xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 35d4a3c6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3  *
4  * This driver supports the memory controllers found on the Intel
5  * processor family Sandy Bridge.
6  *
7  * Copyright (c) 2011 by:
8  *	 Mauro Carvalho Chehab
9  */
10 
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pci_ids.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/edac.h>
18 #include <linux/mmzone.h>
19 #include <linux/smp.h>
20 #include <linux/bitmap.h>
21 #include <linux/math64.h>
22 #include <linux/mod_devicetable.h>
23 #include <asm/cpu_device_id.h>
24 #include <asm/intel-family.h>
25 #include <asm/processor.h>
26 #include <asm/mce.h>
27 
28 #include "edac_module.h"
29 
30 /* Static vars */
31 static LIST_HEAD(sbridge_edac_list);
32 
33 /*
34  * Alter this version for the module when modifications are made
35  */
36 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
37 #define EDAC_MOD_STR	    "sb_edac"
38 
39 /*
40  * Debug macros
41  */
42 #define sbridge_printk(level, fmt, arg...)			\
43 	edac_printk(level, "sbridge", fmt, ##arg)
44 
45 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
46 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
47 
48 /*
49  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
50  */
51 #define GET_BITFIELD(v, lo, hi)	\
52 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
53 
54 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
55 static const u32 sbridge_dram_rule[] = {
56 	0x80, 0x88, 0x90, 0x98, 0xa0,
57 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
58 };
59 
60 static const u32 ibridge_dram_rule[] = {
61 	0x60, 0x68, 0x70, 0x78, 0x80,
62 	0x88, 0x90, 0x98, 0xa0,	0xa8,
63 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
64 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
65 };
66 
67 static const u32 knl_dram_rule[] = {
68 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
69 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
70 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
71 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
72 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
73 };
74 
75 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
76 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
77 
78 static char *show_dram_attr(u32 attr)
79 {
80 	switch (attr) {
81 		case 0:
82 			return "DRAM";
83 		case 1:
84 			return "MMCFG";
85 		case 2:
86 			return "NXM";
87 		default:
88 			return "unknown";
89 	}
90 }
91 
92 static const u32 sbridge_interleave_list[] = {
93 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
94 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
95 };
96 
97 static const u32 ibridge_interleave_list[] = {
98 	0x64, 0x6c, 0x74, 0x7c, 0x84,
99 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
100 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
101 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
102 };
103 
104 static const u32 knl_interleave_list[] = {
105 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
106 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
107 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
108 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
109 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
110 };
111 #define MAX_INTERLEAVE							\
112 	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
113 	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
114 		     ARRAY_SIZE(knl_interleave_list))))
115 
116 struct interleave_pkg {
117 	unsigned char start;
118 	unsigned char end;
119 };
120 
121 static const struct interleave_pkg sbridge_interleave_pkg[] = {
122 	{ 0, 2 },
123 	{ 3, 5 },
124 	{ 8, 10 },
125 	{ 11, 13 },
126 	{ 16, 18 },
127 	{ 19, 21 },
128 	{ 24, 26 },
129 	{ 27, 29 },
130 };
131 
132 static const struct interleave_pkg ibridge_interleave_pkg[] = {
133 	{ 0, 3 },
134 	{ 4, 7 },
135 	{ 8, 11 },
136 	{ 12, 15 },
137 	{ 16, 19 },
138 	{ 20, 23 },
139 	{ 24, 27 },
140 	{ 28, 31 },
141 };
142 
143 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
144 			  int interleave)
145 {
146 	return GET_BITFIELD(reg, table[interleave].start,
147 			    table[interleave].end);
148 }
149 
150 /* Devices 12 Function 7 */
151 
152 #define TOLM		0x80
153 #define TOHM		0x84
154 #define HASWELL_TOLM	0xd0
155 #define HASWELL_TOHM_0	0xd4
156 #define HASWELL_TOHM_1	0xd8
157 #define KNL_TOLM	0xd0
158 #define KNL_TOHM_0	0xd4
159 #define KNL_TOHM_1	0xd8
160 
161 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
162 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
163 
164 /* Device 13 Function 6 */
165 
166 #define SAD_TARGET	0xf0
167 
168 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
169 
170 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
171 
172 #define SAD_CONTROL	0xf4
173 
174 /* Device 14 function 0 */
175 
176 static const u32 tad_dram_rule[] = {
177 	0x40, 0x44, 0x48, 0x4c,
178 	0x50, 0x54, 0x58, 0x5c,
179 	0x60, 0x64, 0x68, 0x6c,
180 };
181 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
182 
183 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
184 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
185 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
186 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
187 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
188 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
189 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
190 
191 /* Device 15, function 0 */
192 
193 #define MCMTR			0x7c
194 #define KNL_MCMTR		0x624
195 
196 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
197 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
198 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
199 
200 /* Device 15, function 1 */
201 
202 #define RASENABLES		0xac
203 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
204 
205 /* Device 15, functions 2-5 */
206 
207 static const int mtr_regs[] = {
208 	0x80, 0x84, 0x88,
209 };
210 
211 static const int knl_mtr_reg = 0xb60;
212 
213 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
214 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
215 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
216 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
217 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
218 
219 static const u32 tad_ch_nilv_offset[] = {
220 	0x90, 0x94, 0x98, 0x9c,
221 	0xa0, 0xa4, 0xa8, 0xac,
222 	0xb0, 0xb4, 0xb8, 0xbc,
223 };
224 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
225 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
226 
227 static const u32 rir_way_limit[] = {
228 	0x108, 0x10c, 0x110, 0x114, 0x118,
229 };
230 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
231 
232 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
233 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
234 
235 #define MAX_RIR_WAY	8
236 
237 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
238 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
239 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
240 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
241 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
242 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
243 };
244 
245 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
246 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
247 
248 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
249 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
250 
251 /* Device 16, functions 2-7 */
252 
253 /*
254  * FIXME: Implement the error count reads directly
255  */
256 
257 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
258 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
259 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
260 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
261 
262 #if 0 /* Currently unused*/
263 static const u32 correrrcnt[] = {
264 	0x104, 0x108, 0x10c, 0x110,
265 };
266 
267 static const u32 correrrthrsld[] = {
268 	0x11c, 0x120, 0x124, 0x128,
269 };
270 #endif
271 
272 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
274 
275 
276 /* Device 17, function 0 */
277 
278 #define SB_RANK_CFG_A		0x0328
279 
280 #define IB_RANK_CFG_A		0x0320
281 
282 /*
283  * sbridge structs
284  */
285 
286 #define NUM_CHANNELS		6	/* Max channels per MC */
287 #define MAX_DIMMS		3	/* Max DIMMS per channel */
288 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
292 
293 enum type {
294 	SANDY_BRIDGE,
295 	IVY_BRIDGE,
296 	HASWELL,
297 	BROADWELL,
298 	KNIGHTS_LANDING,
299 };
300 
301 enum domain {
302 	IMC0 = 0,
303 	IMC1,
304 	SOCK,
305 };
306 
307 enum mirroring_mode {
308 	NON_MIRRORING,
309 	ADDR_RANGE_MIRRORING,
310 	FULL_MIRRORING,
311 };
312 
313 struct sbridge_pvt;
314 struct sbridge_info {
315 	enum type	type;
316 	u32		mcmtr;
317 	u32		rankcfgr;
318 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
319 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
320 	u64		(*rir_limit)(u32 reg);
321 	u64		(*sad_limit)(u32 reg);
322 	u32		(*interleave_mode)(u32 reg);
323 	u32		(*dram_attr)(u32 reg);
324 	const u32	*dram_rule;
325 	const u32	*interleave_list;
326 	const struct interleave_pkg *interleave_pkg;
327 	u8		max_sad;
328 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
329 	u8		(*get_ha)(u8 bank);
330 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
331 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
332 	struct pci_dev	*pci_vtd;
333 };
334 
335 struct sbridge_channel {
336 	u32		ranks;
337 	u32		dimms;
338 	struct dimm {
339 		u32 rowbits;
340 		u32 colbits;
341 		u32 bank_xor_enable;
342 		u32 amap_fine;
343 	} dimm[MAX_DIMMS];
344 };
345 
346 struct pci_id_descr {
347 	int			dev_id;
348 	int			optional;
349 	enum domain		dom;
350 };
351 
352 struct pci_id_table {
353 	const struct pci_id_descr	*descr;
354 	int				n_devs_per_imc;
355 	int				n_devs_per_sock;
356 	int				n_imcs_per_sock;
357 	enum type			type;
358 };
359 
360 struct sbridge_dev {
361 	struct list_head	list;
362 	int			seg;
363 	u8			bus, mc;
364 	u8			node_id, source_id;
365 	struct pci_dev		**pdev;
366 	enum domain		dom;
367 	int			n_devs;
368 	int			i_devs;
369 	struct mem_ctl_info	*mci;
370 };
371 
372 struct knl_pvt {
373 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
374 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
375 	struct pci_dev          *pci_mc0;
376 	struct pci_dev          *pci_mc1;
377 	struct pci_dev          *pci_mc0_misc;
378 	struct pci_dev          *pci_mc1_misc;
379 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
380 };
381 
382 struct sbridge_pvt {
383 	/* Devices per socket */
384 	struct pci_dev		*pci_ddrio;
385 	struct pci_dev		*pci_sad0, *pci_sad1;
386 	struct pci_dev		*pci_br0, *pci_br1;
387 	/* Devices per memory controller */
388 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
389 	struct pci_dev		*pci_tad[NUM_CHANNELS];
390 
391 	struct sbridge_dev	*sbridge_dev;
392 
393 	struct sbridge_info	info;
394 	struct sbridge_channel	channel[NUM_CHANNELS];
395 
396 	/* Memory type detection */
397 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
398 	bool			is_chan_hash;
399 	enum mirroring_mode	mirror_mode;
400 
401 	/* Memory description */
402 	u64			tolm, tohm;
403 	struct knl_pvt knl;
404 };
405 
406 #define PCI_DESCR(device_id, opt, domain)	\
407 	.dev_id = (device_id),		\
408 	.optional = opt,	\
409 	.dom = domain
410 
411 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
412 		/* Processor Home Agent */
413 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
414 
415 		/* Memory controller */
416 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
417 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
418 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
419 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
420 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
421 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
422 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
423 
424 		/* System Address Decoder */
425 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
426 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
427 
428 		/* Broadcast Registers */
429 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
430 };
431 
432 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
433 	.descr = A,			\
434 	.n_devs_per_imc = N,	\
435 	.n_devs_per_sock = ARRAY_SIZE(A),	\
436 	.n_imcs_per_sock = M,	\
437 	.type = T			\
438 }
439 
440 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
441 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
442 	{0,}			/* 0 terminated list. */
443 };
444 
445 /* This changes depending if 1HA or 2HA:
446  * 1HA:
447  *	0x0eb8 (17.0) is DDRIO0
448  * 2HA:
449  *	0x0ebc (17.4) is DDRIO0
450  */
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
453 
454 /* pci ids */
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
466 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
467 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
468 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
469 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
470 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
471 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
472 
473 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
474 		/* Processor Home Agent */
475 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
476 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
477 
478 		/* Memory controller */
479 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
480 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
485 
486 		/* Optional, mode 2HA */
487 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
488 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
489 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
490 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
491 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
492 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
493 
494 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
495 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
496 
497 		/* System Address Decoder */
498 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
499 
500 		/* Broadcast Registers */
501 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
502 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
503 
504 };
505 
506 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
507 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
508 	{0,}			/* 0 terminated list. */
509 };
510 
511 /* Haswell support */
512 /* EN processor:
513  *	- 1 IMC
514  *	- 3 DDR3 channels, 2 DPC per channel
515  * EP processor:
516  *	- 1 or 2 IMC
517  *	- 4 DDR4 channels, 3 DPC per channel
518  * EP 4S processor:
519  *	- 2 IMC
520  *	- 4 DDR4 channels, 3 DPC per channel
521  * EX processor:
522  *	- 2 IMC
523  *	- each IMC interfaces with a SMI 2 channel
524  *	- each SMI channel interfaces with a scalable memory buffer
525  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
526  */
527 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
528 #define HASWELL_HASYSDEFEATURE2 0x84
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
544 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
545 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
546 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
547 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
548 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
549 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
550 static const struct pci_id_descr pci_dev_descr_haswell[] = {
551 	/* first item must be the HA */
552 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
553 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
554 
555 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
557 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
559 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
560 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
561 
562 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
563 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
564 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
565 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
566 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
567 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
568 
569 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
570 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
571 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
572 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
573 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
574 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
575 };
576 
577 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
578 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
579 	{0,}			/* 0 terminated list. */
580 };
581 
582 /* Knight's Landing Support */
583 /*
584  * KNL's memory channels are swizzled between memory controllers.
