xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 171f1bc7)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab <mchehab@redhat.com>
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <asm/processor.h>
24 #include <asm/mce.h>
25 
26 #include "edac_core.h"
27 
28 /* Static vars */
29 static LIST_HEAD(sbridge_edac_list);
30 static DEFINE_MUTEX(sbridge_edac_lock);
31 static int probed;
32 
33 /*
34  * Alter this version for the module when modifications are made
35  */
36 #define SBRIDGE_REVISION    " Ver: 1.0.0 "
37 #define EDAC_MOD_STR      "sbridge_edac"
38 
39 /*
40  * Debug macros
41  */
42 #define sbridge_printk(level, fmt, arg...)			\
43 	edac_printk(level, "sbridge", fmt, ##arg)
44 
45 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
46 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
47 
48 /*
49  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
50  */
51 #define GET_BITFIELD(v, lo, hi)	\
52 	(((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
53 
54 /*
55  * sbridge Memory Controller Registers
56  */
57 
58 /*
59  * FIXME: For now, let's order by device function, as it makes
60  * easier for driver's development proccess. This table should be
61  * moved to pci_id.h when submitted upstream
62  */
63 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0	0x3cf4	/* 12.6 */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1	0x3cf6	/* 12.7 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR		0x3cf5	/* 13.6 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0	0x3ca0	/* 14.0 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA	0x3ca8	/* 15.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS	0x3c71	/* 15.1 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0	0x3caa	/* 15.2 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1	0x3cab	/* 15.3 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2	0x3cac	/* 15.4 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3	0x3cad	/* 15.5 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO	0x3cb8	/* 17.0 */
74 
75 	/*
76 	 * Currently, unused, but will be needed in the future
77 	 * implementations, as they hold the error counters
78 	 */
79 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0	0x3c72	/* 16.2 */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1	0x3c73	/* 16.3 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2	0x3c76	/* 16.6 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3	0x3c77	/* 16.7 */
83 
84 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
85 static const u32 dram_rule[] = {
86 	0x80, 0x88, 0x90, 0x98, 0xa0,
87 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
88 };
89 #define MAX_SAD		ARRAY_SIZE(dram_rule)
90 
91 #define SAD_LIMIT(reg)		((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
92 #define DRAM_ATTR(reg)		GET_BITFIELD(reg, 2,  3)
93 #define INTERLEAVE_MODE(reg)	GET_BITFIELD(reg, 1,  1)
94 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
95 
96 static char *get_dram_attr(u32 reg)
97 {
98 	switch(DRAM_ATTR(reg)) {
99 		case 0:
100 			return "DRAM";
101 		case 1:
102 			return "MMCFG";
103 		case 2:
104 			return "NXM";
105 		default:
106 			return "unknown";
107 	}
108 }
109 
110 static const u32 interleave_list[] = {
111 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
112 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
113 };
114 #define MAX_INTERLEAVE	ARRAY_SIZE(interleave_list)
115 
116 #define SAD_PKG0(reg)		GET_BITFIELD(reg, 0, 2)
117 #define SAD_PKG1(reg)		GET_BITFIELD(reg, 3, 5)
118 #define SAD_PKG2(reg)		GET_BITFIELD(reg, 8, 10)
119 #define SAD_PKG3(reg)		GET_BITFIELD(reg, 11, 13)
120 #define SAD_PKG4(reg)		GET_BITFIELD(reg, 16, 18)
121 #define SAD_PKG5(reg)		GET_BITFIELD(reg, 19, 21)
122 #define SAD_PKG6(reg)		GET_BITFIELD(reg, 24, 26)
123 #define SAD_PKG7(reg)		GET_BITFIELD(reg, 27, 29)
124 
125 static inline int sad_pkg(u32 reg, int interleave)
126 {
127 	switch (interleave) {
128 	case 0:
129 		return SAD_PKG0(reg);
130 	case 1:
131 		return SAD_PKG1(reg);
132 	case 2:
133 		return SAD_PKG2(reg);
134 	case 3:
135 		return SAD_PKG3(reg);
136 	case 4:
137 		return SAD_PKG4(reg);
138 	case 5:
139 		return SAD_PKG5(reg);
140 	case 6:
141 		return SAD_PKG6(reg);
142 	case 7:
143 		return SAD_PKG7(reg);
144 	default:
145 		return -EINVAL;
146 	}
147 }
148 
149 /* Devices 12 Function 7 */
150 
151 #define TOLM		0x80
152 #define	TOHM		0x84
153 
154 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
155 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
156 
157 /* Device 13 Function 6 */
158 
159 #define SAD_TARGET	0xf0
160 
161 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
162 
163 #define SAD_CONTROL	0xf4
164 
165 #define NODE_ID(reg)		GET_BITFIELD(reg, 0, 2)
166 
167 /* Device 14 function 0 */
168 
169 static const u32 tad_dram_rule[] = {
170 	0x40, 0x44, 0x48, 0x4c,
171 	0x50, 0x54, 0x58, 0x5c,
172 	0x60, 0x64, 0x68, 0x6c,
173 };
174 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
175 
176 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
177 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
178 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
179 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
180 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
181 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
182 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
183 
184 /* Device 15, function 0 */
185 
186 #define MCMTR			0x7c
187 
188 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
189 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
190 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
191 
192 /* Device 15, function 1 */
193 
194 #define RASENABLES		0xac
195 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
196 
197 /* Device 15, functions 2-5 */
198 
199 static const int mtr_regs[] = {
200 	0x80, 0x84, 0x88,
201 };
202 
203 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
204 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
205 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
206 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
207 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
208 
209 static const u32 tad_ch_nilv_offset[] = {
210 	0x90, 0x94, 0x98, 0x9c,
211 	0xa0, 0xa4, 0xa8, 0xac,
212 	0xb0, 0xb4, 0xb8, 0xbc,
213 };
214 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
215 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
216 
217 static const u32 rir_way_limit[] = {
218 	0x108, 0x10c, 0x110, 0x114, 0x118,
219 };
220 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
221 
222 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
223 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
224 #define RIR_LIMIT(reg)		((GET_BITFIELD(reg,  1, 10) << 29)| 0x1fffffff)
225 
226 #define MAX_RIR_WAY	8
227 
228 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
229 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
230 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
231 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
232 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
233 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
234 };
235 
236 #define RIR_RNK_TGT(reg)		GET_BITFIELD(reg, 16, 19)
237 #define RIR_OFFSET(reg)		GET_BITFIELD(reg,  2, 14)
238 
239 /* Device 16, functions 2-7 */
240 
241 /*
242  * FIXME: Implement the error count reads directly
243  */
244 
245 static const u32 correrrcnt[] = {
