xref: /openbmc/linux/drivers/edac/sb_edac.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor family Sandy Bridge.
5  *
6  * This file may be distributed under the terms of the
7  * GNU General Public License version 2 only.
8  *
9  * Copyright (c) 2011 by:
10  *	 Mauro Carvalho Chehab
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <linux/mod_devicetable.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/intel-family.h>
27 #include <asm/processor.h>
28 #include <asm/mce.h>
29 
30 #include "edac_module.h"
31 
32 /* Static vars */
33 static LIST_HEAD(sbridge_edac_list);
34 
35 /*
36  * Alter this version for the module when modifications are made
37  */
38 #define SBRIDGE_REVISION    " Ver: 1.1.2 "
39 #define EDAC_MOD_STR	    "sb_edac"
40 
41 /*
42  * Debug macros
43  */
44 #define sbridge_printk(level, fmt, arg...)			\
45 	edac_printk(level, "sbridge", fmt, ##arg)
46 
47 #define sbridge_mc_printk(mci, level, fmt, arg...)		\
48 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 
50 /*
51  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52  */
53 #define GET_BITFIELD(v, lo, hi)	\
54 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 
56 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
57 static const u32 sbridge_dram_rule[] = {
58 	0x80, 0x88, 0x90, 0x98, 0xa0,
59 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
60 };
61 
62 static const u32 ibridge_dram_rule[] = {
63 	0x60, 0x68, 0x70, 0x78, 0x80,
64 	0x88, 0x90, 0x98, 0xa0,	0xa8,
65 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
66 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
67 };
68 
69 static const u32 knl_dram_rule[] = {
70 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
71 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
72 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
73 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
74 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
75 };
76 
77 #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
78 #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
79 
80 static char *show_dram_attr(u32 attr)
81 {
82 	switch (attr) {
83 		case 0:
84 			return "DRAM";
85 		case 1:
86 			return "MMCFG";
87 		case 2:
88 			return "NXM";
89 		default:
90 			return "unknown";
91 	}
92 }
93 
94 static const u32 sbridge_interleave_list[] = {
95 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
96 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
97 };
98 
99 static const u32 ibridge_interleave_list[] = {
100 	0x64, 0x6c, 0x74, 0x7c, 0x84,
101 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
102 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
103 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
104 };
105 
106 static const u32 knl_interleave_list[] = {
107 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
108 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
109 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
110 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
111 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
112 };
113 #define MAX_INTERLEAVE							\
114 	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
115 	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
116 		     ARRAY_SIZE(knl_interleave_list))))
117 
118 struct interleave_pkg {
119 	unsigned char start;
120 	unsigned char end;
121 };
122 
123 static const struct interleave_pkg sbridge_interleave_pkg[] = {
124 	{ 0, 2 },
125 	{ 3, 5 },
126 	{ 8, 10 },
127 	{ 11, 13 },
128 	{ 16, 18 },
129 	{ 19, 21 },
130 	{ 24, 26 },
131 	{ 27, 29 },
132 };
133 
134 static const struct interleave_pkg ibridge_interleave_pkg[] = {
135 	{ 0, 3 },
136 	{ 4, 7 },
137 	{ 8, 11 },
138 	{ 12, 15 },
139 	{ 16, 19 },
140 	{ 20, 23 },
141 	{ 24, 27 },
142 	{ 28, 31 },
143 };
144 
145 static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
146 			  int interleave)
147 {
148 	return GET_BITFIELD(reg, table[interleave].start,
149 			    table[interleave].end);
150 }
151 
152 /* Devices 12 Function 7 */
153 
154 #define TOLM		0x80
155 #define TOHM		0x84
156 #define HASWELL_TOLM	0xd0
157 #define HASWELL_TOHM_0	0xd4
158 #define HASWELL_TOHM_1	0xd8
159 #define KNL_TOLM	0xd0
160 #define KNL_TOHM_0	0xd4
161 #define KNL_TOHM_1	0xd8
162 
163 #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
164 #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
165 
166 /* Device 13 Function 6 */
167 
168 #define SAD_TARGET	0xf0
169 
170 #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
171 
172 #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
173 
174 #define SAD_CONTROL	0xf4
175 
176 /* Device 14 function 0 */
177 
178 static const u32 tad_dram_rule[] = {
179 	0x40, 0x44, 0x48, 0x4c,
180 	0x50, 0x54, 0x58, 0x5c,
181 	0x60, 0x64, 0x68, 0x6c,
182 };
183 #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
184 
185 #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
186 #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
187 #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
188 #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
189 #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
190 #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
191 #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
192 
193 /* Device 15, function 0 */
194 
195 #define MCMTR			0x7c
196 #define KNL_MCMTR		0x624
197 
198 #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
199 #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
200 #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
201 
202 /* Device 15, function 1 */
203 
204 #define RASENABLES		0xac
205 #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
206 
207 /* Device 15, functions 2-5 */
208 
209 static const int mtr_regs[] = {
210 	0x80, 0x84, 0x88,
211 };
212 
213 static const int knl_mtr_reg = 0xb60;
214 
215 #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
216 #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
217 #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
218 #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
219 #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
220 
221 static const u32 tad_ch_nilv_offset[] = {
222 	0x90, 0x94, 0x98, 0x9c,
223 	0xa0, 0xa4, 0xa8, 0xac,
224 	0xb0, 0xb4, 0xb8, 0xbc,
225 };
226 #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
227 #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
228 
229 static const u32 rir_way_limit[] = {
230 	0x108, 0x10c, 0x110, 0x114, 0x118,
231 };
232 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
233 
234 #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
235 #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
236 
237 #define MAX_RIR_WAY	8
238 
239 static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
240 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
241 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
242 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
243 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
244 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
245 };
246 
247 #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
248 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
249 
250 #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
251 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
252 
253 /* Device 16, functions 2-7 */
254 
255 /*
256  * FIXME: Implement the error count reads directly
257  */
258 
259 static const u32 correrrcnt[] = {
260 	0x104, 0x108, 0x10c, 0x110,
261 };
262 
263 #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
264 #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
266 #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
267 
268 static const u32 correrrthrsld[] = {
269 	0x11c, 0x120, 0x124, 0x128,
270 };
271 
272 #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
273 #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
274 
275 
276 /* Device 17, function 0 */
277 
278 #define SB_RANK_CFG_A		0x0328
279 
280 #define IB_RANK_CFG_A		0x0320
281 
282 /*
283  * sbridge structs
284  */
285 
286 #define NUM_CHANNELS		6	/* Max channels per MC */
287 #define MAX_DIMMS		3	/* Max DIMMS per channel */
288 #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
289 #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
290 #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
291 #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
292 
293 enum type {
294 	SANDY_BRIDGE,
295 	IVY_BRIDGE,
296 	HASWELL,
297 	BROADWELL,
298 	KNIGHTS_LANDING,
299 };
300 
301 enum domain {
302 	IMC0 = 0,
303 	IMC1,
304 	SOCK,
305 };
306 
307 enum mirroring_mode {
308 	NON_MIRRORING,
309 	ADDR_RANGE_MIRRORING,
310 	FULL_MIRRORING,
311 };
312 
313 struct sbridge_pvt;
314 struct sbridge_info {
315 	enum type	type;
316 	u32		mcmtr;
317 	u32		rankcfgr;
318 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
319 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
320 	u64		(*rir_limit)(u32 reg);
321 	u64		(*sad_limit)(u32 reg);
322 	u32		(*interleave_mode)(u32 reg);
323 	u32		(*dram_attr)(u32 reg);
324 	const u32	*dram_rule;
325 	const u32	*interleave_list;
326 	const struct interleave_pkg *interleave_pkg;
327 	u8		max_sad;
328 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
329 	u8		(*get_ha)(u8 bank);
330 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