585  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
586  */
587 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
588 
589 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
591 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
593 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
595 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
597 /* SAD target - 1-29-1 (1 of these) */
598 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
599 /* Caching / Home Agent */
600 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
601 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
602 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
603 
604 /*
605  * KNL differs from SB, IB, and Haswell in that it has multiple
606  * instances of the same device with the same device ID, so we handle that
607  * by creating as many copies in the table as we expect to find.
608  * (Like device ID must be grouped together.)
609  */
610 
611 static const struct pci_id_descr pci_dev_descr_knl[] = {
612 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
613 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
614 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
615 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
616 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
617 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
618 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
619 };
620 
621 static const struct pci_id_table pci_dev_descr_knl_table[] = {
622 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
623 	{0,}
624 };
625 
626 /*
627  * Broadwell support
628  *
629  * DE processor:
630  *	- 1 IMC
631  *	- 2 DDR3 channels, 2 DPC per channel
632  * EP processor:
633  *	- 1 or 2 IMC
634  *	- 4 DDR4 channels, 3 DPC per channel
635  * EP 4S processor:
636  *	- 2 IMC
637  *	- 4 DDR4 channels, 3 DPC per channel
638  * EX processor:
639  *	- 2 IMC
640  *	- each IMC interfaces with a SMI 2 channel
641  *	- each SMI channel interfaces with a scalable memory buffer
642  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
643  */
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
656 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
657 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
658 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
659 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
660 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
661 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
662 
663 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
664 	/* first item must be the HA */
665 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
666 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
667 
668 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
669 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
670 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
671 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
672 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
673 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
674 
675 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
676 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
677 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
678 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
679 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
680 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
681 
682 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
683 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
684 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
685 };
686 
687 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
688 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
689 	{0,}			/* 0 terminated list. */
690 };
691 
692 
693 /****************************************************************************
694 			Ancillary status routines
695  ****************************************************************************/
696 
697 static inline int numrank(enum type type, u32 mtr)
698 {
699 	int ranks = (1 << RANK_CNT_BITS(mtr));
700 	int max = 4;
701 
702 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
703 		max = 8;
704 
705 	if (ranks > max) {
706 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
707 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
708 		return -EINVAL;
709 	}
710 
711 	return ranks;
712 }
713 
714 static inline int numrow(u32 mtr)
715 {
716 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
717 
718 	if (rows < 13 || rows > 18) {
719 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
720 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
721 		return -EINVAL;
722 	}
723 
724 	return 1 << rows;
725 }
726 
727 static inline int numcol(u32 mtr)
728 {
729 	int cols = (COL_WIDTH_BITS(mtr) + 10);
730 
731 	if (cols > 12) {
732 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
733 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
734 		return -EINVAL;
735 	}
736 
737 	return 1 << cols;
738 }
739 
740 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
741 					   int multi_bus,
742 					   struct sbridge_dev *prev)
743 {
744 	struct sbridge_dev *sbridge_dev;
745 
746 	/*
747 	 * If we have devices scattered across several busses that pertain
748 	 * to the same memory controller, we'll lump them all together.
749 	 */
750 	if (multi_bus) {
751 		return list_first_entry_or_null(&sbridge_edac_list,
752 				struct sbridge_dev, list);
753 	}
754 
755 	sbridge_dev = list_entry(prev ? prev->list.next
756 				      : sbridge_edac_list.next, struct sbridge_dev, list);
757 
758 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
759 		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
760 				(dom == SOCK || dom == sbridge_dev->dom))
761 			return sbridge_dev;
762 	}
763 
764 	return NULL;
765 }
766 
767 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
768 					     const struct pci_id_table *table)
769 {
770 	struct sbridge_dev *sbridge_dev;
771 
772 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
773 	if (!sbridge_dev)
774 		return NULL;
775 
776 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
777 				    sizeof(*sbridge_dev->pdev),
778 				    GFP_KERNEL);
779 	if (!sbridge_dev->pdev) {
780 		kfree(sbridge_dev);
781 		return NULL;
782 	}
783 
784 	sbridge_dev->seg = seg;
785 	sbridge_dev->bus = bus;
786 	sbridge_dev->dom = dom;
787 	sbridge_dev->n_devs = table->n_devs_per_imc;
788 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
789 
790 	return sbridge_dev;
791 }
792 
793 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
794 {
795 	list_del(&sbridge_dev->list);
796 	kfree(sbridge_dev->pdev);
797 	kfree(sbridge_dev);
798 }
799 
800 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
801 {
802 	u32 reg;
803 
804 	/* Address range is 32:28 */
805 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
806 	return GET_TOLM(reg);
807 }
808 
809 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
810 {
811 	u32 reg;
812 
813 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
814 	return GET_TOHM(reg);
815 }
816 
817 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
818 {
819 	u32 reg;
820 
821 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
822 
823 	return GET_TOLM(reg);
824 }
825 
826 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
827 {
828 	u32 reg;
829 
830 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
831 
832 	return GET_TOHM(reg);
833 }
834 
835 static u64 rir_limit(u32 reg)
836 {
837 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
838 }
839 
840 static u64 sad_limit(u32 reg)
841 {
842 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
843 }
844 
845 static u32 interleave_mode(u32 reg)
846 {
847 	return GET_BITFIELD(reg, 1, 1);
848 }
849 
850 static u32 dram_attr(u32 reg)
851 {
852 	return GET_BITFIELD(reg, 2, 3);
853 }
854 
855 static u64 knl_sad_limit(u32 reg)
856 {
857 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
858 }
859 
860 static u32 knl_interleave_mode(u32 reg)
861 {
862 	return GET_BITFIELD(reg, 1, 2);
863 }
864 
865 static const char * const knl_intlv_mode[] = {
866 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
867 };
868 
869 static const char *get_intlv_mode_str(u32 reg, enum type t)
870 {
871 	if (t == KNIGHTS_LANDING)
872 		return knl_intlv_mode[knl_interleave_mode(reg)];
873 	else
874 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
875 }
876 
877 static u32 dram_attr_knl(u32 reg)
878 {
879 	return GET_BITFIELD(reg, 3, 4);
880 }
881 
882 
883 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
884 {
885 	u32 reg;
886 	enum mem_type mtype;
887 
888 	if (pvt->pci_ddrio) {
889 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
890 				      &reg);
891 		if (GET_BITFIELD(reg, 11, 11))
892 			/* FIXME: Can also be LRDIMM */
893 			mtype = MEM_RDDR3;
894 		else
895 			mtype = MEM_DDR3;
896 	} else
897 		mtype = MEM_UNKNOWN;
898 
899 	return mtype;
900 }
901 
902 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
903 {
904 	u32 reg;
905 	bool registered = false;
906 	enum mem_type mtype = MEM_UNKNOWN;
907 
908 	if (!pvt->pci_ddrio)
909 		goto out;
910 
911 	pci_read_config_dword(pvt->pci_ddrio,
912 			      HASWELL_DDRCRCLKCONTROLS, &reg);
913 	/* Is_Rdimm */
914 	if (GET_BITFIELD(reg, 16, 16))
915 		registered = true;
916 
917 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
918 	if (GET_BITFIELD(reg, 14, 14)) {
919 		if (registered)
920 			mtype = MEM_RDDR4;
921 		else
922 			mtype = MEM_DDR4;
923 	} else {
924 		if (registered)
925 			mtype = MEM_RDDR3;
926 		else
927 			mtype = MEM_DDR3;
928 	}
929 
930 out:
931 	return mtype;
932 }
933 
934 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
935 {
936 	/* for KNL value is fixed */
937 	return DEV_X16;
938 }
939 
940 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
941 {
942 	/* there's no way to figure out */
943 	return DEV_UNKNOWN;
944 }
945 
946 static enum dev_type __ibridge_get_width(u32 mtr)
947 {
948 	enum dev_type type = DEV_UNKNOWN;
949 
950 	switch (mtr) {
951 	case 2:
952 		type = DEV_X16;
953 		break;
954 	case 1:
955 		type = DEV_X8;
956 		break;
957 	case 0:
958 		type = DEV_X4;
959 		break;
960 	}
961 
962 	return type;
963 }
964 
965 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
966 {
967 	/*
968 	 * ddr3_width on the documentation but also valid for DDR4 on
969 	 * Haswell
970 	 */
971 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
972 }
973 
974 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
975 {
976 	/* ddr3_width on the documentation but also valid for DDR4 */
977 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
978 }
979 
980 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
981 {
982 	/* DDR4 RDIMMS and LRDIMMS are supported */
983 	return MEM_RDDR4;
984 }
985 
986 static u8 get_node_id(struct sbridge_pvt *pvt)
987 {
988 	u32 reg;
989 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
990 	return GET_BITFIELD(reg, 0, 2);
991 }
992 
993 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
994 {
995 	u32 reg;
996 
997 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
998 	return GET_BITFIELD(reg, 0, 3);
999 }
1000 
1001 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
1002 {
1003 	u32 reg;
1004 
1005 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1006 	return GET_BITFIELD(reg, 0, 2);
1007 }
1008 
1009 /*
1010  * Use the reporting bank number to determine which memory
1011  * controller (also known as "ha" for "home agent"). Sandy
1012  * Bridge only has one memory controller per socket, so the
1013  * answer is always zero.
1014  */
1015 static u8 sbridge_get_ha(u8 bank)
1016 {
1017 	return 0;
1018 }
1019 
1020 /*
1021  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1022  * home agent bank (7, 8), or one of the per-channel memory
1023  * controller banks (9 .. 16).
1024  */
1025 static u8 ibridge_get_ha(u8 bank)
1026 {
1027 	switch (bank) {
1028 	case 7 ... 8:
1029 		return bank - 7;
1030 	case 9 ... 16:
1031 		return (bank - 9) / 4;
1032 	default:
1033 		return 0xff;
1034 	}
1035 }
1036 
1037 /* Not used, but included for safety/symmetry */
1038 static u8 knl_get_ha(u8 bank)
1039 {
1040 	return 0xff;
1041 }
1042 
1043 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1044 {
1045 	u32 reg;
1046 
1047 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1048 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1049 }
1050 
1051 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1052 {
1053 	u64 rc;
1054 	u32 reg;
1055 
1056 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1057 	rc = GET_BITFIELD(reg, 26, 31);
1058 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1059 	rc = ((reg << 6) | rc) << 26;
1060 
1061 	return rc | 0x3ffffff;
1062 }
1063 
1064 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1065 {
1066 	u32 reg;
1067 
1068 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1069 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1070 }
1071 
1072 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1073 {
1074 	u64 rc;
1075 	u32 reg_lo, reg_hi;
1076 
1077 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1078 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1079 	rc = ((u64)reg_hi << 32) | reg_lo;
1080 	return rc | 0x3ffffff;
1081 }
1082 
1083 
1084 static u64 haswell_rir_limit(u32 reg)
1085 {
1086 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1087 }
1088 
1089 static inline u8 sad_pkg_socket(u8 pkg)
1090 {
1091 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1092 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1093 }
1094 
1095 static inline u8 sad_pkg_ha(u8 pkg)
1096 {
1097 	return (pkg >> 2) & 0x1;
1098 }
1099 
1100 static int haswell_chan_hash(int idx, u64 addr)
1101 {
1102 	int i;
1103 
1104 	/*
1105 	 * XOR even bits from 12:26 to bit0 of idx,
1106 	 *     odd bits from 13:27 to bit1
1107 	 */
1108 	for (i = 12; i < 28; i += 2)
1109 		idx ^= (addr >> i) & 3;
1110 
1111 	return idx;
1112 }
1113 
1114 /* Low bits of TAD limit, and some metadata. */
1115 static const u32 knl_tad_dram_limit_lo[] = {
1116 	0x400, 0x500, 0x600, 0x700,
1117 	0x800, 0x900, 0xa00, 0xb00,
1118 };
1119 
1120 /* Low bits of TAD offset. */
1121 static const u32 knl_tad_dram_offset_lo[] = {
1122 	0x404, 0x504, 0x604, 0x704,
1123 	0x804, 0x904, 0xa04, 0xb04,
1124 };
1125 
1126 /* High 16 bits of TAD limit and offset. */
1127 static const u32 knl_tad_dram_hi[] = {
1128 	0x408, 0x508, 0x608, 0x708,
1129 	0x808, 0x908, 0xa08, 0xb08,
1130 };
1131 
1132 /* Number of ways a tad entry is interleaved. */
1133 static const u32 knl_tad_ways[] = {
1134 	8, 6, 4, 3, 2, 1,
1135 };
1136 
1137 /*
1138  * Retrieve the n'th Target Address Decode table entry
1139  * from the memory controller's TAD table.
1140  *
1141  * @pvt:	driver private data
1142  * @entry:	which entry you want to retrieve
1143  * @mc:		which memory controller (0 or 1)
1144  * @offset:	output tad range offset
1145  * @limit:	output address of first byte above tad range
1146  * @ways:	output number of interleave ways
1147  *
1148  * The offset value has curious semantics.  It's a sort of running total
1149  * of the sizes of all the memory regions that aren't mapped in this
1150  * tad table.
