xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 10c1d542)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29 
30 #include "edac_module.h"
31 
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34 
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
39 #define EDAC_MOD_STR	    "sb_edac"
40 
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)			\
45 	edac_printk(level, "sbridge", fmt, ##arg)
46 
47 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
48 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi)	\
54 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 	0x80, 0x88, 0x90, 0x98, 0xa0,
59 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61 
62 static const u32 ibridge_dram_rule[] = {
63 	0x60, 0x68, 0x70, 0x78, 0x80,
64 	0x88, 0x90, 0x98, 0xa0,	0xa8,
65 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68 
69 static const u32 knl_dram_rule[] = {
70 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76 
77 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79 
80 static char *show_dram_attr(u32 attr)
81 {
82 	switch (attr) {
83 		case 0:
84 			return "DRAM";
85 		case 1:
86 			return "MMCFG";
87 		case 2:
88 			return "NXM";
89 		default:
90 			return "unknown";
91 	}
92 }
93 
94 static const u32 sbridge_interleave_list[] = {
95 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98 
99 static const u32 ibridge_interleave_list[] = {
100 	0x64, 0x6c, 0x74, 0x7c, 0x84,
101 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105 
106 static const u32 knl_interleave_list[] = {
107 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 
114 struct interleave_pkg {
115 	unsigned char start;
116 	unsigned char end;
117 };
118 
119 static const struct interleave_pkg sbridge_interleave_pkg[] = {
120 	{ 0, 2 },
121 	{ 3, 5 },
122 	{ 8, 10 },
123 	{ 11, 13 },
124 	{ 16, 18 },
125 	{ 19, 21 },
126 	{ 24, 26 },
127 	{ 27, 29 },
128 };
129 
130 static const struct interleave_pkg ibridge_interleave_pkg[] = {
131 	{ 0, 3 },
132 	{ 4, 7 },
133 	{ 8, 11 },
134 	{ 12, 15 },
135 	{ 16, 19 },
136 	{ 20, 23 },
137 	{ 24, 27 },
138 	{ 28, 31 },
139 };
140 
141 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
142 			  int interleave)
143 {
144 	return GET_BITFIELD(reg, table[interleave].start,
145 			    table[interleave].end);
146 }
147 
148 /* Devices 12 Function 7 */
149 
150 #define TOLM		0x80
151 #define TOHM		0x84
152 #define HASWELL_TOLM	0xd0
153 #define HASWELL_TOHM_0	0xd4
154 #define HASWELL_TOHM_1	0xd8
155 #define KNL_TOLM	0xd0
156 #define KNL_TOHM_0	0xd4
157 #define KNL_TOHM_1	0xd8
158 
159 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
160 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
161 
162 /* Device 13 Function 6 */
163 
164 #define SAD_TARGET	0xf0
165 
166 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
167 
168 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
169 
170 #define SAD_CONTROL	0xf4
171 
172 /* Device 14 function 0 */
173 
174 static const u32 tad_dram_rule[] = {
175 	0x40, 0x44, 0x48, 0x4c,
176 	0x50, 0x54, 0x58, 0x5c,
177 	0x60, 0x64, 0x68, 0x6c,
178 };
179 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
180 
181 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
182 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
183 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
184 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
185 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
186 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
187 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
188 
189 /* Device 15, function 0 */
190 
191 #define MCMTR			0x7c
192 #define KNL_MCMTR		0x624
193 
194 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
195 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
196 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
197 
198 /* Device 15, function 1 */
199 
200 #define RASENABLES		0xac
201 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
202 
203 /* Device 15, functions 2-5 */
204 
205 static const int mtr_regs[] = {
206 	0x80, 0x84, 0x88,
207 };
208 
209 static const int knl_mtr_reg = 0xb60;
210 
211 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
212 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
213 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
214 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
215 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
216 
217 static const u32 tad_ch_nilv_offset[] = {
218 	0x90, 0x94, 0x98, 0x9c,
219 	0xa0, 0xa4, 0xa8, 0xac,
220 	0xb0, 0xb4, 0xb8, 0xbc,
221 };
222 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
223 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
224 
225 static const u32 rir_way_limit[] = {
226 	0x108, 0x10c, 0x110, 0x114, 0x118,
227 };
228 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
229 
230 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
231 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
232 
233 #define MAX_RIR_WAY	8
234 
235 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
236 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
237 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
238 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
239 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
240 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
241 };
242 
243 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
244 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
245 
246 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
247 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
248 
249 /* Device 16, functions 2-7 */
250 
251 /*
252  * FIXME: Implement the error count reads directly
253  */
254 
255 static const u32 correrrcnt[] = {
256 	0x104, 0x108, 0x10c, 0x110,
257 };
258 
259 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
260 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
261 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
262 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
263 
264 static const u32 correrrthrsld[] = {
265 	0x11c, 0x120, 0x124, 0x128,
266 };
267 
268 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
269 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
270 
271 
272 /* Device 17, function 0 */
273 
274 #define SB_RANK_CFG_A		0x0328
275 
276 #define IB_RANK_CFG_A		0x0320
277 
278 /*
279  * sbridge structs
280  */
281 
282 #define NUM_CHANNELS		4	/* Max channels per MC */
283 #define MAX_DIMMS		3	/* Max DIMMS per channel */
284 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
285 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
286 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
287 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
288 
289 enum type {
290 	SANDY_BRIDGE,
291 	IVY_BRIDGE,
292 	HASWELL,
293 	BROADWELL,
294 	KNIGHTS_LANDING,
295 };
296 
297 enum domain {
298 	IMC0 = 0,
299 	IMC1,
300 	SOCK,
301 };
302 
303 enum mirroring_mode {
304 	NON_MIRRORING,
305 	ADDR_RANGE_MIRRORING,
306 	FULL_MIRRORING,
307 };
308 
309 struct sbridge_pvt;
310 struct sbridge_info {
311 	enum type	type;
312 	u32		mcmtr;
313 	u32		rankcfgr;
314 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
315 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
316 	u64		(*rir_limit)(u32 reg);
317 	u64		(*sad_limit)(u32 reg);
318 	u32		(*interleave_mode)(u32 reg);
319 	u32		(*dram_attr)(u32 reg);
320 	const u32	*dram_rule;
321 	const u32	*interleave_list;
322 	const struct interleave_pkg *interleave_pkg;
323 	u8		max_sad;
324 	u8		max_interleave;
325 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
326 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
327 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
328 	struct pci_dev	*pci_vtd;
329 };
330 
331 struct sbridge_channel {
332 	u32		ranks;
333 	u32		dimms;
334 };
335 
336 struct pci_id_descr {
337 	int			dev_id;
338 	int			optional;
339 	enum domain		dom;
340 };
341 
342 struct pci_id_table {
343 	const struct pci_id_descr	*descr;
344 	int				n_devs_per_imc;
345 	int				n_devs_per_sock;
346 	int				n_imcs_per_sock;
347 	enum type			type;
348 };
349 
350 struct sbridge_dev {
351 	struct list_head	list;
352 	u8			bus, mc;
353 	u8			node_id, source_id;
354 	struct pci_dev		**pdev;
355 	enum domain		dom;
356 	int			n_devs;
357 	int			i_devs;
358 	struct mem_ctl_info	*mci;
359 };
360 
361 struct knl_pvt {
362 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
363 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
364 	struct pci_dev          *pci_mc0;
365 	struct pci_dev          *pci_mc1;
366 	struct pci_dev          *pci_mc0_misc;
367 	struct pci_dev          *pci_mc1_misc;
368 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
369 };
370 
371 struct sbridge_pvt {
372 	/* Devices per socket */
373 	struct pci_dev		*pci_ddrio;
374 	struct pci_dev		*pci_sad0, *pci_sad1;
375 	struct pci_dev		*pci_br0, *pci_br1;
376 	/* Devices per memory controller */
377 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
378 	struct pci_dev		*pci_tad[NUM_CHANNELS];
379 
380 	struct sbridge_dev	*sbridge_dev;
381 
382 	struct sbridge_info	info;
383 	struct sbridge_channel	channel[NUM_CHANNELS];
384 
385 	/* Memory type detection */
386 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
387 	bool			is_chan_hash;
388 	enum mirroring_mode	mirror_mode;
389 
390 	/* Memory description */
391 	u64			tolm, tohm;
392 	struct knl_pvt knl;
393 };
394 
395 #define PCI_DESCR(device_id, opt, domain)	\
396 	.dev_id = (device_id),		\
397 	.optional = opt,	\
398 	.dom = domain
399 
400 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
401 		/* Processor Home Agent */
402 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
403 
404 		/* Memory controller */
405 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
406 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
407 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
408 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
409 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
410 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
411 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
412 
413 		/* System Address Decoder */
414 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
415 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
416 
417 		/* Broadcast Registers */
418 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
419 };
420 
421 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
422 	.descr = A,			\
423 	.n_devs_per_imc = N,	\
424 	.n_devs_per_sock = ARRAY_SIZE(A),	\
425 	.n_imcs_per_sock = M,	\
426 	.type = T			\
427 }
428 
429 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
430 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
431 	{0,}			/* 0 terminated list. */
432 };
433 
434 /* This changes depending if 1HA or 2HA:
435  * 1HA:
436  *	0x0eb8 (17.0) is DDRIO0
437  * 2HA:
438  *	0x0ebc (17.4) is DDRIO0
439  */
440 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
441 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
442 
443 /* pci ids */
444 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
447 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
448 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
461 
462 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
463 		/* Processor Home Agent */
464 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
465 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
466 
467 		/* Memory controller */
468 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
469 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
470 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
471 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
472 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
473 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
474 
475 		/* Optional, mode 2HA */
476 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
477 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
478 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
479 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
480 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
482 
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
485 
486 		/* System Address Decoder */
487 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
488 
489 		/* Broadcast Registers */
490 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
491 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
492 
493 };
494 
495 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
496 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
497 	{0,}			/* 0 terminated list. */
498 };
499 
500 /* Haswell support */
501 /* EN processor:
502  *	- 1 IMC
503  *	- 3 DDR3 channels, 2 DPC per channel
504  * EP processor:
505  *	- 1 or 2 IMC
506  *	- 4 DDR4 channels, 3 DPC per channel
507  * EP 4S processor:
508  *	- 2 IMC
509  *	- 4 DDR4 channels, 3 DPC per channel
510  * EX processor:
511  *	- 2 IMC
512  *	- each IMC interfaces with a SMI 2 channel
513  *	- each SMI channel interfaces with a scalable memory buffer
514  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
515  */
516 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
517 #define HASWELL_HASYSDEFEATURE2 0x84
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
519 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
520 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
521 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
522 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
539 static const struct pci_id_descr pci_dev_descr_haswell[] = {
540 	/* first item must be the HA */
541 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
542 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
543 
544 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
545 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
546 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
547 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
548 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
549 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
550 
551 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
552 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
553 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
554 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
555 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
557 
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
559 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
560 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
561 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
562 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
563 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
564 };
565 
566 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
567 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
568 	{0,}			/* 0 terminated list. */
569 };
570 
571 /* Knight's Landing Support */
572 /*
573  * KNL's memory channels are swizzled between memory controllers.
574  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
575  */
576 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
577 
578 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
579 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
580 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
581 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
582 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
583 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
584 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
585 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
586 /* SAD target - 1-29-1 (1 of these) */
587 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
588 /* Caching / Home Agent */
589 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
590 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
591 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
592 
593 /*
594  * KNL differs from SB, IB, and Haswell in that it has multiple
595  * instances of the same device with the same device ID, so we handle that
596  * by creating as many copies in the table as we expect to find.
