored = false;
876 	}
877 
878 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
879 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
880 		edac_dbg(0, "Lockstep is enabled\n");
881 		mode = EDAC_S8ECD8ED;
882 		pvt->is_lockstep = true;
883 	} else {
884 		edac_dbg(0, "Lockstep is disabled\n");
885 		mode = EDAC_S4ECD4ED;
886 		pvt->is_lockstep = false;
887 	}
888 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
889 		edac_dbg(0, "address map is on closed page mode\n");
890 		pvt->is_close_pg = true;
891 	} else {
892 		edac_dbg(0, "address map is on open page mode\n");
893 		pvt->is_close_pg = false;
894 	}
895 
896 	mtype = pvt->info.get_memory_type(pvt);
897 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
898 		edac_dbg(0, "Memory is registered\n");
899 	else if (mtype == MEM_UNKNOWN)
900 		edac_dbg(0, "Cannot determine memory type\n");
901 	else
902 		edac_dbg(0, "Memory is unregistered\n");
903 
904 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
905 		banks = 16;
906 	else
907 		banks = 8;
908 
909 	for (i = 0; i < NUM_CHANNELS; i++) {
910 		u32 mtr;
911 
912 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
913 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
914 				       i, j, 0);
915 			pci_read_config_dword(pvt->pci_tad[i],
916 					      mtr_regs[j], &mtr);
917 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
918 			if (IS_DIMM_PRESENT(mtr)) {
919 				pvt->channel[i].dimms++;
920 
921 				ranks = numrank(pvt->info.type, mtr);
922 				rows = numrow(mtr);
923 				cols = numcol(mtr);
924 
925 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
926 				npages = MiB_TO_PAGES(size);
927 
928 				edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
929 					 pvt->sbridge_dev->mc, i, j,
930 					 size, npages,
931 					 banks, ranks, rows, cols);
932 
933 				dimm->nr_pages = npages;
934 				dimm->grain = 32;
935 				switch (banks) {
936 				case 16:
937 					dimm->dtype = DEV_X16;
938 					break;
939 				case 8:
940 					dimm->dtype = DEV_X8;
941 					break;
942 				case 4:
943 					dimm->dtype = DEV_X4;
944 					break;
945 				}
946 				dimm->mtype = mtype;
947 				dimm->edac_mode = mode;
948 				snprintf(dimm->label, sizeof(dimm->label),
949 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
950 					 pvt->sbridge_dev->source_id, i, j);
951 			}
952 		}
953 	}
954 
955 	return 0;
956 }
957 
958 static void get_memory_layout(const struct mem_ctl_info *mci)
959 {
960 	struct sbridge_pvt *pvt = mci->pvt_info;
961 	int i, j, k, n_sads, n_tads, sad_interl;
962 	u32 reg;
963 	u64 limit, prv = 0;
964 	u64 tmp_mb;
965 	u32 gb, mb;
966 	u32 rir_way;
967 
968 	/*
969 	 * Step 1) Get TOLM/TOHM ranges
970 	 */
971 
972 	pvt->tolm = pvt->info.get_tolm(pvt);
973 	tmp_mb = (1 + pvt->tolm) >> 20;
974 
975 	gb = div_u64_rem(tmp_mb, 1024, &mb);
976 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
977 		gb, (mb*1000)/1024, (u64)pvt->tolm);
978 
979 	/* Address range is already 45:25 */
980 	pvt->tohm = pvt->info.get_tohm(pvt);
981 	tmp_mb = (1 + pvt->tohm) >> 20;
982 
983 	gb = div_u64_rem(tmp_mb, 1024, &mb);
984 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
985 		gb, (mb*1000)/1024, (u64)pvt->tohm);
986 
987 	/*
988 	 * Step 2) Get SAD range and SAD Interleave list
989 	 * TAD registers contain the interleave wayness. However, it
990 	 * seems simpler to just discover it indirectly, with the
991 	 * algorithm bellow.
992 	 */
993 	prv = 0;
994 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
995 		/* SAD_LIMIT Address range is 45:26 */
996 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
997 				      &reg);
998 		limit = SAD_LIMIT(reg);
999 
1000 		if (!DRAM_RULE_ENABLE(reg))
1001 			continue;
1002 
1003 		if (limit <= prv)
1004 			break;
1005 
1006 		tmp_mb = (limit + 1) >> 20;
1007 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1008 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1009 			 n_sads,
1010 			 get_dram_attr(reg),
1011 			 gb, (mb*1000)/1024,
1012 			 ((u64)tmp_mb) << 20L,
1013 			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
1014 			 reg);
1015 		prv = limit;
1016 
1017 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1018 				      &reg);
1019 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1020 		for (j = 0; j < 8; j++) {
1021 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1022 			if (j > 0 && sad_interl == pkg)
1023 				break;
1024 
1025 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1026 				 n_sads, j, pkg);
1027 		}
1028 	}
1029 
1030 	/*
1031 	 * Step 3) Get TAD range
1032 	 */
1033 	prv = 0;
1034 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1035 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1036 				      &reg);
1037 		limit = TAD_LIMIT(reg);
1038 		if (limit <= prv)
1039 			break;
1040 		tmp_mb = (limit + 1) >> 20;
1041 
1042 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1043 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1044 			 n_tads, gb, (mb*1000)/1024,
1045 			 ((u64)tmp_mb) << 20L,
1046 			 (u32)TAD_SOCK(reg),
1047 			 (u32)TAD_CH(reg),
1048 			 (u32)TAD_TGT0(reg),
1049 			 (u32)TAD_TGT1(reg),
1050 			 (u32)TAD_TGT2(reg),
1051 			 (u32)TAD_TGT3(reg),
1052 			 reg);
1053 		prv = limit;
1054 	}
1055 
1056 	/*
1057 	 * Step 4) Get TAD offsets, per each channel
1058 	 */
1059 	for (i = 0; i < NUM_CHANNELS; i++) {
1060 		if (!pvt->channel[i].dimms)
1061 			continue;
1062 		for (j = 0; j < n_tads; j++) {
1063 			pci_read_config_dword(pvt->pci_tad[i],
1064 					      tad_ch_nilv_offset[j],
1065 					      &reg);
1066 			tmp_mb = TAD_OFFSET(reg) >> 20;
1067 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1068 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1069 				 i, j,
1070 				 gb, (mb*1000)/1024,
1071 				 ((u64)tmp_mb) << 20L,
1072 				 reg);
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * Step 6) Get RIR Wayness/Limit, per each channel
1078 	 */
1079 	for (i = 0; i < NUM_CHANNELS; i++) {
1080 		if (!pvt->channel[i].dimms)
1081 			continue;
1082 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1083 			pci_read_config_dword(pvt->pci_tad[i],
1084 					      rir_way_limit[j],
1085 					      &reg);
1086 
1087 			if (!IS_RIR_VALID(reg))
1088 				continue;
1089 
1090 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1091 			rir_way = 1 << RIR_WAY(reg);