1151  */
1152 static int knl_get_tad(const struct sbridge_pvt *pvt,
1153 		const int entry,
1154 		const int mc,
1155 		u64 *offset,
1156 		u64 *limit,
1157 		int *ways)
1158 {
1159 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1160 	struct pci_dev *pci_mc;
1161 	int way_id;
1162 
1163 	switch (mc) {
1164 	case 0:
1165 		pci_mc = pvt->knl.pci_mc0;
1166 		break;
1167 	case 1:
1168 		pci_mc = pvt->knl.pci_mc1;
1169 		break;
1170 	default:
1171 		WARN_ON(1);
1172 		return -EINVAL;
1173 	}
1174 
1175 	pci_read_config_dword(pci_mc,
1176 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1177 	pci_read_config_dword(pci_mc,
1178 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1179 	pci_read_config_dword(pci_mc,
1180 			knl_tad_dram_hi[entry], &reg_hi);
1181 
1182 	/* Is this TAD entry enabled? */
1183 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1184 		return -ENODEV;
1185 
1186 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1187 
1188 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1189 		*ways = knl_tad_ways[way_id];
1190 	} else {
1191 		*ways = 0;
1192 		sbridge_printk(KERN_ERR,
1193 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1194 				way_id);
1195 		return -ENODEV;
1196 	}
1197 
1198 	/*
1199 	 * The least significant 6 bits of base and limit are truncated.
1200 	 * For limit, we fill the missing bits with 1s.
1201 	 */
1202 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1203 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1204 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1205 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1206 
1207 	return 0;
1208 }
1209 
1210 /* Determine which memory controller is responsible for a given channel. */
1211 static int knl_channel_mc(int channel)
1212 {
1213 	WARN_ON(channel < 0 || channel >= 6);
1214 
1215 	return channel < 3 ? 1 : 0;
1216 }
1217 
1218 /*
1219  * Get the Nth entry from EDC_ROUTE_TABLE register.
1220  * (This is the per-tile mapping of logical interleave targets to
1221  *  physical EDC modules.)
1222  *
1223  * entry 0: 0:2
1224  *       1: 3:5
1225  *       2: 6:8
1226  *       3: 9:11
1227  *       4: 12:14
1228  *       5: 15:17
1229  *       6: 18:20
1230  *       7: 21:23
1231  * reserved: 24:31
1232  */
1233 static u32 knl_get_edc_route(int entry, u32 reg)
1234 {
1235 	WARN_ON(entry >= KNL_MAX_EDCS);
1236 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1237 }
1238 
1239 /*
1240  * Get the Nth entry from MC_ROUTE_TABLE register.
1241  * (This is the per-tile mapping of logical interleave targets to
1242  *  physical DRAM channels modules.)
1243  *
1244  * entry 0: mc 0:2   channel 18:19
1245  *       1: mc 3:5   channel 20:21
1246  *       2: mc 6:8   channel 22:23
1247  *       3: mc 9:11  channel 24:25
1248  *       4: mc 12:14 channel 26:27
1249  *       5: mc 15:17 channel 28:29
1250  * reserved: 30:31
1251  *
1252  * Though we have 3 bits to identify the MC, we should only see
1253  * the values 0 or 1.
1254  */
1255 
1256 static u32 knl_get_mc_route(int entry, u32 reg)
1257 {
1258 	int mc, chan;
1259 
1260 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1261 
1262 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1263 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1264 
1265 	return knl_channel_remap(mc, chan);
1266 }
1267 
1268 /*
1269  * Render the EDC_ROUTE register in human-readable form.
1270  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1271  */
1272 static void knl_show_edc_route(u32 reg, char *s)
1273 {
1274 	int i;
1275 
1276 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1277 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1278 		s[i*2+1] = '-';
1279 	}
1280 
1281 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1282 }
1283 
1284 /*
1285  * Render the MC_ROUTE register in human-readable form.
1286  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1287  */
1288 static void knl_show_mc_route(u32 reg, char *s)
1289 {
1290 	int i;
1291 
1292 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1293 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1294 		s[i*2+1] = '-';
1295 	}
1296 
1297 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1298 }
1299 
1300 #define KNL_EDC_ROUTE 0xb8
1301 #define KNL_MC_ROUTE 0xb4
1302 
1303 /* Is this dram rule backed by regular DRAM in flat mode? */
1304 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1305 
1306 /* Is this dram rule cached? */
1307 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1308 
1309 /* Is this rule backed by edc ? */
1310 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1311 
1312 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1313 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1314 
1315 /* Is this rule mod3? */
1316 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1317 
1318 /*
1319  * Figure out how big our RAM modules are.
1320  *
1321  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1322  * have to figure this out from the SAD rules, interleave lists, route tables,
1323  * and TAD rules.
1324  *
1325  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1326  * inspect the TAD rules to figure out how large the SAD regions really are.
1327  *
1328  * When we know the real size of a SAD region and how many ways it's
1329  * interleaved, we know the individual contribution of each channel to
1330  * TAD is size/ways.
1331  *
1332  * Finally, we have to check whether each channel participates in each SAD
1333  * region.
1334  *
1335  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1336  * much memory the channel uses, we know the DIMM is at least that large.
1337  * (The BIOS might possibly choose not to map all available memory, in which
1338  * case we will underreport the size of the DIMM.)
1339  *
1340  * In theory, we could try to determine the EDC sizes as well, but that would
1341  * only work in flat mode, not in cache mode.
1342  *
1343  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1344  *            elements)
1345  */
1346 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1347 {
1348 	u64 sad_base, sad_limit = 0;
1349 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1350 	int sad_rule = 0;
1351 	int tad_rule = 0;
1352 	int intrlv_ways, tad_ways;
1353 	u32 first_pkg, pkg;
1354 	int i;
1355 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1356 	u32 dram_rule, interleave_reg;
1357 	u32 mc_route_reg[KNL_MAX_CHAS];
1358 	u32 edc_route_reg[KNL_MAX_CHAS];
1359 	int edram_only;
1360 	char edc_route_string[KNL_MAX_EDCS*2];
1361 	char mc_route_string[KNL_MAX_CHANNELS*2];
1362 	int cur_reg_start;
1363 	int mc;
1364 	int channel;
1365 	int participants[KNL_MAX_CHANNELS];
1366 
1367 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1368 		mc_sizes[i] = 0;
1369 
1370 	/* Read the EDC route table in each CHA. */
1371 	cur_reg_start = 0;
1372 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1373 		pci_read_config_dword(pvt->knl.pci_cha[i],
1374 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1375 
1376 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1377 			knl_show_edc_route(edc_route_reg[i-1],
1378 					edc_route_string);
1379 			if (cur_reg_start == i-1)
1380 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1381 					cur_reg_start, edc_route_string);
1382 			else
1383 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1384 					cur_reg_start, i-1, edc_route_string);
1385 			cur_reg_start = i;
1386 		}
1387 	}
1388 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1389 	if (cur_reg_start == i-1)
1390 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1391 			cur_reg_start, edc_route_string);
1392 	else
1393 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1394 			cur_reg_start, i-1, edc_route_string);
1395 
1396 	/* Read the MC route table in each CHA. */
1397 	cur_reg_start = 0;
1398 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1399 		pci_read_config_dword(pvt->knl.pci_cha[i],
1400 			KNL_MC_ROUTE, &mc_route_reg[i]);
1401 
1402 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1403 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1404 			if (cur_reg_start == i-1)
1405 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1406 					cur_reg_start, mc_route_string);
1407 			else
1408 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1409 					cur_reg_start, i-1, mc_route_string);
1410 			cur_reg_start = i;
1411 		}
1412 	}
1413 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1414 	if (cur_reg_start == i-1)
1415 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1416 			cur_reg_start, mc_route_string);
1417 	else
1418 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1419 			cur_reg_start, i-1, mc_route_string);
1420 
1421 	/* Process DRAM rules */
1422 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1423 		/* previous limit becomes the new base */
1424 		sad_base = sad_limit;
1425 
1426 		pci_read_config_dword(pvt->pci_sad0,
1427 			pvt->info.dram_rule[sad_rule], &dram_rule);
1428 
1429 		if (!DRAM_RULE_ENABLE(dram_rule))
1430 			break;
1431 
1432 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1433 
1434 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1435 
1436 		pci_read_config_dword(pvt->pci_sad0,
1437 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1438 
1439 		/*
1440 		 * Find out how many ways this dram rule is interleaved.
1441 		 * We stop when we see the first channel again.
1442 		 */
1443 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1444 						interleave_reg, 0);
1445 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1446 			pkg = sad_pkg(pvt->info.interleave_pkg,
1447 						interleave_reg, intrlv_ways);
1448 
1449 			if ((pkg & 0x8) == 0) {
1450 				/*
1451 				 * 0 bit means memory is non-local,
1452 				 * which KNL doesn't support
1453 				 */
1454 				edac_dbg(0, "Unexpected interleave target %d\n",
1455 					pkg);
1456 				return -1;
1457 			}
1458 
1459 			if (pkg == first_pkg)
1460 				break;
1461 		}
1462 		if (KNL_MOD3(dram_rule))
1463 			intrlv_ways *= 3;
1464 
1465 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1466 			sad_rule,
1467 			sad_base,
1468 			sad_limit,
1469 			intrlv_ways,
1470 			edram_only ? ", EDRAM" : "");
1471 
1472 		/*
1473 		 * Find out how big the SAD region really is by iterating
1474 		 * over TAD tables (SAD regions may contain holes).
1475 		 * Each memory controller might have a different TAD table, so
1476 		 * we have to look at both.
1477 		 *
1478 		 * Livespace is the memory that's mapped in this TAD table,
1479 		 * deadspace is the holes (this could be the MMIO hole, or it
1480 		 * could be memory that's mapped by the other TAD table but
1481 		 * not this one).
1482 		 */
1483 		for (mc = 0; mc < 2; mc++) {
1484 			sad_actual_size[mc] = 0;
1485 			tad_livespace = 0;
1486 			for (tad_rule = 0;
1487 					tad_rule < ARRAY_SIZE(
1488 						knl_tad_dram_limit_lo);
1489 					tad_rule++) {
1490 				if (knl_get_tad(pvt,
1491 						tad_rule,
1492 						mc,
1493 						&tad_deadspace,
1494 						&tad_limit,
1495 						&tad_ways))
1496 					break;
1497 
1498 				tad_size = (tad_limit+1) -
1499 					(tad_livespace + tad_deadspace);
1500 				tad_livespace += tad_size;
1501 				tad_base = (tad_limit+1) - tad_size;
1502 
1503 				if (tad_base < sad_base) {
1504 					if (tad_limit > sad_base)
1505 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1506 				} else if (tad_base < sad_limit) {
1507 					if (tad_limit+1 > sad_limit) {
1508 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1509 					} else {
1510 						/* TAD region is completely inside SAD region */
1511 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1512 							tad_rule, tad_base,
1513 							tad_limit, tad_size,
1514 							mc);
1515 						sad_actual_size[mc] += tad_size;
1516 					}
1517 				}
1518 			}
1519 		}
1520 
1521 		for (mc = 0; mc < 2; mc++) {
1522 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1523 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1524 		}
1525 
1526 		/* Ignore EDRAM rule */
1527 		if (edram_only)
1528 			continue;
1529 
1530 		/* Figure out which channels participate in interleave. */
1531 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1532 			participants[channel] = 0;
1533 
1534 		/* For each channel, does at least one CHA have
1535 		 * this channel mapped to the given target?