331 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
332 	struct pci_dev	*pci_vtd;
333 };
334 
335 struct sbridge_channel {
336 	u32		ranks;
337 	u32		dimms;
338 };
339 
340 struct pci_id_descr {
341 	int			dev_id;
342 	int			optional;
343 	enum domain		dom;
344 };
345 
346 struct pci_id_table {
347 	const struct pci_id_descr	*descr;
348 	int				n_devs_per_imc;
349 	int				n_devs_per_sock;
350 	int				n_imcs_per_sock;
351 	enum type			type;
352 };
353 
354 struct sbridge_dev {
355 	struct list_head	list;
356 	int			seg;
357 	u8			bus, mc;
358 	u8			node_id, source_id;
359 	struct pci_dev		**pdev;
360 	enum domain		dom;
361 	int			n_devs;
362 	int			i_devs;
363 	struct mem_ctl_info	*mci;
364 };
365 
366 struct knl_pvt {
367 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
368 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
369 	struct pci_dev          *pci_mc0;
370 	struct pci_dev          *pci_mc1;
371 	struct pci_dev          *pci_mc0_misc;
372 	struct pci_dev          *pci_mc1_misc;
373 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
374 };
375 
376 struct sbridge_pvt {
377 	/* Devices per socket */
378 	struct pci_dev		*pci_ddrio;
379 	struct pci_dev		*pci_sad0, *pci_sad1;
380 	struct pci_dev		*pci_br0, *pci_br1;
381 	/* Devices per memory controller */
382 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
383 	struct pci_dev		*pci_tad[NUM_CHANNELS];
384 
385 	struct sbridge_dev	*sbridge_dev;
386 
387 	struct sbridge_info	info;
388 	struct sbridge_channel	channel[NUM_CHANNELS];
389 
390 	/* Memory type detection */
391 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
392 	bool			is_chan_hash;
393 	enum mirroring_mode	mirror_mode;
394 
395 	/* Memory description */
396 	u64			tolm, tohm;
397 	struct knl_pvt knl;
398 };
399 
400 #define PCI_DESCR(device_id, opt, domain)	\
401 	.dev_id = (device_id),		\
402 	.optional = opt,	\
403 	.dom = domain
404 
405 static const struct pci_id_descr pci_dev_descr_sbridge[] = {
406 		/* Processor Home Agent */
407 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
408 
409 		/* Memory controller */
410 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
411 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
412 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
413 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
414 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
415 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
416 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
417 
418 		/* System Address Decoder */
419 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
420 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
421 
422 		/* Broadcast Registers */
423 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
424 };
425 
426 #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
427 	.descr = A,			\
428 	.n_devs_per_imc = N,	\
429 	.n_devs_per_sock = ARRAY_SIZE(A),	\
430 	.n_imcs_per_sock = M,	\
431 	.type = T			\
432 }
433 
434 static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
435 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
436 	{0,}			/* 0 terminated list. */
437 };
438 
439 /* This changes depending if 1HA or 2HA:
440  * 1HA:
441  *	0x0eb8 (17.0) is DDRIO0
442  * 2HA:
443  *	0x0ebc (17.4) is DDRIO0
444  */
445 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
446 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
447 
448 /* pci ids */
449 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
450 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
451 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
452 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
453 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
454 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
455 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
456 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
457 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
458 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
459 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
460 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
461 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
462 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
463 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
464 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
465 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
466 
467 static const struct pci_id_descr pci_dev_descr_ibridge[] = {
468 		/* Processor Home Agent */
469 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
470 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
471 
472 		/* Memory controller */
473 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
474 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
475 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
476 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
477 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
478 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
479 
480 		/* Optional, mode 2HA */
481 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
482 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
483 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
484 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
485 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
486 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
487 
488 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
489 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
490 
491 		/* System Address Decoder */
492 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
493 
494 		/* Broadcast Registers */
495 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
496 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
497 
498 };
499 
500 static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
501 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
502 	{0,}			/* 0 terminated list. */
503 };
504 
505 /* Haswell support */
506 /* EN processor:
507  *	- 1 IMC
508  *	- 3 DDR3 channels, 2 DPC per channel
509  * EP processor:
510  *	- 1 or 2 IMC
511  *	- 4 DDR4 channels, 3 DPC per channel
512  * EP 4S processor:
513  *	- 2 IMC
514  *	- 4 DDR4 channels, 3 DPC per channel
515  * EX processor:
516  *	- 2 IMC
517  *	- each IMC interfaces with a SMI 2 channel
518  *	- each SMI channel interfaces with a scalable memory buffer
519  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
520  */
521 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
522 #define HASWELL_HASYSDEFEATURE2 0x84
523 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
524 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
525 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
526 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
527 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
528 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
529 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
530 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
531 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
532 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
533 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
534 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
535 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
536 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
537 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
538 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
539 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
540 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
541 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
542 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
543 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
544 static const struct pci_id_descr pci_dev_descr_haswell[] = {
545 	/* first item must be the HA */
546 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
547 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
548 
549 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
550 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
551 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
552 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
553 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
554 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
555 
556 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
557 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
558 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
559 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
560 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
561 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
562 
563 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
564 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
565 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
566 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
567 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
568 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
569 };
570 
571 static const struct pci_id_table pci_dev_descr_haswell_table[] = {
572 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
573 	{0,}			/* 0 terminated list. */
574 };
575 
576 /* Knight's Landing Support */
577 /*
578  * KNL's memory channels are swizzled between memory controllers.
