xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 3932b9ca)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
25 #include <asm/mce.h>
26 
27 #include "edac_core.h"
28 
29 /* Static vars */
30 static LIST_HEAD(sbridge_edac_list);
31 static DEFINE_MUTEX(sbridge_edac_lock);
32 static int probed;
33 
34 /*
35  * Alter this version for the module when modifications are made
36  */
37 #define SBRIDGE_REVISION    " Ver: 1.1.0 "
38 #define EDAC_MOD_STR      "sbridge_edac"
39 
40 /*
41  * Debug macros
42  */
43 #define sbridge_printk(level, fmt, arg...)			\
44 	edac_printk(level, "sbridge", fmt, ##arg)
45 
46 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
47 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
48 
49 /*
50  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51  */
52 #define GET_BITFIELD(v, lo, hi)	\
53 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
54 
55 /*
56  * sbridge Memory Controller Registers
57  */
58 
59 /*
60  * FIXME: For now, let's order by device function, as it makes
61  * easier for driver's development process. This table should be
62  * moved to pci_id.h when submitted upstream
63  */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
74 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */
75 
76 	/*
77 	 * Currently, unused, but will be needed in the future
78 	 * implementations, as they hold the error counters
79 	 */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
83 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */
84 
85 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
86 static const u32 sbridge_dram_rule[] = {
87 	0x80, 0x88, 0x90, 0x98, 0xa0,
88 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89 };
90 
91 static const u32 ibridge_dram_rule[] = {
92 	0x60, 0x68, 0x70, 0x78, 0x80,
93 	0x88, 0x90, 0x98, 0xa0,	0xa8,
94 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
95 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
96 };
97 
98 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
99 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
100 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
101 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
102 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
103 
104 static char *get_dram_attr(u32 reg)
105 {
106 	switch(DRAM_ATTR(reg)) {
107 		case 0:
108 			return "DRAM";
109 		case 1:
110 			return "MMCFG";
111 		case 2:
112 			return "NXM";
113 		default:
114 			return "unknown";
115 	}
116 }
117 
118 static const u32 sbridge_interleave_list[] = {
119 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
120 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
121 };
122 
123 static const u32 ibridge_interleave_list[] = {
124 	0x64, 0x6c, 0x74, 0x7c, 0x84,
125 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
126 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
127 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
128 };
129 
130 struct interleave_pkg {
131 	unsigned char start;
132 	unsigned char end;
133 };
134 
135 static const struct interleave_pkg sbridge_interleave_pkg[] = {
136 	{ 0, 2 },
137 	{ 3, 5 },
138 	{ 8, 10 },
139 	{ 11, 13 },
140 	{ 16, 18 },
141 	{ 19, 21 },
142 	{ 24, 26 },
143 	{ 27, 29 },
144 };
145 
146 static const struct interleave_pkg ibridge_interleave_pkg[] = {
147 	{ 0, 3 },
148 	{ 4, 7 },
149 	{ 8, 11 },
150 	{ 12, 15 },
151 	{ 16, 19 },
152 	{ 20, 23 },
153 	{ 24, 27 },
154 	{ 28, 31 },
155 };
156 
157 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
158 			  int interleave)
159 {
160 	return GET_BITFIELD(reg, table[interleave].start,
161 			    table[interleave].end);
162 }
163 
164 /* Devices 12 Function 7 */
165 
166 #define TOLM		0x80
167 #define	TOHM		0x84
168 #define HASWELL_TOHM_0	0xd4
169 #define HASWELL_TOHM_1	0xd8
170 
171 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
172 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
173 
174 /* Device 13 Function 6 */
175 
176 #define SAD_TARGET	0xf0
177 
178 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
179 
180 #define SAD_CONTROL	0xf4
181 
182 /* Device 14 function 0 */
183 
184 static const u32 tad_dram_rule[] = {
185 	0x40, 0x44, 0x48, 0x4c,
186 	0x50, 0x54, 0x58, 0x5c,
187 	0x60, 0x64, 0x68, 0x6c,
188 };
189 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
190 
191 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
192 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
193 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
194 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
195 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
196 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
197 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
198 
199 /* Device 15, function 0 */
200 
201 #define MCMTR			0x7c
202 
203 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
204 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
205 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
206 
207 /* Device 15, function 1 */
208 
209 #define RASENABLES		0xac
210 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
211 
212 /* Device 15, functions 2-5 */
213 
214 static const int mtr_regs[] = {
215 	0x80, 0x84, 0x88,
216 };
217 
218 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
219 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
220 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
221 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
222 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
223 
224 static const u32 tad_ch_nilv_offset[] = {
225 	0x90, 0x94, 0x98, 0x9c,
226 	0xa0, 0xa4, 0xa8, 0xac,
227 	0xb0, 0xb4, 0xb8, 0xbc,
228 };
229 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
230 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
231 
232 static const u32 rir_way_limit[] = {
233 	0x108, 0x10c, 0x110, 0x114, 0x118,
234 };
235 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
236 
237 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
238 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
239 
240 #define MAX_RIR_WAY	8
241 
242 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
243 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
244 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
245 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
246 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
247 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
248 };
249 
250 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
251 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
252 
253 /* Device 16, functions 2-7 */
254 
255 /*
256  * FIXME: Implement the error count reads directly
257  */
258 
259 static const u32 correrrcnt[] = {
260 	0x104, 0x108, 0x10c, 0x110,
261 };
262 
263 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
264 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
266 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
267 
268 static const u32 correrrthrsld[] = {
269 	0x11c, 0x120, 0x124, 0x128,
270 };
271 
272 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
274 
275 
276 /* Device 17, function 0 */
277 
278 #define SB_RANK_CFG_A		0x0328
279 
280 #define IB_RANK_CFG_A		0x0320
281 
282 /*
283  * sbridge structs
284  */
285 
286 #define NUM_CHANNELS	4
287 #define MAX_DIMMS	3		/* Max DIMMS per channel */
288 
289 enum type {
290 	SANDY_BRIDGE,
291 	IVY_BRIDGE,
292 	HASWELL,
293 };
294 
295 struct sbridge_pvt;
296 struct sbridge_info {
297 	enum type	type;
298 	u32		mcmtr;
299 	u32		rankcfgr;
300 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
301 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
302 	u64		(*rir_limit)(u32 reg);
303 	const u32	*dram_rule;
304 	const u32	*interleave_list;
305 	const struct interleave_pkg *interleave_pkg;
306 	u8		max_sad;
307 	u8		max_interleave;
308 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
309 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
310 	struct pci_dev	*pci_vtd;
311 };
312 
313 struct sbridge_channel {
314 	u32		ranks;
315 	u32		dimms;
316 };
317 
318 struct pci_id_descr {
319 	int			dev_id;
320 	int			optional;
321 };
322 
323 struct pci_id_table {
324 	const struct pci_id_descr	*descr;
325 	int				n_devs;
326 };
327 
328 struct sbridge_dev {
329 	struct list_head	list;
330 	u8			bus, mc;
331 	u8			node_id, source_id;
332 	struct pci_dev		**pdev;
333 	int			n_devs;
334 	struct mem_ctl_info	*mci;
335 };
336 
337 struct sbridge_pvt {
338 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
339 	struct pci_dev		*pci_sad0, *pci_sad1;
340 	struct pci_dev		*pci_ha0, *pci_ha1;
341 	struct pci_dev		*pci_br0, *pci_br1;
342 	struct pci_dev		*pci_ha1_ta;
343 	struct pci_dev		*pci_tad[NUM_CHANNELS];
344 
345 	struct sbridge_dev	*sbridge_dev;
346 
347 	struct sbridge_info	info;
348 	struct sbridge_channel	channel[NUM_CHANNELS];
349 
350 	/* Memory type detection */
351 	bool			is_mirrored, is_lockstep, is_close_pg;
352 
353 	/* Fifo double buffers */
354 	struct mce		mce_entry[MCE_LOG_LEN];
355 	struct mce		mce_outentry[MCE_LOG_LEN];
356 
357 	/* Fifo in/out counters */
358 	unsigned		mce_in, mce_out;
359 
360 	/* Count indicator to show errors not got */
361 	unsigned		mce_overrun;
362 
363 	/* Memory description */
364 	u64			tolm, tohm;
365 };
366 
367 #define PCI_DESCR(device_id, opt)	\
368 	.dev_id = (device_id),		\
369 	.optional = opt
370 
371 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
372 		/* Processor Home Agent */
373 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0)	},
374 
375 		/* Memory controller */
376 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0)	},
377 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0)	},
378 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0)	},
379 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0)	},
380 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0)	},
381 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0)	},
382 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1)	},
383 
384 		/* System Address Decoder */
385 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0)	},
386 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0)	},
387 
388 		/* Broadcast Registers */
389 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0)		},
390 };
391 
392 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
393 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
394 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
395 	{0,}			/* 0 terminated list. */
396 };
397 
398 /* This changes depending if 1HA or 2HA:
399  * 1HA:
400  *	0x0eb8 (17.0) is DDRIO0
401  * 2HA:
402  *	0x0ebc (17.4) is DDRIO0
403  */
404 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
405 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
406 
407 /* pci ids */
408 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
409 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