597  * (Like device ID must be grouped together.)
598  */
599 
600 static const struct pci_id_descr pci_dev_descr_knl[] = {
601 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
602 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
603 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
604 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
605 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
606 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
607 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
608 };
609 
610 static const struct pci_id_table pci_dev_descr_knl_table[] = {
611 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
612 	{0,}
613 };
614 
615 /*
616  * Broadwell support
617  *
618  * DE processor:
619  *	- 1 IMC
620  *	- 2 DDR3 channels, 2 DPC per channel
621  * EP processor:
622  *	- 1 or 2 IMC
623  *	- 4 DDR4 channels, 3 DPC per channel
624  * EP 4S processor:
625  *	- 2 IMC
626  *	- 4 DDR4 channels, 3 DPC per channel
627  * EX processor:
628  *	- 2 IMC
629  *	- each IMC interfaces with a SMI 2 channel
630  *	- each SMI channel interfaces with a scalable memory buffer
631  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
632  */
633 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
634 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
635 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
636 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
637 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
651 
652 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
653 	/* first item must be the HA */
654 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
655 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
656 
657 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
658 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
659 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
660 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
661 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
662 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
663 
664 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
665 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
666 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
667 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
668 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
669 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
670 
671 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
672 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
673 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
674 };
675 
676 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
677 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
678 	{0,}			/* 0 terminated list. */
679 };
680 
681 
682 /****************************************************************************
683 			Ancillary status routines
684  ****************************************************************************/
685 
686 static inline int numrank(enum type type, u32 mtr)
687 {
688 	int ranks = (1 << RANK_CNT_BITS(mtr));
689 	int max = 4;
690 
691 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
692 		max = 8;
693 
694 	if (ranks > max) {
695 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
696 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
697 		return -EINVAL;
698 	}
699 
700 	return ranks;
701 }
702 
703 static inline int numrow(u32 mtr)
704 {
705 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
706 
707 	if (rows < 13 || rows > 18) {
708 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
709 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
710 		return -EINVAL;
711 	}
712 
713 	return 1 << rows;
714 }
715 
716 static inline int numcol(u32 mtr)
717 {
718 	int cols = (COL_WIDTH_BITS(mtr) + 10);
719 
720 	if (cols > 12) {
721 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
722 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
723 		return -EINVAL;
724 	}
725 
726 	return 1 << cols;
727 }
728 
729 static struct sbridge_dev *get_sbridge_dev(u8 bus, enum domain dom, int multi_bus,
730 					   struct sbridge_dev *prev)
731 {
732 	struct sbridge_dev *sbridge_dev;
733 
734 	/*
735 	 * If we have devices scattered across several busses that pertain
736 	 * to the same memory controller, we'll lump them all together.
737 	 */
738 	if (multi_bus) {
739 		return list_first_entry_or_null(&sbridge_edac_list,
740 				struct sbridge_dev, list);
741 	}
742 
743 	sbridge_dev = list_entry(prev ? prev->list.next
744 				      : sbridge_edac_list.next, struct sbridge_dev, list);
745 
746 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
747 		if (sbridge_dev->bus == bus && (dom == SOCK || dom == sbridge_dev->dom))
748 			return sbridge_dev;
749 	}
750 
751 	return NULL;
752 }
753 
754 static struct sbridge_dev *alloc_sbridge_dev(u8 bus, enum domain dom,
755 					     const struct pci_id_table *table)
756 {
757 	struct sbridge_dev *sbridge_dev;
758 
759 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
760 	if (!sbridge_dev)
761 		return NULL;
762 
763 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
764 				    sizeof(*sbridge_dev->pdev),
765 				    GFP_KERNEL);
766 	if (!sbridge_dev->pdev) {
767 		kfree(sbridge_dev);
768 		return NULL;
769 	}
770 
771 	sbridge_dev->bus = bus;
772 	sbridge_dev->dom = dom;
773 	sbridge_dev->n_devs = table->n_devs_per_imc;
774 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
775 
776 	return sbridge_dev;
777 }
778 
779 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
780 {
781 	list_del(&sbridge_dev->list);
782 	kfree(sbridge_dev->pdev);
783 	kfree(sbridge_dev);
784 }
785 
786 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
787 {
788 	u32 reg;
789 
790 	/* Address range is 32:28 */
791 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
792 	return GET_TOLM(reg);
793 }
794 
795 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
796 {
797 	u32 reg;
798 
799 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
800 	return GET_TOHM(reg);
801 }
802 
803 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
804 {
805 	u32 reg;
806 
807 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
808 
809 	return GET_TOLM(reg);
810 }
811 
812 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
813 {
814 	u32 reg;
815 
816 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
817 
818 	return GET_TOHM(reg);
819 }
820 
821 static u64 rir_limit(u32 reg)
822 {
823 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
824 }
825 
826 static u64 sad_limit(u32 reg)
827 {
828 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
829 }
830 
831 static u32 interleave_mode(u32 reg)
832 {
833 	return GET_BITFIELD(reg, 1, 1);
834 }
835 
836 static u32 dram_attr(u32 reg)
837 {
838 	return GET_BITFIELD(reg, 2, 3);
839 }
840 
841 static u64 knl_sad_limit(u32 reg)
842 {
843 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
844 }
845 
846 static u32 knl_interleave_mode(u32 reg)
847 {
848 	return GET_BITFIELD(reg, 1, 2);
849 }
850 
851 static const char * const knl_intlv_mode[] = {
852 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
853 };
854 
855 static const char *get_intlv_mode_str(u32 reg, enum type t)
856 {
857 	if (t == KNIGHTS_LANDING)
858 		return knl_intlv_mode[knl_interleave_mode(reg)];
859 	else
860 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
861 }
862 
863 static u32 dram_attr_knl(u32 reg)
864 {
865 	return GET_BITFIELD(reg, 3, 4);
866 }
867 
868 
869 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
870 {
871 	u32 reg;
872 	enum mem_type mtype;
873 
874 	if (pvt->pci_ddrio) {
875 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
876 				      &reg);
877 		if (GET_BITFIELD(reg, 11, 11))
878 			/* FIXME: Can also be LRDIMM */
879 			mtype = MEM_RDDR3;
880 		else
881 			mtype = MEM_DDR3;
882 	} else
883 		mtype = MEM_UNKNOWN;
884 
885 	return mtype;
886 }
887 
888 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
889 {
890 	u32 reg;
891 	bool registered = false;
892 	enum mem_type mtype = MEM_UNKNOWN;
893 
894 	if (!pvt->pci_ddrio)
895 		goto out;
896 
897 	pci_read_config_dword(pvt->pci_ddrio,
898 			      HASWELL_DDRCRCLKCONTROLS, &reg);
899 	/* Is_Rdimm */
900 	if (GET_BITFIELD(reg, 16, 16))
901 		registered = true;
902 
903 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
904 	if (GET_BITFIELD(reg, 14, 14)) {
905 		if (registered)
906 			mtype = MEM_RDDR4;
907 		else
908 			mtype = MEM_DDR4;
909 	} else {
910 		if (registered)
911 			mtype = MEM_RDDR3;
912 		else
913 			mtype = MEM_DDR3;
914 	}
915 
916 out:
917 	return mtype;
918 }
919 
920 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
921 {
922 	/* for KNL value is fixed */
923 	return DEV_X16;
924 }
925 
926 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
927 {
928 	/* there's no way to figure out */
929 	return DEV_UNKNOWN;
930 }
931 
932 static enum dev_type __ibridge_get_width(u32 mtr)
933 {
934 	enum dev_type type;
935 
936 	switch (mtr) {
937 	case 3:
938 		type = DEV_UNKNOWN;
939 		break;
940 	case 2:
941 		type = DEV_X16;
942 		break;
943 	case 1:
944 		type = DEV_X8;
945 		break;
946 	case 0:
947 		type = DEV_X4;
948 		break;
949 	}
950 
951 	return type;
952 }
953 
954 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
955 {
956 	/*
957 	 * ddr3_width on the documentation but also valid for DDR4 on
958 	 * Haswell
959 	 */
960 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
961 }
962 
963 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
964 {
965 	/* ddr3_width on the documentation but also valid for DDR4 */
966 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
967 }
968 
969 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
970 {
971 	/* DDR4 RDIMMS and LRDIMMS are supported */
972 	return MEM_RDDR4;
973 }
974 
975 static u8 get_node_id(struct sbridge_pvt *pvt)
976 {
977 	u32 reg;
978 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
979 	return GET_BITFIELD(reg, 0, 2);
980 }
981 
982 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
983 {
984 	u32 reg;
985 
986 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
987 	return GET_BITFIELD(reg, 0, 3);
988 }
989 
990 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
991 {
992 	u32 reg;
993 
994 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
995 	return GET_BITFIELD(reg, 0, 2);
996 }
997 
998 
999 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1000 {
1001 	u32 reg;
1002 
1003 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1004 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1005 }
1006 
1007 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1008 {
1009 	u64 rc;
1010 	u32 reg;
1011 
1012 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1013 	rc = GET_BITFIELD(reg, 26, 31);
1014 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1015 	rc = ((reg << 6) | rc) << 26;
1016 
1017 	return rc | 0x1ffffff;
1018 }
1019 
1020 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1021 {
1022 	u32 reg;
1023 
1024 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1025 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1026 }
1027 
1028 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1029 {
1030 	u64 rc;
1031 	u32 reg_lo, reg_hi;
1032 
1033 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1034 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1035 	rc = ((u64)reg_hi << 32) | reg_lo;
1036 	return rc | 0x3ffffff;
1037 }
1038 
1039 
1040 static u64 haswell_rir_limit(u32 reg)
1041 {
1042 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1043 }
1044 
1045 static inline u8 sad_pkg_socket(u8 pkg)
1046 {
1047 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1048 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1049 }
1050 
1051 static inline u8 sad_pkg_ha(u8 pkg)
1052 {
1053 	return (pkg >> 2) & 0x1;
1054 }
1055 
1056 static int haswell_chan_hash(int idx, u64 addr)
1057 {
1058 	int i;
1059 
1060 	/*
1061 	 * XOR even bits from 12:26 to bit0 of idx,
1062 	 *     odd bits from 13:27 to bit1
1063 	 */
1064 	for (i = 12; i < 28; i += 2)
1065 		idx ^= (addr >> i) & 3;
1066 
1067 	return idx;
1068 }
1069 
1070 /* Low bits of TAD limit, and some metadata. */
1071 static const u32 knl_tad_dram_limit_lo[] = {
1072 	0x400, 0x500, 0x600, 0x700,
1073 	0x800, 0x900, 0xa00, 0xb00,
1074 };
1075 
1076 /* Low bits of TAD offset. */
1077 static const u32 knl_tad_dram_offset_lo[] = {
1078 	0x404, 0x504, 0x604, 0x704,
1079 	0x804, 0x904, 0xa04, 0xb04,
1080 };
1081 
1082 /* High 16 bits of TAD limit and offset. */
1083 static const u32 knl_tad_dram_hi[] = {
1084 	0x408, 0x508, 0x608, 0x708,
1085 	0x808, 0x908, 0xa08, 0xb08,
1086 };
1087 
1088 /* Number of ways a tad entry is interleaved. */
1089 static const u32 knl_tad_ways[] = {
1090 	8, 6, 4, 3, 2, 1,
1091 };
1092 
1093 /*
1094  * Retrieve the n'th Target Address Decode table entry
1095  * from the memory controller's TAD table.