246 	0x104, 0x108, 0x10c, 0x110,
247 };
248 
249 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
250 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
251 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
252 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
253 
254 static const u32 correrrthrsld[] = {
255 	0x11c, 0x120, 0x124, 0x128,
256 };
257 
258 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
259 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
260 
261 
262 /* Device 17, function 0 */
263 
264 #define RANK_CFG_A		0x0328
265 
266 #define IS_RDIMM_ENABLED(reg)		GET_BITFIELD(reg, 11, 11)
267 
268 /*
269  * sbridge structs
270  */
271 
272 #define NUM_CHANNELS	4
273 #define MAX_DIMMS	3		/* Max DIMMS per channel */
274 
275 struct sbridge_info {
276 	u32	mcmtr;
277 };
278 
279 struct sbridge_channel {
280 	u32		ranks;
281 	u32		dimms;
282 };
283 
284 struct pci_id_descr {
285 	int			dev;
286 	int			func;
287 	int 			dev_id;
288 	int			optional;
289 };
290 
291 struct pci_id_table {
292 	const struct pci_id_descr	*descr;
293 	int				n_devs;
294 };
295 
296 struct sbridge_dev {
297 	struct list_head	list;
298 	u8			bus, mc;
299 	u8			node_id, source_id;
300 	struct pci_dev		**pdev;
301 	int			n_devs;
302 	struct mem_ctl_info	*mci;
303 };
304 
305 struct sbridge_pvt {
306 	struct pci_dev		*pci_ta, *pci_ddrio, *pci_ras;
307 	struct pci_dev		*pci_sad0, *pci_sad1, *pci_ha0;
308 	struct pci_dev		*pci_br;
309 	struct pci_dev		*pci_tad[NUM_CHANNELS];
310 
311 	struct sbridge_dev	*sbridge_dev;
312 
313 	struct sbridge_info	info;
314 	struct sbridge_channel	channel[NUM_CHANNELS];
315 
316 	int 			csrow_map[NUM_CHANNELS][MAX_DIMMS];
317 
318 	/* Memory type detection */
319 	bool			is_mirrored, is_lockstep, is_close_pg;
320 
321 	/* Fifo double buffers */
322 	struct mce		mce_entry[MCE_LOG_LEN];
323 	struct mce		mce_outentry[MCE_LOG_LEN];
324 
325 	/* Fifo in/out counters */
326 	unsigned		mce_in, mce_out;
327 
328 	/* Count indicator to show errors not got */
329 	unsigned		mce_overrun;
330 
331 	/* Memory description */
332 	u64			tolm, tohm;
333 };
334 
335 #define PCI_DESCR(device, function, device_id)	\
336 	.dev = (device),			\
337 	.func = (function),			\
338 	.dev_id = (device_id)
339 
340 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
341 		/* Processor Home Agent */
342 	{ PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0)		},
343 
344 		/* Memory controller */
345 	{ PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)		},
346 	{ PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS)		},
347 	{ PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0)	},
348 	{ PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1)	},
349 	{ PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2)	},
350 	{ PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3)	},
351 	{ PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO)	},
352 
353 		/* System Address Decoder */
354 	{ PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0)		},
355 	{ PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1)		},
356 
357 		/* Broadcast Registers */
358 	{ PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR)		},
359 };
360 
361 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
362 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
363 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge),
364 	{0,}			/* 0 terminated list. */
365 };
366 
367 /*
368  *	pci_device_id	table for which devices we are looking for
369  */
370 static const struct pci_device_id sbridge_pci_tbl[] __devinitdata = {
371 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)},
372 	{0,}			/* 0 terminated list. */
373 };
374 
375 
376 /****************************************************************************
377 			Anciliary status routines
378  ****************************************************************************/
379 
380 static inline int numrank(u32 mtr)
381 {
382 	int ranks = (1 << RANK_CNT_BITS(mtr));
383 
384 	if (ranks > 4) {
385 		debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
386 			ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr);
387 		return -EINVAL;
388 	}
389 
390 	return ranks;
391 }
392 
393 static inline int numrow(u32 mtr)
394 {
395 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
396 
397 	if (rows < 13 || rows > 18) {
398 		debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
399 			rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
400 		return -EINVAL;
401 	}
402 
403 	return 1 << rows;
404 }
405 
406 static inline int numcol(u32 mtr)
407 {
408 	int cols = (COL_WIDTH_BITS(mtr) + 10);
409 
410 	if (cols > 12) {
411 		debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
412 			cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
413 		return -EINVAL;
414 	}
415 
416 	return 1 << cols;
417 }
418 
419 static struct sbridge_dev *get_sbridge_dev(u8 bus)
420 {
421 	struct sbridge_dev *sbridge_dev;
422 
423 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
424 		if (sbridge_dev->bus == bus)
425 			return sbridge_dev;
426 	}
427 
428 	return NULL;
429 }
430 
431 static struct sbridge_dev *alloc_sbridge_dev(u8 bus,
432 					   const struct pci_id_table *table)
433 {
434 	struct sbridge_dev *sbridge_dev;
435 
436 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
437 	if (!sbridge_dev)
438 		return NULL;
439 
440 	sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs,
441 				   GFP_KERNEL);
442 	if (!sbridge_dev->pdev) {
443 		kfree(sbridge_dev);
444 		return NULL;
445 	}
446 
447 	sbridge_dev->bus = bus;
448 	sbridge_dev->n_devs = table->n_devs;
449 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
450 
451 	return sbridge_dev;
452 }
453 
454 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
455 {
456 	list_del(&sbridge_dev->list);
457 	kfree(sbridge_dev->pdev);
458 	kfree(sbridge_dev);
459 }
460 
461 /****************************************************************************
462 			Memory check routines
463  ****************************************************************************/
464 static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot,
465 					  unsigned func)
466 {
467 	struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus);
468 	int i;
469 
470 	if (!sbridge_dev)
471 		return NULL;
472 
473 	for (i = 0; i < sbridge_dev->n_devs; i++) {
474 		if (!sbridge_dev->pdev[i])
475 			continue;
476 
477 		if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot &&
478 		    PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) {
479 			debugf1("Associated %02x.%02x.%d with %p\n",
480 				bus, slot, func, sbridge_dev->pdev[i]);
481 			return sbridge_dev->pdev[i];
482 		}
483 	}
484 
485 	return NULL;
486 }
487 
488 /**
489  * sbridge_get_active_channels() - gets the number of channels and csrows
490  * bus:		Device bus
491  * @channels:	Number of channels that will be returned
492  * @csrows:	Number of csrows found
493  *
494  * Since EDAC core needs to know in advance the number of available channels
495  * and csrows, in order to allocate memory for csrows/channels, it is needed
496  * to run two similar steps. At the first step, implemented on this function,
497  * it checks the number of csrows/channels present at one socket, identified
498  * by the associated PCI bus.
499  * this is used in order to properly allocate the size of mci components.
500  * Note: one csrow is one dimm.