579  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
580  */
581 #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
582 
583 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
584 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
585 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
586 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
587 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
588 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
589 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
590 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
591 /* SAD target - 1-29-1 (1 of these) */
592 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
593 /* Caching / Home Agent */
594 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
595 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
596 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
597 
598 /*
599  * KNL differs from SB, IB, and Haswell in that it has multiple
600  * instances of the same device with the same device ID, so we handle that
601  * by creating as many copies in the table as we expect to find.
602  * (Like device ID must be grouped together.)
603  */
604 
605 static const struct pci_id_descr pci_dev_descr_knl[] = {
606 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
607 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
608 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
609 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
610 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
611 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
612 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
613 };
614 
615 static const struct pci_id_table pci_dev_descr_knl_table[] = {
616 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
617 	{0,}
618 };
619 
620 /*
621  * Broadwell support
622  *
623  * DE processor:
624  *	- 1 IMC
625  *	- 2 DDR3 channels, 2 DPC per channel
626  * EP processor:
627  *	- 1 or 2 IMC
628  *	- 4 DDR4 channels, 3 DPC per channel
629  * EP 4S processor:
630  *	- 2 IMC
631  *	- 4 DDR4 channels, 3 DPC per channel
632  * EX processor:
633  *	- 2 IMC
634  *	- each IMC interfaces with a SMI 2 channel
635  *	- each SMI channel interfaces with a scalable memory buffer
636  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
637  */
638 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
639 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
640 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
641 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
642 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
643 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
644 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
645 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
646 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
647 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
648 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
649 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
650 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
651 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
652 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
653 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
654 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
655 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
656 
657 static const struct pci_id_descr pci_dev_descr_broadwell[] = {
658 	/* first item must be the HA */
659 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
660 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
661 
662 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
663 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
664 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
665 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
666 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
667 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
668 
669 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
670 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
671 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
672 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
673 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
674 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
675 
676 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
677 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
678 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
679 };
680 
681 static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
682 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
683 	{0,}			/* 0 terminated list. */
684 };
685 
686 
687 /****************************************************************************
688 			Ancillary status routines
689  ****************************************************************************/
690 
691 static inline int numrank(enum type type, u32 mtr)
692 {
693 	int ranks = (1 << RANK_CNT_BITS(mtr));
694 	int max = 4;
695 
696 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
697 		max = 8;
698 
699 	if (ranks > max) {
700 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
701 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
702 		return -EINVAL;
703 	}
704 
705 	return ranks;
706 }
707 
708 static inline int numrow(u32 mtr)
709 {
710 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
711 
712 	if (rows < 13 || rows > 18) {
713 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
714 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
715 		return -EINVAL;
716 	}
717 
718 	return 1 << rows;
719 }
720 
721 static inline int numcol(u32 mtr)
722 {
723 	int cols = (COL_WIDTH_BITS(mtr) + 10);
724 
725 	if (cols > 12) {
726 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
727 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
728 		return -EINVAL;
729 	}
730 
731 	return 1 << cols;
732 }
733 
734 static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
735 					   int multi_bus,
736 					   struct sbridge_dev *prev)
737 {
738 	struct sbridge_dev *sbridge_dev;
739 
740 	/*
741 	 * If we have devices scattered across several busses that pertain
742 	 * to the same memory controller, we'll lump them all together.