1092 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1093 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1094 				 i, j,
1095 				 gb, (mb*1000)/1024,
1096 				 ((u64)tmp_mb) << 20L,
1097 				 rir_way,
1098 				 reg);
1099 
1100 			for (k = 0; k < rir_way; k++) {
1101 				pci_read_config_dword(pvt->pci_tad[i],
1102 						      rir_offset[j][k],
1103 						      &reg);
1104 				tmp_mb = RIR_OFFSET(reg) << 6;
1105 
1106 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1107 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1108 					 i, j, k,
1109 					 gb, (mb*1000)/1024,
1110 					 ((u64)tmp_mb) << 20L,
1111 					 (u32)RIR_RNK_TGT(reg),
1112 					 reg);
1113 			}
1114 		}
1115 	}
1116 }
1117 
1118 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1119 {
1120 	struct sbridge_dev *sbridge_dev;
1121 
1122 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1123 		if (sbridge_dev->node_id == node_id)
1124 			return sbridge_dev->mci;
1125 	}
1126 	return NULL;
1127 }
1128 
1129 static int get_memory_error_data(struct mem_ctl_info *mci,
1130 				 u64 addr,
1131 				 u8 *socket,
1132 				 long *channel_mask,
1133 				 u8 *rank,
1134 				 char **area_type, char *msg)
1135 {
1136 	struct mem_ctl_info	*new_mci;
1137 	struct sbridge_pvt *pvt = mci->pvt_info;
1138 	struct pci_dev		*pci_ha;
1139 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1140 	int			sad_interl, idx, base_ch;
1141 	int			interleave_mode, shiftup = 0;
1142 	unsigned		sad_interleave[pvt->info.max_interleave];
1143 	u32			reg, dram_rule;
1144 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1145 	u32			tad_offset;
1146 	u32			rir_way;
1147 	u32			mb, gb;
1148 	u64			ch_addr, offset, limit = 0, prv = 0;
1149 
1150 
1151 	/*
1152 	 * Step 0) Check if the address is at special memory ranges
1153 	 * The check bellow is probably enough to fill all cases where
1154 	 * the error is not inside a memory, except for the legacy
1155 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1156 	 * memory controller would generate an error on that range.
1157 	 */
1158 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1159 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1160 		return -EINVAL;
1161 	}
1162 	if (addr >= (u64)pvt->tohm) {
1163 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1164 		return -EINVAL;
1165 	}
1166 
1167 	/*
1168 	 * Step 1) Get socket
1169 	 */
1170 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1171 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1172 				      &reg);
1173 
1174 		if (!DRAM_RULE_ENABLE(reg))
1175 			continue;
1176 
1177 		limit = SAD_LIMIT(reg);
1178 		if (limit <= prv) {
1179 			sprintf(msg, "Can't discover the memory socket");
1180 			return -EINVAL;
1181 		}
1182 		if  (addr <= limit)
1183 			break;
1184 		prv = limit;
1185 	}
1186 	if (n_sads == pvt->info.max_sad) {
1187 		sprintf(msg, "Can't discover the memory socket");
1188 		return -EINVAL;
1189 	}
1190 	dram_rule = reg;
1191 	*area_type = get_dram_attr(dram_rule);
1192 	interleave_mode = INTERLEAVE_MODE(dram_rule);
1193 
1194 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1195 			      &reg);
1196 
1197 	if (pvt->info.type == SANDY_BRIDGE) {
1198 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1199 		for (sad_way = 0; sad_way < 8; sad_way++) {
1200 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1201 			if (sad_way > 0 && sad_interl == pkg)
1202 				break;
1203 			sad_interleave[sad_way] = pkg;
1204 			edac_dbg(0, "SAD interleave #%d: %d\n",
1205 				 sad_way, sad_interleave[sad_way]);
1206 		}
1207 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1208 			 pvt->sbridge_dev->mc,
1209 			 n_sads,
1210 			 addr,
1211 			 limit,
1212 			 sad_way + 7,
1213 			 !interleave_mode ? "" : "XOR[18:16]");
1214 		if (interleave_mode)
1215 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1216 		else
1217 			idx = (addr >> 6) & 7;
1218 		switch (sad_way) {
1219 		case 1:
1220 			idx = 0;
1221 			break;
1222 		case 2:
1223 			idx = idx & 1;
1224 			break;
1225 		case 4:
1226 			idx = idx & 3;
1227 			break;
1228 		case 8:
1229 			break;
1230 		default:
1231 			sprintf(msg, "Can't discover socket interleave");
1232 			return -EINVAL;
1233 		}
1234 		*socket = sad_interleave[idx];
1235 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1236 			 idx, sad_way, *socket);
1237 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1238 		int bits, a7mode = A7MODE(dram_rule);
1239 
1240 		if (a7mode) {
1241 			/* A7 mode swaps P9 with P6 */
1242 			bits = GET_BITFIELD(addr, 7, 8) << 1;
1243 			bits |= GET_BITFIELD(addr, 9, 9);
1244 		} else
1245 			bits = GET_BITFIELD(addr, 7, 9);
1246 
1247 		if (interleave_mode) {
1248 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
1249 			idx = GET_BITFIELD(addr, 16, 18);
1250 			idx ^= bits;
1251 		} else
1252 			idx = bits;
1253 
1254 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1255 		*socket = sad_pkg_socket(pkg);
1256 		sad_ha = sad_pkg_ha(pkg);
1257 
1258 		if (a7mode) {
1259 			/* MCChanShiftUpEnable */
1260 			pci_read_config_dword(pvt->pci_ha0,
1261 					      HASWELL_HASYSDEFEATURE2, &reg);
1262 			shiftup = GET_BITFIELD(reg, 22, 22);
1263 		}
1264 
1265 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1266 			 idx, *socket, sad_ha, shiftup);
1267 	} else {
1268 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1269 		idx = (addr >> 6) & 7;
1270 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1271 		*socket = sad_pkg_socket(pkg);
1272 		sad_ha = sad_pkg_ha(pkg);
1273 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1274 			 idx, *socket, sad_ha);
1275 	}
1276 
1277 	/*
1278 	 * Move to the proper node structure, in order to access the
1279 	 * right PCI registers
1280 	 */
1281 	new_mci = get_mci_for_node_id(*socket);
1282 	if (!new_mci) {
1283 		sprintf(msg, "Struct for socket #%u wasn't initialized",
1284 			*socket);
1285 		return -EINVAL;
1286 	}
1287 	mci = new_mci;
1288 	pvt = mci->pvt_info;
1289 
1290 	/*
1291 	 * Step 2) Get memory channel
1292 	 */
1293 	prv = 0;
1294 	if (pvt->info.type == SANDY_BRIDGE)
1295 		pci_ha = pvt->pci_ha0;
1296 	else {
1297 		if (sad_ha)
1298 			pci_ha = pvt->pci_ha1;
1299 		else
1300 			pci_ha = pvt->pci_ha0;
1301 	}
1302 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1303 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1304 		limit = TAD_LIMIT(reg);
1305 		if (limit <= prv) {
1306 			sprintf(msg, "Can't discover the memory channel");