1096  *
1097  * @pvt:	driver private data
1098  * @entry:	which entry you want to retrieve
1099  * @mc:		which memory controller (0 or 1)
1100  * @offset:	output tad range offset
1101  * @limit:	output address of first byte above tad range
1102  * @ways:	output number of interleave ways
1103  *
1104  * The offset value has curious semantics.  It's a sort of running total
1105  * of the sizes of all the memory regions that aren't mapped in this
1106  * tad table.
1107  */
1108 static int knl_get_tad(const struct sbridge_pvt *pvt,
1109 		const int entry,
1110 		const int mc,
1111 		u64 *offset,
1112 		u64 *limit,
1113 		int *ways)
1114 {
1115 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1116 	struct pci_dev *pci_mc;
1117 	int way_id;
1118 
1119 	switch (mc) {
1120 	case 0:
1121 		pci_mc = pvt->knl.pci_mc0;
1122 		break;
1123 	case 1:
1124 		pci_mc = pvt->knl.pci_mc1;
1125 		break;
1126 	default:
1127 		WARN_ON(1);
1128 		return -EINVAL;
1129 	}
1130 
1131 	pci_read_config_dword(pci_mc,
1132 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1133 	pci_read_config_dword(pci_mc,
1134 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1135 	pci_read_config_dword(pci_mc,
1136 			knl_tad_dram_hi[entry], &reg_hi);
1137 
1138 	/* Is this TAD entry enabled? */
1139 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1140 		return -ENODEV;
1141 
1142 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1143 
1144 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1145 		*ways = knl_tad_ways[way_id];
1146 	} else {
1147 		*ways = 0;
1148 		sbridge_printk(KERN_ERR,
1149 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1150 				way_id);
1151 		return -ENODEV;
1152 	}
1153 
1154 	/*
1155 	 * The least significant 6 bits of base and limit are truncated.
1156 	 * For limit, we fill the missing bits with 1s.
1157 	 */
1158 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1159 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1160 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1161 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1162 
1163 	return 0;
1164 }
1165 
1166 /* Determine which memory controller is responsible for a given channel. */
1167 static int knl_channel_mc(int channel)
1168 {
1169 	WARN_ON(channel < 0 || channel >= 6);
1170 
1171 	return channel < 3 ? 1 : 0;
1172 }
1173 
1174 /*
1175  * Get the Nth entry from EDC_ROUTE_TABLE register.
1176  * (This is the per-tile mapping of logical interleave targets to
1177  *  physical EDC modules.)
1178  *
1179  * entry 0: 0:2
1180  *       1: 3:5
1181  *       2: 6:8
1182  *       3: 9:11
1183  *       4: 12:14
1184  *       5: 15:17
1185  *       6: 18:20
1186  *       7: 21:23
1187  * reserved: 24:31
1188  */
1189 static u32 knl_get_edc_route(int entry, u32 reg)
1190 {
1191 	WARN_ON(entry >= KNL_MAX_EDCS);
1192 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1193 }
1194 
1195 /*
1196  * Get the Nth entry from MC_ROUTE_TABLE register.
1197  * (This is the per-tile mapping of logical interleave targets to
1198  *  physical DRAM channels modules.)
1199  *
1200  * entry 0: mc 0:2   channel 18:19
1201  *       1: mc 3:5   channel 20:21
1202  *       2: mc 6:8   channel 22:23
1203  *       3: mc 9:11  channel 24:25
1204  *       4: mc 12:14 channel 26:27
1205  *       5: mc 15:17 channel 28:29
1206  * reserved: 30:31
1207  *
1208  * Though we have 3 bits to identify the MC, we should only see
1209  * the values 0 or 1.
1210  */
1211 
1212 static u32 knl_get_mc_route(int entry, u32 reg)
1213 {
1214 	int mc, chan;
1215 
1216 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1217 
1218 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1219 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1220 
1221 	return knl_channel_remap(mc, chan);
1222 }
1223 
1224 /*
1225  * Render the EDC_ROUTE register in human-readable form.
1226  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1227  */
1228 static void knl_show_edc_route(u32 reg, char *s)
1229 {
1230 	int i;
1231 
1232 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1233 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1234 		s[i*2+1] = '-';
1235 	}
1236 
1237 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1238 }
1239 
1240 /*
1241  * Render the MC_ROUTE register in human-readable form.
1242  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1243  */
1244 static void knl_show_mc_route(u32 reg, char *s)
1245 {
1246 	int i;
1247 
1248 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1249 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1250 		s[i*2+1] = '-';
1251 	}
1252 
1253 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1254 }
1255 
1256 #define KNL_EDC_ROUTE 0xb8
1257 #define KNL_MC_ROUTE 0xb4
1258 
1259 /* Is this dram rule backed by regular DRAM in flat mode? */
1260 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1261 
1262 /* Is this dram rule cached? */
1263 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1264 
1265 /* Is this rule backed by edc ? */
1266 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1267 
1268 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1269 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1270 
1271 /* Is this rule mod3? */
1272 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1273 
1274 /*
1275  * Figure out how big our RAM modules are.
1276  *
1277  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1278  * have to figure this out from the SAD rules, interleave lists, route tables,
1279  * and TAD rules.
1280  *
1281  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1282  * inspect the TAD rules to figure out how large the SAD regions really are.
1283  *
1284  * When we know the real size of a SAD region and how many ways it's
1285  * interleaved, we know the individual contribution of each channel to
1286  * TAD is size/ways.
1287  *
1288  * Finally, we have to check whether each channel participates in each SAD
1289  * region.
1290  *
1291  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1292  * much memory the channel uses, we know the DIMM is at least that large.
1293  * (The BIOS might possibly choose not to map all available memory, in which
1294  * case we will underreport the size of the DIMM.)
1295  *
1296  * In theory, we could try to determine the EDC sizes as well, but that would
1297  * only work in flat mode, not in cache mode.
1298  *
1299  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1300  *            elements)
1301  */
1302 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1303 {
1304 	u64 sad_base, sad_size, sad_limit = 0;
1305 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1306 	int sad_rule = 0;
1307 	int tad_rule = 0;
1308 	int intrlv_ways, tad_ways;
1309 	u32 first_pkg, pkg;
1310 	int i;
1311 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1312 	u32 dram_rule, interleave_reg;
1313 	u32 mc_route_reg[KNL_MAX_CHAS];
1314 	u32 edc_route_reg[KNL_MAX_CHAS];
1315 	int edram_only;
1316 	char edc_route_string[KNL_MAX_EDCS*2];
1317 	char mc_route_string[KNL_MAX_CHANNELS*2];
1318 	int cur_reg_start;
1319 	int mc;
1320 	int channel;
1321 	int participants[KNL_MAX_CHANNELS];
1322 
1323 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1324 		mc_sizes[i] = 0;
1325 
1326 	/* Read the EDC route table in each CHA. */
1327 	cur_reg_start = 0;
1328 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1329 		pci_read_config_dword(pvt->knl.pci_cha[i],
1330 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1331 
1332 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1333 			knl_show_edc_route(edc_route_reg[i-1],
1334 					edc_route_string);
1335 			if (cur_reg_start == i-1)
1336 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1337 					cur_reg_start, edc_route_string);
1338 			else
1339 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1340 					cur_reg_start, i-1, edc_route_string);
1341 			cur_reg_start = i;
1342 		}
1343 	}
1344 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1345 	if (cur_reg_start == i-1)
1346 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1347 			cur_reg_start, edc_route_string);
1348 	else
1349 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1350 			cur_reg_start, i-1, edc_route_string);
1351 
1352 	/* Read the MC route table in each CHA. */
1353 	cur_reg_start = 0;
1354 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1355 		pci_read_config_dword(pvt->knl.pci_cha[i],
1356 			KNL_MC_ROUTE, &mc_route_reg[i]);
1357 
1358 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1359 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1360 			if (cur_reg_start == i-1)
1361 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1362 					cur_reg_start, mc_route_string);
1363 			else
1364 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1365 					cur_reg_start, i-1, mc_route_string);
1366 			cur_reg_start = i;
1367 		}
1368 	}
1369 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1370 	if (cur_reg_start == i-1)
1371 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1372 			cur_reg_start, mc_route_string);
1373 	else
1374 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1375 			cur_reg_start, i-1, mc_route_string);
1376 
1377 	/* Process DRAM rules */
1378 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1379 		/* previous limit becomes the new base */
1380 		sad_base = sad_limit;
1381 
1382 		pci_read_config_dword(pvt->pci_sad0,
1383 			pvt->info.dram_rule[sad_rule], &dram_rule);
1384 
1385 		if (!DRAM_RULE_ENABLE(dram_rule))
1386 			break;
1387 
1388 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1389 
1390 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1391 		sad_size = sad_limit - sad_base;
1392 
1393 		pci_read_config_dword(pvt->pci_sad0,
1394 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1395 
1396 		/*
1397 		 * Find out how many ways this dram rule is interleaved.
1398 		 * We stop when we see the first channel again.
1399 		 */
1400 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1401 						interleave_reg, 0);
1402 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1403 			pkg = sad_pkg(pvt->info.interleave_pkg,
1404 						interleave_reg, intrlv_ways);
1405 
1406 			if ((pkg & 0x8) == 0) {
1407 				/*
1408 				 * 0 bit means memory is non-local,
1409 				 * which KNL doesn't support
1410 				 */
1411 				edac_dbg(0, "Unexpected interleave target %d\n",
1412 					pkg);
1413 				return -1;
1414 			}
1415 
1416 			if (pkg == first_pkg)
1417 				break;
1418 		}
1419 		if (KNL_MOD3(dram_rule))
1420 			intrlv_ways *= 3;
1421 
1422 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1423 			sad_rule,
1424 			sad_base,
1425 			sad_limit,
1426 			intrlv_ways,
1427 			edram_only ? ", EDRAM" : "");
1428 
1429 		/*
1430 		 * Find out how big the SAD region really is by iterating
1431 		 * over TAD tables (SAD regions may contain holes).
1432 		 * Each memory controller might have a different TAD table, so
1433 		 * we have to look at both.
1434 		 *
1435 		 * Livespace is the memory that's mapped in this TAD table,
1436 		 * deadspace is the holes (this could be the MMIO hole, or it
1437 		 * could be memory that's mapped by the other TAD table but
1438 		 * not this one).
1439 		 */
1440 		for (mc = 0; mc < 2; mc++) {
1441 			sad_actual_size[mc] = 0;
1442 			tad_livespace = 0;
1443 			for (tad_rule = 0;
1444 					tad_rule < ARRAY_SIZE(
1445 						knl_tad_dram_limit_lo);
1446 					tad_rule++) {
1447 				if (knl_get_tad(pvt,
1448 						tad_rule,
1449 						mc,
1450 						&tad_deadspace,
1451 						&tad_limit,
1452 						&tad_ways))
1453 					break;
1454 
1455 				tad_size = (tad_limit+1) -
1456 					(tad_livespace + tad_deadspace);
1457 				tad_livespace += tad_size;
1458 				tad_base = (tad_limit+1) - tad_size;
1459 
1460 				if (tad_base < sad_base) {
1461 					if (tad_limit > sad_base)
1462 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1463 				} else if (tad_base < sad_limit) {
1464 					if (tad_limit+1 > sad_limit) {
1465 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1466 					} else {
1467 						/* TAD region is completely inside SAD region */
1468 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1469 							tad_rule, tad_base,
1470 							tad_limit, tad_size,
1471 							mc);
1472 						sad_actual_size[mc] += tad_size;
1473 					}
1474 				}
1475 				tad_base = tad_limit+1;
1476 			}
1477 		}
1478 
1479 		for (mc = 0; mc < 2; mc++) {
1480 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1481 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1482 		}
1483 
1484 		/* Ignore EDRAM rule */
1485 		if (edram_only)
1486 			continue;
1487 
1488 		/* Figure out which channels participate in interleave. */
1489 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1490 			participants[channel] = 0;
1491 
1492 		/* For each channel, does at least one CHA have
1493 		 * this channel mapped to the given target?