1536 		 */
1537 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1538 			int target;
1539 			int cha;
1540 
1541 			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1542 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1543 					if (knl_get_mc_route(target,
1544 						mc_route_reg[cha]) == channel
1545 						&& !participants[channel]) {
1546 						participants[channel] = 1;
1547 						break;
1548 					}
1549 				}
1550 			}
1551 		}
1552 
1553 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1554 			mc = knl_channel_mc(channel);
1555 			if (participants[channel]) {
1556 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1557 					channel,
1558 					sad_actual_size[mc]/intrlv_ways,
1559 					sad_rule);
1560 				mc_sizes[channel] +=
1561 					sad_actual_size[mc]/intrlv_ways;
1562 			}
1563 		}
1564 	}
1565 
1566 	return 0;
1567 }
1568 
1569 static void get_source_id(struct mem_ctl_info *mci)
1570 {
1571 	struct sbridge_pvt *pvt = mci->pvt_info;
1572 	u32 reg;
1573 
1574 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1575 	    pvt->info.type == KNIGHTS_LANDING)
1576 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1577 	else
1578 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1579 
1580 	if (pvt->info.type == KNIGHTS_LANDING)
1581 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1582 	else
1583 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1584 }
1585 
1586 static int __populate_dimms(struct mem_ctl_info *mci,
1587 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1588 			    enum edac_type mode)
1589 {
1590 	struct sbridge_pvt *pvt = mci->pvt_info;
1591 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1592 							 : NUM_CHANNELS;
1593 	unsigned int i, j, banks, ranks, rows, cols, npages;
1594 	struct dimm_info *dimm;
1595 	enum mem_type mtype;
1596 	u64 size;
1597 
1598 	mtype = pvt->info.get_memory_type(pvt);
1599 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1600 		edac_dbg(0, "Memory is registered\n");
1601 	else if (mtype == MEM_UNKNOWN)
1602 		edac_dbg(0, "Cannot determine memory type\n");
1603 	else
1604 		edac_dbg(0, "Memory is unregistered\n");
1605 
1606 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1607 		banks = 16;
1608 	else
1609 		banks = 8;
1610 
1611 	for (i = 0; i < channels; i++) {
1612 		u32 mtr, amap = 0;
1613 
1614 		int max_dimms_per_channel;
1615 
1616 		if (pvt->info.type == KNIGHTS_LANDING) {
1617 			max_dimms_per_channel = 1;
1618 			if (!pvt->knl.pci_channel[i])
1619 				continue;
1620 		} else {
1621 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1622 			if (!pvt->pci_tad[i])
1623 				continue;
1624 			pci_read_config_dword(pvt->pci_tad[i], 0x8c, &amap);
1625 		}
1626 
1627 		for (j = 0; j < max_dimms_per_channel; j++) {
1628 			dimm = edac_get_dimm(mci, i, j, 0);
1629 			if (pvt->info.type == KNIGHTS_LANDING) {
1630 				pci_read_config_dword(pvt->knl.pci_channel[i],
1631 					knl_mtr_reg, &mtr);
1632 			} else {
1633 				pci_read_config_dword(pvt->pci_tad[i],
1634 					mtr_regs[j], &mtr);
1635 			}
1636 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1637 
1638 			if (IS_DIMM_PRESENT(mtr)) {
1639 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1640 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1641 						       pvt->sbridge_dev->source_id,
1642 						       pvt->sbridge_dev->dom, i);
1643 					return -ENODEV;
1644 				}
1645 				pvt->channel[i].dimms++;
1646 
1647 				ranks = numrank(pvt->info.type, mtr);
1648 
1649 				if (pvt->info.type == KNIGHTS_LANDING) {
1650 					/* For DDR4, this is fixed. */
1651 					cols = 1 << 10;
1652 					rows = knl_mc_sizes[i] /
1653 						((u64) cols * ranks * banks * 8);
1654 				} else {
1655 					rows = numrow(mtr);
1656 					cols = numcol(mtr);
1657 				}
1658 
1659 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1660 				npages = MiB_TO_PAGES(size);
1661 
1662 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1663 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1664 					 size, npages,
1665 					 banks, ranks, rows, cols);
1666 
1667 				dimm->nr_pages = npages;
1668 				dimm->grain = 32;
1669 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1670 				dimm->mtype = mtype;
1671 				dimm->edac_mode = mode;
1672 				pvt->channel[i].dimm[j].rowbits = order_base_2(rows);
1673 				pvt->channel[i].dimm[j].colbits = order_base_2(cols);
1674 				pvt->channel[i].dimm[j].bank_xor_enable =
1675 						GET_BITFIELD(pvt->info.mcmtr, 9, 9);
1676 				pvt->channel[i].dimm[j].amap_fine = GET_BITFIELD(amap, 0, 0);
1677 				snprintf(dimm->label, sizeof(dimm->label),
1678 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1679 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1680 			}
1681 		}
1682 	}
1683 
1684 	return 0;
1685 }
1686 
1687 static int get_dimm_config(struct mem_ctl_info *mci)
1688 {
1689 	struct sbridge_pvt *pvt = mci->pvt_info;
1690 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1691 	enum edac_type mode;
1692 	u32 reg;
1693 
1694 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1695 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1696 		 pvt->sbridge_dev->mc,
1697 		 pvt->sbridge_dev->node_id,
1698 		 pvt->sbridge_dev->source_id);
1699 
1700 	/* KNL doesn't support mirroring or lockstep,
1701 	 * and is always closed page
1702 	 */
1703 	if (pvt->info.type == KNIGHTS_LANDING) {
1704 		mode = EDAC_S4ECD4ED;
1705 		pvt->mirror_mode = NON_MIRRORING;
1706 		pvt->is_cur_addr_mirrored = false;
1707 
1708 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1709 			return -1;
1710 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1711 			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1712 			return -ENODEV;
1713 		}
1714 	} else {
1715 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1716 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1717 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1718 				return -ENODEV;
1719 			}
1720 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1721 			if (GET_BITFIELD(reg, 28, 28)) {
1722 				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1723 				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1724 				goto next;
1725 			}
1726 		}
1727 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1728 			edac_dbg(0, "Failed to read RASENABLES register\n");
1729 			return -ENODEV;
1730 		}
1731 		if (IS_MIRROR_ENABLED(reg)) {
1732 			pvt->mirror_mode = FULL_MIRRORING;
1733 			edac_dbg(0, "Full memory mirroring is enabled\n");
1734 		} else {
1735 			pvt->mirror_mode = NON_MIRRORING;
1736 			edac_dbg(0, "Memory mirroring is disabled\n");
1737 		}
1738 
1739 next:
1740 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1741 			edac_dbg(0, "Failed to read MCMTR register\n");
1742 			return -ENODEV;
1743 		}
1744 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1745 			edac_dbg(0, "Lockstep is enabled\n");
1746 			mode = EDAC_S8ECD8ED;
1747 			pvt->is_lockstep = true;
1748 		} else {
1749 			edac_dbg(0, "Lockstep is disabled\n");
1750 			mode = EDAC_S4ECD4ED;
1751 			pvt->is_lockstep = false;
1752 		}
1753 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1754 			edac_dbg(0, "address map is on closed page mode\n");
1755 			pvt->is_close_pg = true;
1756 		} else {
1757 			edac_dbg(0, "address map is on open page mode\n");
1758 			pvt->is_close_pg = false;
1759 		}
1760 	}
1761 
1762 	return __populate_dimms(mci, knl_mc_sizes, mode);
1763 }
1764 
1765 static void get_memory_layout(const struct mem_ctl_info *mci)
1766 {
1767 	struct sbridge_pvt *pvt = mci->pvt_info;
1768 	int i, j, k, n_sads, n_tads, sad_interl;
1769 	u32 reg;
1770 	u64 limit, prv = 0;
1771 	u64 tmp_mb;
1772 	u32 gb, mb;
1773 	u32 rir_way;
1774 
1775 	/*
1776 	 * Step 1) Get TOLM/TOHM ranges
1777 	 */
1778 
1779 	pvt->tolm = pvt->info.get_tolm(pvt);
1780 	tmp_mb = (1 + pvt->tolm) >> 20;
1781 
1782 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1783 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1784 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1785 
1786 	/* Address range is already 45:25 */
1787 	pvt->tohm = pvt->info.get_tohm(pvt);
1788 	tmp_mb = (1 + pvt->tohm) >> 20;
1789 
1790 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1791 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1792 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1793 
1794 	/*
1795 	 * Step 2) Get SAD range and SAD Interleave list
1796 	 * TAD registers contain the interleave wayness. However, it
1797 	 * seems simpler to just discover it indirectly, with the
1798 	 * algorithm bellow.
1799 	 */
1800 	prv = 0;
1801 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1802 		/* SAD_LIMIT Address range is 45:26 */
1803 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1804 				      &reg);
1805 		limit = pvt->info.sad_limit(reg);
1806 
1807 		if (!DRAM_RULE_ENABLE(reg))
1808 			continue;
1809 
1810 		if (limit <= prv)
1811 			break;
1812 
1813 		tmp_mb = (limit + 1) >> 20;
1814 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1815 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1816 			 n_sads,
1817 			 show_dram_attr(pvt->info.dram_attr(reg)),
1818 			 gb, (mb*1000)/1024,
1819 			 ((u64)tmp_mb) << 20L,
1820 			 get_intlv_mode_str(reg, pvt->info.type),
1821 			 reg);
1822 		prv = limit;
1823 
1824 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1825 				      &reg);
1826 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1827 		for (j = 0; j < 8; j++) {
1828 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1829 			if (j > 0 && sad_interl == pkg)
1830 				break;
1831 
1832 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1833 				 n_sads, j, pkg);
1834 		}
1835 	}
1836 
1837 	if (pvt->info.type == KNIGHTS_LANDING)
1838 		return;
1839 
1840 	/*
1841 	 * Step 3) Get TAD range
1842 	 */
1843 	prv = 0;
1844 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1845 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1846 		limit = TAD_LIMIT(reg);
1847 		if (limit <= prv)
1848 			break;
1849 		tmp_mb = (limit + 1) >> 20;
1850 
1851 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1852 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1853 			 n_tads, gb, (mb*1000)/1024,
1854 			 ((u64)tmp_mb) << 20L,
1855 			 (u32)(1 << TAD_SOCK(reg)),
1856 			 (u32)TAD_CH(reg) + 1,
1857 			 (u32)TAD_TGT0(reg),
1858 			 (u32)TAD_TGT1(reg),
1859 			 (u32)TAD_TGT2(reg),
1860 			 (u32)TAD_TGT3(reg),
1861 			 reg);
1862 		prv = limit;
1863 	}
1864 
1865 	/*
1866 	 * Step 4) Get TAD offsets, per each channel
1867 	 */
1868 	for (i = 0; i < NUM_CHANNELS; i++) {
1869 		if (!pvt->channel[i].dimms)
1870 			continue;
1871 		for (j = 0; j < n_tads; j++) {
1872 			pci_read_config_dword(pvt->pci_tad[i],
1873 					      tad_ch_nilv_offset[j],
1874 					      &reg);
1875 			tmp_mb = TAD_OFFSET(reg) >> 20;
1876 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1877 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1878 				 i, j,
1879 				 gb, (mb*1000)/1024,
1880 				 ((u64)tmp_mb) << 20L,
1881 				 reg);
1882 		}
1883 	}
1884 
1885 	/*
1886 	 * Step 6) Get RIR Wayness/Limit, per each channel
1887 	 */
1888 	for (i = 0; i < NUM_CHANNELS; i++) {
1889 		if (!pvt->channel[i].dimms)
1890 			continue;
1891 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1892 			pci_read_config_dword(pvt->pci_tad[i],
1893 					      rir_way_limit[j],
1894 					      &reg);
1895 
1896 			if (!IS_RIR_VALID(reg))
1897 				continue;
1898 
1899 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1900 			rir_way = 1 << RIR_WAY(reg);
1901 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1902 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1903 				 i, j,
1904 				 gb, (mb*1000)/1024,
1905 				 ((u64)tmp_mb) << 20L,
1906 				 rir_way,
1907 				 reg);
1908 
1909 			for (k = 0; k < rir_way; k++) {
1910 				pci_read_config_dword(pvt->pci_tad[i],
1911 						      rir_offset[j][k],
1912 						      &reg);
1913 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1914 
1915 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1916 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1917 					 i, j, k,
1918 					 gb, (mb*1000)/1024,
1919 					 ((u64)tmp_mb) << 20L,
1920 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1921 					 reg);
1922 			}
1923 		}
1924 	}
1925 }
1926 
1927 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1928 {
1929 	struct sbridge_dev *sbridge_dev;
1930 
1931 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1932 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1933 			return sbridge_dev->mci;
1934 	}
1935 	return NULL;
1936 }
1937 
1938 static u8 sb_close_row[] = {
1939 	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
1940 };
1941 
1942 static u8 sb_close_column[] = {
1943 	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
1944 };
1945 
1946 static u8 sb_open_row[] = {
1947 	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
1948 };
1949 
1950 static u8 sb_open_column[] = {
1951 	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
1952 };
1953 
1954 static u8 sb_open_fine_column[] = {
1955 	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
1956 };
1957 
1958 static int sb_bits(u64 addr, int nbits, u8 *bits)
1959 {
1960 	int i, res = 0;
1961 
1962 	for (i = 0; i < nbits; i++)
1963 		res |= ((addr >> bits[i]) & 1) << i;
1964 	return res;
1965 }
1966 
1967 static int sb_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
1968 {
1969 	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
1970 
1971 	if (do_xor)
1972 		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
1973 
1974 	return ret;
1975 }
1976 
1977 static bool sb_decode_ddr4(struct mem_ctl_info *mci, int ch, u8 rank,
1978 			   u64 rank_addr, char *msg)
1979 {
1980 	int dimmno = 0;
1981 	int row, col, bank_address, bank_group;
1982 	struct sbridge_pvt *pvt;
1983 	u32 bg0 = 0, rowbits = 0, colbits = 0;
1984 	u32 amap_fine = 0, bank_xor_enable = 0;
1985 
1986 	dimmno = (rank < 12) ? rank / 4 : 2;
1987 	pvt = mci->pvt_info;
1988 	amap_fine =  pvt->channel[ch].dimm[dimmno].amap_fine;
1989 	bg0 = amap_fine ? 6 : 13;
1990 	rowbits = pvt->channel[ch].dimm[dimmno].rowbits;
1991 	colbits = pvt->channel[ch].dimm[dimmno].colbits;
1992 	bank_xor_enable = pvt->channel[ch].dimm[dimmno].bank_xor_enable;
1993 
1994 	if (pvt->is_lockstep) {
1995 		pr_warn_once("LockStep row/column decode is not supported yet!\n");
1996 		msg[0] = '\0';
1997 		return false;
1998 	}
1999 
2000 	if (pvt->is_close_pg) {
2001 		row = sb_bits(rank_addr, rowbits, sb_close_row);
2002 		col = sb_bits(rank_addr, colbits, sb_close_column);
2003 		col |= 0x400; /* C10 is autoprecharge, always set */
2004 		bank_address = sb_bank_bits(rank_addr, 8, 9, bank_xor_enable, 22, 28);
2005 		bank_group = sb_bank_bits(rank_addr, 6, 7, bank_xor_enable, 20, 21);
2006 	} else {
2007 		row = sb_bits(rank_addr, rowbits, sb_open_row);
2008 		if (amap_fine)
2009 			col = sb_bits(rank_addr, colbits, sb_open_fine_column);
2010 		else
2011 			col = sb_bits(rank_addr, colbits, sb_open_column);
2012 		bank_address = sb_bank_bits(rank_addr, 18, 19, bank_xor_enable, 22, 23);
2013 		bank_group = sb_bank_bits(rank_addr, bg0, 17, bank_xor_enable, 20, 21);
2014 	}
2015 
2016 	row &= (1u << rowbits) - 1;
2017 
2018 	sprintf(msg, "row:0x%x col:0x%x bank_addr:%d bank_group:%d",
2019 		row, col, bank_address, bank_group);
2020 	return true;
2021 }
2022 
2023 static bool sb_decode_ddr3(struct mem_ctl_info *mci, int ch, u8 rank,
2024 			   u64 rank_addr, char *msg)
2025 {
2026 	pr_warn_once("DDR3 row/column decode not support yet!\n");
2027 	msg[0] = '\0';
2028 	return false;
2029 }
2030 
2031 static int get_memory_error_data(struct mem_ctl_info *mci,
2032 				 u64 addr,
2033 				 u8 *socket, u8 *ha,
2034 				 long *channel_mask,
2035 				 u8 *rank,
2036 				 char **area_type, char *msg)
2037 {
2038 	struct mem_ctl_info	*new_mci;
2039 	struct sbridge_pvt *pvt = mci->pvt_info;
2040 	struct pci_dev		*pci_ha;
2041 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
2042 	int			sad_interl, idx, base_ch;
2043 	int			interleave_mode, shiftup = 0;
2044 	unsigned int		sad_interleave[MAX_INTERLEAVE];
2045 	u32			reg, dram_rule;
2046 	u8			ch_way, sck_way, pkg, sad_ha = 0, rankid = 0;
2047 	u32			tad_offset;
2048 	u32			rir_way;
2049 	u32			mb, gb;
2050 	u64			ch_addr, offset, limit = 0, prv = 0;
2051 	u64			rank_addr;
2052 	enum mem_type		mtype;
2053 
2054 	/*
2055 	 * Step 0) Check if the address is at special memory ranges
2056 	 * The check bellow is probably enough to fill all cases where
2057 	 * the error is not inside a memory, except for the legacy
2058 	 * range (e. g. VGA addresses). It is unlikely, however, that the
2059 	 * memory controller would generate an error on that range.