743 	 */
744 	if (multi_bus) {
745 		return list_first_entry_or_null(&sbridge_edac_list,
746 				struct sbridge_dev, list);
747 	}
748 
749 	sbridge_dev = list_entry(prev ? prev->list.next
750 				      : sbridge_edac_list.next, struct sbridge_dev, list);
751 
752 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
753 		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
754 				(dom == SOCK || dom == sbridge_dev->dom))
755 			return sbridge_dev;
756 	}
757 
758 	return NULL;
759 }
760 
761 static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
762 					     const struct pci_id_table *table)
763 {
764 	struct sbridge_dev *sbridge_dev;
765 
766 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
767 	if (!sbridge_dev)
768 		return NULL;
769 
770 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
771 				    sizeof(*sbridge_dev->pdev),
772 				    GFP_KERNEL);
773 	if (!sbridge_dev->pdev) {
774 		kfree(sbridge_dev);
775 		return NULL;
776 	}
777 
778 	sbridge_dev->seg = seg;
779 	sbridge_dev->bus = bus;
780 	sbridge_dev->dom = dom;
781 	sbridge_dev->n_devs = table->n_devs_per_imc;
782 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
783 
784 	return sbridge_dev;
785 }
786 
787 static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
788 {
789 	list_del(&sbridge_dev->list);
790 	kfree(sbridge_dev->pdev);
791 	kfree(sbridge_dev);
792 }
793 
794 static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
795 {
796 	u32 reg;
797 
798 	/* Address range is 32:28 */
799 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
800 	return GET_TOLM(reg);
801 }
802 
803 static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
804 {
805 	u32 reg;
806 
807 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
808 	return GET_TOHM(reg);
809 }
810 
811 static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
812 {
813 	u32 reg;
814 
815 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
816 
817 	return GET_TOLM(reg);
818 }
819 
820 static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
821 {
822 	u32 reg;
823 
824 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
825 
826 	return GET_TOHM(reg);
827 }
828 
829 static u64 rir_limit(u32 reg)
830 {
831 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
832 }
833 
834 static u64 sad_limit(u32 reg)
835 {
836 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
837 }
838 
839 static u32 interleave_mode(u32 reg)
840 {
841 	return GET_BITFIELD(reg, 1, 1);
842 }
843 
844 static u32 dram_attr(u32 reg)
845 {
846 	return GET_BITFIELD(reg, 2, 3);
847 }
848 
849 static u64 knl_sad_limit(u32 reg)
850 {
851 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
852 }
853 
854 static u32 knl_interleave_mode(u32 reg)
855 {
856 	return GET_BITFIELD(reg, 1, 2);
857 }
858 
859 static const char * const knl_intlv_mode[] = {
860 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
861 };
862 
863 static const char *get_intlv_mode_str(u32 reg, enum type t)
864 {
865 	if (t == KNIGHTS_LANDING)
866 		return knl_intlv_mode[knl_interleave_mode(reg)];
867 	else
868 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
869 }
870 
871 static u32 dram_attr_knl(u32 reg)
872 {
873 	return GET_BITFIELD(reg, 3, 4);
874 }
875 
876 
877 static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
878 {
879 	u32 reg;
880 	enum mem_type mtype;
881 
882 	if (pvt->pci_ddrio) {
883 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
884 				      &reg);
885 		if (GET_BITFIELD(reg, 11, 11))
886 			/* FIXME: Can also be LRDIMM */
887 			mtype = MEM_RDDR3;
888 		else
889 			mtype = MEM_DDR3;
890 	} else
891 		mtype = MEM_UNKNOWN;
892 
893 	return mtype;
894 }
895 
896 static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
897 {
898 	u32 reg;
899 	bool registered = false;
900 	enum mem_type mtype = MEM_UNKNOWN;
901 
902 	if (!pvt->pci_ddrio)
903 		goto out;
904 
905 	pci_read_config_dword(pvt->pci_ddrio,
906 			      HASWELL_DDRCRCLKCONTROLS, &reg);
907 	/* Is_Rdimm */
908 	if (GET_BITFIELD(reg, 16, 16))
909 		registered = true;
910 
911 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
912 	if (GET_BITFIELD(reg, 14, 14)) {
913 		if (registered)
914 			mtype = MEM_RDDR4;
915 		else
916 			mtype = MEM_DDR4;
917 	} else {
918 		if (registered)
919 			mtype = MEM_RDDR3;
920 		else
921 			mtype = MEM_DDR3;
922 	}
923 
924 out:
925 	return mtype;
926 }
927 
928 static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
929 {
930 	/* for KNL value is fixed */
931 	return DEV_X16;
932 }
933 
934 static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
935 {
936 	/* there's no way to figure out */
937 	return DEV_UNKNOWN;
938 }
939 
940 static enum dev_type __ibridge_get_width(u32 mtr)
941 {
942 	enum dev_type type;
943 
944 	switch (mtr) {
945 	case 3:
946 		type = DEV_UNKNOWN;
947 		break;
948 	case 2:
949 		type = DEV_X16;
950 		break;
951 	case 1:
952 		type = DEV_X8;
953 		break;
954 	case 0:
955 		type = DEV_X4;
956 		break;
957 	}
958 
959 	return type;
960 }
961 
962 static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
963 {
964 	/*
965 	 * ddr3_width on the documentation but also valid for DDR4 on
966 	 * Haswell
967 	 */
968 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
969 }
970 
971 static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
972 {
973 	/* ddr3_width on the documentation but also valid for DDR4 */
974 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
975 }
976 
977 static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
978 {
979 	/* DDR4 RDIMMS and LRDIMMS are supported */
980 	return MEM_RDDR4;
981 }
982 
983 static u8 get_node_id(struct sbridge_pvt *pvt)
984 {
985 	u32 reg;
986 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
987 	return GET_BITFIELD(reg, 0, 2);
988 }
989 
990 static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
991 {
992 	u32 reg;
993 
994 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
995 	return GET_BITFIELD(reg, 0, 3);
996 }
997 
998 static u8 knl_get_node_id(struct sbridge_pvt *pvt)
999 {
1000 	u32 reg;
1001 
1002 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
1003 	return GET_BITFIELD(reg, 0, 2);
1004 }
1005 
1006 /*
1007  * Use the reporting bank number to determine which memory
1008  * controller (also known as "ha" for "home agent"). Sandy
1009  * Bridge only has one memory controller per socket, so the
1010  * answer is always zero.
1011  */
1012 static u8 sbridge_get_ha(u8 bank)
1013 {
1014 	return 0;
1015 }
1016 
1017 /*
1018  * On Ivy Bridge, Haswell and Broadwell the error may be in a
1019  * home agent bank (7, 8), or one of the per-channel memory
1020  * controller banks (9 .. 16).