1494 		 */
1495 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1496 			int target;
1497 			int cha;
1498 
1499 			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1500 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1501 					if (knl_get_mc_route(target,
1502 						mc_route_reg[cha]) == channel
1503 						&& !participants[channel]) {
1504 						participants[channel] = 1;
1505 						break;
1506 					}
1507 				}
1508 			}
1509 		}
1510 
1511 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1512 			mc = knl_channel_mc(channel);
1513 			if (participants[channel]) {
1514 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1515 					channel,
1516 					sad_actual_size[mc]/intrlv_ways,
1517 					sad_rule);
1518 				mc_sizes[channel] +=
1519 					sad_actual_size[mc]/intrlv_ways;
1520 			}
1521 		}
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 static void get_source_id(struct mem_ctl_info *mci)
1528 {
1529 	struct sbridge_pvt *pvt = mci->pvt_info;
1530 	u32 reg;
1531 
1532 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1533 	    pvt->info.type == KNIGHTS_LANDING)
1534 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1535 	else
1536 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1537 
1538 	if (pvt->info.type == KNIGHTS_LANDING)
1539 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1540 	else
1541 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1542 }
1543 
1544 static int __populate_dimms(struct mem_ctl_info *mci,
1545 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1546 			    enum edac_type mode)
1547 {
1548 	struct sbridge_pvt *pvt = mci->pvt_info;
1549 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1550 							 : NUM_CHANNELS;
1551 	unsigned int i, j, banks, ranks, rows, cols, npages;
1552 	struct dimm_info *dimm;
1553 	enum mem_type mtype;
1554 	u64 size;
1555 
1556 	mtype = pvt->info.get_memory_type(pvt);
1557 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1558 		edac_dbg(0, "Memory is registered\n");
1559 	else if (mtype == MEM_UNKNOWN)
1560 		edac_dbg(0, "Cannot determine memory type\n");
1561 	else
1562 		edac_dbg(0, "Memory is unregistered\n");
1563 
1564 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1565 		banks = 16;
1566 	else
1567 		banks = 8;
1568 
1569 	for (i = 0; i < channels; i++) {
1570 		u32 mtr;
1571 
1572 		int max_dimms_per_channel;
1573 
1574 		if (pvt->info.type == KNIGHTS_LANDING) {
1575 			max_dimms_per_channel = 1;
1576 			if (!pvt->knl.pci_channel[i])
1577 				continue;
1578 		} else {
1579 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1580 			if (!pvt->pci_tad[i])
1581 				continue;
1582 		}
1583 
1584 		for (j = 0; j < max_dimms_per_channel; j++) {
1585 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1586 			if (pvt->info.type == KNIGHTS_LANDING) {
1587 				pci_read_config_dword(pvt->knl.pci_channel[i],
1588 					knl_mtr_reg, &mtr);
1589 			} else {
1590 				pci_read_config_dword(pvt->pci_tad[i],
1591 					mtr_regs[j], &mtr);
1592 			}
1593 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1594 			if (IS_DIMM_PRESENT(mtr)) {
1595 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1596 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1597 						       pvt->sbridge_dev->source_id,
1598 						       pvt->sbridge_dev->dom, i);
1599 					return -ENODEV;
1600 				}
1601 				pvt->channel[i].dimms++;
1602 
1603 				ranks = numrank(pvt->info.type, mtr);
1604 
1605 				if (pvt->info.type == KNIGHTS_LANDING) {
1606 					/* For DDR4, this is fixed. */
1607 					cols = 1 << 10;
1608 					rows = knl_mc_sizes[i] /
1609 						((u64) cols * ranks * banks * 8);
1610 				} else {
1611 					rows = numrow(mtr);
1612 					cols = numcol(mtr);
1613 				}
1614 
1615 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1616 				npages = MiB_TO_PAGES(size);
1617 
1618 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1619 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1620 					 size, npages,
1621 					 banks, ranks, rows, cols);
1622 
1623 				dimm->nr_pages = npages;
1624 				dimm->grain = 32;
1625 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1626 				dimm->mtype = mtype;
1627 				dimm->edac_mode = mode;
1628 				snprintf(dimm->label, sizeof(dimm->label),
1629 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1630 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1631 			}
1632 		}
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 static int get_dimm_config(struct mem_ctl_info *mci)
1639 {
1640 	struct sbridge_pvt *pvt = mci->pvt_info;
1641 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1642 	enum edac_type mode;
1643 	u32 reg;
1644 
1645 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1646 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1647 		 pvt->sbridge_dev->mc,
1648 		 pvt->sbridge_dev->node_id,
1649 		 pvt->sbridge_dev->source_id);
1650 
1651 	/* KNL doesn't support mirroring or lockstep,
1652 	 * and is always closed page
1653 	 */
1654 	if (pvt->info.type == KNIGHTS_LANDING) {
1655 		mode = EDAC_S4ECD4ED;
1656 		pvt->mirror_mode = NON_MIRRORING;
1657 		pvt->is_cur_addr_mirrored = false;
1658 
1659 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1660 			return -1;
1661 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1662 			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1663 			return -ENODEV;
1664 		}
1665 	} else {
1666 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1667 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1668 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1669 				return -ENODEV;
1670 			}
1671 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1672 			if (GET_BITFIELD(reg, 28, 28)) {
1673 				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1674 				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1675 				goto next;
1676 			}
1677 		}
1678 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1679 			edac_dbg(0, "Failed to read RASENABLES register\n");
1680 			return -ENODEV;
1681 		}
1682 		if (IS_MIRROR_ENABLED(reg)) {
1683 			pvt->mirror_mode = FULL_MIRRORING;
1684 			edac_dbg(0, "Full memory mirroring is enabled\n");
1685 		} else {
1686 			pvt->mirror_mode = NON_MIRRORING;
1687 			edac_dbg(0, "Memory mirroring is disabled\n");
1688 		}
1689 
1690 next:
1691 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1692 			edac_dbg(0, "Failed to read MCMTR register\n");
1693 			return -ENODEV;
1694 		}
1695 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1696 			edac_dbg(0, "Lockstep is enabled\n");
1697 			mode = EDAC_S8ECD8ED;
1698 			pvt->is_lockstep = true;
1699 		} else {
1700 			edac_dbg(0, "Lockstep is disabled\n");
1701 			mode = EDAC_S4ECD4ED;
1702 			pvt->is_lockstep = false;
1703 		}
1704 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1705 			edac_dbg(0, "address map is on closed page mode\n");
1706 			pvt->is_close_pg = true;
1707 		} else {
1708 			edac_dbg(0, "address map is on open page mode\n");
1709 			pvt->is_close_pg = false;
1710 		}
1711 	}
1712 
1713 	return __populate_dimms(mci, knl_mc_sizes, mode);
1714 }
1715 
1716 static void get_memory_layout(const struct mem_ctl_info *mci)
1717 {
1718 	struct sbridge_pvt *pvt = mci->pvt_info;
1719 	int i, j, k, n_sads, n_tads, sad_interl;
1720 	u32 reg;
1721 	u64 limit, prv = 0;
1722 	u64 tmp_mb;
1723 	u32 gb, mb;
1724 	u32 rir_way;
1725 
1726 	/*
1727 	 * Step 1) Get TOLM/TOHM ranges
1728 	 */
1729 
1730 	pvt->tolm = pvt->info.get_tolm(pvt);
1731 	tmp_mb = (1 + pvt->tolm) >> 20;
1732 
1733 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1734 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1735 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1736 
1737 	/* Address range is already 45:25 */
1738 	pvt->tohm = pvt->info.get_tohm(pvt);
1739 	tmp_mb = (1 + pvt->tohm) >> 20;
1740 
1741 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1742 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1743 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1744 
1745 	/*
1746 	 * Step 2) Get SAD range and SAD Interleave list
1747 	 * TAD registers contain the interleave wayness. However, it
1748 	 * seems simpler to just discover it indirectly, with the
1749 	 * algorithm bellow.
1750 	 */
1751 	prv = 0;
1752 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1753 		/* SAD_LIMIT Address range is 45:26 */
1754 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1755 				      &reg);
1756 		limit = pvt->info.sad_limit(reg);
1757 
1758 		if (!DRAM_RULE_ENABLE(reg))
1759 			continue;
1760 
1761 		if (limit <= prv)
1762 			break;
1763 
1764 		tmp_mb = (limit + 1) >> 20;
1765 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1766 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1767 			 n_sads,
1768 			 show_dram_attr(pvt->info.dram_attr(reg)),
1769 			 gb, (mb*1000)/1024,
1770 			 ((u64)tmp_mb) << 20L,
1771 			 get_intlv_mode_str(reg, pvt->info.type),
1772 			 reg);
1773 		prv = limit;
1774 
1775 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1776 				      &reg);
1777 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1778 		for (j = 0; j < 8; j++) {
1779 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1780 			if (j > 0 && sad_interl == pkg)
1781 				break;
1782 
1783 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1784 				 n_sads, j, pkg);
1785 		}
1786 	}
1787 
1788 	if (pvt->info.type == KNIGHTS_LANDING)
1789 		return;
1790 
1791 	/*
1792 	 * Step 3) Get TAD range
1793 	 */
1794 	prv = 0;
1795 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1796 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1797 		limit = TAD_LIMIT(reg);
1798 		if (limit <= prv)
1799 			break;
1800 		tmp_mb = (limit + 1) >> 20;
1801 
1802 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1803 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1804 			 n_tads, gb, (mb*1000)/1024,
1805 			 ((u64)tmp_mb) << 20L,
1806 			 (u32)(1 << TAD_SOCK(reg)),
1807 			 (u32)TAD_CH(reg) + 1,
1808 			 (u32)TAD_TGT0(reg),
1809 			 (u32)TAD_TGT1(reg),
1810 			 (u32)TAD_TGT2(reg),
1811 			 (u32)TAD_TGT3(reg),
1812 			 reg);
1813 		prv = limit;
1814 	}
1815 
1816 	/*
1817 	 * Step 4) Get TAD offsets, per each channel
1818 	 */
1819 	for (i = 0; i < NUM_CHANNELS; i++) {
1820 		if (!pvt->channel[i].dimms)
1821 			continue;
1822 		for (j = 0; j < n_tads; j++) {
1823 			pci_read_config_dword(pvt->pci_tad[i],
1824 					      tad_ch_nilv_offset[j],
1825 					      &reg);
1826 			tmp_mb = TAD_OFFSET(reg) >> 20;
1827 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1828 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1829 				 i, j,
1830 				 gb, (mb*1000)/1024,
1831 				 ((u64)tmp_mb) << 20L,
1832 				 reg);
1833 		}
1834 	}
1835 
1836 	/*
1837 	 * Step 6) Get RIR Wayness/Limit, per each channel
1838 	 */
1839 	for (i = 0; i < NUM_CHANNELS; i++) {
1840 		if (!pvt->channel[i].dimms)
1841 			continue;
1842 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1843 			pci_read_config_dword(pvt->pci_tad[i],
1844 					      rir_way_limit[j],
1845 					      &reg);
1846 
1847 			if (!IS_RIR_VALID(reg))
1848 				continue;
1849 
1850 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1851 			rir_way = 1 << RIR_WAY(reg);
1852 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1853 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1854 				 i, j,
1855 				 gb, (mb*1000)/1024,
1856 				 ((u64)tmp_mb) << 20L,
1857 				 rir_way,
1858 				 reg);
1859 
1860 			for (k = 0; k < rir_way; k++) {
1861 				pci_read_config_dword(pvt->pci_tad[i],
1862 						      rir_offset[j][k],
1863 						      &reg);
1864 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1865 
1866 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1867 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1868 					 i, j, k,
1869 					 gb, (mb*1000)/1024,
1870 					 ((u64)tmp_mb) << 20L,
1871 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1872 					 reg);
1873 			}
1874 		}
1875 	}
1876 }
1877 
1878 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1879 {
1880 	struct sbridge_dev *sbridge_dev;
1881 
1882 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1883 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1884 			return sbridge_dev->mci;
1885 	}
1886 	return NULL;
1887 }
1888 
1889 static int get_memory_error_data(struct mem_ctl_info *mci,
1890 				 u64 addr,
1891 				 u8 *socket, u8 *ha,
1892 				 long *channel_mask,
1893 				 u8 *rank,
1894 				 char **area_type, char *msg)
1895 {
1896 	struct mem_ctl_info	*new_mci;
1897 	struct sbridge_pvt *pvt = mci->pvt_info;
1898 	struct pci_dev		*pci_ha;
1899 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1900 	int			sad_interl, idx, base_ch;
1901 	int			interleave_mode, shiftup = 0;
1902 	unsigned		sad_interleave[pvt->info.max_interleave];
1903 	u32			reg, dram_rule;
1904 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1905 	u32			tad_offset;
1906 	u32			rir_way;
1907 	u32			mb, gb;
1908 	u64			ch_addr, offset, limit = 0, prv = 0;
1909 
1910 
1911 	/*
1912 	 * Step 0) Check if the address is at special memory ranges
1913 	 * The check bellow is probably enough to fill all cases where
1914 	 * the error is not inside a memory, except for the legacy
1915 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1916 	 * memory controller would generate an error on that range.