410 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
411 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
412 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
413 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
414 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
415 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
416 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
417 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
418 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
421 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
422 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
423 
424 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
425 		/* Processor Home Agent */
426 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0)		},
427 
428 		/* Memory controller */
429 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0)		},
430 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0)		},
431 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0)	},
432 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0)	},
433 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0)	},
434 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0)	},
435 
436 		/* System Address Decoder */
437 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0)			},
438 
439 		/* Broadcast Registers */
440 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1)			},
441 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0)			},
442 
443 		/* Optional, mode 2HA */
444 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1)		},
445 #if 0
446 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1)	},
447 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1)	},
448 #endif
449 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1)	},
450 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1)	},
451 
452 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1)	},
453 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1)	},
454 };
455 
456 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
457 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge),
458 	{0,}			/* 0 terminated list. */
459 };
460 
461 /* Haswell support */
462 /* EN processor:
463  *	- 1 IMC
464  *	- 3 DDR3 channels, 2 DPC per channel
465  * EP processor:
466  *	- 1 or 2 IMC
467  *	- 4 DDR4 channels, 3 DPC per channel
468  * EP 4S processor:
469  *	- 2 IMC
470  *	- 4 DDR4 channels, 3 DPC per channel
471  * EX processor:
472  *	- 2 IMC
473  *	- each IMC interfaces with a SMI 2 channel
474  *	- each SMI channel interfaces with a scalable memory buffer
475  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
476  */
477 #define HASWELL_DDRCRCLKCONTROLS 0xa10
478 #define HASWELL_HASYSDEFEATURE2 0x84
479 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
480 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
481 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
482 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
483 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
484 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
485 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
486 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
487 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
488 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
489 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
490 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
491 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
492 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
493 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
494 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
495 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
496 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
497 static const struct pci_id_descr pci_dev_descr_haswell[] = {
498 	/* first item must be the HA */
499 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0)		},
500 
501 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0)	},
502 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0)	},
503 
504 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1)		},
505 
506 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0)		},
507 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL, 0)	},
508 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0)	},
509 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0)	},
510 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1)	},
511 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1)	},
512 
513 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1)		},
514 
515 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1)		},
516 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL, 1)	},
517 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1)	},
518 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1)	},
519 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1)	},
520 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1)	},
521 };
522 
523 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
524 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell),
525 	{0,}			/* 0 terminated list. */
526 };
527 
528 /*
529  *	pci_device_id	table for which devices we are looking for
530  */
531 static const struct pci_device_id sbridge_pci_tbl[] = {
532 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
533 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA)},
534 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0)},
535 	{0,}			/* 0 terminated list. */
536 };
537 
538 
539 /****************************************************************************
540 			Ancillary status routines
541  ****************************************************************************/
542 
543 static inline int numrank(enum type type, u32 mtr)
544 {
545 	int ranks = (1 << RANK_CNT_BITS(mtr));
546 	int max = 4;
547 
548 	if (type == HASWELL)
549 		max = 8;
550 
551 	if (ranks > max) {
552 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
553 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
554 		return -EINVAL;
555 	}
556 
557 	return ranks;
558 }
559 
560 static inline int numrow(u32 mtr)
561 {
562 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
563 
564 	if (rows < 13 || rows > 18) {
565 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
566 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
567 		return -EINVAL;
568 	}
569 
570 	return 1 << rows;
571 }
572 
573 static inline int numcol(u32 mtr)
574 {
575 	int cols = (COL_WIDTH_BITS(mtr) + 10);
576 
577 	if (cols > 12) {
578 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
579 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
580 		return -EINVAL;
581 	}
582 
583 	return 1 << cols;
584 }
585 
586 static struct sbridge_dev *get_sbridge_dev(u8 bus)
587 {
588 	struct sbridge_dev *sbridge_dev;
589 
590 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
591 		if (sbridge_dev->bus == bus)
592 			return sbridge_dev;
593 	}
594 
595 	return NULL;
596 }
597 
598 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
599 					   const struct pci_id_table *table)
600 {
601 	struct sbridge_dev *sbridge_dev;
602 
603 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
604 	if (!sbridge_dev)
605 		return NULL;
606 
607 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
608 				   GFP_KERNEL);
609 	if (!sbridge_dev->pdev) {
610 		kfree(sbridge_dev);
611 		return NULL;
612 	}
613 
614 	sbridge_dev->bus = bus;
615 	sbridge_dev->n_devs = table->n_devs;
616 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
617 
618 	return sbridge_dev;
619 }
620 
621 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
622 {
623 	list_del(&sbridge_dev->list);
624 	kfree(sbridge_dev->pdev);
625 	kfree(sbridge_dev);
626 }
627 
628 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
629 {
630 	u32 reg;
631 
632 	/* Address range is 32:28 */
633 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
634 	return GET_TOLM(reg);
635 }
636 
637 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
638 {
639 	u32 reg;
640 
641 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
642 	return GET_TOHM(reg);
643 }
644 
645 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
646 {
647 	u32 reg;
648 
649 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
650 
651 	return GET_TOLM(reg);
652 }
653 
654 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
655 {
656 	u32 reg;
657 
658 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
659 
660 	return GET_TOHM(reg);
661 }
662 
663 static u64 rir_limit(u32 reg)
664 {
665 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
666 }
667 
668 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
669 {
670 	u32 reg;
671 	enum mem_type mtype;
672 
673 	if (pvt->pci_ddrio) {
674 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
675 				      &reg);
676 		if (GET_BITFIELD(reg, 11, 11))
677 			/* FIXME: Can also be LRDIMM */
678 			mtype = MEM_RDDR3;
679 		else
680 			mtype = MEM_DDR3;
681 	} else
682 		mtype = MEM_UNKNOWN;
683 
684 	return mtype;
685 }
686 
687 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
688 {
689 	u32 reg;
690 	bool registered = false;
691 	enum mem_type mtype = MEM_UNKNOWN;
692 
693 	if (!pvt->pci_ddrio)
694 		goto out;
695 
696 	pci_read_config_dword(pvt->pci_ddrio,
697 			      HASWELL_DDRCRCLKCONTROLS, &reg);
698 	/* Is_Rdimm */
699 	if (GET_BITFIELD(reg, 16, 16))
700 		registered = true;
701 
702 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
703 	if (GET_BITFIELD(reg, 14, 14)) {
704 		if (registered)
705 			mtype = MEM_RDDR4;
706 		else
707 			mtype = MEM_DDR4;
708 	} else {
709 		if (registered)
710 			mtype = MEM_RDDR3;
711 		else
712 			mtype = MEM_DDR3;
713 	}
714 
715 out:
716 	return mtype;
717 }
718 
719 static u8 get_node_id(struct sbridge_pvt *pvt)
720 {
721 	u32 reg;
722 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
723 	return GET_BITFIELD(reg, 0, 2);
724 }
725 
726 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
727 {
728 	u32 reg;
729 
730 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
731 	return GET_BITFIELD(reg, 0, 3);
732 }
733 
734 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
735 {
736 	u32 reg;
737 
738 	pci_read_config_dword(pvt->info.pci_vtd, TOLM, &reg);
739 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x1ffffff;
740 }
741 
742 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
743 {
744 	u64 rc;
745 	u32 reg;
746 
747 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
748 	rc = GET_BITFIELD(reg, 26, 31);
749 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
750 	rc = ((reg << 6) | rc) << 26;
751 
752 	return rc | 0x1ffffff;
753 }
754 
755 static u64 haswell_rir_limit(u32 reg)
756 {
757 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
758 }
759 
760 static inline u8 sad_pkg_socket(u8 pkg)
761 {