1307 			return -EINVAL;
1308 		}
1309 		if  (addr <= limit)
1310 			break;
1311 		prv = limit;
1312 	}
1313 	if (n_tads == MAX_TAD) {
1314 		sprintf(msg, "Can't discover the memory channel");
1315 		return -EINVAL;
1316 	}
1317 
1318 	ch_way = TAD_CH(reg) + 1;
1319 	sck_way = TAD_SOCK(reg) + 1;
1320 
1321 	if (ch_way == 3)
1322 		idx = addr >> 6;
1323 	else
1324 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1325 	idx = idx % ch_way;
1326 
1327 	/*
1328 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1329 	 */
1330 	switch (idx) {
1331 	case 0:
1332 		base_ch = TAD_TGT0(reg);
1333 		break;
1334 	case 1:
1335 		base_ch = TAD_TGT1(reg);
1336 		break;
1337 	case 2:
1338 		base_ch = TAD_TGT2(reg);
1339 		break;
1340 	case 3:
1341 		base_ch = TAD_TGT3(reg);
1342 		break;
1343 	default:
1344 		sprintf(msg, "Can't discover the TAD target");
1345 		return -EINVAL;
1346 	}
1347 	*channel_mask = 1 << base_ch;
1348 
1349 	pci_read_config_dword(pvt->pci_tad[base_ch],
1350 				tad_ch_nilv_offset[n_tads],
1351 				&tad_offset);
1352 
1353 	if (pvt->is_mirrored) {
1354 		*channel_mask |= 1 << ((base_ch + 2) % 4);
1355 		switch(ch_way) {
1356 		case 2:
1357 		case 4:
1358 			sck_xch = 1 << sck_way * (ch_way >> 1);
1359 			break;
1360 		default:
1361 			sprintf(msg, "Invalid mirror set. Can't decode addr");
1362 			return -EINVAL;
1363 		}
1364 	} else
1365 		sck_xch = (1 << sck_way) * ch_way;
1366 
1367 	if (pvt->is_lockstep)
1368 		*channel_mask |= 1 << ((base_ch + 1) % 4);
1369 
1370 	offset = TAD_OFFSET(tad_offset);
1371 
1372 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1373 		 n_tads,
1374 		 addr,
1375 		 limit,
1376 		 (u32)TAD_SOCK(reg),
1377 		 ch_way,
1378 		 offset,
1379 		 idx,
1380 		 base_ch,
1381 		 *channel_mask);
1382 
1383 	/* Calculate channel address */
1384 	/* Remove the TAD offset */
1385 
1386 	if (offset > addr) {
1387 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1388 			offset, addr);
1389 		return -EINVAL;
1390 	}
1391 	addr -= offset;
1392 	/* Store the low bits [0:6] of the addr */
1393 	ch_addr = addr & 0x7f;
1394 	/* Remove socket wayness and remove 6 bits */
1395 	addr >>= 6;
1396 	addr = div_u64(addr, sck_xch);
1397 #if 0
1398 	/* Divide by channel way */
1399 	addr = addr / ch_way;
1400 #endif
1401 	/* Recover the last 6 bits */
1402 	ch_addr |= addr << 6;
1403 
1404 	/*
1405 	 * Step 3) Decode rank
1406 	 */
1407 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1408 		pci_read_config_dword(pvt->pci_tad[base_ch],
1409 				      rir_way_limit[n_rir],
1410 				      &reg);
1411 
1412 		if (!IS_RIR_VALID(reg))
1413 			continue;
1414 
1415 		limit = pvt->info.rir_limit(reg);
1416 		gb = div_u64_rem(limit >> 20, 1024, &mb);
1417 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1418 			 n_rir,
1419 			 gb, (mb*1000)/1024,
1420 			 limit,
1421 			 1 << RIR_WAY(reg));
1422 		if  (ch_addr <= limit)
1423 			break;
1424 	}
1425 	if (n_rir == MAX_RIR_RANGES) {
1426 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1427 			ch_addr);
1428 		return -EINVAL;
1429 	}
1430 	rir_way = RIR_WAY(reg);
1431 
1432 	if (pvt->is_close_pg)
1433 		idx = (ch_addr >> 6);
1434 	else
1435 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1436 	idx %= 1 << rir_way;
1437 
1438 	pci_read_config_dword(pvt->pci_tad[base_ch],
1439 			      rir_offset[n_rir][idx],
1440 			      &reg);
1441 	*rank = RIR_RNK_TGT(reg);
1442 
1443 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1444 		 n_rir,
1445 		 ch_addr,
1446 		 limit,
1447 		 rir_way,
1448 		 idx);
1449 
1450 	return 0;
1451 }
1452 
1453 /****************************************************************************
1454 	Device initialization routines: put/get, init/exit
1455  ****************************************************************************/
1456 
1457 /*
1458  *	sbridge_put_all_devices	'put' all the devices that we have
1459  *				reserved via 'get'
1460  */
1461 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1462 {
1463 	int i;
1464 
1465 	edac_dbg(0, "\n");
1466 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1467 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1468 		if (!pdev)
1469 			continue;
1470 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1471 			 pdev->bus->number,
1472 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1473 		pci_dev_put(pdev);
1474 	}
1475 }
1476 
1477 static void sbridge_put_all_devices(void)
1478 {
1479 	struct sbridge_dev *sbridge_dev, *tmp;
1480 
1481 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1482 		sbridge_put_devices(sbridge_dev);
1483 		free_sbridge_dev(sbridge_dev);
1484 	}
1485 }
1486 
1487 static int sbridge_get_onedevice(struct pci_dev **prev,
1488 				 u8 *num_mc,
1489 				 const struct pci_id_table *table,
1490 				 const unsigned devno)
1491 {
1492 	struct sbridge_dev *sbridge_dev;
1493 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1494 	struct pci_dev *pdev = NULL;
1495 	u8 bus = 0;
1496 
1497 	sbridge_printk(KERN_DEBUG,
1498 		"Seeking for: PCI ID %04x:%04x\n",
1499 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1500 
1501 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1502 			      dev_descr->dev_id, *prev);
1503 
1504 	if (!pdev) {
1505 		if (*prev) {
1506 			*prev = pdev;
1507 			return 0;
1508 		}
1509 
1510 		if (dev_descr->optional)
1511 			return 0;
1512 
1513 		/* if the HA wasn't found */
1514 		if (devno == 0)
1515 			return -ENODEV;
1516 
1517 		sbridge_printk(KERN_INFO,
1518 			"Device not found: %04x:%04x\n",
1519 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1520 
1521 		/* End of list, leave */
1522 		return -ENODEV;
1523 	}
1524 	bus = pdev->bus->number;
1525 
1526 	sbridge_dev = get_sbridge_dev(bus);
1527 	if (!sbridge_dev) {
1528 		sbridge_dev = alloc_sbridge_dev(bus, table);
1529 		if (!sbridge_dev) {
1530 			pci_dev_put(pdev);
1531 			return -ENOMEM;
1532 		}
1533 		(*num_mc)++;
1534 	}
1535 
1536 	if (sbridge_dev->pdev[devno]) {
1537 		sbridge_printk(KERN_ERR,
1538 			"Duplicated device for %04x:%04x\n",
1539 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1540 		pci_dev_put(pdev);
1541 		return -ENODEV;
1542 	}
1543 
1544 	sbridge_dev->pdev[devno] = pdev;
1545 
1546 	/* Be sure that the device is enabled */
1547 	if (unlikely(pci_enable_device(pdev) < 0)) {
1548 		sbridge_printk(KERN_ERR,
1549 			"Couldn't enable %04x:%04x\n",