1917 	 */
1918 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1919 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1920 		return -EINVAL;
1921 	}
1922 	if (addr >= (u64)pvt->tohm) {
1923 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1924 		return -EINVAL;
1925 	}
1926 
1927 	/*
1928 	 * Step 1) Get socket
1929 	 */
1930 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1931 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1932 				      &reg);
1933 
1934 		if (!DRAM_RULE_ENABLE(reg))
1935 			continue;
1936 
1937 		limit = pvt->info.sad_limit(reg);
1938 		if (limit <= prv) {
1939 			sprintf(msg, "Can't discover the memory socket");
1940 			return -EINVAL;
1941 		}
1942 		if  (addr <= limit)
1943 			break;
1944 		prv = limit;
1945 	}
1946 	if (n_sads == pvt->info.max_sad) {
1947 		sprintf(msg, "Can't discover the memory socket");
1948 		return -EINVAL;
1949 	}
1950 	dram_rule = reg;
1951 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1952 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1953 
1954 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1955 			      &reg);
1956 
1957 	if (pvt->info.type == SANDY_BRIDGE) {
1958 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1959 		for (sad_way = 0; sad_way < 8; sad_way++) {
1960 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
1961 			if (sad_way > 0 && sad_interl == pkg)
1962 				break;
1963 			sad_interleave[sad_way] = pkg;
1964 			edac_dbg(0, "SAD interleave #%d: %d\n",
1965 				 sad_way, sad_interleave[sad_way]);
1966 		}
1967 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
1968 			 pvt->sbridge_dev->mc,
1969 			 n_sads,
1970 			 addr,
1971 			 limit,
1972 			 sad_way + 7,
1973 			 !interleave_mode ? "" : "XOR[18:16]");
1974 		if (interleave_mode)
1975 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
1976 		else
1977 			idx = (addr >> 6) & 7;
1978 		switch (sad_way) {
1979 		case 1:
1980 			idx = 0;
1981 			break;
1982 		case 2:
1983 			idx = idx & 1;
1984 			break;
1985 		case 4:
1986 			idx = idx & 3;
1987 			break;
1988 		case 8:
1989 			break;
1990 		default:
1991 			sprintf(msg, "Can't discover socket interleave");
1992 			return -EINVAL;
1993 		}
1994 		*socket = sad_interleave[idx];
1995 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
1996 			 idx, sad_way, *socket);
1997 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1998 		int bits, a7mode = A7MODE(dram_rule);
1999 
2000 		if (a7mode) {
2001 			/* A7 mode swaps P9 with P6 */
2002 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2003 			bits |= GET_BITFIELD(addr, 9, 9);
2004 		} else
2005 			bits = GET_BITFIELD(addr, 6, 8);
2006 
2007 		if (interleave_mode == 0) {
2008 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2009 			idx = GET_BITFIELD(addr, 16, 18);
2010 			idx ^= bits;
2011 		} else
2012 			idx = bits;
2013 
2014 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2015 		*socket = sad_pkg_socket(pkg);
2016 		sad_ha = sad_pkg_ha(pkg);
2017 
2018 		if (a7mode) {
2019 			/* MCChanShiftUpEnable */
2020 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2021 			shiftup = GET_BITFIELD(reg, 22, 22);
2022 		}
2023 
2024 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2025 			 idx, *socket, sad_ha, shiftup);
2026 	} else {
2027 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2028 		idx = (addr >> 6) & 7;
2029 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2030 		*socket = sad_pkg_socket(pkg);
2031 		sad_ha = sad_pkg_ha(pkg);
2032 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2033 			 idx, *socket, sad_ha);
2034 	}
2035 
2036 	*ha = sad_ha;
2037 
2038 	/*
2039 	 * Move to the proper node structure, in order to access the
2040 	 * right PCI registers
2041 	 */
2042 	new_mci = get_mci_for_node_id(*socket, sad_ha);
2043 	if (!new_mci) {
2044 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2045 			*socket);
2046 		return -EINVAL;
2047 	}
2048 	mci = new_mci;
2049 	pvt = mci->pvt_info;
2050 
2051 	/*
2052 	 * Step 2) Get memory channel
2053 	 */
2054 	prv = 0;
2055 	pci_ha = pvt->pci_ha;
2056 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2057 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2058 		limit = TAD_LIMIT(reg);
2059 		if (limit <= prv) {
2060 			sprintf(msg, "Can't discover the memory channel");
2061 			return -EINVAL;
2062 		}
2063 		if  (addr <= limit)
2064 			break;
2065 		prv = limit;
2066 	}
2067 	if (n_tads == MAX_TAD) {
2068 		sprintf(msg, "Can't discover the memory channel");
2069 		return -EINVAL;
2070 	}
2071 
2072 	ch_way = TAD_CH(reg) + 1;
2073 	sck_way = TAD_SOCK(reg);
2074 
2075 	if (ch_way == 3)
2076 		idx = addr >> 6;
2077 	else {
2078 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2079 		if (pvt->is_chan_hash)
2080 			idx = haswell_chan_hash(idx, addr);
2081 	}
2082 	idx = idx % ch_way;
2083 
2084 	/*
2085 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2086 	 */
2087 	switch (idx) {
2088 	case 0:
2089 		base_ch = TAD_TGT0(reg);
2090 		break;
2091 	case 1:
2092 		base_ch = TAD_TGT1(reg);
2093 		break;
2094 	case 2:
2095 		base_ch = TAD_TGT2(reg);
2096 		break;
2097 	case 3:
2098 		base_ch = TAD_TGT3(reg);
2099 		break;
2100 	default:
2101 		sprintf(msg, "Can't discover the TAD target");
2102 		return -EINVAL;
2103 	}
2104 	*channel_mask = 1 << base_ch;
2105 
2106 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2107 
2108 	if (pvt->mirror_mode == FULL_MIRRORING ||
2109 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2110 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2111 		switch(ch_way) {
2112 		case 2:
2113 		case 4:
2114 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2115 			break;
2116 		default:
2117 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2118 			return -EINVAL;
2119 		}
2120 
2121 		pvt->is_cur_addr_mirrored = true;
2122 	} else {
2123 		sck_xch = (1 << sck_way) * ch_way;
2124 		pvt->is_cur_addr_mirrored = false;
2125 	}
2126 
2127 	if (pvt->is_lockstep)
2128 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2129 
2130 	offset = TAD_OFFSET(tad_offset);
2131 
2132 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2133 		 n_tads,
2134 		 addr,
2135 		 limit,
2136 		 sck_way,
2137 		 ch_way,
2138 		 offset,
2139 		 idx,
2140 		 base_ch,
2141 		 *channel_mask);
2142 
2143 	/* Calculate channel address */
2144 	/* Remove the TAD offset */
2145 
2146 	if (offset > addr) {
2147 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2148 			offset, addr);
2149 		return -EINVAL;
2150 	}
2151 
2152 	ch_addr = addr - offset;
2153 	ch_addr >>= (6 + shiftup);
2154 	ch_addr /= sck_xch;
2155 	ch_addr <<= (6 + shiftup);
2156 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2157 
2158 	/*
2159 	 * Step 3) Decode rank
2160 	 */
2161 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2162 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2163 
2164 		if (!IS_RIR_VALID(reg))
2165 			continue;
2166 
2167 		limit = pvt->info.rir_limit(reg);
2168 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2169 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2170 			 n_rir,
2171 			 gb, (mb*1000)/1024,
2172 			 limit,
2173 			 1 << RIR_WAY(reg));
2174 		if  (ch_addr <= limit)
2175 			break;
2176 	}
2177 	if (n_rir == MAX_RIR_RANGES) {
2178 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2179 			ch_addr);
2180 		return -EINVAL;
2181 	}
2182 	rir_way = RIR_WAY(reg);
2183 
2184 	if (pvt->is_close_pg)
2185 		idx = (ch_addr >> 6);
2186 	else
2187 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2188 	idx %= 1 << rir_way;
2189 
2190 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2191 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2192 
2193 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2194 		 n_rir,
2195 		 ch_addr,
2196 		 limit,
2197 		 rir_way,
2198 		 idx);
2199 
2200 	return 0;
2201 }
2202 
2203 /****************************************************************************
2204 	Device initialization routines: put/get, init/exit
2205  ****************************************************************************/
2206 
2207 /*
2208  *	sbridge_put_all_devices	'put' all the devices that we have
2209  *				reserved via 'get'
2210  */
2211 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2212 {
2213 	int i;
2214 
2215 	edac_dbg(0, "\n");
2216 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2217 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2218 		if (!pdev)
2219 			continue;
2220 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2221 			 pdev->bus->number,
2222 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2223 		pci_dev_put(pdev);
2224 	}
2225 }
2226 
2227 static void sbridge_put_all_devices(void)
2228 {
2229 	struct sbridge_dev *sbridge_dev, *tmp;
2230 
2231 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2232 		sbridge_put_devices(sbridge_dev);
2233 		free_sbridge_dev(sbridge_dev);
2234 	}
2235 }
2236 
2237 static int sbridge_get_onedevice(struct pci_dev **prev,
2238 				 u8 *num_mc,
2239 				 const struct pci_id_table *table,
2240 				 const unsigned devno,
2241 				 const int multi_bus)
2242 {
2243 	struct sbridge_dev *sbridge_dev = NULL;
2244 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2245 	struct pci_dev *pdev = NULL;
2246 	u8 bus = 0;
2247 	int i = 0;
2248 
2249 	sbridge_printk(KERN_DEBUG,
2250 		"Seeking for: PCI ID %04x:%04x\n",
2251 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2252 
2253 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2254 			      dev_descr->dev_id, *prev);
2255 
2256 	if (!pdev) {
2257 		if (*prev) {
2258 			*prev = pdev;
2259 			return 0;
2260 		}
2261 
2262 		if (dev_descr->optional)
2263 			return 0;
2264 
2265 		/* if the HA wasn't found */
2266 		if (devno == 0)
2267 			return -ENODEV;
2268 
2269 		sbridge_printk(KERN_INFO,
2270 			"Device not found: %04x:%04x\n",
2271 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2272 
2273 		/* End of list, leave */
2274 		return -ENODEV;
2275 	}
2276 	bus = pdev->bus->number;
2277 
2278 next_imc:
2279 	sbridge_dev = get_sbridge_dev(bus, dev_descr->dom, multi_bus, sbridge_dev);
2280 	if (!sbridge_dev) {
2281 		/* If the HA1 wasn't found, don't create EDAC second memory controller */
2282 		if (dev_descr->dom == IMC1 && devno != 1) {
2283 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2284 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2285 			pci_dev_put(pdev);
2286 			return 0;
2287 		}
2288 
2289 		if (dev_descr->dom == SOCK)
2290 			goto out_imc;
2291 
2292 		sbridge_dev = alloc_sbridge_dev(bus, dev_descr->dom, table);
2293 		if (!sbridge_dev) {
2294 			pci_dev_put(pdev);
2295 			return -ENOMEM;
2296 		}
2297 		(*num_mc)++;
2298 	}
2299 
2300 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2301 		sbridge_printk(KERN_ERR,
2302 			"Duplicated device for %04x:%04x\n",
2303 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2304 		pci_dev_put(pdev);
2305 		return -ENODEV;
2306 	}
2307 
2308 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2309 
2310 	/* pdev belongs to more than one IMC, do extra gets */
2311 	if (++i > 1)
2312 		pci_dev_get(pdev);
2313 
2314 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2315 		goto next_imc;
2316 
2317 out_imc:
2318 	/* Be sure that the device is enabled */
2319 	if (unlikely(pci_enable_device(pdev) < 0)) {
2320 		sbridge_printk(KERN_ERR,
2321 			"Couldn't enable %04x:%04x\n",
2322 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2323 		return -ENODEV;
2324 	}
2325 
2326 	edac_dbg(0, "Detected %04x:%04x\n",
2327 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2328 
2329 	/*
2330 	 * As stated on drivers/pci/search.c, the reference count for
2331 	 * @from is always decremented if it is not %NULL. So, as we need
2332 	 * to get all devices up to null, we need to do a get for the device
2333 	 */
2334 	pci_dev_get(pdev);
2335 
2336 	*prev = pdev;
2337 
2338 	return 0;
2339 }
2340 
2341 /*
2342  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2343  *			     devices we want to reference for this driver.