762 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
763 	return ((pkg >> 3) << 2) | (pkg & 0x3);
764 }
765 
766 static inline u8 sad_pkg_ha(u8 pkg)
767 {
768 	return (pkg >> 2) & 0x1;
769 }
770 
771 /****************************************************************************
772 			Memory check routines
773  ****************************************************************************/
774 static struct pci_dev *get_pdev_same_bus(u8 bus, u32 id)
775 {
776 	struct pci_dev *pdev = NULL;
777 
778 	do {
779 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, id, pdev);
780 		if (pdev && pdev->bus->number == bus)
781 			break;
782 	} while (pdev);
783 
784 	return pdev;
785 }
786 
787 /**
788  * check_if_ecc_is_active() - Checks if ECC is active
789  * @bus:	Device bus
790  * @type:	Memory controller type
791  * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
792  *	    disabled
793  */
794 static int check_if_ecc_is_active(const u8 bus, enum type type)
795 {
796 	struct pci_dev *pdev = NULL;
797 	u32 mcmtr, id;
798 
799 	if (type == IVY_BRIDGE)
800 		id = PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA;
801 	else if (type == HASWELL)
802 		id = PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA;
803 	else
804 		id = PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA;
805 
806 	pdev = get_pdev_same_bus(bus, id);
807 	if (!pdev) {
808 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
809 					"%04x:%04x! on bus %02d\n",
810 					PCI_VENDOR_ID_INTEL, id, bus);
811 		return -ENODEV;
812 	}
813 
814 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
815 	if (!IS_ECC_ENABLED(mcmtr)) {
816 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
817 		return -ENODEV;
818 	}
819 	return 0;
820 }
821 
822 static int get_dimm_config(struct mem_ctl_info *mci)
823 {
824 	struct sbridge_pvt *pvt = mci->pvt_info;
825 	struct dimm_info *dimm;
826 	unsigned i, j, banks, ranks, rows, cols, npages;
827 	u64 size;
828 	u32 reg;
829 	enum edac_type mode;
830 	enum mem_type mtype;
831 
832 	if (pvt->info.type == HASWELL)
833 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
834 	else
835 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
836 
837 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
838 
839 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
840 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
841 		 pvt->sbridge_dev->mc,
842 		 pvt->sbridge_dev->node_id,
843 		 pvt->sbridge_dev->source_id);
844 
845 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
846 	if (IS_MIRROR_ENABLED(reg)) {
847 		edac_dbg(0, "Memory mirror is enabled\n");
848 		pvt->is_mirrored = true;
849 	} else {
850 		edac_dbg(0, "Memory mirror is disabled\n");
851 		pvt->is_mirrored = false;
852 	}
853 
854 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
855 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
856 		edac_dbg(0, "Lockstep is enabled\n");
857 		mode = EDAC_S8ECD8ED;
858 		pvt->is_lockstep = true;
859 	} else {
860 		edac_dbg(0, "Lockstep is disabled\n");
861 		mode = EDAC_S4ECD4ED;
862 		pvt->is_lockstep = false;
863 	}
864 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
865 		edac_dbg(0, "address map is on closed page mode\n");
866 		pvt->is_close_pg = true;
867 	} else {
868 		edac_dbg(0, "address map is on open page mode\n");
869 		pvt->is_close_pg = false;
870 	}
871 
872 	mtype = pvt->info.get_memory_type(pvt);
873 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
874 		edac_dbg(0, "Memory is registered\n");
875 	else if (mtype == MEM_UNKNOWN)
876 		edac_dbg(0, "Cannot determine memory type\n");
877 	else
878 		edac_dbg(0, "Memory is unregistered\n");
879 
880 	if (mtype == MEM_DDR4 || MEM_RDDR4)
881 		banks = 16;
882 	else
883 		banks = 8;
884 
885 	for (i = 0; i < NUM_CHANNELS; i++) {
886 		u32 mtr;
887 
888 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
889 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
890 				       i, j, 0);
891 			pci_read_config_dword(pvt->pci_tad[i],
892 					      mtr_regs[j], &mtr);
893 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
894 			if (IS_DIMM_PRESENT(mtr)) {
895 				pvt->channel[i].dimms++;
896 
897 				ranks = numrank(pvt->info.type, mtr);
898 				rows = numrow(mtr);
899 				cols = numcol(mtr);
900 
901 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
902 				npages = MiB_TO_PAGES(size);
903 
904 				edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
905 					 pvt->sbridge_dev->mc, i, j,
906 					 size, npages,
907 					 banks, ranks, rows, cols);
908 
909 				dimm->nr_pages = npages;
910 				dimm->grain = 32;
911 				switch (banks) {
912 				case 16:
913 					dimm->dtype = DEV_X16;
914 					break;
915 				case 8:
916 					dimm->dtype = DEV_X8;
917 					break;
918 				case 4:
919 					dimm->dtype = DEV_X4;
920 					break;
921 				}
922 				dimm->mtype = mtype;
923 				dimm->edac_mode = mode;
924 				snprintf(dimm->label, sizeof(dimm->label),
925 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
926 					 pvt->sbridge_dev->source_id, i, j);
927 			}
928 		}
929 	}
930 
931 	return 0;
932 }
933 
934 static void get_memory_layout(const struct mem_ctl_info *mci)
935 {
936 	struct sbridge_pvt *pvt = mci->pvt_info;
937 	int i, j, k, n_sads, n_tads, sad_interl;
938 	u32 reg;
939 	u64 limit, prv = 0;
940 	u64 tmp_mb;
941 	u32 mb, kb;
942 	u32 rir_way;
943 
944 	/*
945 	 * Step 1) Get TOLM/TOHM ranges
946 	 */
947 
948 	pvt->tolm = pvt->info.get_tolm(pvt);
949 	tmp_mb = (1 + pvt->tolm) >> 20;
950 
951 	mb = div_u64_rem(tmp_mb, 1000, &kb);
952 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm);
953 
954 	/* Address range is already 45:25 */
955 	pvt->tohm = pvt->info.get_tohm(pvt);
956 	tmp_mb = (1 + pvt->tohm) >> 20;
957 
958 	mb = div_u64_rem(tmp_mb, 1000, &kb);
959 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tohm);
960 
961 	/*
962 	 * Step 2) Get SAD range and SAD Interleave list
963 	 * TAD registers contain the interleave wayness. However, it
964 	 * seems simpler to just discover it indirectly, with the
965 	 * algorithm bellow.
966 	 */
967 	prv = 0;
968 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
969 		/* SAD_LIMIT Address range is 45:26 */
970 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
971 				      &reg);
972 		limit = SAD_LIMIT(reg);
973 
974 		if (!DRAM_RULE_ENABLE(reg))
975 			continue;
976 
977 		if (limit <= prv)
978 			break;
979 
980 		tmp_mb = (limit + 1) >> 20;
981 		mb = div_u64_rem(tmp_mb, 1000, &kb);
982 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
983 			 n_sads,
984 			 get_dram_attr(reg),
985 			 mb, kb,
986 			 ((u64)tmp_mb) << 20L,
987 			 INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]",
988 			 reg);
989 		prv = limit;
990 
991 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
992 				      &reg);
993 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
994 		for (j = 0; j < 8; j++) {
995 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
996 			if (j > 0 && sad_interl == pkg)
997 				break;
998 
999 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1000 				 n_sads, j, pkg);
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Step 3) Get TAD range
1006 	 */
1007 	prv = 0;
1008 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1009 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
1010 				      &reg);
1011 		limit = TAD_LIMIT(reg);
1012 		if (limit <= prv)
1013 			break;
1014 		tmp_mb = (limit + 1) >> 20;
1015 
1016 		mb = div_u64_rem(tmp_mb, 1000, &kb);
1017 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1018 			 n_tads, mb, kb,
1019 			 ((u64)tmp_mb) << 20L,
1020 			 (u32)TAD_SOCK(reg),
1021 			 (u32)TAD_CH(reg),
1022 			 (u32)TAD_TGT0(reg),
1023 			 (u32)TAD_TGT1(reg),
1024 			 (u32)TAD_TGT2(reg),
1025 			 (u32)TAD_TGT3(reg),
1026 			 reg);
1027 		prv = limit;
1028 	}
1029 
1030 	/*
1031 	 * Step 4) Get TAD offsets, per each channel
1032 	 */
1033 	for (i = 0; i < NUM_CHANNELS; i++) {
1034 		if (!pvt->channel[i].dimms)
1035 			continue;
1036 		for (j = 0; j < n_tads; j++) {
1037 			pci_read_config_dword(pvt->pci_tad[i],
1038 					      tad_ch_nilv_offset[j],
1039 					      &reg);
1040 			tmp_mb = TAD_OFFSET(reg) >> 20;
1041 			mb = div_u64_rem(tmp_mb, 1000, &kb);
1042 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1043 				 i, j,
1044 				 mb, kb,
1045 				 ((u64)tmp_mb) << 20L,
1046 				 reg);
1047 		}
1048 	}
1049 
1050 	/*
1051 	 * Step 6) Get RIR Wayness/Limit, per each channel
1052 	 */
1053 	for (i = 0; i < NUM_CHANNELS; i++) {
1054 		if (!pvt->channel[i].dimms)
1055 			continue;
1056 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1057 			pci_read_config_dword(pvt->pci_tad[i],
1058 					      rir_way_limit[j],
1059 					      &reg);
1060 
1061 			if (!IS_RIR_VALID(reg))
1062 				continue;
1063 
1064 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1065 			rir_way = 1 << RIR_WAY(reg);
1066 			mb = div_u64_rem(tmp_mb, 1000, &kb);
1067 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1068 				 i, j,
1069 				 mb, kb,
1070 				 ((u64)tmp_mb) << 20L,
1071 				 rir_way,
1072 				 reg);
1073 
1074 			for (k = 0; k < rir_way; k++) {
1075 				pci_read_config_dword(pvt->pci_tad[i],
1076 						      rir_offset[j][k],
1077 						      &reg);
1078 				tmp_mb = RIR_OFFSET(reg) << 6;
1079 
1080 				mb = div_u64_rem(tmp_mb, 1000, &kb);
1081 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1082 					 i, j, k,
1083 					 mb, kb,
1084 					 ((u64)tmp_mb) << 20L,
1085 					 (u32)RIR_RNK_TGT(reg),
1086 					 reg);
1087 			}
1088 		}
1089 	}
1090 }
1091 
1092 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
1093 {
1094 	struct sbridge_dev *sbridge_dev;
1095 
1096 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1097 		if (sbridge_dev->node_id == node_id)
1098 			return sbridge_dev->mci;
1099 	}
1100 	return NULL;
1101 }
1102 
1103 static int get_memory_error_data(struct mem_ctl_info *mci,
1104 				 u64 addr,
1105 				 u8 *socket,
1106 				 long *channel_mask,
1107 				 u8 *rank,
1108 				 char **area_type, char *msg)
1109 {
1110 	struct mem_ctl_info	*new_mci;
1111 	struct sbridge_pvt *pvt = mci->pvt_info;
1112 	struct pci_dev		*pci_ha;
1113 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1114 	int			sad_interl, idx, base_ch;
1115 	int			interleave_mode, shiftup = 0;
1116 	unsigned		sad_interleave[pvt->info.max_interleave];
1117 	u32			reg, dram_rule;
1118 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1119 	u32			tad_offset;
1120 	u32			rir_way;
1121 	u32			mb, kb;
1122 	u64			ch_addr, offset, limit = 0, prv = 0;
1123 
1124 
1125 	/*
1126 	 * Step 0) Check if the address is at special memory ranges
1127 	 * The check bellow is probably enough to fill all cases where
1128 	 * the error is not inside a memory, except for the legacy
1129 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1130 	 * memory controller would generate an error on that range.