1550 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1551 		return -ENODEV;
1552 	}
1553 
1554 	edac_dbg(0, "Detected %04x:%04x\n",
1555 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1556 
1557 	/*
1558 	 * As stated on drivers/pci/search.c, the reference count for
1559 	 * @from is always decremented if it is not %NULL. So, as we need
1560 	 * to get all devices up to null, we need to do a get for the device
1561 	 */
1562 	pci_dev_get(pdev);
1563 
1564 	*prev = pdev;
1565 
1566 	return 0;
1567 }
1568 
1569 /*
1570  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1571  *			     devices we want to reference for this driver.
1572  * @num_mc: pointer to the memory controllers count, to be incremented in case
1573  *	    of success.
1574  * @table: model specific table
1575  *
1576  * returns 0 in case of success or error code
1577  */
1578 static int sbridge_get_all_devices(u8 *num_mc,
1579 				   const struct pci_id_table *table)
1580 {
1581 	int i, rc;
1582 	struct pci_dev *pdev = NULL;
1583 
1584 	while (table && table->descr) {
1585 		for (i = 0; i < table->n_devs; i++) {
1586 			pdev = NULL;
1587 			do {
1588 				rc = sbridge_get_onedevice(&pdev, num_mc,
1589 							   table, i);
1590 				if (rc < 0) {
1591 					if (i == 0) {
1592 						i = table->n_devs;
1593 						break;
1594 					}
1595 					sbridge_put_all_devices();
1596 					return -ENODEV;
1597 				}
1598 			} while (pdev);
1599 		}
1600 		table++;
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1607 				 struct sbridge_dev *sbridge_dev)
1608 {
1609 	struct sbridge_pvt *pvt = mci->pvt_info;
1610 	struct pci_dev *pdev;
1611 	int i;
1612 
1613 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1614 		pdev = sbridge_dev->pdev[i];
1615 		if (!pdev)
1616 			continue;
1617 
1618 		switch (pdev->device) {
1619 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1620 			pvt->pci_sad0 = pdev;
1621 			break;
1622 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1623 			pvt->pci_sad1 = pdev;
1624 			break;
1625 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1626 			pvt->pci_br0 = pdev;
1627 			break;
1628 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1629 			pvt->pci_ha0 = pdev;
1630 			break;
1631 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1632 			pvt->pci_ta = pdev;
1633 			break;
1634 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1635 			pvt->pci_ras = pdev;
1636 			break;
1637 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1638 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1639 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1640 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1641 		{
1642 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1643 			pvt->pci_tad[id] = pdev;
1644 		}
1645 			break;
1646 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1647 			pvt->pci_ddrio = pdev;
1648 			break;
1649 		default:
1650 			goto error;
1651 		}
1652 
1653 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1654 			 pdev->vendor, pdev->device,
1655 			 sbridge_dev->bus,
1656 			 pdev);
1657 	}
1658 
1659 	/* Check if everything were registered */
1660 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1661 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1662 		goto enodev;
1663 
1664 	for (i = 0; i < NUM_CHANNELS; i++) {
1665 		if (!pvt->pci_tad[i])
1666 			goto enodev;
1667 	}
1668 	return 0;
1669 
1670 enodev:
1671 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1672 	return -ENODEV;
1673 
1674 error:
1675 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1676 		       PCI_VENDOR_ID_INTEL, pdev->device);
1677 	return -EINVAL;
1678 }
1679 
1680 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1681 				 struct sbridge_dev *sbridge_dev)
1682 {
1683 	struct sbridge_pvt *pvt = mci->pvt_info;
1684 	struct pci_dev *pdev, *tmp;
1685 	int i;
1686 	bool mode_2ha = false;
1687 
1688 	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1689 			     PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
1690 	if (tmp) {
1691 		mode_2ha = true;
1692 		pci_dev_put(tmp);
1693 	}
1694 
1695 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1696 		pdev = sbridge_dev->pdev[i];
1697 		if (!pdev)
1698 			continue;
1699 
1700 		switch (pdev->device) {
1701 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1702 			pvt->pci_ha0 = pdev;
1703 			break;
1704 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1705 			pvt->pci_ta = pdev;
1706 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1707 			pvt->pci_ras = pdev;
1708 			break;
1709 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1710 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1711 			/* if we have 2 HAs active, channels 2 and 3
1712 			 * are in other device */
1713 			if (mode_2ha)
1714 				break;
1715 			/* fall through */
1716 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1717 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1718 		{
1719 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1720 			pvt->pci_tad[id] = pdev;
1721 		}
1722 			break;
1723 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1724 			pvt->pci_ddrio = pdev;
1725 			break;
1726 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1727 			if (!mode_2ha)
1728 				pvt->pci_ddrio = pdev;
1729 			break;
1730 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1731 			pvt->pci_sad0 = pdev;
1732 			break;
1733 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1734 			pvt->pci_br0 = pdev;
1735 			break;
1736 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1737 			pvt->pci_br1 = pdev;
1738 			break;
1739 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1740 			pvt->pci_ha1 = pdev;
1741 			break;
1742 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1743 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1744 		{
1745 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
1746 
1747 			/* we shouldn't have this device if we have just one
1748 			 * HA present */
1749 			WARN_ON(!mode_2ha);
1750 			pvt->pci_tad[id] = pdev;
1751 		}
1752 			break;
1753 		default:
1754 			goto error;
1755 		}
1756 
1757 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1758 			 sbridge_dev->bus,
1759 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1760 			 pdev);
1761 	}
1762 
1763 	/* Check if everything were registered */