1021  */
1022 static u8 ibridge_get_ha(u8 bank)
1023 {
1024 	switch (bank) {
1025 	case 7 ... 8:
1026 		return bank - 7;
1027 	case 9 ... 16:
1028 		return (bank - 9) / 4;
1029 	default:
1030 		return 0xff;
1031 	}
1032 }
1033 
1034 /* Not used, but included for safety/symmetry */
1035 static u8 knl_get_ha(u8 bank)
1036 {
1037 	return 0xff;
1038 }
1039 
1040 static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
1041 {
1042 	u32 reg;
1043 
1044 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
1045 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1046 }
1047 
1048 static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
1049 {
1050 	u64 rc;
1051 	u32 reg;
1052 
1053 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
1054 	rc = GET_BITFIELD(reg, 26, 31);
1055 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
1056 	rc = ((reg << 6) | rc) << 26;
1057 
1058 	return rc | 0x1ffffff;
1059 }
1060 
1061 static u64 knl_get_tolm(struct sbridge_pvt *pvt)
1062 {
1063 	u32 reg;
1064 
1065 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
1066 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
1067 }
1068 
1069 static u64 knl_get_tohm(struct sbridge_pvt *pvt)
1070 {
1071 	u64 rc;
1072 	u32 reg_lo, reg_hi;
1073 
1074 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
1075 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
1076 	rc = ((u64)reg_hi << 32) | reg_lo;
1077 	return rc | 0x3ffffff;
1078 }
1079 
1080 
1081 static u64 haswell_rir_limit(u32 reg)
1082 {
1083 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
1084 }
1085 
1086 static inline u8 sad_pkg_socket(u8 pkg)
1087 {
1088 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1089 	return ((pkg >> 3) << 2) | (pkg & 0x3);
1090 }
1091 
1092 static inline u8 sad_pkg_ha(u8 pkg)
1093 {
1094 	return (pkg >> 2) & 0x1;
1095 }
1096 
1097 static int haswell_chan_hash(int idx, u64 addr)
1098 {
1099 	int i;
1100 
1101 	/*
1102 	 * XOR even bits from 12:26 to bit0 of idx,
1103 	 *     odd bits from 13:27 to bit1
1104 	 */
1105 	for (i = 12; i < 28; i += 2)
1106 		idx ^= (addr >> i) & 3;
1107 
1108 	return idx;
1109 }
1110 
1111 /* Low bits of TAD limit, and some metadata. */
1112 static const u32 knl_tad_dram_limit_lo[] = {
1113 	0x400, 0x500, 0x600, 0x700,
1114 	0x800, 0x900, 0xa00, 0xb00,
1115 };
1116 
1117 /* Low bits of TAD offset. */
1118 static const u32 knl_tad_dram_offset_lo[] = {
1119 	0x404, 0x504, 0x604, 0x704,
1120 	0x804, 0x904, 0xa04, 0xb04,
1121 };
1122 
1123 /* High 16 bits of TAD limit and offset. */
1124 static const u32 knl_tad_dram_hi[] = {
1125 	0x408, 0x508, 0x608, 0x708,
1126 	0x808, 0x908, 0xa08, 0xb08,
1127 };
1128 
1129 /* Number of ways a tad entry is interleaved. */
1130 static const u32 knl_tad_ways[] = {
1131 	8, 6, 4, 3, 2, 1,
1132 };
1133 
1134 /*
1135  * Retrieve the n'th Target Address Decode table entry
1136  * from the memory controller's TAD table.
1137  *
1138  * @pvt:	driver private data
1139  * @entry:	which entry you want to retrieve
1140  * @mc:		which memory controller (0 or 1)
1141  * @offset:	output tad range offset
1142  * @limit:	output address of first byte above tad range
1143  * @ways:	output number of interleave ways
1144  *
1145  * The offset value has curious semantics.  It's a sort of running total
1146  * of the sizes of all the memory regions that aren't mapped in this
1147  * tad table.
1148  */
1149 static int knl_get_tad(const struct sbridge_pvt *pvt,
1150 		const int entry,
1151 		const int mc,
1152 		u64 *offset,
1153 		u64 *limit,
1154 		int *ways)
1155 {
1156 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
1157 	struct pci_dev *pci_mc;
1158 	int way_id;
1159 
1160 	switch (mc) {
1161 	case 0:
1162 		pci_mc = pvt->knl.pci_mc0;
1163 		break;
1164 	case 1:
1165 		pci_mc = pvt->knl.pci_mc1;
1166 		break;
1167 	default:
1168 		WARN_ON(1);
1169 		return -EINVAL;
1170 	}
1171 
1172 	pci_read_config_dword(pci_mc,
1173 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
1174 	pci_read_config_dword(pci_mc,
1175 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
1176 	pci_read_config_dword(pci_mc,
1177 			knl_tad_dram_hi[entry], &reg_hi);
1178 
1179 	/* Is this TAD entry enabled? */
1180 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
1181 		return -ENODEV;
1182 
1183 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
1184 
1185 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
1186 		*ways = knl_tad_ways[way_id];
1187 	} else {
1188 		*ways = 0;
1189 		sbridge_printk(KERN_ERR,
1190 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
1191 				way_id);
1192 		return -ENODEV;
1193 	}
1194 
1195 	/*
1196 	 * The least significant 6 bits of base and limit are truncated.
1197 	 * For limit, we fill the missing bits with 1s.
1198 	 */
1199 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
1200 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
1201 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
1202 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
1203 
1204 	return 0;
1205 }
1206 
1207 /* Determine which memory controller is responsible for a given channel. */
1208 static int knl_channel_mc(int channel)
1209 {
1210 	WARN_ON(channel < 0 || channel >= 6);
1211 
1212 	return channel < 3 ? 1 : 0;
1213 }
1214 
1215 /*
1216  * Get the Nth entry from EDC_ROUTE_TABLE register.
1217  * (This is the per-tile mapping of logical interleave targets to
1218  *  physical EDC modules.)
1219  *
1220  * entry 0: 0:2
1221  *       1: 3:5
1222  *       2: 6:8
1223  *       3: 9:11
1224  *       4: 12:14
1225  *       5: 15:17
1226  *       6: 18:20
1227  *       7: 21:23
1228  * reserved: 24:31
1229  */
1230 static u32 knl_get_edc_route(int entry, u32 reg)
1231 {
1232 	WARN_ON(entry >= KNL_MAX_EDCS);
1233 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
1234 }
1235 
1236 /*
1237  * Get the Nth entry from MC_ROUTE_TABLE register.
1238  * (This is the per-tile mapping of logical interleave targets to
1239  *  physical DRAM channels modules.)
1240  *
1241  * entry 0: mc 0:2   channel 18:19
1242  *       1: mc 3:5   channel 20:21
1243  *       2: mc 6:8   channel 22:23
1244  *       3: mc 9:11  channel 24:25
1245  *       4: mc 12:14 channel 26:27
1246  *       5: mc 15:17 channel 28:29
1247  * reserved: 30:31
1248  *
1249  * Though we have 3 bits to identify the MC, we should only see
1250  * the values 0 or 1.