1131 	 */
1132 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1133 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1134 		return -EINVAL;
1135 	}
1136 	if (addr >= (u64)pvt->tohm) {
1137 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1138 		return -EINVAL;
1139 	}
1140 
1141 	/*
1142 	 * Step 1) Get socket
1143 	 */
1144 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1145 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1146 				      &reg);
1147 
1148 		if (!DRAM_RULE_ENABLE(reg))
1149 			continue;
1150 
1151 		limit = SAD_LIMIT(reg);
1152 		if (limit <= prv) {
1153 			sprintf(msg, "Can't discover the memory socket");
1154 			return -EINVAL;
1155 		}
1156 		if  (addr <= limit)
1157 			break;
1158 		prv = limit;
1159 	}
1160 	if (n_sads == pvt->info.max_sad) {
1161 		sprintf(msg, "Can't discover the memory socket");
1162 		return -EINVAL;
1163 	}
1164 	dram_rule = reg;
1165 	*area_type = get_dram_attr(dram_rule);
1166 	interleave_mode = INTERLEAVE_MODE(dram_rule);
1167 
1168 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1169 			      &reg);
1170 
1171 	if (pvt->info.type == SANDY_BRIDGE) {
1172 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1173 		for (sad_way = 0; sad_way < 8; sad_way++) {
1174 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1175 			if (sad_way > 0 && sad_interl == pkg)
1176 				break;
1177 			sad_interleave[sad_way] = pkg;
1178 			edac_dbg(0, "SAD interleave #%d: %d\n",
1179 				 sad_way, sad_interleave[sad_way]);
1180 		}
1181 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1182 			 pvt->sbridge_dev->mc,
1183 			 n_sads,
1184 			 addr,
1185 			 limit,
1186 			 sad_way + 7,
1187 			 !interleave_mode ? "" : "XOR[18:16]");
1188 		if (interleave_mode)
1189 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1190 		else
1191 			idx = (addr >> 6) & 7;
1192 		switch (sad_way) {
1193 		case 1:
1194 			idx = 0;
1195 			break;
1196 		case 2:
1197 			idx = idx & 1;
1198 			break;
1199 		case 4:
1200 			idx = idx & 3;
1201 			break;
1202 		case 8:
1203 			break;
1204 		default:
1205 			sprintf(msg, "Can't discover socket interleave");
1206 			return -EINVAL;
1207 		}
1208 		*socket = sad_interleave[idx];
1209 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1210 			 idx, sad_way, *socket);
1211 	} else if (pvt->info.type == HASWELL) {
1212 		int bits, a7mode = A7MODE(dram_rule);
1213 
1214 		if (a7mode) {
1215 			/* A7 mode swaps P9 with P6 */
1216 			bits = GET_BITFIELD(addr, 7, 8) << 1;
1217 			bits |= GET_BITFIELD(addr, 9, 9);
1218 		} else
1219 			bits = GET_BITFIELD(addr, 7, 9);
1220 
1221 		if (interleave_mode) {
1222 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
1223 			idx = GET_BITFIELD(addr, 16, 18);
1224 			idx ^= bits;
1225 		} else
1226 			idx = bits;
1227 
1228 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1229 		*socket = sad_pkg_socket(pkg);
1230 		sad_ha = sad_pkg_ha(pkg);
1231 
1232 		if (a7mode) {
1233 			/* MCChanShiftUpEnable */
1234 			pci_read_config_dword(pvt->pci_ha0,
1235 					      HASWELL_HASYSDEFEATURE2, &reg);
1236 			shiftup = GET_BITFIELD(reg, 22, 22);
1237 		}
1238 
1239 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
1240 			 idx, *socket, sad_ha, shiftup);
1241 	} else {
1242 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
1243 		idx = (addr >> 6) & 7;
1244 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
1245 		*socket = sad_pkg_socket(pkg);
1246 		sad_ha = sad_pkg_ha(pkg);
1247 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
1248 			 idx, *socket, sad_ha);
1249 	}
1250 
1251 	/*
1252 	 * Move to the proper node structure, in order to access the
1253 	 * right PCI registers
1254 	 */
1255 	new_mci = get_mci_for_node_id(*socket);
1256 	if (!new_mci) {
1257 		sprintf(msg, "Struct for socket #%u wasn't initialized",
1258 			*socket);
1259 		return -EINVAL;
1260 	}
1261 	mci = new_mci;
1262 	pvt = mci->pvt_info;
1263 
1264 	/*
1265 	 * Step 2) Get memory channel
1266 	 */
1267 	prv = 0;
1268 	if (pvt->info.type == SANDY_BRIDGE)
1269 		pci_ha = pvt->pci_ha0;
1270 	else {
1271 		if (sad_ha)
1272 			pci_ha = pvt->pci_ha1;
1273 		else
1274 			pci_ha = pvt->pci_ha0;
1275 	}
1276 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1277 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
1278 		limit = TAD_LIMIT(reg);
1279 		if (limit <= prv) {
1280 			sprintf(msg, "Can't discover the memory channel");
1281 			return -EINVAL;
1282 		}
1283 		if  (addr <= limit)
1284 			break;
1285 		prv = limit;
1286 	}
1287 	if (n_tads == MAX_TAD) {
1288 		sprintf(msg, "Can't discover the memory channel");
1289 		return -EINVAL;
1290 	}
1291 
1292 	ch_way = TAD_CH(reg) + 1;
1293 	sck_way = TAD_SOCK(reg) + 1;
1294 
1295 	if (ch_way == 3)
1296 		idx = addr >> 6;
1297 	else
1298 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
1299 	idx = idx % ch_way;
1300 
1301 	/*
1302 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
1303 	 */
1304 	switch (idx) {
1305 	case 0:
1306 		base_ch = TAD_TGT0(reg);
1307 		break;
1308 	case 1:
1309 		base_ch = TAD_TGT1(reg);
1310 		break;
1311 	case 2:
1312 		base_ch = TAD_TGT2(reg);
1313 		break;
1314 	case 3:
1315 		base_ch = TAD_TGT3(reg);
1316 		break;
1317 	default:
1318 		sprintf(msg, "Can't discover the TAD target");
1319 		return -EINVAL;
1320 	}
1321 	*channel_mask = 1 << base_ch;
1322 
1323 	pci_read_config_dword(pvt->pci_tad[base_ch],
1324 				tad_ch_nilv_offset[n_tads],
1325 				&tad_offset);
1326 
1327 	if (pvt->is_mirrored) {
1328 		*channel_mask |= 1 << ((base_ch + 2) % 4);
1329 		switch(ch_way) {
1330 		case 2:
1331 		case 4:
1332 			sck_xch = 1 << sck_way * (ch_way >> 1);
1333 			break;
1334 		default:
1335 			sprintf(msg, "Invalid mirror set. Can't decode addr");