1764 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1765 	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1766 	    !pvt->pci_ta)
1767 		goto enodev;
1768 
1769 	for (i = 0; i < NUM_CHANNELS; i++) {
1770 		if (!pvt->pci_tad[i])
1771 			goto enodev;
1772 	}
1773 	return 0;
1774 
1775 enodev:
1776 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1777 	return -ENODEV;
1778 
1779 error:
1780 	sbridge_printk(KERN_ERR,
1781 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1782 			pdev->device);
1783 	return -EINVAL;
1784 }
1785 
1786 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1787 				 struct sbridge_dev *sbridge_dev)
1788 {
1789 	struct sbridge_pvt *pvt = mci->pvt_info;
1790 	struct pci_dev *pdev, *tmp;
1791 	int i;
1792 	bool mode_2ha = false;
1793 
1794 	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1795 			     PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
1796 	if (tmp) {
1797 		mode_2ha = true;
1798 		pci_dev_put(tmp);
1799 	}
1800 
1801 	/* there's only one device per system; not tied to any bus */
1802 	if (pvt->info.pci_vtd == NULL)
1803 		/* result will be checked later */
1804 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1805 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1806 						   NULL);
1807 
1808 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1809 		pdev = sbridge_dev->pdev[i];
1810 		if (!pdev)
1811 			continue;
1812 
1813 		switch (pdev->device) {
1814 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1815 			pvt->pci_sad0 = pdev;
1816 			break;
1817 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1818 			pvt->pci_sad1 = pdev;
1819 			break;
1820 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1821 			pvt->pci_ha0 = pdev;
1822 			break;
1823 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1824 			pvt->pci_ta = pdev;
1825 			break;
1826 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1827 			pvt->pci_ras = pdev;
1828 			break;
1829 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1830 			pvt->pci_tad[0] = pdev;
1831 			break;
1832 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1833 			pvt->pci_tad[1] = pdev;
1834 			break;
1835 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1836 			if (!mode_2ha)
1837 				pvt->pci_tad[2] = pdev;
1838 			break;
1839 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1840 			if (!mode_2ha)
1841 				pvt->pci_tad[3] = pdev;
1842 			break;
1843 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1844 			pvt->pci_ddrio = pdev;
1845 			break;
1846 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1847 			pvt->pci_ha1 = pdev;
1848 			break;
1849 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1850 			pvt->pci_ha1_ta = pdev;
1851 			break;
1852 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1853 			if (mode_2ha)
1854 				pvt->pci_tad[2] = pdev;
1855 			break;
1856 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1857 			if (mode_2ha)
1858 				pvt->pci_tad[3] = pdev;
1859 			break;
1860 		default:
1861 			break;
1862 		}
1863 
1864 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1865 			 sbridge_dev->bus,
1866 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1867 			 pdev);
1868 	}
1869 
1870 	/* Check if everything were registered */
1871 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1872 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1873 		goto enodev;
1874 
1875 	for (i = 0; i < NUM_CHANNELS; i++) {
1876 		if (!pvt->pci_tad[i])
1877 			goto enodev;
1878 	}
1879 	return 0;
1880 
1881 enodev:
1882 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1883 	return -ENODEV;
1884 }
1885 
1886 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
1887 				 struct sbridge_dev *sbridge_dev)
1888 {
1889 	struct sbridge_pvt *pvt = mci->pvt_info;
1890 	struct pci_dev *pdev;
1891 	int i;
1892 
1893 	/* there's only one device per system; not tied to any bus */
1894 	if (pvt->info.pci_vtd == NULL)
1895 		/* result will be checked later */
1896 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1897 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
1898 						   NULL);
1899 
1900 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1901 		pdev = sbridge_dev->pdev[i];
1902 		if (!pdev)
1903 			continue;
1904 
1905 		switch (pdev->device) {
1906 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
1907 			pvt->pci_sad0 = pdev;
1908 			break;
1909 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
1910 			pvt->pci_sad1 = pdev;
1911 			break;
1912 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
1913 			pvt->pci_ha0 = pdev;
1914 			break;
1915 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
1916 			pvt->pci_ta = pdev;
1917 			break;
1918 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL:
1919 			pvt->pci_ras = pdev;
1920 			break;
1921 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
1922 			pvt->pci_tad[0] = pdev;
1923 			break;
1924 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
1925 			pvt->pci_tad[1] = pdev;
1926 			break;
1927 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
1928 			pvt->pci_tad[2] = pdev;
1929 			break;
1930 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
1931 			pvt->pci_tad[3] = pdev;
1932 			break;
1933 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
1934 			pvt->pci_ddrio = pdev;
1935 			break;
1936 		default:
1937 			break;
1938 		}
1939 
1940 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1941 			 sbridge_dev->bus,
1942 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1943 			 pdev);
1944 	}
1945 
1946 	/* Check if everything were registered */
1947 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1948 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1949 		goto enodev;
1950 
1951 	for (i = 0; i < NUM_CHANNELS; i++) {
1952 		if (!pvt->pci_tad[i])
1953 			goto enodev;
1954 	}
1955 	return 0;
1956 
1957 enodev:
1958 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1959 	return -ENODEV;
1960 }
1961 
1962 /****************************************************************************
1963 			Error check routines
1964  ****************************************************************************/
1965 
1966 /*
1967  * While Sandy Bridge has error count registers, SMI BIOS read values from
1968  * and resets the counters. So, they are not reliable for the OS to read
1969  * from them. So, we have no option but to just trust on whatever MCE is
1970  * telling us about the errors.