501  */
502 static int sbridge_get_active_channels(const u8 bus, unsigned *channels,
503 				      unsigned *csrows)
504 {
505 	struct pci_dev *pdev = NULL;
506 	int i, j;
507 	u32 mcmtr;
508 
509 	*channels = 0;
510 	*csrows = 0;
511 
512 	pdev = get_pdev_slot_func(bus, 15, 0);
513 	if (!pdev) {
514 		sbridge_printk(KERN_ERR, "Couldn't find PCI device "
515 					"%2x.%02d.%d!!!\n",
516 					bus, 15, 0);
517 		return -ENODEV;
518 	}
519 
520 	pci_read_config_dword(pdev, MCMTR, &mcmtr);
521 	if (!IS_ECC_ENABLED(mcmtr)) {
522 		sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n");
523 		return -ENODEV;
524 	}
525 
526 	for (i = 0; i < NUM_CHANNELS; i++) {
527 		u32 mtr;
528 
529 		/* Device 15 functions 2 - 5  */
530 		pdev = get_pdev_slot_func(bus, 15, 2 + i);
531 		if (!pdev) {
532 			sbridge_printk(KERN_ERR, "Couldn't find PCI device "
533 						 "%2x.%02d.%d!!!\n",
534 						 bus, 15, 2 + i);
535 			return -ENODEV;
536 		}
537 		(*channels)++;
538 
539 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
540 			pci_read_config_dword(pdev, mtr_regs[j], &mtr);
541 			debugf1("Bus#%02x channel #%d  MTR%d = %x\n", bus, i, j, mtr);
542 			if (IS_DIMM_PRESENT(mtr))
543 				(*csrows)++;
544 		}
545 	}
546 
547 	debugf0("Number of active channels: %d, number of active dimms: %d\n",
548 		*channels, *csrows);
549 
550 	return 0;
551 }
552 
553 static int get_dimm_config(const struct mem_ctl_info *mci)
554 {
555 	struct sbridge_pvt *pvt = mci->pvt_info;
556 	struct csrow_info *csr;
557 	int i, j, banks, ranks, rows, cols, size, npages;
558 	int csrow = 0;
559 	unsigned long last_page = 0;
560 	u32 reg;
561 	enum edac_type mode;
562 	enum mem_type mtype;
563 
564 	pci_read_config_dword(pvt->pci_br, SAD_TARGET, &reg);
565 	pvt->sbridge_dev->source_id = SOURCE_ID(reg);
566 
567 	pci_read_config_dword(pvt->pci_br, SAD_CONTROL, &reg);
568 	pvt->sbridge_dev->node_id = NODE_ID(reg);
569 	debugf0("mc#%d: Node ID: %d, source ID: %d\n",
570 		pvt->sbridge_dev->mc,
571 		pvt->sbridge_dev->node_id,
572 		pvt->sbridge_dev->source_id);
573 
574 	pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg);
575 	if (IS_MIRROR_ENABLED(reg)) {
576 		debugf0("Memory mirror is enabled\n");
577 		pvt->is_mirrored = true;
578 	} else {
579 		debugf0("Memory mirror is disabled\n");
580 		pvt->is_mirrored = false;
581 	}
582 
583 	pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr);
584 	if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
585 		debugf0("Lockstep is enabled\n");
586 		mode = EDAC_S8ECD8ED;
587 		pvt->is_lockstep = true;
588 	} else {
589 		debugf0("Lockstep is disabled\n");
590 		mode = EDAC_S4ECD4ED;
591 		pvt->is_lockstep = false;
592 	}
593 	if (IS_CLOSE_PG(pvt->info.mcmtr)) {
594 		debugf0("address map is on closed page mode\n");
595 		pvt->is_close_pg = true;
596 	} else {
597 		debugf0("address map is on open page mode\n");
598 		pvt->is_close_pg = false;
599 	}
600 
601 	pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, &reg);
602 	if (IS_RDIMM_ENABLED(reg)) {
603 		/* FIXME: Can also be LRDIMM */
604 		debugf0("Memory is registered\n");
605 		mtype = MEM_RDDR3;
606 	} else {
607 		debugf0("Memory is unregistered\n");
608 		mtype = MEM_DDR3;
609 	}
610 
611 	/* On all supported DDR3 DIMM types, there are 8 banks available */
612 	banks = 8;
613 
614 	for (i = 0; i < NUM_CHANNELS; i++) {
615 		u32 mtr;
616 
617 		for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) {
618 			pci_read_config_dword(pvt->pci_tad[i],
619 					      mtr_regs[j], &mtr);
620 			debugf4("Channel #%d  MTR%d = %x\n", i, j, mtr);
621 			if (IS_DIMM_PRESENT(mtr)) {
622 				pvt->channel[i].dimms++;
623 
624 				ranks = numrank(mtr);
625 				rows = numrow(mtr);
626 				cols = numcol(mtr);
627 
628 				/* DDR3 has 8 I/O banks */
629 				size = (rows * cols * banks * ranks) >> (20 - 3);
630 				npages = MiB_TO_PAGES(size);
631 
632 				debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
633 					pvt->sbridge_dev->mc, i, j,
634 					size, npages,
635 					banks, ranks, rows, cols);
636 				csr = &mci->csrows[csrow];
637 
638 				csr->first_page = last_page;
639 				csr->last_page = last_page + npages - 1;
640 				csr->page_mask = 0UL;	/* Unused */
641 				csr->nr_pages = npages;
642 				csr->grain = 32;
643 				csr->csrow_idx = csrow;
644 				csr->dtype = (banks == 8) ? DEV_X8 : DEV_X4;
645 				csr->ce_count = 0;
646 				csr->ue_count = 0;
647 				csr->mtype = mtype;
648 				csr->edac_mode = mode;
649 				csr->nr_channels = 1;
650 				csr->channels[0].chan_idx = i;
651 				csr->channels[0].ce_count = 0;
652 				pvt->csrow_map[i][j] = csrow;
653 				snprintf(csr->channels[0].label,
654 					 sizeof(csr->channels[0].label),
655 					 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
656 					 pvt->sbridge_dev->source_id, i, j);
657 				last_page += npages;
658 				csrow++;
659 			}
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 static void get_memory_layout(const struct mem_ctl_info *mci)
667 {
668 	struct sbridge_pvt *pvt = mci->pvt_info;
669 	int i, j, k, n_sads, n_tads, sad_interl;
670 	u32 reg;
671 	u64 limit, prv = 0;
672 	u64 tmp_mb;
673 	u32 rir_way;
674 
675 	/*
676 	 * Step 1) Get TOLM/TOHM ranges
677 	 */
678 
679 	/* Address range is 32:28 */
680 	pci_read_config_dword(pvt->pci_sad1, TOLM,
681 			      &reg);
682 	pvt->tolm = GET_TOLM(reg);
683 	tmp_mb = (1 + pvt->tolm) >> 20;
684 
685 	debugf0("TOLM: %Lu.%03Lu GB (0x%016Lx)\n",
686 		tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tolm);
687 
688 	/* Address range is already 45:25 */
689 	pci_read_config_dword(pvt->pci_sad1, TOHM,
690 			      &reg);
691 	pvt->tohm = GET_TOHM(reg);
692 	tmp_mb = (1 + pvt->tohm) >> 20;
693 
694 	debugf0("TOHM: %Lu.%03Lu GB (0x%016Lx)",
695 		tmp_mb / 1000, tmp_mb % 1000, (u64)pvt->tohm);
696 
697 	/*
698 	 * Step 2) Get SAD range and SAD Interleave list
699 	 * TAD registers contain the interleave wayness. However, it
700 	 * seems simpler to just discover it indirectly, with the
701 	 * algorithm bellow.