1336 			return -EINVAL;
1337 		}
1338 	} else
1339 		sck_xch = (1 << sck_way) * ch_way;
1340 
1341 	if (pvt->is_lockstep)
1342 		*channel_mask |= 1 << ((base_ch + 1) % 4);
1343 
1344 	offset = TAD_OFFSET(tad_offset);
1345 
1346 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1347 		 n_tads,
1348 		 addr,
1349 		 limit,
1350 		 (u32)TAD_SOCK(reg),
1351 		 ch_way,
1352 		 offset,
1353 		 idx,
1354 		 base_ch,
1355 		 *channel_mask);
1356 
1357 	/* Calculate channel address */
1358 	/* Remove the TAD offset */
1359 
1360 	if (offset > addr) {
1361 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1362 			offset, addr);
1363 		return -EINVAL;
1364 	}
1365 	addr -= offset;
1366 	/* Store the low bits [0:6] of the addr */
1367 	ch_addr = addr & 0x7f;
1368 	/* Remove socket wayness and remove 6 bits */
1369 	addr >>= 6;
1370 	addr = div_u64(addr, sck_xch);
1371 #if 0
1372 	/* Divide by channel way */
1373 	addr = addr / ch_way;
1374 #endif
1375 	/* Recover the last 6 bits */
1376 	ch_addr |= addr << 6;
1377 
1378 	/*
1379 	 * Step 3) Decode rank
1380 	 */
1381 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1382 		pci_read_config_dword(pvt->pci_tad[base_ch],
1383 				      rir_way_limit[n_rir],
1384 				      &reg);
1385 
1386 		if (!IS_RIR_VALID(reg))
1387 			continue;
1388 
1389 		limit = pvt->info.rir_limit(reg);
1390 		mb = div_u64_rem(limit >> 20, 1000, &kb);
1391 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
1392 			 n_rir,
1393 			 mb, kb,
1394 			 limit,
1395 			 1 << RIR_WAY(reg));
1396 		if  (ch_addr <= limit)
1397 			break;
1398 	}
1399 	if (n_rir == MAX_RIR_RANGES) {
1400 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1401 			ch_addr);
1402 		return -EINVAL;
1403 	}
1404 	rir_way = RIR_WAY(reg);
1405 
1406 	if (pvt->is_close_pg)
1407 		idx = (ch_addr >> 6);
1408 	else
1409 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1410 	idx %= 1 << rir_way;
1411 
1412 	pci_read_config_dword(pvt->pci_tad[base_ch],
1413 			      rir_offset[n_rir][idx],
1414 			      &reg);
1415 	*rank = RIR_RNK_TGT(reg);
1416 
1417 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1418 		 n_rir,
1419 		 ch_addr,
1420 		 limit,
1421 		 rir_way,
1422 		 idx);
1423 
1424 	return 0;
1425 }
1426 
1427 /****************************************************************************
1428 	Device initialization routines: put/get, init/exit
1429  ****************************************************************************/
1430 
1431 /*
1432  *	sbridge_put_all_devices	'put' all the devices that we have
1433  *				reserved via 'get'
1434  */
1435 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1436 {
1437 	int i;
1438 
1439 	edac_dbg(0, "\n");
1440 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1441 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1442 		if (!pdev)
1443 			continue;
1444 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1445 			 pdev->bus->number,
1446 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1447 		pci_dev_put(pdev);
1448 	}
1449 }
1450 
1451 static void sbridge_put_all_devices(void)
1452 {
1453 	struct sbridge_dev *sbridge_dev, *tmp;
1454 
1455 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1456 		sbridge_put_devices(sbridge_dev);
1457 		free_sbridge_dev(sbridge_dev);
1458 	}
1459 }
1460 
1461 static int sbridge_get_onedevice(struct pci_dev **prev,
1462 				 u8 *num_mc,
1463 				 const struct pci_id_table *table,
1464 				 const unsigned devno)
1465 {
1466 	struct sbridge_dev *sbridge_dev;
1467 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1468 	struct pci_dev *pdev = NULL;
1469 	u8 bus = 0;
1470 
1471 	sbridge_printk(KERN_DEBUG,
1472 		"Seeking for: PCI ID %04x:%04x\n",
1473 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1474 
1475 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1476 			      dev_descr->dev_id, *prev);
1477 
1478 	if (!pdev) {
1479 		if (*prev) {
1480 			*prev = pdev;
1481 			return 0;
1482 		}
1483 
1484 		if (dev_descr->optional)
1485 			return 0;
1486 
1487 		/* if the HA wasn't found */
1488 		if (devno == 0)
1489 			return -ENODEV;
1490 
1491 		sbridge_printk(KERN_INFO,
1492 			"Device not found: %04x:%04x\n",
1493 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1494 
1495 		/* End of list, leave */
1496 		return -ENODEV;
1497 	}
1498 	bus = pdev->bus->number;
1499 
1500 	sbridge_dev = get_sbridge_dev(bus);
1501 	if (!sbridge_dev) {
1502 		sbridge_dev = alloc_sbridge_dev(bus, table);
1503 		if (!sbridge_dev) {
1504 			pci_dev_put(pdev);
1505 			return -ENOMEM;
1506 		}
1507 		(*num_mc)++;
1508 	}
1509 
1510 	if (sbridge_dev->pdev[devno]) {
1511 		sbridge_printk(KERN_ERR,
1512 			"Duplicated device for %04x:%04x\n",
1513 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1514 		pci_dev_put(pdev);
1515 		return -ENODEV;
1516 	}
1517 
1518 	sbridge_dev->pdev[devno] = pdev;
1519 
1520 	/* Be sure that the device is enabled */
1521 	if (unlikely(pci_enable_device(pdev) < 0)) {
1522 		sbridge_printk(KERN_ERR,
1523 			"Couldn't enable %04x:%04x\n",
1524 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1525 		return -ENODEV;
1526 	}
1527 
1528 	edac_dbg(0, "Detected %04x:%04x\n",
1529 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1530 
1531 	/*
1532 	 * As stated on drivers/pci/search.c, the reference count for
1533 	 * @from is always decremented if it is not %NULL. So, as we need
1534 	 * to get all devices up to null, we need to do a get for the device
1535 	 */
1536 	pci_dev_get(pdev);
1537 
1538 	*prev = pdev;
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
1545  *			     devices we want to reference for this driver.
1546  * @num_mc: pointer to the memory controllers count, to be incremented in case
1547  *	    of success.