2344  * @num_mc: pointer to the memory controllers count, to be incremented in case
2345  *	    of success.
2346  * @table: model specific table
2347  *
2348  * returns 0 in case of success or error code
2349  */
2350 static int sbridge_get_all_devices(u8 *num_mc,
2351 					const struct pci_id_table *table)
2352 {
2353 	int i, rc;
2354 	struct pci_dev *pdev = NULL;
2355 	int allow_dups = 0;
2356 	int multi_bus = 0;
2357 
2358 	if (table->type == KNIGHTS_LANDING)
2359 		allow_dups = multi_bus = 1;
2360 	while (table && table->descr) {
2361 		for (i = 0; i < table->n_devs_per_sock; i++) {
2362 			if (!allow_dups || i == 0 ||
2363 					table->descr[i].dev_id !=
2364 						table->descr[i-1].dev_id) {
2365 				pdev = NULL;
2366 			}
2367 			do {
2368 				rc = sbridge_get_onedevice(&pdev, num_mc,
2369 							   table, i, multi_bus);
2370 				if (rc < 0) {
2371 					if (i == 0) {
2372 						i = table->n_devs_per_sock;
2373 						break;
2374 					}
2375 					sbridge_put_all_devices();
2376 					return -ENODEV;
2377 				}
2378 			} while (pdev && !allow_dups);
2379 		}
2380 		table++;
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 /*
2387  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2388  * the format: XXXa. So we can convert from a device to the corresponding
2389  * channel like this
2390  */
2391 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2392 
2393 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2394 				 struct sbridge_dev *sbridge_dev)
2395 {
2396 	struct sbridge_pvt *pvt = mci->pvt_info;
2397 	struct pci_dev *pdev;
2398 	u8 saw_chan_mask = 0;
2399 	int i;
2400 
2401 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2402 		pdev = sbridge_dev->pdev[i];
2403 		if (!pdev)
2404 			continue;
2405 
2406 		switch (pdev->device) {
2407 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2408 			pvt->pci_sad0 = pdev;
2409 			break;
2410 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2411 			pvt->pci_sad1 = pdev;
2412 			break;
2413 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2414 			pvt->pci_br0 = pdev;
2415 			break;
2416 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2417 			pvt->pci_ha = pdev;
2418 			break;
2419 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2420 			pvt->pci_ta = pdev;
2421 			break;
2422 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2423 			pvt->pci_ras = pdev;
2424 			break;
2425 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2426 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2427 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2428 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2429 		{
2430 			int id = TAD_DEV_TO_CHAN(pdev->device);
2431 			pvt->pci_tad[id] = pdev;
2432 			saw_chan_mask |= 1 << id;
2433 		}
2434 			break;
2435 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2436 			pvt->pci_ddrio = pdev;
2437 			break;
2438 		default:
2439 			goto error;
2440 		}
2441 
2442 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2443 			 pdev->vendor, pdev->device,
2444 			 sbridge_dev->bus,
2445 			 pdev);
2446 	}
2447 
2448 	/* Check if everything were registered */
2449 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2450 	    !pvt->pci_ras || !pvt->pci_ta)
2451 		goto enodev;
2452 
2453 	if (saw_chan_mask != 0x0f)
2454 		goto enodev;
2455 	return 0;
2456 
2457 enodev:
2458 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2459 	return -ENODEV;
2460 
2461 error:
2462 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2463 		       PCI_VENDOR_ID_INTEL, pdev->device);
2464 	return -EINVAL;
2465 }
2466 
2467 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2468 				 struct sbridge_dev *sbridge_dev)
2469 {
2470 	struct sbridge_pvt *pvt = mci->pvt_info;
2471 	struct pci_dev *pdev;
2472 	u8 saw_chan_mask = 0;
2473 	int i;
2474 
2475 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2476 		pdev = sbridge_dev->pdev[i];
2477 		if (!pdev)
2478 			continue;
2479 
2480 		switch (pdev->device) {
2481 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2482 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2483 			pvt->pci_ha = pdev;
2484 			break;
2485 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2486 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2487 			pvt->pci_ta = pdev;
2488 			break;
2489 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2490 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2491 			pvt->pci_ras = pdev;
2492 			break;
2493 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2494 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2495 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2496 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2497 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2498 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2499 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2500 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2501 		{
2502 			int id = TAD_DEV_TO_CHAN(pdev->device);
2503 			pvt->pci_tad[id] = pdev;
2504 			saw_chan_mask |= 1 << id;
2505 		}
2506 			break;
2507 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2508 			pvt->pci_ddrio = pdev;
2509 			break;
2510 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2511 			pvt->pci_ddrio = pdev;
2512 			break;
2513 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2514 			pvt->pci_sad0 = pdev;
2515 			break;
2516 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2517 			pvt->pci_br0 = pdev;
2518 			break;
2519 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2520 			pvt->pci_br1 = pdev;
2521 			break;
2522 		default:
2523 			goto error;
2524 		}
2525 
2526 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2527 			 sbridge_dev->bus,
2528 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2529 			 pdev);
2530 	}
2531 
2532 	/* Check if everything were registered */
2533 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2534 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2535 		goto enodev;
2536 
2537 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2538 	    saw_chan_mask != 0x03)   /* -EP */
2539 		goto enodev;
2540 	return 0;
2541 
2542 enodev:
2543 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2544 	return -ENODEV;
2545 
2546 error:
2547 	sbridge_printk(KERN_ERR,
2548 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2549 			pdev->device);
2550 	return -EINVAL;
2551 }
2552 
2553 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2554 				 struct sbridge_dev *sbridge_dev)
2555 {
2556 	struct sbridge_pvt *pvt = mci->pvt_info;
2557 	struct pci_dev *pdev;
2558 	u8 saw_chan_mask = 0;
2559 	int i;
2560 
2561 	/* there's only one device per system; not tied to any bus */
2562 	if (pvt->info.pci_vtd == NULL)
2563 		/* result will be checked later */
2564 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2565 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2566 						   NULL);
2567 
2568 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2569 		pdev = sbridge_dev->pdev[i];
2570 		if (!pdev)
2571 			continue;
2572 
2573 		switch (pdev->device) {
2574 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2575 			pvt->pci_sad0 = pdev;
2576 			break;
2577 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2578 			pvt->pci_sad1 = pdev;
2579 			break;
2580 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2581 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2582 			pvt->pci_ha = pdev;
2583 			break;
2584 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2585 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2586 			pvt->pci_ta = pdev;
2587 			break;
2588 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2589 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2590 			pvt->pci_ras = pdev;
2591 			break;
2592 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2593 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2594 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2595 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2596 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2597 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2598 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2599 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2600 		{
2601 			int id = TAD_DEV_TO_CHAN(pdev->device);
2602 			pvt->pci_tad[id] = pdev;
2603 			saw_chan_mask |= 1 << id;
2604 		}
2605 			break;
2606 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2607 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2608 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2609 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2610 			if (!pvt->pci_ddrio)
2611 				pvt->pci_ddrio = pdev;
2612 			break;
2613 		default:
2614 			break;
2615 		}
2616 
2617 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2618 			 sbridge_dev->bus,
2619 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2620 			 pdev);
2621 	}
2622 
2623 	/* Check if everything were registered */
2624 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2625 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2626 		goto enodev;
2627 
2628 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2629 	    saw_chan_mask != 0x03)   /* -EP */
2630 		goto enodev;
2631 	return 0;
2632 
2633 enodev:
2634 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2635 	return -ENODEV;
2636 }
2637 
2638 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2639 				 struct sbridge_dev *sbridge_dev)
2640 {
2641 	struct sbridge_pvt *pvt = mci->pvt_info;
2642 	struct pci_dev *pdev;
2643 	u8 saw_chan_mask = 0;
2644 	int i;
2645 
2646 	/* there's only one device per system; not tied to any bus */
2647 	if (pvt->info.pci_vtd == NULL)
2648 		/* result will be checked later */
2649 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2650 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2651 						   NULL);
2652 
2653 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2654 		pdev = sbridge_dev->pdev[i];
2655 		if (!pdev)
2656 			continue;
2657 
2658 		switch (pdev->device) {
2659 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2660 			pvt->pci_sad0 = pdev;
2661 			break;
2662 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2663 			pvt->pci_sad1 = pdev;
2664 			break;
2665 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2666 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2667 			pvt->pci_ha = pdev;
2668 			break;
2669 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2670 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2671 			pvt->pci_ta = pdev;
2672 			break;
2673 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2674 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2675 			pvt->pci_ras = pdev;
2676 			break;
2677 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2678 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2679 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2680 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2681 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2682 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2683 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2684 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2685 		{
2686 			int id = TAD_DEV_TO_CHAN(pdev->device);
2687 			pvt->pci_tad[id] = pdev;
2688 			saw_chan_mask |= 1 << id;
2689 		}
2690 			break;
2691 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2692 			pvt->pci_ddrio = pdev;
2693 			break;
2694 		default:
2695 			break;
2696 		}
2697 
2698 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2699 			 sbridge_dev->bus,
2700 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2701 			 pdev);
2702 	}
2703 
2704 	/* Check if everything were registered */
2705 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2706 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2707 		goto enodev;
2708 
2709 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2710 	    saw_chan_mask != 0x03)   /* -EP */
2711 		goto enodev;
2712 	return 0;
2713 
2714 enodev:
2715 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2716 	return -ENODEV;
2717 }
2718 
2719 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2720 			struct sbridge_dev *sbridge_dev)
2721 {
2722 	struct sbridge_pvt *pvt = mci->pvt_info;
2723 	struct pci_dev *pdev;
2724 	int dev, func;
2725 
2726 	int i;
2727 	int devidx;
2728 
2729 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2730 		pdev = sbridge_dev->pdev[i];
2731 		if (!pdev)
2732 			continue;
2733 
2734 		/* Extract PCI device and function. */
2735 		dev = (pdev->devfn >> 3) & 0x1f;
2736 		func = pdev->devfn & 0x7;
2737 
2738 		switch (pdev->device) {
2739 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2740 			if (dev == 8)
2741 				pvt->knl.pci_mc0 = pdev;
2742 			else if (dev == 9)
2743 				pvt->knl.pci_mc1 = pdev;
2744 			else {
2745 				sbridge_printk(KERN_ERR,
2746 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2747 					dev, func);
2748 				continue;
2749 			}
2750 			break;
2751 
2752 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2753 			pvt->pci_sad0 = pdev;
2754 			break;
2755 
2756 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2757 			pvt->pci_sad1 = pdev;
2758 			break;
2759 
2760 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2761 			/* There are one of these per tile, and range from
2762 			 * 1.14.0 to 1.18.5.