1971  */
1972 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1973 				    const struct mce *m)
1974 {
1975 	struct mem_ctl_info *new_mci;
1976 	struct sbridge_pvt *pvt = mci->pvt_info;
1977 	enum hw_event_mc_err_type tp_event;
1978 	char *type, *optype, msg[256];
1979 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1980 	bool overflow = GET_BITFIELD(m->status, 62, 62);
1981 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1982 	bool recoverable;
1983 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1984 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1985 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1986 	u32 channel = GET_BITFIELD(m->status, 0, 3);
1987 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1988 	long channel_mask, first_channel;
1989 	u8  rank, socket;
1990 	int rc, dimm;
1991 	char *area_type = NULL;
1992 
1993 	if (pvt->info.type == IVY_BRIDGE)
1994 		recoverable = true;
1995 	else
1996 		recoverable = GET_BITFIELD(m->status, 56, 56);
1997 
1998 	if (uncorrected_error) {
1999 		if (ripv) {
2000 			type = "FATAL";
2001 			tp_event = HW_EVENT_ERR_FATAL;
2002 		} else {
2003 			type = "NON_FATAL";
2004 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2005 		}
2006 	} else {
2007 		type = "CORRECTED";
2008 		tp_event = HW_EVENT_ERR_CORRECTED;
2009 	}
2010 
2011 	/*
2012 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2013 	 * memory errors should fit in this mask:
2014 	 *	000f 0000 1mmm cccc (binary)
2015 	 * where:
2016 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2017 	 *	    won't be shown
2018 	 *	mmm = error type
2019 	 *	cccc = channel
2020 	 * If the mask doesn't match, report an error to the parsing logic
2021 	 */
2022 	if (! ((errcode & 0xef80) == 0x80)) {
2023 		optype = "Can't parse: it is not a mem";
2024 	} else {
2025 		switch (optypenum) {
2026 		case 0:
2027 			optype = "generic undef request error";
2028 			break;
2029 		case 1:
2030 			optype = "memory read error";
2031 			break;
2032 		case 2:
2033 			optype = "memory write error";
2034 			break;
2035 		case 3:
2036 			optype = "addr/cmd error";
2037 			break;
2038 		case 4:
2039 			optype = "memory scrubbing error";
2040 			break;
2041 		default:
2042 			optype = "reserved";
2043 			break;
2044 		}
2045 	}
2046 
2047 	/* Only decode errors with an valid address (ADDRV) */
2048 	if (!GET_BITFIELD(m->status, 58, 58))
2049 		return;
2050 
2051 	rc = get_memory_error_data(mci, m->addr, &socket,
2052 				   &channel_mask, &rank, &area_type, msg);
2053 	if (rc < 0)
2054 		goto err_parsing;
2055 	new_mci = get_mci_for_node_id(socket);
2056 	if (!new_mci) {
2057 		strcpy(msg, "Error: socket got corrupted!");
2058 		goto err_parsing;
2059 	}
2060 	mci = new_mci;
2061 	pvt = mci->pvt_info;
2062 
2063 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2064 
2065 	if (rank < 4)
2066 		dimm = 0;
2067 	else if (rank < 8)
2068 		dimm = 1;
2069 	else
2070 		dimm = 2;
2071 
2072 
2073 	/*
2074 	 * FIXME: On some memory configurations (mirror, lockstep), the
2075 	 * Memory Controller can't point the error to a single DIMM. The
2076 	 * EDAC core should be handling the channel mask, in order to point
2077 	 * to the group of dimm's where the error may be happening.
2078 	 */
2079 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
2080 		channel = first_channel;
2081 
2082 	snprintf(msg, sizeof(msg),
2083 		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
2084 		 overflow ? " OVERFLOW" : "",
2085 		 (uncorrected_error && recoverable) ? " recoverable" : "",
2086 		 area_type,
2087 		 mscod, errcode,
2088 		 socket,
2089 		 channel_mask,
2090 		 rank);
2091 
2092 	edac_dbg(0, "%s\n", msg);
2093 
2094 	/* FIXME: need support for channel mask */
2095 
2096 	if (channel == CHANNEL_UNSPECIFIED)
2097 		channel = -1;
2098 
2099 	/* Call the helper to output message */
2100 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
2101 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2102 			     channel, dimm, -1,
2103 			     optype, msg);
2104 	return;
2105 err_parsing:
2106 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2107 			     -1, -1, -1,
2108 			     msg, "");
2109 
2110 }
2111 
2112 /*
2113  *	sbridge_check_error	Retrieve and process errors reported by the
2114  *				hardware. Called by the Core module.
2115  */
2116 static void sbridge_check_error(struct mem_ctl_info *mci)
2117 {
2118 	struct sbridge_pvt *pvt = mci->pvt_info;
2119 	int i;
2120 	unsigned count = 0;
2121 	struct mce *m;
2122 
2123 	/*
2124 	 * MCE first step: Copy all mce errors into a temporary buffer
2125 	 * We use a double buffering here, to reduce the risk of
2126 	 * loosing an error.
2127 	 */
2128 	smp_rmb();
2129 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
2130 		% MCE_LOG_LEN;
2131 	if (!count)
2132 		return;
2133 
2134 	m = pvt->mce_outentry;
2135 	if (pvt->mce_in + count > MCE_LOG_LEN) {
2136 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
2137 
2138 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2139 		smp_wmb();
2140 		pvt->mce_in = 0;
2141 		count -= l;
2142 		m += l;
2143 	}
2144 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2145 	smp_wmb();
2146 	pvt->mce_in += count;
2147 
2148 	smp_rmb();
2149 	if (pvt->mce_overrun) {
2150 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2151 			      pvt->mce_overrun);
2152 		smp_wmb();
2153 		pvt->mce_overrun = 0;
2154 	}
2155 
2156 	/*
2157 	 * MCE second step: parse errors and display
2158 	 */
2159 	for (i = 0; i < count; i++)
2160 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2161 }
2162 
2163 /*
2164  * sbridge_mce_check_error	Replicates mcelog routine to get errors
2165  *				This routine simply queues mcelog errors, and
2166  *				return. The error itself should be handled later
2167  *				by sbridge_check_error.
2168  * WARNING: As this routine should be called at NMI time, extra care should
2169  * be taken to avoid deadlocks, and to be as fast as possible.
2170  */
2171 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2172 				   void *data)
2173 {
2174 	struct mce *mce = (struct mce *)data;
2175 	struct mem_ctl_info *mci;
2176 	struct sbridge_pvt *pvt;
2177 	char *type;
2178 
2179 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2180 		return NOTIFY_DONE;
2181 
2182 	mci = get_mci_for_node_id(mce->socketid);
2183 	if (!mci)
2184 		return NOTIFY_BAD;
2185 	pvt = mci->pvt_info;
2186 
2187 	/*
2188 	 * Just let mcelog handle it if the error is
2189 	 * outside the memory controller. A memory error
2190 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2191 	 * bit 12 has an special meaning.