1548  * @table: model specific table
1549  *
1550  * returns 0 in case of success or error code
1551  */
1552 static int sbridge_get_all_devices(u8 *num_mc,
1553 				   const struct pci_id_table *table)
1554 {
1555 	int i, rc;
1556 	struct pci_dev *pdev = NULL;
1557 
1558 	while (table && table->descr) {
1559 		for (i = 0; i < table->n_devs; i++) {
1560 			pdev = NULL;
1561 			do {
1562 				rc = sbridge_get_onedevice(&pdev, num_mc,
1563 							   table, i);
1564 				if (rc < 0) {
1565 					if (i == 0) {
1566 						i = table->n_devs;
1567 						break;
1568 					}
1569 					sbridge_put_all_devices();
1570 					return -ENODEV;
1571 				}
1572 			} while (pdev);
1573 		}
1574 		table++;
1575 	}
1576 
1577 	return 0;
1578 }
1579 
1580 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
1581 				 struct sbridge_dev *sbridge_dev)
1582 {
1583 	struct sbridge_pvt *pvt = mci->pvt_info;
1584 	struct pci_dev *pdev;
1585 	int i;
1586 
1587 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1588 		pdev = sbridge_dev->pdev[i];
1589 		if (!pdev)
1590 			continue;
1591 
1592 		switch (pdev->device) {
1593 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
1594 			pvt->pci_sad0 = pdev;
1595 			break;
1596 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
1597 			pvt->pci_sad1 = pdev;
1598 			break;
1599 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
1600 			pvt->pci_br0 = pdev;
1601 			break;
1602 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
1603 			pvt->pci_ha0 = pdev;
1604 			break;
1605 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
1606 			pvt->pci_ta = pdev;
1607 			break;
1608 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
1609 			pvt->pci_ras = pdev;
1610 			break;
1611 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
1612 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
1613 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
1614 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
1615 		{
1616 			int id = pdev->device - PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0;
1617 			pvt->pci_tad[id] = pdev;
1618 		}
1619 			break;
1620 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
1621 			pvt->pci_ddrio = pdev;
1622 			break;
1623 		default:
1624 			goto error;
1625 		}
1626 
1627 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
1628 			 pdev->vendor, pdev->device,
1629 			 sbridge_dev->bus,
1630 			 pdev);
1631 	}
1632 
1633 	/* Check if everything were registered */
1634 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1635 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta)
1636 		goto enodev;
1637 
1638 	for (i = 0; i < NUM_CHANNELS; i++) {
1639 		if (!pvt->pci_tad[i])
1640 			goto enodev;
1641 	}
1642 	return 0;
1643 
1644 enodev:
1645 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1646 	return -ENODEV;
1647 
1648 error:
1649 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
1650 		       PCI_VENDOR_ID_INTEL, pdev->device);
1651 	return -EINVAL;
1652 }
1653 
1654 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
1655 				 struct sbridge_dev *sbridge_dev)
1656 {
1657 	struct sbridge_pvt *pvt = mci->pvt_info;
1658 	struct pci_dev *pdev, *tmp;
1659 	int i;
1660 	bool mode_2ha = false;
1661 
1662 	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1663 			     PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, NULL);
1664 	if (tmp) {
1665 		mode_2ha = true;
1666 		pci_dev_put(tmp);
1667 	}
1668 
1669 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1670 		pdev = sbridge_dev->pdev[i];
1671 		if (!pdev)
1672 			continue;
1673 
1674 		switch (pdev->device) {
1675 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
1676 			pvt->pci_ha0 = pdev;
1677 			break;
1678 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
1679 			pvt->pci_ta = pdev;
1680 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
1681 			pvt->pci_ras = pdev;
1682 			break;
1683 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
1684 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
1685 			/* if we have 2 HAs active, channels 2 and 3
1686 			 * are in other device */
1687 			if (mode_2ha)
1688 				break;
1689 			/* fall through */
1690 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
1691 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
1692 		{
1693 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0;
1694 			pvt->pci_tad[id] = pdev;
1695 		}
1696 			break;
1697 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
1698 			pvt->pci_ddrio = pdev;
1699 			break;
1700 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
1701 			if (!mode_2ha)
1702 				pvt->pci_ddrio = pdev;
1703 			break;
1704 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
1705 			pvt->pci_sad0 = pdev;
1706 			break;
1707 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
1708 			pvt->pci_br0 = pdev;
1709 			break;
1710 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
1711 			pvt->pci_br1 = pdev;
1712 			break;
1713 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
1714 			pvt->pci_ha1 = pdev;
1715 			break;
1716 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
1717 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
1718 		{
1719 			int id = pdev->device - PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 + 2;
1720 
1721 			/* we shouldn't have this device if we have just one
1722 			 * HA present */
1723 			WARN_ON(!mode_2ha);
1724 			pvt->pci_tad[id] = pdev;
1725 		}
1726 			break;
1727 		default:
1728 			goto error;
1729 		}
1730 
1731 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1732 			 sbridge_dev->bus,
1733 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1734 			 pdev);
1735 	}
1736 
1737 	/* Check if everything were registered */
1738 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
1739 	    !pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras  ||
1740 	    !pvt->pci_ta)
1741 		goto enodev;
1742 
1743 	for (i = 0; i < NUM_CHANNELS; i++) {
1744 		if (!pvt->pci_tad[i])
1745 			goto enodev;
1746 	}
1747 	return 0;
1748 
1749 enodev:
1750 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1751 	return -ENODEV;
1752 
1753 error:
1754 	sbridge_printk(KERN_ERR,
1755 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
1756 			pdev->device);
1757 	return -EINVAL;
1758 }
1759 
1760 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
1761 				 struct sbridge_dev *sbridge_dev)
1762 {
1763 	struct sbridge_pvt *pvt = mci->pvt_info;
1764 	struct pci_dev *pdev, *tmp;
1765 	int i;
1766 	bool mode_2ha = false;
1767 
1768 	tmp = pci_get_device(PCI_VENDOR_ID_INTEL,
1769 			     PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, NULL);
1770 	if (tmp) {
1771 		mode_2ha = true;
1772 		pci_dev_put(tmp);
1773 	}
1774 
1775 	/* there's only one device per system; not tied to any bus */
1776 	if (pvt->info.pci_vtd == NULL)
1777 		/* result will be checked later */
1778 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
1779 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
1780 						   NULL);
1781 
1782 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1783 		pdev = sbridge_dev->pdev[i];
1784 		if (!pdev)
1785 			continue;
1786 
1787 		switch (pdev->device) {
1788 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
1789 			pvt->pci_sad0 = pdev;
1790 			break;
1791 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
1792 			pvt->pci_sad1 = pdev;
1793 			break;
1794 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
1795 			pvt->pci_ha0 = pdev;
1796 			break;
1797 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
1798 			pvt->pci_ta = pdev;
1799 			break;
1800 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL:
1801 			pvt->pci_ras = pdev;
1802 			break;
1803 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
1804 			pvt->pci_tad[0] = pdev;
1805 			break;
1806 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
1807 			pvt->pci_tad[1] = pdev;
1808 			break;
1809 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
1810 			if (!mode_2ha)
1811 				pvt->pci_tad[2] = pdev;
1812 			break;
1813 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
1814 			if (!mode_2ha)
1815 				pvt->pci_tad[3] = pdev;
1816 			break;
1817 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
1818 			pvt->pci_ddrio = pdev;
1819 			break;
1820 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
1821 			pvt->pci_ha1 = pdev;
1822 			break;
1823 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
1824 			pvt->pci_ha1_ta = pdev;
1825 			break;
1826 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
1827 			if (mode_2ha)
1828 				pvt->pci_tad[2] = pdev;
1829 			break;
1830 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
1831 			if (mode_2ha)
1832 				pvt->pci_tad[3] = pdev;
1833 			break;
1834 		default:
1835 			break;
1836 		}
1837 
1838 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
1839 			 sbridge_dev->bus,
1840 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1841 			 pdev);
1842 	}
1843 
1844 	/* Check if everything were registered */
1845 	if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_sad1 ||
1846 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
1847 		goto enodev;
1848 
1849 	for (i = 0; i < NUM_CHANNELS; i++) {
1850 		if (!pvt->pci_tad[i])
1851 			goto enodev;
1852 	}
1853 	return 0;
1854 
1855 enodev:
1856 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1857 	return -ENODEV;
1858 }
1859 
1860 /****************************************************************************
1861 			Error check routines
1862  ****************************************************************************/
1863 
1864 /*
1865  * While Sandy Bridge has error count registers, SMI BIOS read values from
1866  * and resets the counters. So, they are not reliable for the OS to read
1867  * from them. So, we have no option but to just trust on whatever MCE is
1868  * telling us about the errors.
1869  */
1870 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1871 				    const struct mce *m)
1872 {
1873 	struct mem_ctl_info *new_mci;
1874 	struct sbridge_pvt *pvt = mci->pvt_info;
1875 	enum hw_event_mc_err_type tp_event;
1876 	char *type, *optype, msg[256];
1877 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1878 	bool overflow = GET_BITFIELD(m->status, 62, 62);
1879 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1880 	bool recoverable;
1881 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1882 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1883 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1884 	u32 channel = GET_BITFIELD(m->status, 0, 3);
1885 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1886 	long channel_mask, first_channel;
1887 	u8  rank, socket;
1888 	int rc, dimm;
1889 	char *area_type = NULL;
1890 
1891 	if (pvt->info.type == IVY_BRIDGE)
1892 		recoverable = true;
1893 	else
1894 		recoverable = GET_BITFIELD(m->status, 56, 56);
1895 
1896 	if (uncorrected_error) {
1897 		if (ripv) {
1898 			type = "FATAL";
1899 			tp_event = HW_EVENT_ERR_FATAL;
1900 		} else {
1901 			type = "NON_FATAL";
1902 			tp_event = HW_EVENT_ERR_UNCORRECTED;
1903 		}
1904 	} else {
1905 		type = "CORRECTED";
1906 		tp_event = HW_EVENT_ERR_CORRECTED;
1907 	}
1908 
1909 	/*
1910 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
1911 	 * memory errors should fit in this mask:
1912 	 *	000f 0000 1mmm cccc (binary)
1913 	 * where:
1914 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
1915 	 *	    won't be shown
1916 	 *	mmm = error type
1917 	 *	cccc = channel
1918 	 * If the mask doesn't match, report an error to the parsing logic
1919 	 */
1920 	if (! ((errcode & 0xef80) == 0x80)) {
1921 		optype = "Can't parse: it is not a mem";
1922 	} else {
1923 		switch (optypenum) {
1924 		case 0:
1925 			optype = "generic undef request error";
1926 			break;
1927 		case 1:
1928 			optype = "memory read error";
1929 			break;
1930 		case 2:
1931 			optype = "memory write error";
1932 			break;
1933 		case 3:
1934 			optype = "addr/cmd error";
1935 			break;
1936 		case 4:
1937 			optype = "memory scrubbing error";
1938 			break;
1939 		default:
1940 			optype = "reserved";
1941 			break;
1942 		}
1943 	}
1944 
1945 	/* Only decode errors with an valid address (ADDRV) */
1946 	if (!GET_BITFIELD(m->status, 58, 58))
1947 		return;
1948 
1949 	rc = get_memory_error_data(mci, m->addr, &socket,
1950 				   &channel_mask, &rank, &area_type, msg);
1951 	if (rc < 0)
1952 		goto err_parsing;
1953 	new_mci = get_mci_for_node_id(socket);
1954 	if (!new_mci) {
1955 		strcpy(msg, "Error: socket got corrupted!");
1956 		goto err_parsing;
1957 	}
1958 	mci = new_mci;
1959 	pvt = mci->pvt_info;
1960 
1961 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1962 
1963 	if (rank < 4)
1964 		dimm = 0;
1965 	else if (rank < 8)
1966 		dimm = 1;
1967 	else
1968 		dimm = 2;
1969 
1970 
1971 	/*
1972 	 * FIXME: On some memory configurations (mirror, lockstep), the
1973 	 * Memory Controller can't point the error to a single DIMM. The
1974 	 * EDAC core should be handling the channel mask, in order to point
1975 	 * to the group of dimm's where the error may be happening.