1251  */
1252 
1253 static u32 knl_get_mc_route(int entry, u32 reg)
1254 {
1255 	int mc, chan;
1256 
1257 	WARN_ON(entry >= KNL_MAX_CHANNELS);
1258 
1259 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
1260 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
1261 
1262 	return knl_channel_remap(mc, chan);
1263 }
1264 
1265 /*
1266  * Render the EDC_ROUTE register in human-readable form.
1267  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1268  */
1269 static void knl_show_edc_route(u32 reg, char *s)
1270 {
1271 	int i;
1272 
1273 	for (i = 0; i < KNL_MAX_EDCS; i++) {
1274 		s[i*2] = knl_get_edc_route(i, reg) + '0';
1275 		s[i*2+1] = '-';
1276 	}
1277 
1278 	s[KNL_MAX_EDCS*2 - 1] = '\0';
1279 }
1280 
1281 /*
1282  * Render the MC_ROUTE register in human-readable form.
1283  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1284  */
1285 static void knl_show_mc_route(u32 reg, char *s)
1286 {
1287 	int i;
1288 
1289 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
1290 		s[i*2] = knl_get_mc_route(i, reg) + '0';
1291 		s[i*2+1] = '-';
1292 	}
1293 
1294 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
1295 }
1296 
1297 #define KNL_EDC_ROUTE 0xb8
1298 #define KNL_MC_ROUTE 0xb4
1299 
1300 /* Is this dram rule backed by regular DRAM in flat mode? */
1301 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1302 
1303 /* Is this dram rule cached? */
1304 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1305 
1306 /* Is this rule backed by edc ? */
1307 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1308 
1309 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1310 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1311 
1312 /* Is this rule mod3? */
1313 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1314 
1315 /*
1316  * Figure out how big our RAM modules are.
1317  *
1318  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1319  * have to figure this out from the SAD rules, interleave lists, route tables,
1320  * and TAD rules.
1321  *
1322  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1323  * inspect the TAD rules to figure out how large the SAD regions really are.
1324  *
1325  * When we know the real size of a SAD region and how many ways it's
1326  * interleaved, we know the individual contribution of each channel to
1327  * TAD is size/ways.
1328  *
1329  * Finally, we have to check whether each channel participates in each SAD
1330  * region.
1331  *
1332  * Fortunately, KNL only supports one DIMM per channel, so once we know how
1333  * much memory the channel uses, we know the DIMM is at least that large.
1334  * (The BIOS might possibly choose not to map all available memory, in which
1335  * case we will underreport the size of the DIMM.)
1336  *
1337  * In theory, we could try to determine the EDC sizes as well, but that would
1338  * only work in flat mode, not in cache mode.
1339  *
1340  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1341  *            elements)
1342  */
1343 static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
1344 {
1345 	u64 sad_base, sad_size, sad_limit = 0;
1346 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
1347 	int sad_rule = 0;
1348 	int tad_rule = 0;
1349 	int intrlv_ways, tad_ways;
1350 	u32 first_pkg, pkg;
1351 	int i;
1352 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
1353 	u32 dram_rule, interleave_reg;
1354 	u32 mc_route_reg[KNL_MAX_CHAS];
1355 	u32 edc_route_reg[KNL_MAX_CHAS];
1356 	int edram_only;
1357 	char edc_route_string[KNL_MAX_EDCS*2];
1358 	char mc_route_string[KNL_MAX_CHANNELS*2];
1359 	int cur_reg_start;
1360 	int mc;
1361 	int channel;
1362 	int participants[KNL_MAX_CHANNELS];
1363 
1364 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
1365 		mc_sizes[i] = 0;
1366 
1367 	/* Read the EDC route table in each CHA. */
1368 	cur_reg_start = 0;
1369 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1370 		pci_read_config_dword(pvt->knl.pci_cha[i],
1371 				KNL_EDC_ROUTE, &edc_route_reg[i]);
1372 
1373 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
1374 			knl_show_edc_route(edc_route_reg[i-1],
1375 					edc_route_string);
1376 			if (cur_reg_start == i-1)
1377 				edac_dbg(0, "edc route table for CHA %d: %s\n",
1378 					cur_reg_start, edc_route_string);
1379 			else
1380 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1381 					cur_reg_start, i-1, edc_route_string);
1382 			cur_reg_start = i;
1383 		}
1384 	}
1385 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
1386 	if (cur_reg_start == i-1)
1387 		edac_dbg(0, "edc route table for CHA %d: %s\n",
1388 			cur_reg_start, edc_route_string);
1389 	else
1390 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1391 			cur_reg_start, i-1, edc_route_string);
1392 
1393 	/* Read the MC route table in each CHA. */
1394 	cur_reg_start = 0;
1395 	for (i = 0; i < KNL_MAX_CHAS; i++) {
1396 		pci_read_config_dword(pvt->knl.pci_cha[i],
1397 			KNL_MC_ROUTE, &mc_route_reg[i]);
1398 
1399 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
1400 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1401 			if (cur_reg_start == i-1)
1402 				edac_dbg(0, "mc route table for CHA %d: %s\n",
1403 					cur_reg_start, mc_route_string);
1404 			else
1405 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1406 					cur_reg_start, i-1, mc_route_string);
1407 			cur_reg_start = i;
1408 		}
1409 	}
1410 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
1411 	if (cur_reg_start == i-1)
1412 		edac_dbg(0, "mc route table for CHA %d: %s\n",
1413 			cur_reg_start, mc_route_string);
1414 	else
1415 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1416 			cur_reg_start, i-1, mc_route_string);
1417 
1418 	/* Process DRAM rules */
1419 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
1420 		/* previous limit becomes the new base */
1421 		sad_base = sad_limit;
1422 
1423 		pci_read_config_dword(pvt->pci_sad0,
1424 			pvt->info.dram_rule[sad_rule], &dram_rule);
1425 
1426 		if (!DRAM_RULE_ENABLE(dram_rule))
1427 			break;
1428 
1429 		edram_only = KNL_EDRAM_ONLY(dram_rule);
1430 
1431 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
1432 		sad_size = sad_limit - sad_base;
1433 
1434 		pci_read_config_dword(pvt->pci_sad0,
1435 			pvt->info.interleave_list[sad_rule], &interleave_reg);
1436 
1437 		/*
1438 		 * Find out how many ways this dram rule is interleaved.