702 	 */
703 	prv = 0;
704 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
705 		/* SAD_LIMIT Address range is 45:26 */
706 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
707 				      &reg);
708 		limit = SAD_LIMIT(reg);
709 
710 		if (!DRAM_RULE_ENABLE(reg))
711 			continue;
712 
713 		if (limit <= prv)
714 			break;
715 
716 		tmp_mb = (limit + 1) >> 20;
717 		debugf0("SAD#%d %s up to %Lu.%03Lu GB (0x%016Lx) %s reg=0x%08x\n",
718 			n_sads,
719 			get_dram_attr(reg),
720 			tmp_mb / 1000, tmp_mb % 1000,
721 			((u64)tmp_mb) << 20L,
722 			INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
723 			reg);
724 		prv = limit;
725 
726 		pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
727 				      &reg);
728 		sad_interl = sad_pkg(reg, 0);
729 		for (j = 0; j < 8; j++) {
730 			if (j > 0 && sad_interl == sad_pkg(reg, j))
731 				break;
732 
733 			debugf0("SAD#%d, interleave #%d: %d\n",
734 			n_sads, j, sad_pkg(reg, j));
735 		}
736 	}
737 
738 	/*
739 	 * Step 3) Get TAD range
740 	 */
741 	prv = 0;
742 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
743 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
744 				      &reg);
745 		limit = TAD_LIMIT(reg);
746 		if (limit <= prv)
747 			break;
748 		tmp_mb = (limit + 1) >> 20;
749 
750 		debugf0("TAD#%d: up to %Lu.%03Lu GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
751 			n_tads, tmp_mb / 1000, tmp_mb % 1000,
752 			((u64)tmp_mb) << 20L,
753 			(u32)TAD_SOCK(reg),
754 			(u32)TAD_CH(reg),
755 			(u32)TAD_TGT0(reg),
756 			(u32)TAD_TGT1(reg),
757 			(u32)TAD_TGT2(reg),
758 			(u32)TAD_TGT3(reg),
759 			reg);
760 		prv = tmp_mb;
761 	}
762 
763 	/*
764 	 * Step 4) Get TAD offsets, per each channel
765 	 */
766 	for (i = 0; i < NUM_CHANNELS; i++) {
767 		if (!pvt->channel[i].dimms)
768 			continue;
769 		for (j = 0; j < n_tads; j++) {
770 			pci_read_config_dword(pvt->pci_tad[i],
771 					      tad_ch_nilv_offset[j],
772 					      &reg);
773 			tmp_mb = TAD_OFFSET(reg) >> 20;
774 			debugf0("TAD CH#%d, offset #%d: %Lu.%03Lu GB (0x%016Lx), reg=0x%08x\n",
775 				i, j,
776 				tmp_mb / 1000, tmp_mb % 1000,
777 				((u64)tmp_mb) << 20L,
778 				reg);
779 		}
780 	}
781 
782 	/*
783 	 * Step 6) Get RIR Wayness/Limit, per each channel
784 	 */
785 	for (i = 0; i < NUM_CHANNELS; i++) {
786 		if (!pvt->channel[i].dimms)
787 			continue;
788 		for (j = 0; j < MAX_RIR_RANGES; j++) {
789 			pci_read_config_dword(pvt->pci_tad[i],
790 					      rir_way_limit[j],
791 					      &reg);
792 
793 			if (!IS_RIR_VALID(reg))
794 				continue;
795 
796 			tmp_mb = RIR_LIMIT(reg) >> 20;
797 			rir_way = 1 << RIR_WAY(reg);
798 			debugf0("CH#%d RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d, reg=0x%08x\n",
799 				i, j,
800 				tmp_mb / 1000, tmp_mb % 1000,
801 				((u64)tmp_mb) << 20L,
802 				rir_way,
803 				reg);
804 
805 			for (k = 0; k < rir_way; k++) {
806 				pci_read_config_dword(pvt->pci_tad[i],
807 						      rir_offset[j][k],
808 						      &reg);
809 				tmp_mb = RIR_OFFSET(reg) << 6;
810 
811 				debugf0("CH#%d RIR#%d INTL#%d, offset %Lu.%03Lu GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
812 					i, j, k,
813 					tmp_mb / 1000, tmp_mb % 1000,
814 					((u64)tmp_mb) << 20L,
815 					(u32)RIR_RNK_TGT(reg),
816 					reg);
817 			}
818 		}
819 	}
820 }
821 
822 struct mem_ctl_info *get_mci_for_node_id(u8 node_id)
823 {
824 	struct sbridge_dev *sbridge_dev;
825 
826 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
827 		if (sbridge_dev->node_id == node_id)
828 			return sbridge_dev->mci;
829 	}
830 	return NULL;
831 }
832 
833 static int get_memory_error_data(struct mem_ctl_info *mci,
834 				 u64 addr,
835 				 u8 *socket,
836 				 long *channel_mask,
837 				 u8 *rank,
838 				 char *area_type)
839 {
840 	struct mem_ctl_info	*new_mci;
841 	struct sbridge_pvt *pvt = mci->pvt_info;
842 	char			msg[256];
843 	int 			n_rir, n_sads, n_tads, sad_way, sck_xch;
844 	int			sad_interl, idx, base_ch;
845 	int			interleave_mode;
846 	unsigned		sad_interleave[MAX_INTERLEAVE];
847 	u32			reg;
848 	u8			ch_way,sck_way;
849 	u32			tad_offset;
850 	u32			rir_way;
851 	u64			ch_addr, offset, limit, prv = 0;
852 
853 
854 	/*
855 	 * Step 0) Check if the address is at special memory ranges
856 	 * The check bellow is probably enough to fill all cases where
857 	 * the error is not inside a memory, except for the legacy
858 	 * range (e. g. VGA addresses). It is unlikely, however, that the
859 	 * memory controller would generate an error on that range.
860 	 */
861 	if ((addr > (u64) pvt->tolm) && (addr < (1L << 32))) {
862 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
863 		edac_mc_handle_ce_no_info(mci, msg);
864 		return -EINVAL;
865 	}
866 	if (addr >= (u64)pvt->tohm) {
867 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
868 		edac_mc_handle_ce_no_info(mci, msg);
869 		return -EINVAL;
870 	}
871 
872 	/*
873 	 * Step 1) Get socket
874 	 */
875 	for (n_sads = 0; n_sads < MAX_SAD; n_sads++) {
876 		pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads],
877 				      &reg);
878 
879 		if (!DRAM_RULE_ENABLE(reg))
880 			continue;
881 
882 		limit = SAD_LIMIT(reg);
883 		if (limit <= prv) {
884 			sprintf(msg, "Can't discover the memory socket");
885 			edac_mc_handle_ce_no_info(mci, msg);
886 			return -EINVAL;
887 		}
888 		if  (addr <= limit)
889 			break;
890 		prv = limit;
891 	}
892 	if (n_sads == MAX_SAD) {
893 		sprintf(msg, "Can't discover the memory socket");
894 		edac_mc_handle_ce_no_info(mci, msg);
895 		return -EINVAL;
896 	}
897 	area_type = get_dram_attr(reg);
898 	interleave_mode = INTERLEAVE_MODE(reg);
899 
900 	pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads],
901 			      &reg);
902 	sad_interl = sad_pkg(reg, 0);
903 	for (sad_way = 0; sad_way < 8; sad_way++) {
904 		if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way))
905 			break;
906 		sad_interleave[sad_way] = sad_pkg(reg, sad_way);
907 		debugf0("SAD interleave #%d: %d\n",
908 			sad_way, sad_interleave[sad_way]);
909 	}
910 	debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
911 		pvt->sbridge_dev->mc,
912 		n_sads,
913 		addr,
914 		limit,
915 		sad_way + 7,
916 		INTERLEAVE_MODE(reg) ? "" : "XOR[18:16]");
917 	if (interleave_mode)
918 		idx = ((addr >> 6) ^ (addr >> 16)) & 7;
919 	else
920 		idx = (addr >> 6) & 7;
921 	switch (sad_way) {
922 	case 1:
923 		idx = 0;
924 		break;
925 	case 2:
926 		idx = idx & 1;
927 		break;
928 	case 4:
929 		idx = idx & 3;
930 		break;
931 	case 8:
932 		break;
933 	default:
934 		sprintf(msg, "Can't discover socket interleave");
935 		edac_mc_handle_ce_no_info(mci, msg);
936 		return -EINVAL;
937 	}
938 	*socket = sad_interleave[idx];
939 	debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
940 		idx, sad_way, *socket);
941 
942 	/*
943 	 * Move to the proper node structure, in order to access the
944 	 * right PCI registers
945 	 */
946 	new_mci = get_mci_for_node_id(*socket);
947 	if (!new_mci) {
948 		sprintf(msg, "Struct for socket #%u wasn't initialized",
949 			*socket);
950 		edac_mc_handle_ce_no_info(mci, msg);
951 		return -EINVAL;
952 	}
953 	mci = new_mci;
954 	pvt = mci->pvt_info;
955 
956 	/*
957 	 * Step 2) Get memory channel
958 	 */
959 	prv = 0;
960 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
961 		pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads],
962 				      &reg);
963 		limit = TAD_LIMIT(reg);
964 		if (limit <= prv) {
965 			sprintf(msg, "Can't discover the memory channel");
966 			edac_mc_handle_ce_no_info(mci, msg);
967 			return -EINVAL;
968 		}
969 		if  (addr <= limit)
970 			break;
971 		prv = limit;
972 	}
973 	ch_way = TAD_CH(reg) + 1;
974 	sck_way = TAD_SOCK(reg) + 1;
975 	/*
976 	 * FIXME: Is it right to always use channel 0 for offsets?