2060 	 */
2061 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
2062 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
2063 		return -EINVAL;
2064 	}
2065 	if (addr >= (u64)pvt->tohm) {
2066 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
2067 		return -EINVAL;
2068 	}
2069 
2070 	/*
2071 	 * Step 1) Get socket
2072 	 */
2073 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
2074 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
2075 				      &reg);
2076 
2077 		if (!DRAM_RULE_ENABLE(reg))
2078 			continue;
2079 
2080 		limit = pvt->info.sad_limit(reg);
2081 		if (limit <= prv) {
2082 			sprintf(msg, "Can't discover the memory socket");
2083 			return -EINVAL;
2084 		}
2085 		if  (addr <= limit)
2086 			break;
2087 		prv = limit;
2088 	}
2089 	if (n_sads == pvt->info.max_sad) {
2090 		sprintf(msg, "Can't discover the memory socket");
2091 		return -EINVAL;
2092 	}
2093 	dram_rule = reg;
2094 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
2095 	interleave_mode = pvt->info.interleave_mode(dram_rule);
2096 
2097 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
2098 			      &reg);
2099 
2100 	if (pvt->info.type == SANDY_BRIDGE) {
2101 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2102 		for (sad_way = 0; sad_way < 8; sad_way++) {
2103 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2104 			if (sad_way > 0 && sad_interl == pkg)
2105 				break;
2106 			sad_interleave[sad_way] = pkg;
2107 			edac_dbg(0, "SAD interleave #%d: %d\n",
2108 				 sad_way, sad_interleave[sad_way]);
2109 		}
2110 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2111 			 pvt->sbridge_dev->mc,
2112 			 n_sads,
2113 			 addr,
2114 			 limit,
2115 			 sad_way + 7,
2116 			 !interleave_mode ? "" : "XOR[18:16]");
2117 		if (interleave_mode)
2118 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2119 		else
2120 			idx = (addr >> 6) & 7;
2121 		switch (sad_way) {
2122 		case 1:
2123 			idx = 0;
2124 			break;
2125 		case 2:
2126 			idx = idx & 1;
2127 			break;
2128 		case 4:
2129 			idx = idx & 3;
2130 			break;
2131 		case 8:
2132 			break;
2133 		default:
2134 			sprintf(msg, "Can't discover socket interleave");
2135 			return -EINVAL;
2136 		}
2137 		*socket = sad_interleave[idx];
2138 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2139 			 idx, sad_way, *socket);
2140 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2141 		int bits, a7mode = A7MODE(dram_rule);
2142 
2143 		if (a7mode) {
2144 			/* A7 mode swaps P9 with P6 */
2145 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2146 			bits |= GET_BITFIELD(addr, 9, 9);
2147 		} else
2148 			bits = GET_BITFIELD(addr, 6, 8);
2149 
2150 		if (interleave_mode == 0) {
2151 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2152 			idx = GET_BITFIELD(addr, 16, 18);
2153 			idx ^= bits;
2154 		} else
2155 			idx = bits;
2156 
2157 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2158 		*socket = sad_pkg_socket(pkg);
2159 		sad_ha = sad_pkg_ha(pkg);
2160 
2161 		if (a7mode) {
2162 			/* MCChanShiftUpEnable */
2163 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2164 			shiftup = GET_BITFIELD(reg, 22, 22);
2165 		}
2166 
2167 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2168 			 idx, *socket, sad_ha, shiftup);
2169 	} else {
2170 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2171 		idx = (addr >> 6) & 7;
2172 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2173 		*socket = sad_pkg_socket(pkg);
2174 		sad_ha = sad_pkg_ha(pkg);
2175 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2176 			 idx, *socket, sad_ha);
2177 	}
2178 
2179 	*ha = sad_ha;
2180 
2181 	/*
2182 	 * Move to the proper node structure, in order to access the
2183 	 * right PCI registers
2184 	 */
2185 	new_mci = get_mci_for_node_id(*socket, sad_ha);
2186 	if (!new_mci) {
2187 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2188 			*socket);
2189 		return -EINVAL;
2190 	}
2191 	mci = new_mci;
2192 	pvt = mci->pvt_info;
2193 
2194 	/*
2195 	 * Step 2) Get memory channel
2196 	 */
2197 	prv = 0;
2198 	pci_ha = pvt->pci_ha;
2199 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2200 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2201 		limit = TAD_LIMIT(reg);
2202 		if (limit <= prv) {
2203 			sprintf(msg, "Can't discover the memory channel");
2204 			return -EINVAL;
2205 		}
2206 		if  (addr <= limit)
2207 			break;
2208 		prv = limit;
2209 	}
2210 	if (n_tads == MAX_TAD) {
2211 		sprintf(msg, "Can't discover the memory channel");
2212 		return -EINVAL;
2213 	}
2214 
2215 	ch_way = TAD_CH(reg) + 1;
2216 	sck_way = TAD_SOCK(reg);
2217 
2218 	if (ch_way == 3)
2219 		idx = addr >> 6;
2220 	else {
2221 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2222 		if (pvt->is_chan_hash)
2223 			idx = haswell_chan_hash(idx, addr);
2224 	}
2225 	idx = idx % ch_way;
2226 
2227 	/*
2228 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2229 	 */
2230 	switch (idx) {
2231 	case 0:
2232 		base_ch = TAD_TGT0(reg);
2233 		break;
2234 	case 1:
2235 		base_ch = TAD_TGT1(reg);
2236 		break;
2237 	case 2:
2238 		base_ch = TAD_TGT2(reg);
2239 		break;
2240 	case 3:
2241 		base_ch = TAD_TGT3(reg);
2242 		break;
2243 	default:
2244 		sprintf(msg, "Can't discover the TAD target");
2245 		return -EINVAL;
2246 	}
2247 	*channel_mask = 1 << base_ch;
2248 
2249 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2250 
2251 	if (pvt->mirror_mode == FULL_MIRRORING ||
2252 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2253 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2254 		switch(ch_way) {
2255 		case 2:
2256 		case 4:
2257 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2258 			break;
2259 		default:
2260 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2261 			return -EINVAL;
2262 		}
2263 
2264 		pvt->is_cur_addr_mirrored = true;
2265 	} else {
2266 		sck_xch = (1 << sck_way) * ch_way;
2267 		pvt->is_cur_addr_mirrored = false;
2268 	}
2269 
2270 	if (pvt->is_lockstep)
2271 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2272 
2273 	offset = TAD_OFFSET(tad_offset);
2274 
2275 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2276 		 n_tads,
2277 		 addr,
2278 		 limit,
2279 		 sck_way,
2280 		 ch_way,
2281 		 offset,
2282 		 idx,
2283 		 base_ch,
2284 		 *channel_mask);
2285 
2286 	/* Calculate channel address */
2287 	/* Remove the TAD offset */
2288 
2289 	if (offset > addr) {
2290 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2291 			offset, addr);
2292 		return -EINVAL;
2293 	}
2294 
2295 	ch_addr = addr - offset;
2296 	ch_addr >>= (6 + shiftup);
2297 	ch_addr /= sck_xch;
2298 	ch_addr <<= (6 + shiftup);
2299 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2300 
2301 	/*
2302 	 * Step 3) Decode rank
2303 	 */
2304 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2305 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2306 
2307 		if (!IS_RIR_VALID(reg))
2308 			continue;
2309 
2310 		limit = pvt->info.rir_limit(reg);
2311 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2312 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2313 			 n_rir,
2314 			 gb, (mb*1000)/1024,
2315 			 limit,
2316 			 1 << RIR_WAY(reg));
2317 		if  (ch_addr <= limit)
2318 			break;
2319 	}
2320 	if (n_rir == MAX_RIR_RANGES) {
2321 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2322 			ch_addr);
2323 		return -EINVAL;
2324 	}
2325 	rir_way = RIR_WAY(reg);
2326 
2327 	if (pvt->is_close_pg)
2328 		idx = (ch_addr >> 6);
2329 	else
2330 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2331 	idx %= 1 << rir_way;
2332 
2333 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2334 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2335 
2336 	if (pvt->info.type == BROADWELL) {
2337 		if (pvt->is_close_pg)
2338 			shiftup = 6;
2339 		else
2340 			shiftup = 13;
2341 
2342 		rank_addr = ch_addr >> shiftup;
2343 		rank_addr /= (1 << rir_way);
2344 		rank_addr <<= shiftup;
2345 		rank_addr |= ch_addr & GENMASK_ULL(shiftup - 1, 0);
2346 		rank_addr -= RIR_OFFSET(pvt->info.type, reg);
2347 
2348 		mtype = pvt->info.get_memory_type(pvt);
2349 		rankid = *rank;
2350 		if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
2351 			sb_decode_ddr4(mci, base_ch, rankid, rank_addr, msg);
2352 		else
2353 			sb_decode_ddr3(mci, base_ch, rankid, rank_addr, msg);
2354 	} else {
2355 		msg[0] = '\0';
2356 	}
2357 
2358 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2359 		 n_rir,
2360 		 ch_addr,
2361 		 limit,
2362 		 rir_way,
2363 		 idx);
2364 
2365 	return 0;
2366 }
2367 
2368 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2369 					  const struct mce *m, u8 *socket,
2370 					  u8 *ha, long *channel_mask,
2371 					  char *msg)
2372 {
2373 	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2374 	struct mem_ctl_info *new_mci;
2375 	struct sbridge_pvt *pvt;
2376 	struct pci_dev *pci_ha;
2377 	bool tad0;
2378 
2379 	if (channel >= NUM_CHANNELS) {
2380 		sprintf(msg, "Invalid channel 0x%x", channel);
2381 		return -EINVAL;
2382 	}
2383 
2384 	pvt = mci->pvt_info;
2385 	if (!pvt->info.get_ha) {
2386 		sprintf(msg, "No get_ha()");
2387 		return -EINVAL;
2388 	}
2389 	*ha = pvt->info.get_ha(m->bank);
2390 	if (*ha != 0 && *ha != 1) {
2391 		sprintf(msg, "Impossible bank %d", m->bank);
2392 		return -EINVAL;
2393 	}
2394 
2395 	*socket = m->socketid;
2396 	new_mci = get_mci_for_node_id(*socket, *ha);
2397 	if (!new_mci) {
2398 		strcpy(msg, "mci socket got corrupted!");
2399 		return -EINVAL;
2400 	}
2401 
2402 	pvt = new_mci->pvt_info;
2403 	pci_ha = pvt->pci_ha;
2404 	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2405 	tad0 = m->addr <= TAD_LIMIT(reg);
2406 
2407 	*channel_mask = 1 << channel;
2408 	if (pvt->mirror_mode == FULL_MIRRORING ||
2409 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2410 		*channel_mask |= 1 << ((channel + 2) % 4);
2411 		pvt->is_cur_addr_mirrored = true;
2412 	} else {
2413 		pvt->is_cur_addr_mirrored = false;
2414 	}
2415 
2416 	if (pvt->is_lockstep)
2417 		*channel_mask |= 1 << ((channel + 1) % 4);
2418 
2419 	return 0;
2420 }
2421 
2422 /****************************************************************************
2423 	Device initialization routines: put/get, init/exit
2424  ****************************************************************************/
2425 
2426 /*
2427  *	sbridge_put_all_devices	'put' all the devices that we have
2428  *				reserved via 'get'
2429  */
2430 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2431 {
2432 	int i;
2433 
2434 	edac_dbg(0, "\n");
2435 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2436 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2437 		if (!pdev)
2438 			continue;
2439 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2440 			 pdev->bus->number,
2441 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2442 		pci_dev_put(pdev);
2443 	}
2444 }
2445 
2446 static void sbridge_put_all_devices(void)
2447 {
2448 	struct sbridge_dev *sbridge_dev, *tmp;
2449 
2450 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2451 		sbridge_put_devices(sbridge_dev);
2452 		free_sbridge_dev(sbridge_dev);
2453 	}
2454 }
2455 
2456 static int sbridge_get_onedevice(struct pci_dev **prev,
2457 				 u8 *num_mc,
2458 				 const struct pci_id_table *table,
2459 				 const unsigned devno,
2460 				 const int multi_bus)
2461 {
2462 	struct sbridge_dev *sbridge_dev = NULL;
2463 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2464 	struct pci_dev *pdev = NULL;
2465 	int seg = 0;
2466 	u8 bus = 0;
2467 	int i = 0;
2468 
2469 	sbridge_printk(KERN_DEBUG,
2470 		"Seeking for: PCI ID %04x:%04x\n",
2471 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2472 
2473 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2474 			      dev_descr->dev_id, *prev);
2475 
2476 	if (!pdev) {
2477 		if (*prev) {
2478 			*prev = pdev;
2479 			return 0;
2480 		}
2481 
2482 		if (dev_descr->optional)
2483 			return 0;
2484 
2485 		/* if the HA wasn't found */
2486 		if (devno == 0)
2487 			return -ENODEV;
2488 
2489 		sbridge_printk(KERN_INFO,
2490 			"Device not found: %04x:%04x\n",
2491 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2492 
2493 		/* End of list, leave */
2494 		return -ENODEV;
2495 	}
2496 	seg = pci_domain_nr(pdev->bus);
2497 	bus = pdev->bus->number;
2498 
2499 next_imc:
2500 	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2501 				      multi_bus, sbridge_dev);
2502 	if (!sbridge_dev) {
2503 		/* If the HA1 wasn't found, don't create EDAC second memory controller */
2504 		if (dev_descr->dom == IMC1 && devno != 1) {
2505 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2506 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2507 			pci_dev_put(pdev);
2508 			return 0;
2509 		}
2510 
2511 		if (dev_descr->dom == SOCK)
2512 			goto out_imc;
2513 
2514 		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2515 		if (!sbridge_dev) {
2516 			pci_dev_put(pdev);
2517 			return -ENOMEM;
2518 		}
2519 		(*num_mc)++;
2520 	}
2521 
2522 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2523 		sbridge_printk(KERN_ERR,
2524 			"Duplicated device for %04x:%04x\n",
2525 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2526 		pci_dev_put(pdev);
2527 		return -ENODEV;
2528 	}
2529 
2530 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2531 
2532 	/* pdev belongs to more than one IMC, do extra gets */
2533 	if (++i > 1)
2534 		pci_dev_get(pdev);
2535 
2536 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2537 		goto next_imc;
2538 
2539 out_imc:
2540 	/* Be sure that the device is enabled */
2541 	if (unlikely(pci_enable_device(pdev) < 0)) {
2542 		sbridge_printk(KERN_ERR,
2543 			"Couldn't enable %04x:%04x\n",
2544 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2545 		return -ENODEV;
2546 	}
2547 
2548 	edac_dbg(0, "Detected %04x:%04x\n",