2763 			 */
2764 			devidx = ((dev-14)*8)+func;
2765 
2766 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2767 				sbridge_printk(KERN_ERR,
2768 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2769 					dev, func);
2770 				continue;
2771 			}
2772 
2773 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2774 
2775 			pvt->knl.pci_cha[devidx] = pdev;
2776 			break;
2777 
2778 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2779 			devidx = -1;
2780 
2781 			/*
2782 			 *  MC0 channels 0-2 are device 9 function 2-4,
2783 			 *  MC1 channels 3-5 are device 8 function 2-4.
2784 			 */
2785 
2786 			if (dev == 9)
2787 				devidx = func-2;
2788 			else if (dev == 8)
2789 				devidx = 3 + (func-2);
2790 
2791 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2792 				sbridge_printk(KERN_ERR,
2793 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2794 					dev, func);
2795 				continue;
2796 			}
2797 
2798 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2799 			pvt->knl.pci_channel[devidx] = pdev;
2800 			break;
2801 
2802 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2803 			pvt->knl.pci_mc_info = pdev;
2804 			break;
2805 
2806 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2807 			pvt->pci_ta = pdev;
2808 			break;
2809 
2810 		default:
2811 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2812 				pdev->device);
2813 			break;
2814 		}
2815 	}
2816 
2817 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2818 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2819 	    !pvt->pci_ta) {
2820 		goto enodev;
2821 	}
2822 
2823 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2824 		if (!pvt->knl.pci_channel[i]) {
2825 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2826 			goto enodev;
2827 		}
2828 	}
2829 
2830 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2831 		if (!pvt->knl.pci_cha[i]) {
2832 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2833 			goto enodev;
2834 		}
2835 	}
2836 
2837 	return 0;
2838 
2839 enodev:
2840 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2841 	return -ENODEV;
2842 }
2843 
2844 /****************************************************************************
2845 			Error check routines
2846  ****************************************************************************/
2847 
2848 /*
2849  * While Sandy Bridge has error count registers, SMI BIOS read values from
2850  * and resets the counters. So, they are not reliable for the OS to read
2851  * from them. So, we have no option but to just trust on whatever MCE is
2852  * telling us about the errors.
2853  */
2854 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2855 				    const struct mce *m)
2856 {
2857 	struct mem_ctl_info *new_mci;
2858 	struct sbridge_pvt *pvt = mci->pvt_info;
2859 	enum hw_event_mc_err_type tp_event;
2860 	char *type, *optype, msg[256];
2861 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2862 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2863 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2864 	bool recoverable;
2865 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2866 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2867 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2868 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2869 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2870 	long channel_mask, first_channel;
2871 	u8  rank, socket, ha;
2872 	int rc, dimm;
2873 	char *area_type = NULL;
2874 
2875 	if (pvt->info.type != SANDY_BRIDGE)
2876 		recoverable = true;
2877 	else
2878 		recoverable = GET_BITFIELD(m->status, 56, 56);
2879 
2880 	if (uncorrected_error) {
2881 		if (ripv) {
2882 			type = "FATAL";
2883 			tp_event = HW_EVENT_ERR_FATAL;
2884 		} else {
2885 			type = "NON_FATAL";
2886 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2887 		}
2888 	} else {
2889 		type = "CORRECTED";
2890 		tp_event = HW_EVENT_ERR_CORRECTED;
2891 	}
2892 
2893 	/*
2894 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2895 	 * memory errors should fit in this mask:
2896 	 *	000f 0000 1mmm cccc (binary)
2897 	 * where:
2898 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
2899 	 *	    won't be shown
2900 	 *	mmm = error type
2901 	 *	cccc = channel
2902 	 * If the mask doesn't match, report an error to the parsing logic
2903 	 */
2904 	if (! ((errcode & 0xef80) == 0x80)) {
2905 		optype = "Can't parse: it is not a mem";
2906 	} else {
2907 		switch (optypenum) {
2908 		case 0:
2909 			optype = "generic undef request error";
2910 			break;
2911 		case 1:
2912 			optype = "memory read error";
2913 			break;
2914 		case 2:
2915 			optype = "memory write error";
2916 			break;
2917 		case 3:
2918 			optype = "addr/cmd error";
2919 			break;
2920 		case 4:
2921 			optype = "memory scrubbing error";
2922 			break;
2923 		default:
2924 			optype = "reserved";
2925 			break;
2926 		}
2927 	}
2928 
2929 	/* Only decode errors with an valid address (ADDRV) */
2930 	if (!GET_BITFIELD(m->status, 58, 58))
2931 		return;
2932 
2933 	if (pvt->info.type == KNIGHTS_LANDING) {
2934 		if (channel == 14) {
2935 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
2936 				overflow ? " OVERFLOW" : "",
2937 				(uncorrected_error && recoverable)
2938 				? " recoverable" : "",
2939 				mscod, errcode,
2940 				m->bank);
2941 		} else {
2942 			char A = *("A");
2943 
2944 			/*
2945 			 * Reported channel is in range 0-2, so we can't map it
2946 			 * back to mc. To figure out mc we check machine check
2947 			 * bank register that reported this error.
2948 			 * bank15 means mc0 and bank16 means mc1.
2949 			 */
2950 			channel = knl_channel_remap(m->bank == 16, channel);
2951 			channel_mask = 1 << channel;
2952 
2953 			snprintf(msg, sizeof(msg),
2954 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
2955 				overflow ? " OVERFLOW" : "",
2956 				(uncorrected_error && recoverable)
2957 				? " recoverable" : " ",
2958 				mscod, errcode, channel, A + channel);
2959 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
2960 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
2961 				channel, 0, -1,
2962 				optype, msg);
2963 		}
2964 		return;
2965 	} else {
2966 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
2967 				&channel_mask, &rank, &area_type, msg);
2968 	}
2969 
2970 	if (rc < 0)
2971 		goto err_parsing;
2972 	new_mci = get_mci_for_node_id(socket, ha);
2973 	if (!new_mci) {
2974 		strcpy(msg, "Error: socket got corrupted!");
2975 		goto err_parsing;
2976 	}
2977 	mci = new_mci;
2978 	pvt = mci->pvt_info;
2979 
2980 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
2981 
2982 	if (rank < 4)
2983 		dimm = 0;
2984 	else if (rank < 8)
2985 		dimm = 1;
2986 	else
2987 		dimm = 2;
2988 
2989 
2990 	/*
2991 	 * FIXME: On some memory configurations (mirror, lockstep), the
2992 	 * Memory Controller can't point the error to a single DIMM. The
2993 	 * EDAC core should be handling the channel mask, in order to point
2994 	 * to the group of dimm's where the error may be happening.
2995 	 */
2996 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
2997 		channel = first_channel;
2998 
2999 	snprintf(msg, sizeof(msg),
3000 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3001 		 overflow ? " OVERFLOW" : "",
3002 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3003 		 area_type,
3004 		 mscod, errcode,
3005 		 socket, ha,
3006 		 channel_mask,
3007 		 rank);
3008 
3009 	edac_dbg(0, "%s\n", msg);
3010 
3011 	/* FIXME: need support for channel mask */
3012 
3013 	if (channel == CHANNEL_UNSPECIFIED)
3014 		channel = -1;
3015 
3016 	/* Call the helper to output message */
3017 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3018 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3019 			     channel, dimm, -1,
3020 			     optype, msg);
3021 	return;
3022 err_parsing:
3023 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3024 			     -1, -1, -1,
3025 			     msg, "");
3026 
3027 }
3028 
3029 /*
3030  * Check that logging is enabled and that this is the right type
3031  * of error for us to handle.
3032  */
3033 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3034 				   void *data)
3035 {
3036 	struct mce *mce = (struct mce *)data;
3037 	struct mem_ctl_info *mci;
3038 	struct sbridge_pvt *pvt;
3039 	char *type;
3040 
3041 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3042 		return NOTIFY_DONE;
3043 
3044 	mci = get_mci_for_node_id(mce->socketid, IMC0);
3045 	if (!mci)
3046 		return NOTIFY_DONE;
3047 	pvt = mci->pvt_info;
3048 
3049 	/*
3050 	 * Just let mcelog handle it if the error is
3051 	 * outside the memory controller. A memory error
3052 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3053 	 * bit 12 has an special meaning.
3054 	 */
3055 	if ((mce->status & 0xefff) >> 7 != 1)
3056 		return NOTIFY_DONE;
3057 
3058 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3059 		type = "Exception";
3060 	else
3061 		type = "Event";
3062 
3063 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3064 
3065 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3066 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3067 			  mce->mcgstatus, mce->bank, mce->status);
3068 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3069 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3070 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3071 
3072 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3073 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3074 			  mce->time, mce->socketid, mce->apicid);
3075 
3076 	sbridge_mce_output_error(mci, mce);
3077 
3078 	/* Advice mcelog that the error were handled */
3079 	return NOTIFY_STOP;
3080 }
3081 
3082 static struct notifier_block sbridge_mce_dec = {
3083 	.notifier_call	= sbridge_mce_check_error,
3084 	.priority	= MCE_PRIO_EDAC,
3085 };
3086 
3087 /****************************************************************************
3088 			EDAC register/unregister logic
3089  ****************************************************************************/
3090 
3091 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3092 {
3093 	struct mem_ctl_info *mci = sbridge_dev->mci;
3094 	struct sbridge_pvt *pvt;
3095 
3096 	if (unlikely(!mci || !mci->pvt_info)) {
3097 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3098 
3099 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3100 		return;
3101 	}
3102 
3103 	pvt = mci->pvt_info;
3104 
3105 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3106 		 mci, &sbridge_dev->pdev[0]->dev);
3107 
3108 	/* Remove MC sysfs nodes */
3109 	edac_mc_del_mc(mci->pdev);
3110 
3111 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3112 	kfree(mci->ctl_name);
3113 	edac_mc_free(mci);
3114 	sbridge_dev->mci = NULL;
3115 }
3116 
3117 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3118 {
3119 	struct mem_ctl_info *mci;
3120 	struct edac_mc_layer layers[2];
3121 	struct sbridge_pvt *pvt;
3122 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3123 	int rc;
3124 
3125 	/* allocate a new MC control structure */
3126 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3127 	layers[0].size = type == KNIGHTS_LANDING ?