1439 		 * We stop when we see the first channel again.
1440 		 */
1441 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
1442 						interleave_reg, 0);
1443 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
1444 			pkg = sad_pkg(pvt->info.interleave_pkg,
1445 						interleave_reg, intrlv_ways);
1446 
1447 			if ((pkg & 0x8) == 0) {
1448 				/*
1449 				 * 0 bit means memory is non-local,
1450 				 * which KNL doesn't support
1451 				 */
1452 				edac_dbg(0, "Unexpected interleave target %d\n",
1453 					pkg);
1454 				return -1;
1455 			}
1456 
1457 			if (pkg == first_pkg)
1458 				break;
1459 		}
1460 		if (KNL_MOD3(dram_rule))
1461 			intrlv_ways *= 3;
1462 
1463 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1464 			sad_rule,
1465 			sad_base,
1466 			sad_limit,
1467 			intrlv_ways,
1468 			edram_only ? ", EDRAM" : "");
1469 
1470 		/*
1471 		 * Find out how big the SAD region really is by iterating
1472 		 * over TAD tables (SAD regions may contain holes).
1473 		 * Each memory controller might have a different TAD table, so
1474 		 * we have to look at both.
1475 		 *
1476 		 * Livespace is the memory that's mapped in this TAD table,
1477 		 * deadspace is the holes (this could be the MMIO hole, or it
1478 		 * could be memory that's mapped by the other TAD table but
1479 		 * not this one).
1480 		 */
1481 		for (mc = 0; mc < 2; mc++) {
1482 			sad_actual_size[mc] = 0;
1483 			tad_livespace = 0;
1484 			for (tad_rule = 0;
1485 					tad_rule < ARRAY_SIZE(
1486 						knl_tad_dram_limit_lo);
1487 					tad_rule++) {
1488 				if (knl_get_tad(pvt,
1489 						tad_rule,
1490 						mc,
1491 						&tad_deadspace,
1492 						&tad_limit,
1493 						&tad_ways))
1494 					break;
1495 
1496 				tad_size = (tad_limit+1) -
1497 					(tad_livespace + tad_deadspace);
1498 				tad_livespace += tad_size;
1499 				tad_base = (tad_limit+1) - tad_size;
1500 
1501 				if (tad_base < sad_base) {
1502 					if (tad_limit > sad_base)
1503 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1504 				} else if (tad_base < sad_limit) {
1505 					if (tad_limit+1 > sad_limit) {
1506 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1507 					} else {
1508 						/* TAD region is completely inside SAD region */
1509 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1510 							tad_rule, tad_base,
1511 							tad_limit, tad_size,
1512 							mc);
1513 						sad_actual_size[mc] += tad_size;
1514 					}
1515 				}
1516 				tad_base = tad_limit+1;
1517 			}
1518 		}
1519 
1520 		for (mc = 0; mc < 2; mc++) {
1521 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1522 				mc, sad_actual_size[mc], sad_actual_size[mc]);
1523 		}
1524 
1525 		/* Ignore EDRAM rule */
1526 		if (edram_only)
1527 			continue;
1528 
1529 		/* Figure out which channels participate in interleave. */
1530 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
1531 			participants[channel] = 0;
1532 
1533 		/* For each channel, does at least one CHA have
1534 		 * this channel mapped to the given target?
1535 		 */
1536 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1537 			int target;
1538 			int cha;
1539 
1540 			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
1541 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
1542 					if (knl_get_mc_route(target,
1543 						mc_route_reg[cha]) == channel
1544 						&& !participants[channel]) {
1545 						participants[channel] = 1;
1546 						break;
1547 					}
1548 				}
1549 			}
1550 		}
1551 
1552 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
1553 			mc = knl_channel_mc(channel);
1554 			if (participants[channel]) {
1555 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1556 					channel,
1557 					sad_actual_size[mc]/intrlv_ways,
1558 					sad_rule);
1559 				mc_sizes[channel] +=
1560 					sad_actual_size[mc]/intrlv_ways;
1561 			}
1562 		}
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 static void get_source_id(struct mem_ctl_info *mci)
1569 {
1570 	struct sbridge_pvt *pvt = mci->pvt_info;
1571 	u32 reg;
1572 
1573 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
1574 	    pvt->info.type == KNIGHTS_LANDING)
1575 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
1576 	else
1577 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
1578 
1579 	if (pvt->info.type == KNIGHTS_LANDING)
1580 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
1581 	else
1582 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
1583 }
1584 
1585 static int __populate_dimms(struct mem_ctl_info *mci,
1586 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
1587 			    enum edac_type mode)
1588 {
1589 	struct sbridge_pvt *pvt = mci->pvt_info;
1590 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
1591 							 : NUM_CHANNELS;
1592 	unsigned int i, j, banks, ranks, rows, cols, npages;
1593 	struct dimm_info *dimm;
1594 	enum mem_type mtype;
1595 	u64 size;
1596 
1597 	mtype = pvt->info.get_memory_type(pvt);
1598 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
1599 		edac_dbg(0, "Memory is registered\n");
1600 	else if (mtype == MEM_UNKNOWN)
1601 		edac_dbg(0, "Cannot determine memory type\n");
1602 	else
1603 		edac_dbg(0, "Memory is unregistered\n");
1604 
1605 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
1606 		banks = 16;
1607 	else
1608 		banks = 8;
1609 
1610 	for (i = 0; i < channels; i++) {
1611 		u32 mtr;
1612 
1613 		int max_dimms_per_channel;
1614 
1615 		if (pvt->info.type == KNIGHTS_LANDING) {
1616 			max_dimms_per_channel = 1;
1617 			if (!pvt->knl.pci_channel[i])
1618 				continue;
1619 		} else {
1620 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
1621 			if (!pvt->pci_tad[i])
1622 				continue;
1623 		}
1624 
1625 		for (j = 0; j < max_dimms_per_channel; j++) {
1626 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0);