2549 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2550 
2551 	/*
2552 	 * As stated on drivers/pci/search.c, the reference count for
2553 	 * @from is always decremented if it is not %NULL. So, as we need
2554 	 * to get all devices up to null, we need to do a get for the device
2555 	 */
2556 	pci_dev_get(pdev);
2557 
2558 	*prev = pdev;
2559 
2560 	return 0;
2561 }
2562 
2563 /*
2564  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2565  *			     devices we want to reference for this driver.
2566  * @num_mc: pointer to the memory controllers count, to be incremented in case
2567  *	    of success.
2568  * @table: model specific table
2569  *
2570  * returns 0 in case of success or error code
2571  */
2572 static int sbridge_get_all_devices(u8 *num_mc,
2573 					const struct pci_id_table *table)
2574 {
2575 	int i, rc;
2576 	struct pci_dev *pdev = NULL;
2577 	int allow_dups = 0;
2578 	int multi_bus = 0;
2579 
2580 	if (table->type == KNIGHTS_LANDING)
2581 		allow_dups = multi_bus = 1;
2582 	while (table && table->descr) {
2583 		for (i = 0; i < table->n_devs_per_sock; i++) {
2584 			if (!allow_dups || i == 0 ||
2585 					table->descr[i].dev_id !=
2586 						table->descr[i-1].dev_id) {
2587 				pdev = NULL;
2588 			}
2589 			do {
2590 				rc = sbridge_get_onedevice(&pdev, num_mc,
2591 							   table, i, multi_bus);
2592 				if (rc < 0) {
2593 					if (i == 0) {
2594 						i = table->n_devs_per_sock;
2595 						break;
2596 					}
2597 					sbridge_put_all_devices();
2598 					return -ENODEV;
2599 				}
2600 			} while (pdev && !allow_dups);
2601 		}
2602 		table++;
2603 	}
2604 
2605 	return 0;
2606 }
2607 
2608 /*
2609  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2610  * the format: XXXa. So we can convert from a device to the corresponding
2611  * channel like this
2612  */
2613 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2614 
2615 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2616 				 struct sbridge_dev *sbridge_dev)
2617 {
2618 	struct sbridge_pvt *pvt = mci->pvt_info;
2619 	struct pci_dev *pdev;
2620 	u8 saw_chan_mask = 0;
2621 	int i;
2622 
2623 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2624 		pdev = sbridge_dev->pdev[i];
2625 		if (!pdev)
2626 			continue;
2627 
2628 		switch (pdev->device) {
2629 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2630 			pvt->pci_sad0 = pdev;
2631 			break;
2632 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2633 			pvt->pci_sad1 = pdev;
2634 			break;
2635 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2636 			pvt->pci_br0 = pdev;
2637 			break;
2638 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2639 			pvt->pci_ha = pdev;
2640 			break;
2641 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2642 			pvt->pci_ta = pdev;
2643 			break;
2644 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2645 			pvt->pci_ras = pdev;
2646 			break;
2647 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2648 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2649 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2650 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2651 		{
2652 			int id = TAD_DEV_TO_CHAN(pdev->device);
2653 			pvt->pci_tad[id] = pdev;
2654 			saw_chan_mask |= 1 << id;
2655 		}
2656 			break;
2657 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2658 			pvt->pci_ddrio = pdev;
2659 			break;
2660 		default:
2661 			goto error;
2662 		}
2663 
2664 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2665 			 pdev->vendor, pdev->device,
2666 			 sbridge_dev->bus,
2667 			 pdev);
2668 	}
2669 
2670 	/* Check if everything were registered */
2671 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2672 	    !pvt->pci_ras || !pvt->pci_ta)
2673 		goto enodev;
2674 
2675 	if (saw_chan_mask != 0x0f)
2676 		goto enodev;
2677 	return 0;
2678 
2679 enodev:
2680 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2681 	return -ENODEV;
2682 
2683 error:
2684 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2685 		       PCI_VENDOR_ID_INTEL, pdev->device);
2686 	return -EINVAL;
2687 }
2688 
2689 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2690 				 struct sbridge_dev *sbridge_dev)
2691 {
2692 	struct sbridge_pvt *pvt = mci->pvt_info;
2693 	struct pci_dev *pdev;
2694 	u8 saw_chan_mask = 0;
2695 	int i;
2696 
2697 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2698 		pdev = sbridge_dev->pdev[i];
2699 		if (!pdev)
2700 			continue;
2701 
2702 		switch (pdev->device) {
2703 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2704 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2705 			pvt->pci_ha = pdev;
2706 			break;
2707 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2708 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2709 			pvt->pci_ta = pdev;
2710 			break;
2711 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2712 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2713 			pvt->pci_ras = pdev;
2714 			break;
2715 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2716 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2717 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2718 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2719 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2720 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2721 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2722 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2723 		{
2724 			int id = TAD_DEV_TO_CHAN(pdev->device);
2725 			pvt->pci_tad[id] = pdev;
2726 			saw_chan_mask |= 1 << id;
2727 		}
2728 			break;
2729 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2730 			pvt->pci_ddrio = pdev;
2731 			break;
2732 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2733 			pvt->pci_ddrio = pdev;
2734 			break;
2735 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2736 			pvt->pci_sad0 = pdev;
2737 			break;
2738 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2739 			pvt->pci_br0 = pdev;
2740 			break;
2741 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2742 			pvt->pci_br1 = pdev;
2743 			break;
2744 		default:
2745 			goto error;
2746 		}
2747 
2748 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2749 			 sbridge_dev->bus,
2750 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2751 			 pdev);
2752 	}
2753 
2754 	/* Check if everything were registered */
2755 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2756 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2757 		goto enodev;
2758 
2759 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2760 	    saw_chan_mask != 0x03)   /* -EP */
2761 		goto enodev;
2762 	return 0;
2763 
2764 enodev:
2765 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2766 	return -ENODEV;
2767 
2768 error:
2769 	sbridge_printk(KERN_ERR,
2770 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2771 			pdev->device);
2772 	return -EINVAL;
2773 }
2774 
2775 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2776 				 struct sbridge_dev *sbridge_dev)
2777 {
2778 	struct sbridge_pvt *pvt = mci->pvt_info;
2779 	struct pci_dev *pdev;
2780 	u8 saw_chan_mask = 0;
2781 	int i;
2782 
2783 	/* there's only one device per system; not tied to any bus */
2784 	if (pvt->info.pci_vtd == NULL)
2785 		/* result will be checked later */
2786 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2787 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2788 						   NULL);
2789 
2790 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2791 		pdev = sbridge_dev->pdev[i];
2792 		if (!pdev)
2793 			continue;
2794 
2795 		switch (pdev->device) {
2796 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2797 			pvt->pci_sad0 = pdev;
2798 			break;
2799 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2800 			pvt->pci_sad1 = pdev;
2801 			break;
2802 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2803 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2804 			pvt->pci_ha = pdev;
2805 			break;
2806 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2807 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2808 			pvt->pci_ta = pdev;
2809 			break;
2810 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2811 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2812 			pvt->pci_ras = pdev;
2813 			break;
2814 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2815 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2816 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2817 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2818 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2819 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2820 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2821 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2822 		{
2823 			int id = TAD_DEV_TO_CHAN(pdev->device);
2824 			pvt->pci_tad[id] = pdev;
2825 			saw_chan_mask |= 1 << id;
2826 		}
2827 			break;
2828 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2829 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2830 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2831 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2832 			if (!pvt->pci_ddrio)
2833 				pvt->pci_ddrio = pdev;
2834 			break;
2835 		default:
2836 			break;
2837 		}
2838 
2839 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2840 			 sbridge_dev->bus,
2841 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2842 			 pdev);
2843 	}
2844 
2845 	/* Check if everything were registered */
2846 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2847 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2848 		goto enodev;
2849 
2850 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2851 	    saw_chan_mask != 0x03)   /* -EP */
2852 		goto enodev;
2853 	return 0;
2854 
2855 enodev:
2856 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2857 	return -ENODEV;
2858 }
2859 
2860 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2861 				 struct sbridge_dev *sbridge_dev)
2862 {
2863 	struct sbridge_pvt *pvt = mci->pvt_info;
2864 	struct pci_dev *pdev;
2865 	u8 saw_chan_mask = 0;
2866 	int i;
2867 
2868 	/* there's only one device per system; not tied to any bus */
2869 	if (pvt->info.pci_vtd == NULL)
2870 		/* result will be checked later */
2871 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2872 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2873 						   NULL);
2874 
2875 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2876 		pdev = sbridge_dev->pdev[i];
2877 		if (!pdev)
2878 			continue;
2879 
2880 		switch (pdev->device) {
2881 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2882 			pvt->pci_sad0 = pdev;
2883 			break;
2884 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2885 			pvt->pci_sad1 = pdev;
2886 			break;
2887 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2888 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2889 			pvt->pci_ha = pdev;
2890 			break;
2891 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2892 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2893 			pvt->pci_ta = pdev;
2894 			break;
2895 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2896 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2897 			pvt->pci_ras = pdev;
2898 			break;
2899 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2900 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2901 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2902 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2903 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2904 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2905 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2906 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2907 		{
2908 			int id = TAD_DEV_TO_CHAN(pdev->device);
2909 			pvt->pci_tad[id] = pdev;
2910 			saw_chan_mask |= 1 << id;
2911 		}
2912 			break;
2913 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2914 			pvt->pci_ddrio = pdev;
2915 			break;
2916 		default:
2917 			break;
2918 		}
2919 
2920 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2921 			 sbridge_dev->bus,
2922 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2923 			 pdev);
2924 	}
2925 
2926 	/* Check if everything were registered */
2927 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2928 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2929 		goto enodev;
2930 
2931 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2932 	    saw_chan_mask != 0x03)   /* -EP */
2933 		goto enodev;
2934 	return 0;
2935 
2936 enodev:
2937 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2938 	return -ENODEV;
2939 }
2940 
2941 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2942 			struct sbridge_dev *sbridge_dev)
2943 {
2944 	struct sbridge_pvt *pvt = mci->pvt_info;
2945 	struct pci_dev *pdev;
2946 	int dev, func;
2947 
2948 	int i;
2949 	int devidx;
2950 
2951 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2952 		pdev = sbridge_dev->pdev[i];
2953 		if (!pdev)
2954 			continue;
2955 
2956 		/* Extract PCI device and function. */
2957 		dev = (pdev->devfn >> 3) & 0x1f;
2958 		func = pdev->devfn & 0x7;
2959 
2960 		switch (pdev->device) {
2961 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2962 			if (dev == 8)
2963 				pvt->knl.pci_mc0 = pdev;
2964 			else if (dev == 9)
2965 				pvt->knl.pci_mc1 = pdev;
2966 			else {
2967 				sbridge_printk(KERN_ERR,
2968 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2969 					dev, func);
2970 				continue;
2971 			}
2972 			break;
2973 
2974 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2975 			pvt->pci_sad0 = pdev;
2976 			break;
2977 
2978 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2979 			pvt->pci_sad1 = pdev;
2980 			break;
2981 
2982 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2983 			/* There are one of these per tile, and range from
2984 			 * 1.14.0 to 1.18.5.