1976 	 */
1977 	if (!pvt->is_lockstep && !pvt->is_mirrored && !pvt->is_close_pg)
1978 		channel = first_channel;
1979 
1980 	snprintf(msg, sizeof(msg),
1981 		 "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d",
1982 		 overflow ? " OVERFLOW" : "",
1983 		 (uncorrected_error && recoverable) ? " recoverable" : "",
1984 		 area_type,
1985 		 mscod, errcode,
1986 		 socket,
1987 		 channel_mask,
1988 		 rank);
1989 
1990 	edac_dbg(0, "%s\n", msg);
1991 
1992 	/* FIXME: need support for channel mask */
1993 
1994 	/* Call the helper to output message */
1995 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
1996 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
1997 			     channel, dimm, -1,
1998 			     optype, msg);
1999 	return;
2000 err_parsing:
2001 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
2002 			     -1, -1, -1,
2003 			     msg, "");
2004 
2005 }
2006 
2007 /*
2008  *	sbridge_check_error	Retrieve and process errors reported by the
2009  *				hardware. Called by the Core module.
2010  */
2011 static void sbridge_check_error(struct mem_ctl_info *mci)
2012 {
2013 	struct sbridge_pvt *pvt = mci->pvt_info;
2014 	int i;
2015 	unsigned count = 0;
2016 	struct mce *m;
2017 
2018 	/*
2019 	 * MCE first step: Copy all mce errors into a temporary buffer
2020 	 * We use a double buffering here, to reduce the risk of
2021 	 * loosing an error.
2022 	 */
2023 	smp_rmb();
2024 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
2025 		% MCE_LOG_LEN;
2026 	if (!count)
2027 		return;
2028 
2029 	m = pvt->mce_outentry;
2030 	if (pvt->mce_in + count > MCE_LOG_LEN) {
2031 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
2032 
2033 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
2034 		smp_wmb();
2035 		pvt->mce_in = 0;
2036 		count -= l;
2037 		m += l;
2038 	}
2039 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
2040 	smp_wmb();
2041 	pvt->mce_in += count;
2042 
2043 	smp_rmb();
2044 	if (pvt->mce_overrun) {
2045 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
2046 			      pvt->mce_overrun);
2047 		smp_wmb();
2048 		pvt->mce_overrun = 0;
2049 	}
2050 
2051 	/*
2052 	 * MCE second step: parse errors and display
2053 	 */
2054 	for (i = 0; i < count; i++)
2055 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
2056 }
2057 
2058 /*
2059  * sbridge_mce_check_error	Replicates mcelog routine to get errors
2060  *				This routine simply queues mcelog errors, and
2061  *				return. The error itself should be handled later
2062  *				by sbridge_check_error.
2063  * WARNING: As this routine should be called at NMI time, extra care should
2064  * be taken to avoid deadlocks, and to be as fast as possible.
2065  */
2066 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
2067 				   void *data)
2068 {
2069 	struct mce *mce = (struct mce *)data;
2070 	struct mem_ctl_info *mci;
2071 	struct sbridge_pvt *pvt;
2072 	char *type;
2073 
2074 	if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2075 		return NOTIFY_DONE;
2076 
2077 	mci = get_mci_for_node_id(mce->socketid);
2078 	if (!mci)
2079 		return NOTIFY_BAD;
2080 	pvt = mci->pvt_info;
2081 
2082 	/*
2083 	 * Just let mcelog handle it if the error is
2084 	 * outside the memory controller. A memory error
2085 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
2086 	 * bit 12 has an special meaning.
2087 	 */
2088 	if ((mce->status & 0xefff) >> 7 != 1)
2089 		return NOTIFY_DONE;
2090 
2091 	if (mce->mcgstatus & MCG_STATUS_MCIP)
2092 		type = "Exception";
2093 	else
2094 		type = "Event";
2095 
2096 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
2097 
2098 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
2099 			  "Bank %d: %016Lx\n", mce->extcpu, type,
2100 			  mce->mcgstatus, mce->bank, mce->status);
2101 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
2102 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
2103 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
2104 
2105 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
2106 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
2107 			  mce->time, mce->socketid, mce->apicid);
2108 
2109 	smp_rmb();
2110 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
2111 		smp_wmb();
2112 		pvt->mce_overrun++;
2113 		return NOTIFY_DONE;
2114 	}
2115 
2116 	/* Copy memory error at the ringbuffer */
2117 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
2118 	smp_wmb();
2119 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
2120 
2121 	/* Handle fatal errors immediately */
2122 	if (mce->mcgstatus & 1)
2123 		sbridge_check_error(mci);
2124 
2125 	/* Advice mcelog that the error were handled */
2126 	return NOTIFY_STOP;
2127 }
2128 
2129 static struct notifier_block sbridge_mce_dec = {
2130 	.notifier_call      = sbridge_mce_check_error,
2131 };
2132 
2133 /****************************************************************************
2134 			EDAC register/unregister logic
2135  ****************************************************************************/
2136 
2137 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
2138 {
2139 	struct mem_ctl_info *mci = sbridge_dev->mci;
2140 	struct sbridge_pvt *pvt;
2141 
2142 	if (unlikely(!mci || !mci->pvt_info)) {
2143 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
2144 
2145 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
2146 		return;
2147 	}
2148 
2149 	pvt = mci->pvt_info;
2150 
2151 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2152 		 mci, &sbridge_dev->pdev[0]->dev);
2153 
2154 	/* Remove MC sysfs nodes */
2155 	edac_mc_del_mc(mci->pdev);
2156 
2157 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2158 	kfree(mci->ctl_name);
2159 	edac_mc_free(mci);
2160 	sbridge_dev->mci = NULL;
2161 }
2162 
2163 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
2164 {
2165 	struct mem_ctl_info *mci;
2166 	struct edac_mc_layer layers[2];
2167 	struct sbridge_pvt *pvt;
2168 	struct pci_dev *pdev = sbridge_dev->pdev[0];
2169 	int rc;
2170 
2171 	/* Check the number of active and not disabled channels */
2172 	rc = check_if_ecc_is_active(sbridge_dev->bus, type);
2173 	if (unlikely(rc < 0))
2174 		return rc;
2175 
2176 	/* allocate a new MC control structure */
2177 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
2178 	layers[0].size = NUM_CHANNELS;
2179 	layers[0].is_virt_csrow = false;
2180 	layers[1].type = EDAC_MC_LAYER_SLOT;
2181 	layers[1].size = MAX_DIMMS;
2182 	layers[1].is_virt_csrow = true;
2183 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
2184 			    sizeof(*pvt));
2185 
2186 	if (unlikely(!mci))
2187 		return -ENOMEM;
2188 
2189 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
2190 		 mci, &pdev->dev);
2191 
2192 	pvt = mci->pvt_info;
2193 	memset(pvt, 0, sizeof(*pvt));
2194 
2195 	/* Associate sbridge_dev and mci for future usage */
2196 	pvt->sbridge_dev = sbridge_dev;
2197 	sbridge_dev->mci = mci;
2198 
2199 	mci->mtype_cap = MEM_FLAG_DDR3;
2200 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
2201 	mci->edac_cap = EDAC_FLAG_NONE;
2202 	mci->mod_name = "sbridge_edac.c";
2203 	mci->mod_ver = SBRIDGE_REVISION;
2204 	mci->dev_name = pci_name(pdev);
2205 	mci->ctl_page_to_phys = NULL;
2206 
2207 	/* Set the function pointer to an actual operation function */
2208 	mci->edac_check = sbridge_check_error;
2209 
2210 	pvt->info.type = type;
2211 	switch (type) {
2212 	case IVY_BRIDGE:
2213 		pvt->info.rankcfgr = IB_RANK_CFG_A;
2214 		pvt->info.get_tolm = ibridge_get_tolm;
2215 		pvt->info.get_tohm = ibridge_get_tohm;
2216 		pvt->info.dram_rule = ibridge_dram_rule;
2217 		pvt->info.get_memory_type = get_memory_type;