977 	 */
978 	pci_read_config_dword(pvt->pci_tad[0],
979 				tad_ch_nilv_offset[n_tads],
980 				&tad_offset);
981 
982 	if (ch_way == 3)
983 		idx = addr >> 6;
984 	else
985 		idx = addr >> (6 + sck_way);
986 	idx = idx % ch_way;
987 
988 	/*
989 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
990 	 */
991 	switch (idx) {
992 	case 0:
993 		base_ch = TAD_TGT0(reg);
994 		break;
995 	case 1:
996 		base_ch = TAD_TGT1(reg);
997 		break;
998 	case 2:
999 		base_ch = TAD_TGT2(reg);
1000 		break;
1001 	case 3:
1002 		base_ch = TAD_TGT3(reg);
1003 		break;
1004 	default:
1005 		sprintf(msg, "Can't discover the TAD target");
1006 		edac_mc_handle_ce_no_info(mci, msg);
1007 		return -EINVAL;
1008 	}
1009 	*channel_mask = 1 << base_ch;
1010 
1011 	if (pvt->is_mirrored) {
1012 		*channel_mask |= 1 << ((base_ch + 2) % 4);
1013 		switch(ch_way) {
1014 		case 2:
1015 		case 4:
1016 			sck_xch = 1 << sck_way * (ch_way >> 1);
1017 			break;
1018 		default:
1019 			sprintf(msg, "Invalid mirror set. Can't decode addr");
1020 			edac_mc_handle_ce_no_info(mci, msg);
1021 			return -EINVAL;
1022 		}
1023 	} else
1024 		sck_xch = (1 << sck_way) * ch_way;
1025 
1026 	if (pvt->is_lockstep)
1027 		*channel_mask |= 1 << ((base_ch + 1) % 4);
1028 
1029 	offset = TAD_OFFSET(tad_offset);
1030 
1031 	debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1032 		n_tads,
1033 		addr,
1034 		limit,
1035 		(u32)TAD_SOCK(reg),
1036 		ch_way,
1037 		offset,
1038 		idx,
1039 		base_ch,
1040 		*channel_mask);
1041 
1042 	/* Calculate channel address */
1043 	/* Remove the TAD offset */
1044 
1045 	if (offset > addr) {
1046 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1047 			offset, addr);
1048 		edac_mc_handle_ce_no_info(mci, msg);
1049 		return -EINVAL;
1050 	}
1051 	addr -= offset;
1052 	/* Store the low bits [0:6] of the addr */
1053 	ch_addr = addr & 0x7f;
1054 	/* Remove socket wayness and remove 6 bits */
1055 	addr >>= 6;
1056 	addr /= sck_xch;
1057 #if 0
1058 	/* Divide by channel way */
1059 	addr = addr / ch_way;
1060 #endif
1061 	/* Recover the last 6 bits */
1062 	ch_addr |= addr << 6;
1063 
1064 	/*
1065 	 * Step 3) Decode rank
1066 	 */
1067 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
1068 		pci_read_config_dword(pvt->pci_tad[base_ch],
1069 				      rir_way_limit[n_rir],
1070 				      &reg);
1071 
1072 		if (!IS_RIR_VALID(reg))
1073 			continue;
1074 
1075 		limit = RIR_LIMIT(reg);
1076 
1077 		debugf0("RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d\n",
1078 			n_rir,
1079 			(limit >> 20) / 1000, (limit >> 20) % 1000,
1080 			limit,
1081 			1 << RIR_WAY(reg));
1082 		if  (ch_addr <= limit)
1083 			break;
1084 	}
1085 	if (n_rir == MAX_RIR_RANGES) {
1086 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
1087 			ch_addr);
1088 		edac_mc_handle_ce_no_info(mci, msg);
1089 		return -EINVAL;
1090 	}
1091 	rir_way = RIR_WAY(reg);
1092 	if (pvt->is_close_pg)
1093 		idx = (ch_addr >> 6);
1094 	else
1095 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
1096 	idx %= 1 << rir_way;
1097 
1098 	pci_read_config_dword(pvt->pci_tad[base_ch],
1099 			      rir_offset[n_rir][idx],
1100 			      &reg);
1101 	*rank = RIR_RNK_TGT(reg);
1102 
1103 	debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1104 		n_rir,
1105 		ch_addr,
1106 		limit,
1107 		rir_way,
1108 		idx);
1109 
1110 	return 0;
1111 }
1112 
1113 /****************************************************************************
1114 	Device initialization routines: put/get, init/exit
1115  ****************************************************************************/
1116 
1117 /*
1118  *	sbridge_put_all_devices	'put' all the devices that we have
1119  *				reserved via 'get'
1120  */
1121 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
1122 {
1123 	int i;
1124 
1125 	debugf0(__FILE__ ": %s()\n", __func__);
1126 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1127 		struct pci_dev *pdev = sbridge_dev->pdev[i];
1128 		if (!pdev)
1129 			continue;
1130 		debugf0("Removing dev %02x:%02x.%d\n",
1131 			pdev->bus->number,
1132 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1133 		pci_dev_put(pdev);
1134 	}
1135 }
1136 
1137 static void sbridge_put_all_devices(void)
1138 {
1139 	struct sbridge_dev *sbridge_dev, *tmp;
1140 
1141 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
1142 		sbridge_put_devices(sbridge_dev);
1143 		free_sbridge_dev(sbridge_dev);
1144 	}
1145 }
1146 
1147 /*
1148  *	sbridge_get_all_devices	Find and perform 'get' operation on the MCH's
1149  *			device/functions we want to reference for this driver
1150  *
1151  *			Need to 'get' device 16 func 1 and func 2
1152  */
1153 static int sbridge_get_onedevice(struct pci_dev **prev,
1154 				 u8 *num_mc,
1155 				 const struct pci_id_table *table,
1156 				 const unsigned devno)
1157 {
1158 	struct sbridge_dev *sbridge_dev;
1159 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1160 
1161 	struct pci_dev *pdev = NULL;
1162 	u8 bus = 0;
1163 
1164 	sbridge_printk(KERN_INFO,
1165 		"Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1166 		dev_descr->dev, dev_descr->func,
1167 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1168 
1169 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1170 			      dev_descr->dev_id, *prev);
1171 
1172 	if (!pdev) {
1173 		if (*prev) {
1174 			*prev = pdev;
1175 			return 0;
1176 		}
1177 
1178 		if (dev_descr->optional)
1179 			return 0;
1180 
1181 		if (devno == 0)
1182 			return -ENODEV;
1183 
1184 		sbridge_printk(KERN_INFO,
1185 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1186 			dev_descr->dev, dev_descr->func,