2192 	 */
2193 	if ((mce->status & 0xefff) >> 7 != 1)
2194 		return NOTIFY_DONE;
2195 
2196 	if (mce->mcgstatus & MCG_STATUS_MCIP)
2197 		type = "Exception";
2198 	else
2199 		type = "Event";
2200 
2201 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2202 
2203 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2204 			  "Bank %d: %016Lx\n", mce->extcpu, type,
2205 			  mce->mcgstatus, mce->bank, mce->status);
2206 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2207 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2208 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2209 
2210 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2211 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2212 			  mce->time, mce->socketid, mce->apicid);
2213 
2214 	smp_rmb();
2215 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2216 		smp_wmb();
2217 		pvt->mce_overrun++;
2218 		return NOTIFY_DONE;
2219 	}
2220 
2221 	/* Copy memory error at the ringbuffer */
2222 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2223 	smp_wmb();
2224 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2225 
2226 	/* Handle fatal errors immediately */
2227 	if (mce->mcgstatus & 1)
2228 		sbridge_check_error(mci);
2229 
2230 	/* Advice mcelog that the error were handled */
2231 	return NOTIFY_STOP;
2232 }
2233 
2234 static struct notifier_block sbridge_mce_dec = {
2235 	.notifier_call      = sbridge_mce_check_error,
2236 };
2237 
2238 /****************************************************************************
2239 			EDAC register/unregister logic
2240  ****************************************************************************/
2241 
2242 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2243 {
2244 	struct mem_ctl_info *mci = sbridge_dev->mci;
2245 	struct sbridge_pvt *pvt;
2246 
2247 	if (unlikely(!mci || !mci->pvt_info)) {
2248 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2249 
2250 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2251 		return;
2252 	}
2253 
2254 	pvt = mci->pvt_info;
2255 
2256 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2257 		 mci, &sbridge_dev->pdev[0]->dev);
2258 
2259 	/* Remove MC sysfs nodes */
2260 	edac_mc_del_mc(mci->pdev);
2261 
2262 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2263 	kfree(mci->ctl_name);
2264 	edac_mc_free(mci);
2265 	sbridge_dev->mci = NULL;
2266 }
2267 
2268 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2269 {
2270 	struct mem_ctl_info *mci;
2271 	struct edac_mc_layer layers[2];
2272 	struct sbridge_pvt *pvt;
2273 	struct pci_dev *pdev = sbridge_dev->pdev[0];
2274 	int rc;
2275 
2276 	/* Check the number of active and not disabled channels */
2277 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2278 	if (unlikely(rc < 0))
2279 		return rc;
2280 
2281 	/* allocate a new MC control structure */
2282 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
2283 	layers[0].size = NUM_CHANNELS;
2284 	layers[0].is_virt_csrow = false;
2285 	layers[1].type = EDAC_MC_LAYER_SLOT;
2286 	layers[1].size = MAX_DIMMS;
2287 	layers[1].is_virt_csrow = true;
2288 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2289 			    sizeof(*pvt));
2290 
2291 	if (unlikely(!mci))
2292 		return -ENOMEM;
2293 
2294 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2295 		 mci, &pdev->dev);
2296 
2297 	pvt = mci->pvt_info;
2298 	memset(pvt, 0, sizeof(*pvt));
2299 
2300 	/* Associate sbridge_dev and mci for future usage */
2301 	pvt->sbridge_dev = sbridge_dev;
2302 	sbridge_dev->mci = mci;
2303 
2304 	mci->mtype_cap = MEM_FLAG_DDR3;
2305 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
2306 	mci->edac_cap = EDAC_FLAG_NONE;
2307 	mci->mod_name = "sbridge_edac.c";
2308 	mci->mod_ver = SBRIDGE_REVISION;
2309 	mci->dev_name = pci_name(pdev);
2310 	mci->ctl_page_to_phys = NULL;
2311 
2312 	/* Set the function pointer to an actual operation function */
2313 	mci->edac_check = sbridge_check_error;
2314 
2315 	pvt->info.type = type;
2316 	switch (type) {
2317 	case IVY_BRIDGE:
2318 		pvt->info.rankcfgr = IB_RANK_CFG_A;
2319 		pvt->info.get_tolm = ibridge_get_tolm;
2320 		pvt->info.get_tohm = ibridge_get_tohm;
2321 		pvt->info.dram_rule = ibridge_dram_rule;
2322 		pvt->info.get_memory_type = get_memory_type;
2323 		pvt->info.get_node_id = get_node_id;
2324 		pvt->info.rir_limit = rir_limit;
2325 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2326 		pvt->info.interleave_list = ibridge_interleave_list;
2327 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2328 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2329 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2330 
2331 		/* Store pci devices at mci for faster access */
2332 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2333 		if (unlikely(rc < 0))
2334 			goto fail0;
2335 		break;
2336 	case SANDY_BRIDGE:
2337 		pvt->info.rankcfgr = SB_RANK_CFG_A;
2338 		pvt->info.get_tolm = sbridge_get_tolm;
2339 		pvt->info.get_tohm = sbridge_get_tohm;
2340 		pvt->info.dram_rule = sbridge_dram_rule;
2341 		pvt->info.get_memory_type = get_memory_type;
2342 		pvt->info.get_node_id = get_node_id;
2343 		pvt->info.rir_limit = rir_limit;
2344 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2345 		pvt->info.interleave_list = sbridge_interleave_list;
2346 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2347 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
2348 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2349 
2350 		/* Store pci devices at mci for faster access */
2351 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2352 		if (unlikely(rc < 0))
2353 			goto fail0;
2354 		break;
2355 	case HASWELL:
2356 		/* rankcfgr isn't used */
2357 		pvt->info.get_tolm = haswell_get_tolm;
2358 		pvt->info.get_tohm = haswell_get_tohm;
2359 		pvt->info.dram_rule = ibridge_dram_rule;
2360 		pvt->info.get_memory_type = haswell_get_memory_type;
2361 		pvt->info.get_node_id = haswell_get_node_id;
2362 		pvt->info.rir_limit = haswell_rir_limit;
2363 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2364 		pvt->info.interleave_list = ibridge_interleave_list;
2365 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2366 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2367 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2368 
2369 		/* Store pci devices at mci for faster access */
2370 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
2371 		if (unlikely(rc < 0))
2372 			goto fail0;
2373 		break;
2374 	case BROADWELL:
2375 		/* rankcfgr isn't used */
2376 		pvt->info.get_tolm = haswell_get_tolm;
2377 		pvt->info.get_tohm = haswell_get_tohm;
2378 		pvt->info.dram_rule = ibridge_dram_rule;
2379 		pvt->info.get_memory_type = haswell_get_memory_type;
2380 		pvt->info.get_node_id = haswell_get_node_id;
2381 		pvt->info.rir_limit = haswell_rir_limit;
2382 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2383 		pvt->info.interleave_list = ibridge_interleave_list;
2384 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2385 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2386 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell Socket#%d", mci->mc_idx);
2387 
2388 		/* Store pci devices at mci for faster access */
2389 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
2390 		if (unlikely(rc < 0))
2391 			goto fail0;
2392 		break;
2393 	}
2394 
2395 	/* Get dimm basic config and the memory layout */
2396 	get_dimm_config(mci);
2397 	get_memory_layout(mci);
2398 
2399 	/* record ptr to the generic device */
2400 	mci->pdev = &pdev->dev;
2401 
2402 	/* add this new MC control structure to EDAC's list of MCs */
2403 	if (unlikely(edac_mc_add_mc(mci))) {
2404 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2405 		rc = -EINVAL;
2406 		goto fail0;
2407 	}
2408 
2409 	return 0;
2410 
2411 fail0:
2412 	kfree(mci->ctl_name);
2413 	edac_mc_free(mci);
2414 	sbridge_dev->mci = NULL;
2415 	return rc;
2416 }
2417 
2418 /*
2419  *	sbridge_probe	Probe for ONE instance of device to see if it is
2420  *			present.