3128 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3129 	layers[0].is_virt_csrow = false;
3130 	layers[1].type = EDAC_MC_LAYER_SLOT;
3131 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3132 	layers[1].is_virt_csrow = true;
3133 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3134 			    sizeof(*pvt));
3135 
3136 	if (unlikely(!mci))
3137 		return -ENOMEM;
3138 
3139 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3140 		 mci, &pdev->dev);
3141 
3142 	pvt = mci->pvt_info;
3143 	memset(pvt, 0, sizeof(*pvt));
3144 
3145 	/* Associate sbridge_dev and mci for future usage */
3146 	pvt->sbridge_dev = sbridge_dev;
3147 	sbridge_dev->mci = mci;
3148 
3149 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3150 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3151 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3152 	mci->edac_cap = EDAC_FLAG_NONE;
3153 	mci->mod_name = EDAC_MOD_STR;
3154 	mci->dev_name = pci_name(pdev);
3155 	mci->ctl_page_to_phys = NULL;
3156 
3157 	pvt->info.type = type;
3158 	switch (type) {
3159 	case IVY_BRIDGE:
3160 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3161 		pvt->info.get_tolm = ibridge_get_tolm;
3162 		pvt->info.get_tohm = ibridge_get_tohm;
3163 		pvt->info.dram_rule = ibridge_dram_rule;
3164 		pvt->info.get_memory_type = get_memory_type;
3165 		pvt->info.get_node_id = get_node_id;
3166 		pvt->info.rir_limit = rir_limit;
3167 		pvt->info.sad_limit = sad_limit;
3168 		pvt->info.interleave_mode = interleave_mode;
3169 		pvt->info.dram_attr = dram_attr;
3170 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3171 		pvt->info.interleave_list = ibridge_interleave_list;
3172 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3173 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3174 		pvt->info.get_width = ibridge_get_width;
3175 
3176 		/* Store pci devices at mci for faster access */
3177 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3178 		if (unlikely(rc < 0))
3179 			goto fail0;
3180 		get_source_id(mci);
3181 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3182 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3183 		break;
3184 	case SANDY_BRIDGE:
3185 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3186 		pvt->info.get_tolm = sbridge_get_tolm;
3187 		pvt->info.get_tohm = sbridge_get_tohm;
3188 		pvt->info.dram_rule = sbridge_dram_rule;
3189 		pvt->info.get_memory_type = get_memory_type;
3190 		pvt->info.get_node_id = get_node_id;
3191 		pvt->info.rir_limit = rir_limit;
3192 		pvt->info.sad_limit = sad_limit;
3193 		pvt->info.interleave_mode = interleave_mode;
3194 		pvt->info.dram_attr = dram_attr;
3195 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3196 		pvt->info.interleave_list = sbridge_interleave_list;
3197 		pvt->info.max_interleave = ARRAY_SIZE(sbridge_interleave_list);
3198 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3199 		pvt->info.get_width = sbridge_get_width;
3200 
3201 		/* Store pci devices at mci for faster access */
3202 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3203 		if (unlikely(rc < 0))
3204 			goto fail0;
3205 		get_source_id(mci);
3206 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3207 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3208 		break;
3209 	case HASWELL:
3210 		/* rankcfgr isn't used */
3211 		pvt->info.get_tolm = haswell_get_tolm;
3212 		pvt->info.get_tohm = haswell_get_tohm;
3213 		pvt->info.dram_rule = ibridge_dram_rule;
3214 		pvt->info.get_memory_type = haswell_get_memory_type;
3215 		pvt->info.get_node_id = haswell_get_node_id;
3216 		pvt->info.rir_limit = haswell_rir_limit;
3217 		pvt->info.sad_limit = sad_limit;
3218 		pvt->info.interleave_mode = interleave_mode;
3219 		pvt->info.dram_attr = dram_attr;
3220 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3221 		pvt->info.interleave_list = ibridge_interleave_list;
3222 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3223 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3224 		pvt->info.get_width = ibridge_get_width;
3225 
3226 		/* Store pci devices at mci for faster access */
3227 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3228 		if (unlikely(rc < 0))
3229 			goto fail0;
3230 		get_source_id(mci);
3231 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3232 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3233 		break;
3234 	case BROADWELL:
3235 		/* rankcfgr isn't used */
3236 		pvt->info.get_tolm = haswell_get_tolm;
3237 		pvt->info.get_tohm = haswell_get_tohm;
3238 		pvt->info.dram_rule = ibridge_dram_rule;
3239 		pvt->info.get_memory_type = haswell_get_memory_type;
3240 		pvt->info.get_node_id = haswell_get_node_id;
3241 		pvt->info.rir_limit = haswell_rir_limit;
3242 		pvt->info.sad_limit = sad_limit;
3243 		pvt->info.interleave_mode = interleave_mode;
3244 		pvt->info.dram_attr = dram_attr;
3245 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3246 		pvt->info.interleave_list = ibridge_interleave_list;
3247 		pvt->info.max_interleave = ARRAY_SIZE(ibridge_interleave_list);
3248 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3249 		pvt->info.get_width = broadwell_get_width;
3250 
3251 		/* Store pci devices at mci for faster access */
3252 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3253 		if (unlikely(rc < 0))
3254 			goto fail0;
3255 		get_source_id(mci);
3256 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3257 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3258 		break;
3259 	case KNIGHTS_LANDING:
3260 		/* pvt->info.rankcfgr == ??? */
3261 		pvt->info.get_tolm = knl_get_tolm;
3262 		pvt->info.get_tohm = knl_get_tohm;
3263 		pvt->info.dram_rule = knl_dram_rule;
3264 		pvt->info.get_memory_type = knl_get_memory_type;
3265 		pvt->info.get_node_id = knl_get_node_id;
3266 		pvt->info.rir_limit = NULL;
3267 		pvt->info.sad_limit = knl_sad_limit;
3268 		pvt->info.interleave_mode = knl_interleave_mode;
3269 		pvt->info.dram_attr = dram_attr_knl;
3270 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3271 		pvt->info.interleave_list = knl_interleave_list;
3272 		pvt->info.max_interleave = ARRAY_SIZE(knl_interleave_list);
3273 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3274 		pvt->info.get_width = knl_get_width;
3275 
3276 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3277 		if (unlikely(rc < 0))
3278 			goto fail0;
3279 		get_source_id(mci);
3280 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3281 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3282 		break;
3283 	}
3284 
3285 	if (!mci->ctl_name) {
3286 		rc = -ENOMEM;
3287 		goto fail0;
3288 	}
3289 
3290 	/* Get dimm basic config and the memory layout */
3291 	rc = get_dimm_config(mci);
3292 	if (rc < 0) {
3293 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3294 		goto fail;
3295 	}
3296 	get_memory_layout(mci);
3297 
3298 	/* record ptr to the generic device */
3299 	mci->pdev = &pdev->dev;
3300 
3301 	/* add this new MC control structure to EDAC's list of MCs */
3302 	if (unlikely(edac_mc_add_mc(mci))) {
3303 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3304 		rc = -EINVAL;
3305 		goto fail;
3306 	}
3307 
3308 	return 0;
3309 
3310 fail:
3311 	kfree(mci->ctl_name);
3312 fail0:
3313 	edac_mc_free(mci);
3314 	sbridge_dev->mci = NULL;
3315 	return rc;
3316 }
3317 
3318 #define ICPU(model, table) \
3319 	{ X86_VENDOR_INTEL, 6, model, 0, (unsigned long)&table }
3320 
3321 static const struct x86_cpu_id sbridge_cpuids[] = {
3322 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
3323 	ICPU(INTEL_FAM6_IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
3324 	ICPU(INTEL_FAM6_HASWELL_X,	  pci_dev_descr_haswell_table),
3325 	ICPU(INTEL_FAM6_BROADWELL_X,	  pci_dev_descr_broadwell_table),
3326 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, pci_dev_descr_broadwell_table),
3327 	ICPU(INTEL_FAM6_XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3328 	ICPU(INTEL_FAM6_XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3329 	{ }
3330 };
3331 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3332 
3333 /*
3334  *	sbridge_probe	Get all devices and register memory controllers
3335  *			present.
3336  *	return:
3337  *		0 for FOUND a device
3338  *		< 0 for error code
3339  */
3340 
3341 static int sbridge_probe(const struct x86_cpu_id *id)
3342 {
3343 	int rc = -ENODEV;
3344 	u8 mc, num_mc = 0;
3345 	struct sbridge_dev *sbridge_dev;
3346 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3347 
3348 	/* get the pci devices we want to reserve for our use */
3349 	rc = sbridge_get_all_devices(&num_mc, ptable);
3350 
3351 	if (unlikely(rc < 0)) {
3352 		edac_dbg(0, "couldn't get all devices\n");
3353 		goto fail0;
3354 	}
3355 
3356 	mc = 0;
3357 
3358 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3359 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3360 			 mc, mc + 1, num_mc);
3361 
3362 		sbridge_dev->mc = mc++;
3363 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3364 		if (unlikely(rc < 0))
3365 			goto fail1;
3366 	}
3367 
3368 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3369 
3370 	return 0;
3371 
3372 fail1:
3373 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3374 		sbridge_unregister_mci(sbridge_dev);
3375 
3376 	sbridge_put_all_devices();
3377 fail0:
3378 	return rc;
3379 }
3380 
3381 /*
3382  *	sbridge_remove	cleanup
3383  *
3384  */
3385 static void sbridge_remove(void)
3386 {
3387 	struct sbridge_dev *sbridge_dev;
3388 
3389 	edac_dbg(0, "\n");
3390 
3391 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3392 		sbridge_unregister_mci(sbridge_dev);
3393 
3394 	/* Release PCI resources */
3395 	sbridge_put_all_devices();
3396 }
3397 
3398 /*
3399  *	sbridge_init		Module entry function
3400  *			Try to initialize this module for its devices
3401  */
3402 static int __init sbridge_init(void)
3403 {
3404 	const struct x86_cpu_id *id;
3405 	const char *owner;
3406 	int rc;
3407 
3408 	edac_dbg(2, "\n");
3409 
3410 	owner = edac_get_owner();
3411 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3412 		return -EBUSY;
3413 
3414 	id = x86_match_cpu(sbridge_cpuids);
3415 	if (!id)
3416 		return -ENODEV;
3417 
3418 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3419 	opstate_init();
3420 
3421 	rc = sbridge_probe(id);
3422 
3423 	if (rc >= 0) {
3424 		mce_register_decode_chain(&sbridge_mce_dec);
3425 		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3426 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3427 		return 0;
3428 	}
3429 
3430 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3431 		      rc);
3432 
3433 	return rc;
3434 }
3435 
3436 /*
3437  *	sbridge_exit()	Module exit function
3438  *			Unregister the driver
3439  */
3440 static void __exit sbridge_exit(void)
3441 {
3442 	edac_dbg(2, "\n");
3443 	sbridge_remove();
3444 	mce_unregister_decode_chain(&sbridge_mce_dec);
3445 }
3446 
3447 module_init(sbridge_init);
3448 module_exit(sbridge_exit);
3449 
3450 module_param(edac_op_state, int, 0444);
3451 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3452 
3453 MODULE_LICENSE("GPL");
3454 MODULE_AUTHOR("Mauro Carvalho Chehab");
3455 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3456 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3457 		   SBRIDGE_REVISION);
3458