1187 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1188 
1189 		/* End of list, leave */
1190 		return -ENODEV;
1191 	}
1192 	bus = pdev->bus->number;
1193 
1194 	sbridge_dev = get_sbridge_dev(bus);
1195 	if (!sbridge_dev) {
1196 		sbridge_dev = alloc_sbridge_dev(bus, table);
1197 		if (!sbridge_dev) {
1198 			pci_dev_put(pdev);
1199 			return -ENOMEM;
1200 		}
1201 		(*num_mc)++;
1202 	}
1203 
1204 	if (sbridge_dev->pdev[devno]) {
1205 		sbridge_printk(KERN_ERR,
1206 			"Duplicated device for "
1207 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1208 			bus, dev_descr->dev, dev_descr->func,
1209 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1210 		pci_dev_put(pdev);
1211 		return -ENODEV;
1212 	}
1213 
1214 	sbridge_dev->pdev[devno] = pdev;
1215 
1216 	/* Sanity check */
1217 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1218 			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1219 		sbridge_printk(KERN_ERR,
1220 			"Device PCI ID %04x:%04x "
1221 			"has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1222 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1223 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1224 			bus, dev_descr->dev, dev_descr->func);
1225 		return -ENODEV;
1226 	}
1227 
1228 	/* Be sure that the device is enabled */
1229 	if (unlikely(pci_enable_device(pdev) < 0)) {
1230 		sbridge_printk(KERN_ERR,
1231 			"Couldn't enable "
1232 			"dev %02x:%d.%d PCI ID %04x:%04x\n",
1233 			bus, dev_descr->dev, dev_descr->func,
1234 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1235 		return -ENODEV;
1236 	}
1237 
1238 	debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1239 		bus, dev_descr->dev,
1240 		dev_descr->func,
1241 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1242 
1243 	/*
1244 	 * As stated on drivers/pci/search.c, the reference count for
1245 	 * @from is always decremented if it is not %NULL. So, as we need
1246 	 * to get all devices up to null, we need to do a get for the device
1247 	 */
1248 	pci_dev_get(pdev);
1249 
1250 	*prev = pdev;
1251 
1252 	return 0;
1253 }
1254 
1255 static int sbridge_get_all_devices(u8 *num_mc)
1256 {
1257 	int i, rc;
1258 	struct pci_dev *pdev = NULL;
1259 	const struct pci_id_table *table = pci_dev_descr_sbridge_table;
1260 
1261 	while (table && table->descr) {
1262 		for (i = 0; i < table->n_devs; i++) {
1263 			pdev = NULL;
1264 			do {
1265 				rc = sbridge_get_onedevice(&pdev, num_mc,
1266 							   table, i);
1267 				if (rc < 0) {
1268 					if (i == 0) {
1269 						i = table->n_devs;
1270 						break;
1271 					}
1272 					sbridge_put_all_devices();
1273 					return -ENODEV;
1274 				}
1275 			} while (pdev);
1276 		}
1277 		table++;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static int mci_bind_devs(struct mem_ctl_info *mci,
1284 			 struct sbridge_dev *sbridge_dev)
1285 {
1286 	struct sbridge_pvt *pvt = mci->pvt_info;
1287 	struct pci_dev *pdev;
1288 	int i, func, slot;
1289 
1290 	for (i = 0; i < sbridge_dev->n_devs; i++) {
1291 		pdev = sbridge_dev->pdev[i];
1292 		if (!pdev)
1293 			continue;
1294 		slot = PCI_SLOT(pdev->devfn);
1295 		func = PCI_FUNC(pdev->devfn);
1296 		switch (slot) {
1297 		case 12:
1298 			switch (func) {
1299 			case 6:
1300 				pvt->pci_sad0 = pdev;
1301 				break;
1302 			case 7:
1303 				pvt->pci_sad1 = pdev;
1304 				break;
1305 			default:
1306 				goto error;
1307 			}
1308 			break;
1309 		case 13:
1310 			switch (func) {
1311 			case 6:
1312 				pvt->pci_br = pdev;
1313 				break;
1314 			default:
1315 				goto error;
1316 			}
1317 			break;
1318 		case 14:
1319 			switch (func) {
1320 			case 0:
1321 				pvt->pci_ha0 = pdev;
1322 				break;
1323 			default:
1324 				goto error;
1325 			}
1326 			break;
1327 		case 15:
1328 			switch (func) {
1329 			case 0:
1330 				pvt->pci_ta = pdev;
1331 				break;
1332 			case 1:
1333 				pvt->pci_ras = pdev;
1334 				break;
1335 			case 2:
1336 			case 3:
1337 			case 4:
1338 			case 5:
1339 				pvt->pci_tad[func - 2] = pdev;
1340 				break;
1341 			default:
1342 				goto error;
1343 			}
1344 			break;
1345 		case 17:
1346 			switch (func) {
1347 			case 0:
1348 				pvt->pci_ddrio = pdev;
1349 				break;
1350 			default:
1351 				goto error;
1352 			}
1353 			break;
1354 		default:
1355 			goto error;
1356 		}
1357 
1358 		debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
1359 			sbridge_dev->bus,
1360 			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1361 			pdev);
1362 	}
1363 
1364 	/* Check if everything were registered */
1365 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
1366 	    !pvt-> pci_tad || !pvt->pci_ras  || !pvt->pci_ta ||
1367 	    !pvt->pci_ddrio)
1368 		goto enodev;
1369 
1370 	for (i = 0; i < NUM_CHANNELS; i++) {
1371 		if (!pvt->pci_tad[i])
1372 			goto enodev;
1373 	}
1374 	return 0;
1375 
1376 enodev:
1377 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
1378 	return -ENODEV;
1379 
1380 error:
1381 	sbridge_printk(KERN_ERR, "Device %d, function %d "
1382 		      "is out of the expected range\n",
1383 		      slot, func);
1384 	return -EINVAL;
1385 }
1386 
1387 /****************************************************************************
1388 			Error check routines
1389  ****************************************************************************/
1390 
1391 /*
1392  * While Sandy Bridge has error count registers, SMI BIOS read values from
1393  * and resets the counters. So, they are not reliable for the OS to read
1394  * from them. So, we have no option but to just trust on whatever MCE is
1395  * telling us about the errors.