2985 			 */
2986 			devidx = ((dev-14)*8)+func;
2987 
2988 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2989 				sbridge_printk(KERN_ERR,
2990 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2991 					dev, func);
2992 				continue;
2993 			}
2994 
2995 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2996 
2997 			pvt->knl.pci_cha[devidx] = pdev;
2998 			break;
2999 
3000 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
3001 			devidx = -1;
3002 
3003 			/*
3004 			 *  MC0 channels 0-2 are device 9 function 2-4,
3005 			 *  MC1 channels 3-5 are device 8 function 2-4.
3006 			 */
3007 
3008 			if (dev == 9)
3009 				devidx = func-2;
3010 			else if (dev == 8)
3011 				devidx = 3 + (func-2);
3012 
3013 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
3014 				sbridge_printk(KERN_ERR,
3015 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
3016 					dev, func);
3017 				continue;
3018 			}
3019 
3020 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
3021 			pvt->knl.pci_channel[devidx] = pdev;
3022 			break;
3023 
3024 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
3025 			pvt->knl.pci_mc_info = pdev;
3026 			break;
3027 
3028 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
3029 			pvt->pci_ta = pdev;
3030 			break;
3031 
3032 		default:
3033 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
3034 				pdev->device);
3035 			break;
3036 		}
3037 	}
3038 
3039 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
3040 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
3041 	    !pvt->pci_ta) {
3042 		goto enodev;
3043 	}
3044 
3045 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
3046 		if (!pvt->knl.pci_channel[i]) {
3047 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
3048 			goto enodev;
3049 		}
3050 	}
3051 
3052 	for (i = 0; i < KNL_MAX_CHAS; i++) {
3053 		if (!pvt->knl.pci_cha[i]) {
3054 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
3055 			goto enodev;
3056 		}
3057 	}
3058 
3059 	return 0;
3060 
3061 enodev:
3062 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
3063 	return -ENODEV;
3064 }
3065 
3066 /****************************************************************************
3067 			Error check routines
3068  ****************************************************************************/
3069 
3070 /*
3071  * While Sandy Bridge has error count registers, SMI BIOS read values from
3072  * and resets the counters. So, they are not reliable for the OS to read
3073  * from them. So, we have no option but to just trust on whatever MCE is
3074  * telling us about the errors.
3075  */
3076 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
3077 				    const struct mce *m)
3078 {
3079 	struct mem_ctl_info *new_mci;
3080 	struct sbridge_pvt *pvt = mci->pvt_info;
3081 	enum hw_event_mc_err_type tp_event;
3082 	char *optype, msg[256], msg_full[512];
3083 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
3084 	bool overflow = GET_BITFIELD(m->status, 62, 62);
3085 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
3086 	bool recoverable;
3087 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
3088 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
3089 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
3090 	u32 channel = GET_BITFIELD(m->status, 0, 3);
3091 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
3092 	/*
3093 	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
3094 	 * A value 6 is for cache line aligned address, a value 12 is for page
3095 	 * aligned address reported by patrol scrubber.
3096 	 */
3097 	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
3098 	long channel_mask, first_channel;
3099 	u8  rank = 0xff, socket, ha;
3100 	int rc, dimm;
3101 	char *area_type = "DRAM";
3102 
3103 	if (pvt->info.type != SANDY_BRIDGE)
3104 		recoverable = true;
3105 	else
3106 		recoverable = GET_BITFIELD(m->status, 56, 56);
3107 
3108 	if (uncorrected_error) {
3109 		core_err_cnt = 1;
3110 		if (ripv) {
3111 			tp_event = HW_EVENT_ERR_UNCORRECTED;
3112 		} else {
3113 			tp_event = HW_EVENT_ERR_FATAL;
3114 		}
3115 	} else {
3116 		tp_event = HW_EVENT_ERR_CORRECTED;
3117 	}
3118 
3119 	/*
3120 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
3121 	 * memory errors should fit in this mask:
3122 	 *	000f 0000 1mmm cccc (binary)
3123 	 * where:
3124 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
3125 	 *	    won't be shown
3126 	 *	mmm = error type
3127 	 *	cccc = channel
3128 	 * If the mask doesn't match, report an error to the parsing logic
3129 	 */
3130 	switch (optypenum) {
3131 	case 0:
3132 		optype = "generic undef request error";
3133 		break;
3134 	case 1:
3135 		optype = "memory read error";
3136 		break;
3137 	case 2:
3138 		optype = "memory write error";
3139 		break;
3140 	case 3:
3141 		optype = "addr/cmd error";
3142 		break;
3143 	case 4:
3144 		optype = "memory scrubbing error";
3145 		break;
3146 	default:
3147 		optype = "reserved";
3148 		break;
3149 	}
3150 
3151 	if (pvt->info.type == KNIGHTS_LANDING) {
3152 		if (channel == 14) {
3153 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3154 				overflow ? " OVERFLOW" : "",
3155 				(uncorrected_error && recoverable)
3156 				? " recoverable" : "",
3157 				mscod, errcode,
3158 				m->bank);
3159 		} else {
3160 			char A = *("A");
3161 
3162 			/*
3163 			 * Reported channel is in range 0-2, so we can't map it
3164 			 * back to mc. To figure out mc we check machine check
3165 			 * bank register that reported this error.
3166 			 * bank15 means mc0 and bank16 means mc1.
3167 			 */
3168 			channel = knl_channel_remap(m->bank == 16, channel);
3169 			channel_mask = 1 << channel;
3170 
3171 			snprintf(msg, sizeof(msg),
3172 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3173 				overflow ? " OVERFLOW" : "",
3174 				(uncorrected_error && recoverable)
3175 				? " recoverable" : " ",
3176 				mscod, errcode, channel, A + channel);
3177 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3178 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3179 				channel, 0, -1,
3180 				optype, msg);
3181 		}
3182 		return;
3183 	} else if (lsb < 12) {
3184 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3185 					   &channel_mask, &rank,
3186 					   &area_type, msg);
3187 	} else {
3188 		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3189 						    &channel_mask, msg);
3190 	}
3191 
3192 	if (rc < 0)
3193 		goto err_parsing;
3194 	new_mci = get_mci_for_node_id(socket, ha);
3195 	if (!new_mci) {
3196 		strcpy(msg, "Error: socket got corrupted!");
3197 		goto err_parsing;
3198 	}
3199 	mci = new_mci;
3200 	pvt = mci->pvt_info;
3201 
3202 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3203 
3204 	if (rank == 0xff)
3205 		dimm = -1;
3206 	else if (rank < 4)
3207 		dimm = 0;
3208 	else if (rank < 8)
3209 		dimm = 1;
3210 	else
3211 		dimm = 2;
3212 
3213 	/*
3214 	 * FIXME: On some memory configurations (mirror, lockstep), the
3215 	 * Memory Controller can't point the error to a single DIMM. The
3216 	 * EDAC core should be handling the channel mask, in order to point
3217 	 * to the group of dimm's where the error may be happening.
3218 	 */
3219 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3220 		channel = first_channel;
3221 	snprintf(msg_full, sizeof(msg_full),
3222 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s",
3223 		 overflow ? " OVERFLOW" : "",
3224 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3225 		 area_type,
3226 		 mscod, errcode,
3227 		 socket, ha,
3228 		 channel_mask,
3229 		 rank, msg);
3230 
3231 	edac_dbg(0, "%s\n", msg_full);
3232 
3233 	/* FIXME: need support for channel mask */
3234 
3235 	if (channel == CHANNEL_UNSPECIFIED)
3236 		channel = -1;
3237 
3238 	/* Call the helper to output message */
3239 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3240 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3241 			     channel, dimm, -1,
3242 			     optype, msg_full);
3243 	return;
3244 err_parsing:
3245 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3246 			     -1, -1, -1,
3247 			     msg, "");
3248 
3249 }
3250 
3251 /*
3252  * Check that logging is enabled and that this is the right type
3253  * of error for us to handle.
3254  */
3255 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3256 				   void *data)
3257 {
3258 	struct mce *mce = (struct mce *)data;
3259 	struct mem_ctl_info *mci;
3260 	char *type;
3261 
3262 	if (mce->kflags & MCE_HANDLED_CEC)
3263 		return NOTIFY_DONE;
3264 
3265 	/*
3266 	 * Just let mcelog handle it if the error is
3267 	 * outside the memory controller. A memory error
3268 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3269 	 * bit 12 has an special meaning.