2218 		pvt->info.get_node_id = get_node_id;
2219 		pvt->info.rir_limit = rir_limit;
2220 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2221 		pvt->info.interleave_list = ibridge_interleave_list;
2222 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2223 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2224 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge Socket#%d", mci->mc_idx);
2225 
2226 		/* Store pci devices at mci for faster access */
2227 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
2228 		if (unlikely(rc < 0))
2229 			goto fail0;
2230 		break;
2231 	case SANDY_BRIDGE:
2232 		pvt->info.rankcfgr = SB_RANK_CFG_A;
2233 		pvt->info.get_tolm = sbridge_get_tolm;
2234 		pvt->info.get_tohm = sbridge_get_tohm;
2235 		pvt->info.dram_rule = sbridge_dram_rule;
2236 		pvt->info.get_memory_type = get_memory_type;
2237 		pvt->info.get_node_id = get_node_id;
2238 		pvt->info.rir_limit = rir_limit;
2239 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
2240 		pvt->info.interleave_list = sbridge_interleave_list;
2241 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
2242 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
2243 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
2244 
2245 		/* Store pci devices at mci for faster access */
2246 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
2247 		if (unlikely(rc < 0))
2248 			goto fail0;
2249 		break;
2250 	case HASWELL:
2251 		/* rankcfgr isn't used */
2252 		pvt->info.get_tolm = haswell_get_tolm;
2253 		pvt->info.get_tohm = haswell_get_tohm;
2254 		pvt->info.dram_rule = ibridge_dram_rule;
2255 		pvt->info.get_memory_type = haswell_get_memory_type;
2256 		pvt->info.get_node_id = haswell_get_node_id;
2257 		pvt->info.rir_limit = haswell_rir_limit;
2258 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
2259 		pvt->info.interleave_list = ibridge_interleave_list;
2260 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
2261 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
2262 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell Socket#%d", mci->mc_idx);
2263 
2264 		/* Store pci devices at mci for faster access */
2265 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
2266 		if (unlikely(rc < 0))
2267 			goto fail0;
2268 		break;
2269 	}
2270 
2271 	/* Get dimm basic config and the memory layout */
2272 	get_dimm_config(mci);
2273 	get_memory_layout(mci);
2274 
2275 	/* record ptr to the generic device */
2276 	mci->pdev = &pdev->dev;
2277 
2278 	/* add this new MC control structure to EDAC's list of MCs */
2279 	if (unlikely(edac_mc_add_mc(mci))) {
2280 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2281 		rc = -EINVAL;
2282 		goto fail0;
2283 	}
2284 
2285 	return 0;
2286 
2287 fail0:
2288 	kfree(mci->ctl_name);
2289 	edac_mc_free(mci);
2290 	sbridge_dev->mci = NULL;
2291 	return rc;
2292 }
2293 
2294 /*
2295  *	sbridge_probe	Probe for ONE instance of device to see if it is
2296  *			present.
2297  *	return:
2298  *		0 for FOUND a device
2299  *		< 0 for error code
2300  */
2301 
2302 static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2303 {
2304 	int rc = -ENODEV;
2305 	u8 mc, num_mc = 0;
2306 	struct sbridge_dev *sbridge_dev;
2307 	enum type type = SANDY_BRIDGE;
2308 
2309 	/* get the pci devices we want to reserve for our use */
2310 	mutex_lock(&sbridge_edac_lock);
2311 
2312 	/*
2313 	 * All memory controllers are allocated at the first pass.
2314 	 */
2315 	if (unlikely(probed >= 1)) {
2316 		mutex_unlock(&sbridge_edac_lock);
2317 		return -ENODEV;
2318 	}
2319 	probed++;
2320 
2321 	switch (pdev->device) {
2322 	case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2323 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_ibridge_table);
2324 		type = IVY_BRIDGE;
2325 		break;
2326 	case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2327 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_sbridge_table);
2328 		type = SANDY_BRIDGE;
2329 		break;
2330 	case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2331 		rc = sbridge_get_all_devices(&num_mc, pci_dev_descr_haswell_table);
2332 		type = HASWELL;
2333 		break;
2334 	}
2335 	if (unlikely(rc < 0))
2336 		goto fail0;
2337 	mc = 0;
2338 
2339 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
2340 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
2341 			 mc, mc + 1, num_mc);
2342 
2343 		sbridge_dev->mc = mc++;
2344 		rc = sbridge_register_mci(sbridge_dev, type);
2345 		if (unlikely(rc < 0))
2346 			goto fail1;
2347 	}
2348 
2349 	sbridge_printk(KERN_INFO, "Driver loaded.\n");
2350 
2351 	mutex_unlock(&sbridge_edac_lock);
2352 	return 0;
2353 
2354 fail1:
2355 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2356 		sbridge_unregister_mci(sbridge_dev);
2357 
2358 	sbridge_put_all_devices();
2359 fail0:
2360 	mutex_unlock(&sbridge_edac_lock);
2361 	return rc;
2362 }
2363 
2364 /*
2365  *	sbridge_remove	destructor for one instance of device
2366  *
2367  */
2368 static void sbridge_remove(struct pci_dev *pdev)
2369 {
2370 	struct sbridge_dev *sbridge_dev;
2371 
2372 	edac_dbg(0, "\n");
2373 
2374 	/*
2375 	 * we have a trouble here: pdev value for removal will be wrong, since
2376 	 * it will point to the X58 register used to detect that the machine
2377 	 * is a Nehalem or upper design. However, due to the way several PCI
2378 	 * devices are grouped together to provide MC functionality, we need
2379 	 * to use a different method for releasing the devices
2380 	 */
2381 
2382 	mutex_lock(&sbridge_edac_lock);
2383 
2384 	if (unlikely(!probed)) {
2385 		mutex_unlock(&sbridge_edac_lock);
2386 		return;
2387 	}
2388 
2389 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
2390 		sbridge_unregister_mci(sbridge_dev);
2391 
2392 	/* Release PCI resources */
2393 	sbridge_put_all_devices();
2394 
2395 	probed--;
2396 
2397 	mutex_unlock(&sbridge_edac_lock);
2398 }
2399 
2400 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
2401 
2402 /*
2403  *	sbridge_driver	pci_driver structure for this module
2404  *
2405  */
2406 static struct pci_driver sbridge_driver = {
2407 	.name     = "sbridge_edac",
2408 	.probe    = sbridge_probe,
2409 	.remove   = sbridge_remove,
2410 	.id_table = sbridge_pci_tbl,
2411 };
2412 
2413 /*
2414  *	sbridge_init		Module entry function
2415  *			Try to initialize this module for its devices
2416  */
2417 static int __init sbridge_init(void)
2418 {
2419 	int pci_rc;
2420 
2421 	edac_dbg(2, "\n");
2422 
2423 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
2424 	opstate_init();
2425 
2426 	pci_rc = pci_register_driver(&sbridge_driver);
2427 	if (pci_rc >= 0) {
2428 		mce_register_decode_chain(&sbridge_mce_dec);
2429 		if (get_edac_report_status() == EDAC_REPORTING_DISABLED)
2430 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
2431 		return 0;
2432 	}
2433 
2434 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
2435 		      pci_rc);
2436 
2437 	return pci_rc;
2438 }
2439 
2440 /*
2441  *	sbridge_exit()	Module exit function
2442  *			Unregister the driver
2443  */
2444 static void __exit sbridge_exit(void)
2445 {
2446 	edac_dbg(2, "\n");
2447 	pci_unregister_driver(&sbridge_driver);
2448 	mce_unregister_decode_chain(&sbridge_mce_dec);
2449 }
2450 
2451 module_init(sbridge_init);
2452 module_exit(sbridge_exit);
2453 
2454 module_param(edac_op_state, int, 0444);
2455 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2456 
2457 MODULE_LICENSE("GPL");
2458 MODULE_AUTHOR("Mauro Carvalho Chehab");
2459 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2460 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
2461 		   SBRIDGE_REVISION);
2462