1396  */
1397 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
1398 				    const struct mce *m)
1399 {
1400 	struct mem_ctl_info *new_mci;
1401 	struct sbridge_pvt *pvt = mci->pvt_info;
1402 	char *type, *optype, *msg, *recoverable_msg;
1403 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
1404 	bool overflow = GET_BITFIELD(m->status, 62, 62);
1405 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
1406 	bool recoverable = GET_BITFIELD(m->status, 56, 56);
1407 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
1408 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
1409 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
1410 	u32 channel = GET_BITFIELD(m->status, 0, 3);
1411 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
1412 	long channel_mask, first_channel;
1413 	u8  rank, socket;
1414 	int csrow, rc, dimm;
1415 	char *area_type = "Unknown";
1416 
1417 	if (ripv)
1418 		type = "NON_FATAL";
1419 	else
1420 		type = "FATAL";
1421 
1422 	/*
1423 	 * According with Table 15-9 of the Intel Archictecture spec vol 3A,
1424 	 * memory errors should fit in this mask:
1425 	 *	000f 0000 1mmm cccc (binary)
1426 	 * where:
1427 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
1428 	 *	    won't be shown
1429 	 *	mmm = error type
1430 	 *	cccc = channel
1431 	 * If the mask doesn't match, report an error to the parsing logic
1432 	 */
1433 	if (! ((errcode & 0xef80) == 0x80)) {
1434 		optype = "Can't parse: it is not a mem";
1435 	} else {
1436 		switch (optypenum) {
1437 		case 0:
1438 			optype = "generic undef request";
1439 			break;
1440 		case 1:
1441 			optype = "memory read";
1442 			break;
1443 		case 2:
1444 			optype = "memory write";
1445 			break;
1446 		case 3:
1447 			optype = "addr/cmd";
1448 			break;
1449 		case 4:
1450 			optype = "memory scrubbing";
1451 			break;
1452 		default:
1453 			optype = "reserved";
1454 			break;
1455 		}
1456 	}
1457 
1458 	rc = get_memory_error_data(mci, m->addr, &socket,
1459 				   &channel_mask, &rank, area_type);
1460 	if (rc < 0)
1461 		return;
1462 	new_mci = get_mci_for_node_id(socket);
1463 	if (!new_mci) {
1464 		edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!");
1465 		return;
1466 	}
1467 	mci = new_mci;
1468 	pvt = mci->pvt_info;
1469 
1470 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
1471 
1472 	if (rank < 4)
1473 		dimm = 0;
1474 	else if (rank < 8)
1475 		dimm = 1;
1476 	else
1477 		dimm = 2;
1478 
1479 	csrow = pvt->csrow_map[first_channel][dimm];
1480 
1481 	if (uncorrected_error && recoverable)
1482 		recoverable_msg = " recoverable";
1483 	else
1484 		recoverable_msg = "";
1485 
1486 	/*
1487 	 * FIXME: What should we do with "channel" information on mcelog?
1488 	 * Probably, we can just discard it, as the channel information
1489 	 * comes from the get_memory_error_data() address decoding
1490 	 */
1491 	msg = kasprintf(GFP_ATOMIC,
1492 			"%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), "
1493 			"addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n",
1494 			core_err_cnt,
1495 			area_type,
1496 			optype,
1497 			type,
1498 			recoverable_msg,
1499 			overflow ? "OVERFLOW" : "",
1500 			m->cpu,
1501 			mscod, errcode,
1502 			channel,		/* 1111b means not specified */
1503 			(long long) m->addr,
1504 			socket,
1505 			first_channel,		/* This is the real channel on SB */
1506 			channel_mask,
1507 			rank);
1508 
1509 	debugf0("%s", msg);
1510 
1511 	/* Call the helper to output message */
1512 	if (uncorrected_error)
1513 		edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg);
1514 	else
1515 		edac_mc_handle_fbd_ce(mci, csrow, 0, msg);
1516 
1517 	kfree(msg);
1518 }
1519 
1520 /*
1521  *	sbridge_check_error	Retrieve and process errors reported by the
1522  *				hardware. Called by the Core module.
1523  */
1524 static void sbridge_check_error(struct mem_ctl_info *mci)
1525 {
1526 	struct sbridge_pvt *pvt = mci->pvt_info;
1527 	int i;
1528 	unsigned count = 0;
1529 	struct mce *m;
1530 
1531 	/*
1532 	 * MCE first step: Copy all mce errors into a temporary buffer
1533 	 * We use a double buffering here, to reduce the risk of
1534 	 * loosing an error.
1535 	 */
1536 	smp_rmb();
1537 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1538 		% MCE_LOG_LEN;
1539 	if (!count)
1540 		return;
1541 
1542 	m = pvt->mce_outentry;
1543 	if (pvt->mce_in + count > MCE_LOG_LEN) {
1544 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1545 
1546 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1547 		smp_wmb();
1548 		pvt->mce_in = 0;
1549 		count -= l;
1550 		m += l;
1551 	}
1552 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1553 	smp_wmb();
1554 	pvt->mce_in += count;
1555 
1556 	smp_rmb();
1557 	if (pvt->mce_overrun) {
1558 		sbridge_printk(KERN_ERR, "Lost %d memory errors\n",
1559 			      pvt->mce_overrun);
1560 		smp_wmb();
1561 		pvt->mce_overrun = 0;
1562 	}
1563 
1564 	/*
1565 	 * MCE second step: parse errors and display
1566 	 */
1567 	for (i = 0; i < count; i++)
1568 		sbridge_mce_output_error(mci, &pvt->mce_outentry[i]);
1569 }
1570 
1571 /*
1572  * sbridge_mce_check_error	Replicates mcelog routine to get errors
1573  *				This routine simply queues mcelog errors, and
1574  *				return. The error itself should be handled later
1575  *				by sbridge_check_error.
1576  * WARNING: As this routine should be called at NMI time, extra care should
1577  * be taken to avoid deadlocks, and to be as fast as possible.
1578  */
1579 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
1580 				   void *data)
1581 {
1582 	struct mce *mce = (struct mce *)data;
1583 	struct mem_ctl_info *mci;
1584 	struct sbridge_pvt *pvt;
1585 
1586 	mci = get_mci_for_node_id(mce->socketid);
1587 	if (!mci)
1588 		return NOTIFY_BAD;
1589 	pvt = mci->pvt_info;
1590 
1591 	/*
1592 	 * Just let mcelog handle it if the error is
1593 	 * outside the memory controller. A memory error
1594 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1595 	 * bit 12 has an special meaning.