3270 	 */
3271 	if ((mce->status & 0xefff) >> 7 != 1)
3272 		return NOTIFY_DONE;
3273 
3274 	/* Check ADDRV bit in STATUS */
3275 	if (!GET_BITFIELD(mce->status, 58, 58))
3276 		return NOTIFY_DONE;
3277 
3278 	/* Check MISCV bit in STATUS */
3279 	if (!GET_BITFIELD(mce->status, 59, 59))
3280 		return NOTIFY_DONE;
3281 
3282 	/* Check address type in MISC (physical address only) */
3283 	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3284 		return NOTIFY_DONE;
3285 
3286 	mci = get_mci_for_node_id(mce->socketid, IMC0);
3287 	if (!mci)
3288 		return NOTIFY_DONE;
3289 
3290 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3291 		type = "Exception";
3292 	else
3293 		type = "Event";
3294 
3295 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3296 
3297 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3298 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3299 			  mce->mcgstatus, mce->bank, mce->status);
3300 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3301 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3302 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3303 
3304 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3305 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3306 			  mce->time, mce->socketid, mce->apicid);
3307 
3308 	sbridge_mce_output_error(mci, mce);
3309 
3310 	/* Advice mcelog that the error were handled */
3311 	mce->kflags |= MCE_HANDLED_EDAC;
3312 	return NOTIFY_OK;
3313 }
3314 
3315 static struct notifier_block sbridge_mce_dec = {
3316 	.notifier_call	= sbridge_mce_check_error,
3317 	.priority	= MCE_PRIO_EDAC,
3318 };
3319 
3320 /****************************************************************************
3321 			EDAC register/unregister logic
3322  ****************************************************************************/
3323 
3324 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3325 {
3326 	struct mem_ctl_info *mci = sbridge_dev->mci;
3327 
3328 	if (unlikely(!mci || !mci->pvt_info)) {
3329 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3330 
3331 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3332 		return;
3333 	}
3334 
3335 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3336 		 mci, &sbridge_dev->pdev[0]->dev);
3337 
3338 	/* Remove MC sysfs nodes */
3339 	edac_mc_del_mc(mci->pdev);
3340 
3341 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3342 	kfree(mci->ctl_name);
3343 	edac_mc_free(mci);
3344 	sbridge_dev->mci = NULL;
3345 }
3346 
3347 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3348 {
3349 	struct mem_ctl_info *mci;
3350 	struct edac_mc_layer layers[2];
3351 	struct sbridge_pvt *pvt;
3352 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3353 	int rc;
3354 
3355 	/* allocate a new MC control structure */
3356 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3357 	layers[0].size = type == KNIGHTS_LANDING ?
3358 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3359 	layers[0].is_virt_csrow = false;
3360 	layers[1].type = EDAC_MC_LAYER_SLOT;
3361 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3362 	layers[1].is_virt_csrow = true;
3363 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3364 			    sizeof(*pvt));
3365 
3366 	if (unlikely(!mci))
3367 		return -ENOMEM;
3368 
3369 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3370 		 mci, &pdev->dev);
3371 
3372 	pvt = mci->pvt_info;
3373 	memset(pvt, 0, sizeof(*pvt));
3374 
3375 	/* Associate sbridge_dev and mci for future usage */
3376 	pvt->sbridge_dev = sbridge_dev;
3377 	sbridge_dev->mci = mci;
3378 
3379 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3380 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3381 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3382 	mci->edac_cap = EDAC_FLAG_NONE;
3383 	mci->mod_name = EDAC_MOD_STR;
3384 	mci->dev_name = pci_name(pdev);
3385 	mci->ctl_page_to_phys = NULL;
3386 
3387 	pvt->info.type = type;
3388 	switch (type) {
3389 	case IVY_BRIDGE:
3390 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3391 		pvt->info.get_tolm = ibridge_get_tolm;
3392 		pvt->info.get_tohm = ibridge_get_tohm;
3393 		pvt->info.dram_rule = ibridge_dram_rule;
3394 		pvt->info.get_memory_type = get_memory_type;
3395 		pvt->info.get_node_id = get_node_id;
3396 		pvt->info.get_ha = ibridge_get_ha;
3397 		pvt->info.rir_limit = rir_limit;
3398 		pvt->info.sad_limit = sad_limit;
3399 		pvt->info.interleave_mode = interleave_mode;
3400 		pvt->info.dram_attr = dram_attr;
3401 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3402 		pvt->info.interleave_list = ibridge_interleave_list;
3403 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3404 		pvt->info.get_width = ibridge_get_width;
3405 
3406 		/* Store pci devices at mci for faster access */
3407 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3408 		if (unlikely(rc < 0))
3409 			goto fail0;
3410 		get_source_id(mci);
3411 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3412 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3413 		break;
3414 	case SANDY_BRIDGE:
3415 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3416 		pvt->info.get_tolm = sbridge_get_tolm;
3417 		pvt->info.get_tohm = sbridge_get_tohm;
3418 		pvt->info.dram_rule = sbridge_dram_rule;
3419 		pvt->info.get_memory_type = get_memory_type;
3420 		pvt->info.get_node_id = get_node_id;
3421 		pvt->info.get_ha = sbridge_get_ha;
3422 		pvt->info.rir_limit = rir_limit;
3423 		pvt->info.sad_limit = sad_limit;
3424 		pvt->info.interleave_mode = interleave_mode;
3425 		pvt->info.dram_attr = dram_attr;
3426 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3427 		pvt->info.interleave_list = sbridge_interleave_list;
3428 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3429 		pvt->info.get_width = sbridge_get_width;
3430 
3431 		/* Store pci devices at mci for faster access */
3432 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3433 		if (unlikely(rc < 0))
3434 			goto fail0;
3435 		get_source_id(mci);
3436 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3437 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3438 		break;
3439 	case HASWELL:
3440 		/* rankcfgr isn't used */
3441 		pvt->info.get_tolm = haswell_get_tolm;
3442 		pvt->info.get_tohm = haswell_get_tohm;
3443 		pvt->info.dram_rule = ibridge_dram_rule;
3444 		pvt->info.get_memory_type = haswell_get_memory_type;
3445 		pvt->info.get_node_id = haswell_get_node_id;
3446 		pvt->info.get_ha = ibridge_get_ha;
3447 		pvt->info.rir_limit = haswell_rir_limit;
3448 		pvt->info.sad_limit = sad_limit;
3449 		pvt->info.interleave_mode = interleave_mode;
3450 		pvt->info.dram_attr = dram_attr;
3451 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3452 		pvt->info.interleave_list = ibridge_interleave_list;
3453 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3454 		pvt->info.get_width = ibridge_get_width;
3455 
3456 		/* Store pci devices at mci for faster access */
3457 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3458 		if (unlikely(rc < 0))
3459 			goto fail0;
3460 		get_source_id(mci);
3461 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3462 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3463 		break;
3464 	case BROADWELL:
3465 		/* rankcfgr isn't used */
3466 		pvt->info.get_tolm = haswell_get_tolm;
3467 		pvt->info.get_tohm = haswell_get_tohm;
3468 		pvt->info.dram_rule = ibridge_dram_rule;
3469 		pvt->info.get_memory_type = haswell_get_memory_type;
3470 		pvt->info.get_node_id = haswell_get_node_id;
3471 		pvt->info.get_ha = ibridge_get_ha;
3472 		pvt->info.rir_limit = haswell_rir_limit;
3473 		pvt->info.sad_limit = sad_limit;
3474 		pvt->info.interleave_mode = interleave_mode;
3475 		pvt->info.dram_attr = dram_attr;
3476 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3477 		pvt->info.interleave_list = ibridge_interleave_list;
3478 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3479 		pvt->info.get_width = broadwell_get_width;
3480 
3481 		/* Store pci devices at mci for faster access */
3482 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3483 		if (unlikely(rc < 0))
3484 			goto fail0;
3485 		get_source_id(mci);
3486 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3487 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3488 		break;
3489 	case KNIGHTS_LANDING:
3490 		/* pvt->info.rankcfgr == ??? */
3491 		pvt->info.get_tolm = knl_get_tolm;
3492 		pvt->info.get_tohm = knl_get_tohm;
3493 		pvt->info.dram_rule = knl_dram_rule;
3494 		pvt->info.get_memory_type = knl_get_memory_type;
3495 		pvt->info.get_node_id = knl_get_node_id;
3496 		pvt->info.get_ha = knl_get_ha;
3497 		pvt->info.rir_limit = NULL;
3498 		pvt->info.sad_limit = knl_sad_limit;
3499 		pvt->info.interleave_mode = knl_interleave_mode;
3500 		pvt->info.dram_attr = dram_attr_knl;
3501 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3502 		pvt->info.interleave_list = knl_interleave_list;
3503 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3504 		pvt->info.get_width = knl_get_width;
3505 
3506 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3507 		if (unlikely(rc < 0))
3508 			goto fail0;
3509 		get_source_id(mci);
3510 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3511 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3512 		break;
3513 	}
3514 
3515 	if (!mci->ctl_name) {
3516 		rc = -ENOMEM;
3517 		goto fail0;
3518 	}
3519 
3520 	/* Get dimm basic config and the memory layout */
3521 	rc = get_dimm_config(mci);
3522 	if (rc < 0) {
3523 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3524 		goto fail;
3525 	}
3526 	get_memory_layout(mci);
3527 
3528 	/* record ptr to the generic device */
3529 	mci->pdev = &pdev->dev;
3530 
3531 	/* add this new MC control structure to EDAC's list of MCs */
3532 	if (unlikely(edac_mc_add_mc(mci))) {
3533 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3534 		rc = -EINVAL;
3535 		goto fail;
3536 	}
3537 
3538 	return 0;
3539 
3540 fail:
3541 	kfree(mci->ctl_name);
3542 fail0:
3543 	edac_mc_free(mci);
3544 	sbridge_dev->mci = NULL;
3545 	return rc;
3546 }
3547 
3548 static const struct x86_cpu_id sbridge_cpuids[] = {
3549 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
3550 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,	  &pci_dev_descr_ibridge_table),
3551 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,	  &pci_dev_descr_haswell_table),
3552 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,	  &pci_dev_descr_broadwell_table),
3553 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,	  &pci_dev_descr_broadwell_table),
3554 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
3555 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
3556 	{ }
3557 };
3558 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3559 
3560 /*
3561  *	sbridge_probe	Get all devices and register memory controllers
3562  *			present.
3563  *	return:
3564  *		0 for FOUND a device
3565  *		< 0 for error code
3566  */
3567 
3568 static int sbridge_probe(const struct x86_cpu_id *id)
3569 {
3570 	int rc;
3571 	u8 mc, num_mc = 0;
3572 	struct sbridge_dev *sbridge_dev;
3573 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3574 
3575 	/* get the pci devices we want to reserve for our use */
3576 	rc = sbridge_get_all_devices(&num_mc, ptable);
3577 
3578 	if (unlikely(rc < 0)) {
3579 		edac_dbg(0, "couldn't get all devices\n");
3580 		goto fail0;
3581 	}
3582 
3583 	mc = 0;
3584 
3585 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3586 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3587 			 mc, mc + 1, num_mc);
3588 
3589 		sbridge_dev->mc = mc++;
3590 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3591 		if (unlikely(rc < 0))
3592 			goto fail1;
3593 	}
3594 
3595 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3596 
3597 	return 0;
3598 
3599 fail1:
3600 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3601 		sbridge_unregister_mci(sbridge_dev);
3602 
3603 	sbridge_put_all_devices();
3604 fail0:
3605 	return rc;
3606 }
3607 
3608 /*
3609  *	sbridge_remove	cleanup
3610  *
3611  */
3612 static void sbridge_remove(void)
3613 {
3614 	struct sbridge_dev *sbridge_dev;
3615 
3616 	edac_dbg(0, "\n");
3617 
3618 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3619 		sbridge_unregister_mci(sbridge_dev);
3620 
3621 	/* Release PCI resources */
3622 	sbridge_put_all_devices();
3623 }
3624 
3625 /*
3626  *	sbridge_init		Module entry function
3627  *			Try to initialize this module for its devices
3628  */
3629 static int __init sbridge_init(void)
3630 {
3631 	const struct x86_cpu_id *id;
3632 	const char *owner;
3633 	int rc;
3634 
3635 	edac_dbg(2, "\n");
3636 
3637 	if (ghes_get_devices())
3638 		return -EBUSY;
3639 
3640 	owner = edac_get_owner();
3641 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3642 		return -EBUSY;
3643 
3644 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
3645 		return -ENODEV;
3646 
3647 	id = x86_match_cpu(sbridge_cpuids);
3648 	if (!id)
3649 		return -ENODEV;
3650 
3651 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3652 	opstate_init();
3653 
3654 	rc = sbridge_probe(id);
3655 
3656 	if (rc >= 0) {
3657 		mce_register_decode_chain(&sbridge_mce_dec);
3658 		return 0;
3659 	}
3660 
3661 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3662 		      rc);
3663 
3664 	return rc;
3665 }
3666 
3667 /*
3668  *	sbridge_exit()	Module exit function
3669  *			Unregister the driver
3670  */
3671 static void __exit sbridge_exit(void)
3672 {
3673 	edac_dbg(2, "\n");
3674 	sbridge_remove();
3675 	mce_unregister_decode_chain(&sbridge_mce_dec);
3676 }
3677 
3678 module_init(sbridge_init);
3679 module_exit(sbridge_exit);
3680 
3681 module_param(edac_op_state, int, 0444);
3682 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3683 
3684 MODULE_LICENSE("GPL");
3685 MODULE_AUTHOR("Mauro Carvalho Chehab");
3686 MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
3687 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3688 		   SBRIDGE_REVISION);
3689