2421  *	return:
2422  *		0 for FOUND a device
2423  *		< 0 for error code
2424  */
2425 
2426 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2427 {
2428 	int rc = -ENODEV;
2429 	u8 mc, num_mc = 0;
2430 	struct sbridge_dev *sbridge_dev;
2431 	enum type type = SANDY_BRIDGE;
2432 
2433 	/* get the pci devices we want to reserve for our use */
2434 	mutex_lock(&sbridge_edac_lock);
2435 
2436 	/*
2437 	 * All memory controllers are allocated at the first pass.
2438 	 */
2439 	if (unlikely(probed >= 1)) {
2440 		mutex_unlock(&sbridge_edac_lock);
2441 		return -ENODEV;
2442 	}
2443 	probed++;
2444 
2445 	switch (pdev->device) {
2446 	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2447 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2448 		type = IVY_BRIDGE;
2449 		break;
2450 	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2451 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2452 		type = SANDY_BRIDGE;
2453 		break;
2454 	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2455 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2456 		type = HASWELL;
2457 		break;
2458 	case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2459 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_broadwell_table);
2460 		type = BROADWELL;
2461 		break;
2462 	}
2463 	if (unlikely(rc < 0)) {
2464 		edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev->device);
2465 		goto fail0;
2466 	}
2467 
2468 	mc = 0;
2469 
2470 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2471 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2472 			 mc, mc + 1, num_mc);
2473 
2474 		sbridge_dev->mc = mc++;
2475 		rc = sbridge_register_mci(sbridge_dev, type);
2476 		if (unlikely(rc < 0))
2477 			goto fail1;
2478 	}
2479 
2480 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
2481 
2482 	mutex_unlock(&sbridge_edac_lock);
2483 	return 0;
2484 
2485 fail1:
2486 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2487 		sbridge_unregister_mci(sbridge_dev);
2488 
2489 	sbridge_put_all_devices();
2490 fail0:
2491 	mutex_unlock(&sbridge_edac_lock);
2492 	return rc;
2493 }
2494 
2495 /*
2496  *	sbridge_remove	destructor for one instance of device
2497  *
2498  */
2499 static void sbridge_remove(struct pci_dev *pdev)
2500 {
2501 	struct sbridge_dev *sbridge_dev;
2502 
2503 	edac_dbg(0, "\n");
2504 
2505 	/*
2506 	 * we have a trouble here: pdev value for removal will be wrong, since
2507 	 * it will point to the X58 register used to detect that the machine
2508 	 * is a Nehalem or upper design. However, due to the way several PCI
2509 	 * devices are grouped together to provide MC functionality, we need
2510 	 * to use a different method for releasing the devices
2511 	 */
2512 
2513 	mutex_lock(&sbridge_edac_lock);
2514 
2515 	if (unlikely(!probed)) {
2516 		mutex_unlock(&sbridge_edac_lock);
2517 		return;
2518 	}
2519 
2520 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2521 		sbridge_unregister_mci(sbridge_dev);
2522 
2523 	/* Release PCI resources */
2524 	sbridge_put_all_devices();
2525 
2526 	probed--;
2527 
2528 	mutex_unlock(&sbridge_edac_lock);
2529 }
2530 
2531 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2532 
2533 /*
2534  *	sbridge_driver	pci_driver structure for this module
2535  *
2536  */
2537 static struct pci_driver sbridge_driver = {
2538 	.name     = "sbridge_edac",
2539 	.probe    = sbridge_probe,
2540 	.remove   = sbridge_remove,
2541 	.id_table = sbridge_pci_tbl,
2542 };
2543 
2544 /*
2545  *	sbridge_init		Module entry function
2546  *			Try to initialize this module for its devices
2547  */
2548 static int __init sbridge_init(void)
2549 {
2550 	int pci_rc;
2551 
2552 	edac_dbg(2, "\n");
2553 
2554 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
2555 	opstate_init();
2556 
2557 	pci_rc = pci_register_driver(&sbridge_driver);
2558 	if (pci_rc >= 0) {
2559 		mce_register_decode_chain(&sbridge_mce_dec);
2560 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2561 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2562 		return 0;
2563 	}
2564 
2565 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2566 		      pci_rc);
2567 
2568 	return pci_rc;
2569 }
2570 
2571 /*
2572  *	sbridge_exit()	Module exit function
2573  *			Unregister the driver
2574  */
2575 static void __exit sbridge_exit(void)
2576 {
2577 	edac_dbg(2, "\n");
2578 	pci_unregister_driver(&sbridge_driver);
2579 	mce_unregister_decode_chain(&sbridge_mce_dec);
2580 }
2581 
2582 module_init(sbridge_init);
2583 module_exit(sbridge_exit);
2584 
2585 module_param(edac_op_state, int, 0444);
2586 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2587 
2588 MODULE_LICENSE("GPL");
2589 MODULE_AUTHOR("Mauro Carvalho Chehab");
2590 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2591 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2592 		   SBRIDGE_REVISION);
2593