1596 	 */
1597 	if ((mce->status & 0xefff) >> 7 != 1)
1598 		return NOTIFY_DONE;
1599 
1600 	printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1601 
1602 	printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1603 	       mce->extcpu, mce->mcgstatus, mce->bank, mce->status);
1604 	printk("TSC %llx ", mce->tsc);
1605 	printk("ADDR %llx ", mce->addr);
1606 	printk("MISC %llx ", mce->misc);
1607 
1608 	printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1609 		mce->cpuvendor, mce->cpuid, mce->time,
1610 		mce->socketid, mce->apicid);
1611 
1612 #ifdef CONFIG_SMP
1613 	/* Only handle if it is the right mc controller */
1614 	if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc)
1615 		return NOTIFY_DONE;
1616 #endif
1617 
1618 	smp_rmb();
1619 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1620 		smp_wmb();
1621 		pvt->mce_overrun++;
1622 		return NOTIFY_DONE;
1623 	}
1624 
1625 	/* Copy memory error at the ringbuffer */
1626 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1627 	smp_wmb();
1628 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1629 
1630 	/* Handle fatal errors immediately */
1631 	if (mce->mcgstatus & 1)
1632 		sbridge_check_error(mci);
1633 
1634 	/* Advice mcelog that the error were handled */
1635 	return NOTIFY_STOP;
1636 }
1637 
1638 static struct notifier_block sbridge_mce_dec = {
1639 	.notifier_call      = sbridge_mce_check_error,
1640 };
1641 
1642 /****************************************************************************
1643 			EDAC register/unregister logic
1644  ****************************************************************************/
1645 
1646 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
1647 {
1648 	struct mem_ctl_info *mci = sbridge_dev->mci;
1649 	struct sbridge_pvt *pvt;
1650 
1651 	if (unlikely(!mci || !mci->pvt_info)) {
1652 		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
1653 			__func__, &sbridge_dev->pdev[0]->dev);
1654 
1655 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
1656 		return;
1657 	}
1658 
1659 	pvt = mci->pvt_info;
1660 
1661 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1662 		__func__, mci, &sbridge_dev->pdev[0]->dev);
1663 
1664 	atomic_notifier_chain_unregister(&x86_mce_decoder_chain,
1665 					 &sbridge_mce_dec);
1666 
1667 	/* Remove MC sysfs nodes */
1668 	edac_mc_del_mc(mci->dev);
1669 
1670 	debugf1("%s: free mci struct\n", mci->ctl_name);
1671 	kfree(mci->ctl_name);
1672 	edac_mc_free(mci);
1673 	sbridge_dev->mci = NULL;
1674 }
1675 
1676 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev)
1677 {
1678 	struct mem_ctl_info *mci;
1679 	struct sbridge_pvt *pvt;
1680 	int rc, channels, csrows;
1681 
1682 	/* Check the number of active and not disabled channels */
1683 	rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows);
1684 	if (unlikely(rc < 0))
1685 		return rc;
1686 
1687 	/* allocate a new MC control structure */
1688 	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc);
1689 	if (unlikely(!mci))
1690 		return -ENOMEM;
1691 
1692 	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
1693 		__func__, mci, &sbridge_dev->pdev[0]->dev);
1694 
1695 	pvt = mci->pvt_info;
1696 	memset(pvt, 0, sizeof(*pvt));
1697 
1698 	/* Associate sbridge_dev and mci for future usage */
1699 	pvt->sbridge_dev = sbridge_dev;
1700 	sbridge_dev->mci = mci;
1701 
1702 	mci->mtype_cap = MEM_FLAG_DDR3;
1703 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1704 	mci->edac_cap = EDAC_FLAG_NONE;
1705 	mci->mod_name = "sbridge_edac.c";
1706 	mci->mod_ver = SBRIDGE_REVISION;
1707 	mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx);
1708 	mci->dev_name = pci_name(sbridge_dev->pdev[0]);
1709 	mci->ctl_page_to_phys = NULL;
1710 
1711 	/* Set the function pointer to an actual operation function */
1712 	mci->edac_check = sbridge_check_error;
1713 
1714 	/* Store pci devices at mci for faster access */
1715 	rc = mci_bind_devs(mci, sbridge_dev);
1716 	if (unlikely(rc < 0))
1717 		goto fail0;
1718 
1719 	/* Get dimm basic config and the memory layout */
1720 	get_dimm_config(mci);
1721 	get_memory_layout(mci);
1722 
1723 	/* record ptr to the generic device */
1724 	mci->dev = &sbridge_dev->pdev[0]->dev;
1725 
1726 	/* add this new MC control structure to EDAC's list of MCs */
1727 	if (unlikely(edac_mc_add_mc(mci))) {
1728 		debugf0("MC: " __FILE__
1729 			": %s(): failed edac_mc_add_mc()\n", __func__);
1730 		rc = -EINVAL;
1731 		goto fail0;
1732 	}
1733 
1734 	atomic_notifier_chain_register(&x86_mce_decoder_chain,
1735 				       &sbridge_mce_dec);
1736 	return 0;
1737 
1738 fail0:
1739 	kfree(mci->ctl_name);
1740 	edac_mc_free(mci);
1741 	sbridge_dev->mci = NULL;
1742 	return rc;
1743 }
1744 
1745 /*
1746  *	sbridge_probe	Probe for ONE instance of device to see if it is
1747  *			present.
1748  *	return:
1749  *		0 for FOUND a device
1750  *		< 0 for error code
1751  */
1752 
1753 static int __devinit sbridge_probe(struct pci_dev *pdev,
1754 				  const struct pci_device_id *id)
1755 {
1756 	int rc;
1757 	u8 mc, num_mc = 0;
1758 	struct sbridge_dev *sbridge_dev;
1759 
1760 	/* get the pci devices we want to reserve for our use */
1761 	mutex_lock(&sbridge_edac_lock);
1762 
1763 	/*
1764 	 * All memory controllers are allocated at the first pass.
1765 	 */
1766 	if (unlikely(probed >= 1)) {
1767 		mutex_unlock(&sbridge_edac_lock);
1768 		return -ENODEV;
1769 	}
1770 	probed++;
1771 
1772 	rc = sbridge_get_all_devices(&num_mc);
1773 	if (unlikely(rc < 0))
1774 		goto fail0;
1775 	mc = 0;
1776 
1777 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1778 		debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc);
1779 		sbridge_dev->mc = mc++;
1780 		rc = sbridge_register_mci(sbridge_dev);
1781 		if (unlikely(rc < 0))
1782 			goto fail1;
1783 	}
1784 
1785 	sbridge_printk(KERN_INFO, "Driver loaded.\n");
1786 
1787 	mutex_unlock(&sbridge_edac_lock);
1788 	return 0;
1789 
1790 fail1:
1791 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1792 		sbridge_unregister_mci(sbridge_dev);
1793 
1794 	sbridge_put_all_devices();
1795 fail0:
1796 	mutex_unlock(&sbridge_edac_lock);
1797 	return rc;
1798 }
1799 
1800 /*
1801  *	sbridge_remove	destructor for one instance of device
1802  *
1803  */
1804 static void __devexit sbridge_remove(struct pci_dev *pdev)
1805 {
1806 	struct sbridge_dev *sbridge_dev;
1807 
1808 	debugf0(__FILE__ ": %s()\n", __func__);
1809 
1810 	/*
1811 	 * we have a trouble here: pdev value for removal will be wrong, since
1812 	 * it will point to the X58 register used to detect that the machine
1813 	 * is a Nehalem or upper design. However, due to the way several PCI
1814 	 * devices are grouped together to provide MC functionality, we need
1815 	 * to use a different method for releasing the devices
1816 	 */
1817 
1818 	mutex_lock(&sbridge_edac_lock);
1819 
1820 	if (unlikely(!probed)) {
1821 		mutex_unlock(&sbridge_edac_lock);
1822 		return;
1823 	}
1824 
1825 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
1826 		sbridge_unregister_mci(sbridge_dev);
1827 
1828 	/* Release PCI resources */
1829 	sbridge_put_all_devices();
1830 
1831 	probed--;
1832 
1833 	mutex_unlock(&sbridge_edac_lock);
1834 }
1835 
1836 MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl);
1837 
1838 /*
1839  *	sbridge_driver	pci_driver structure for this module
1840  *
1841  */
1842 static struct pci_driver sbridge_driver = {
1843 	.name     = "sbridge_edac",
1844 	.probe    = sbridge_probe,
1845 	.remove   = __devexit_p(sbridge_remove),
1846 	.id_table = sbridge_pci_tbl,
1847 };
1848 
1849 /*
1850  *	sbridge_init		Module entry function
1851  *			Try to initialize this module for its devices
1852  */
1853 static int __init sbridge_init(void)
1854 {
1855 	int pci_rc;
1856 
1857 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1858 
1859 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1860 	opstate_init();
1861 
1862 	pci_rc = pci_register_driver(&sbridge_driver);
1863 
1864 	if (pci_rc >= 0)
1865 		return 0;
1866 
1867 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
1868 		      pci_rc);
1869 
1870 	return pci_rc;
1871 }
1872 
1873 /*
1874  *	sbridge_exit()	Module exit function
1875  *			Unregister the driver
1876  */
1877 static void __exit sbridge_exit(void)
1878 {
1879 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1880 	pci_unregister_driver(&sbridge_driver);
1881 }
1882 
1883 module_init(sbridge_init);
1884 module_exit(sbridge_exit);
1885 
1886 module_param(edac_op_state, int, 0444);
1887 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1888 
1889 MODULE_LICENSE("GPL");
1890 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1891 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1892 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "
1893 		   SBRIDGE_REVISION);
1894