1627 			if (pvt->info.type == KNIGHTS_LANDING) {
1628 				pci_read_config_dword(pvt->knl.pci_channel[i],
1629 					knl_mtr_reg, &mtr);
1630 			} else {
1631 				pci_read_config_dword(pvt->pci_tad[i],
1632 					mtr_regs[j], &mtr);
1633 			}
1634 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
1635 			if (IS_DIMM_PRESENT(mtr)) {
1636 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
1637 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
1638 						       pvt->sbridge_dev->source_id,
1639 						       pvt->sbridge_dev->dom, i);
1640 					return -ENODEV;
1641 				}
1642 				pvt->channel[i].dimms++;
1643 
1644 				ranks = numrank(pvt->info.type, mtr);
1645 
1646 				if (pvt->info.type == KNIGHTS_LANDING) {
1647 					/* For DDR4, this is fixed. */
1648 					cols = 1 << 10;
1649 					rows = knl_mc_sizes[i] /
1650 						((u64) cols * ranks * banks * 8);
1651 				} else {
1652 					rows = numrow(mtr);
1653 					cols = numcol(mtr);
1654 				}
1655 
1656 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
1657 				npages = MiB_TO_PAGES(size);
1658 
1659 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1660 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
1661 					 size, npages,
1662 					 banks, ranks, rows, cols);
1663 
1664 				dimm->nr_pages = npages;
1665 				dimm->grain = 32;
1666 				dimm->dtype = pvt->info.get_width(pvt, mtr);
1667 				dimm->mtype = mtype;
1668 				dimm->edac_mode = mode;
1669 				snprintf(dimm->label, sizeof(dimm->label),
1670 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1671 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
1672 			}
1673 		}
1674 	}
1675 
1676 	return 0;
1677 }
1678 
1679 static int get_dimm_config(struct mem_ctl_info *mci)
1680 {
1681 	struct sbridge_pvt *pvt = mci->pvt_info;
1682 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
1683 	enum edac_type mode;
1684 	u32 reg;
1685 
1686 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
1687 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1688 		 pvt->sbridge_dev->mc,
1689 		 pvt->sbridge_dev->node_id,
1690 		 pvt->sbridge_dev->source_id);
1691 
1692 	/* KNL doesn't support mirroring or lockstep,
1693 	 * and is always closed page
1694 	 */
1695 	if (pvt->info.type == KNIGHTS_LANDING) {
1696 		mode = EDAC_S4ECD4ED;
1697 		pvt->mirror_mode = NON_MIRRORING;
1698 		pvt->is_cur_addr_mirrored = false;
1699 
1700 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
1701 			return -1;
1702 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
1703 			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
1704 			return -ENODEV;
1705 		}
1706 	} else {
1707 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
1708 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
1709 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
1710 				return -ENODEV;
1711 			}
1712 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
1713 			if (GET_BITFIELD(reg, 28, 28)) {
1714 				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
1715 				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
1716 				goto next;
1717 			}
1718 		}
1719 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
1720 			edac_dbg(0, "Failed to read RASENABLES register\n");
1721 			return -ENODEV;
1722 		}
1723 		if (IS_MIRROR_ENABLED(reg)) {
1724 			pvt->mirror_mode = FULL_MIRRORING;
1725 			edac_dbg(0, "Full memory mirroring is enabled\n");
1726 		} else {
1727 			pvt->mirror_mode = NON_MIRRORING;
1728 			edac_dbg(0, "Memory mirroring is disabled\n");
1729 		}
1730 
1731 next:
1732 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
1733 			edac_dbg(0, "Failed to read MCMTR register\n");
1734 			return -ENODEV;
1735 		}
1736 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
1737 			edac_dbg(0, "Lockstep is enabled\n");
1738 			mode = EDAC_S8ECD8ED;
1739 			pvt->is_lockstep = true;
1740 		} else {
1741 			edac_dbg(0, "Lockstep is disabled\n");
1742 			mode = EDAC_S4ECD4ED;
1743 			pvt->is_lockstep = false;
1744 		}
1745 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
1746 			edac_dbg(0, "address map is on closed page mode\n");
1747 			pvt->is_close_pg = true;
1748 		} else {
1749 			edac_dbg(0, "address map is on open page mode\n");
1750 			pvt->is_close_pg = false;
1751 		}
1752 	}
1753 
1754 	return __populate_dimms(mci, knl_mc_sizes, mode);
1755 }
1756 
1757 static void get_memory_layout(const struct mem_ctl_info *mci)
1758 {
1759 	struct sbridge_pvt *pvt = mci->pvt_info;
1760 	int i, j, k, n_sads, n_tads, sad_interl;
1761 	u32 reg;
1762 	u64 limit, prv = 0;
1763 	u64 tmp_mb;
1764 	u32 gb, mb;
1765 	u32 rir_way;
1766 
1767 	/*
1768 	 * Step 1) Get TOLM/TOHM ranges
1769 	 */
1770 
1771 	pvt->tolm = pvt->info.get_tolm(pvt);
1772 	tmp_mb = (1 + pvt->tolm) >> 20;
1773 
1774 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1775 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1776 		gb, (mb*1000)/1024, (u64)pvt->tolm);
1777 
1778 	/* Address range is already 45:25 */
1779 	pvt->tohm = pvt->info.get_tohm(pvt);
1780 	tmp_mb = (1 + pvt->tohm) >> 20;
1781 
1782 	gb = div_u64_rem(tmp_mb, 1024, &mb);
1783 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1784 		gb, (mb*1000)/1024, (u64)pvt->tohm);
1785 
1786 	/*
1787 	 * Step 2) Get SAD range and SAD Interleave list
1788 	 * TAD registers contain the interleave wayness. However, it
1789 	 * seems simpler to just discover it indirectly, with the
1790 	 * algorithm bellow.
1791 	 */
1792 	prv = 0;
1793 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1794 		/* SAD_LIMIT Address range is 45:26 */
1795 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1796 				      &reg);
1797 		limit = pvt->info.sad_limit(reg);
1798 
1799 		if (!DRAM_RULE_ENABLE(reg))
1800 			continue;
1801 
1802 		if (limit <= prv)
1803 			break;
1804 
1805 		tmp_mb = (limit + 1) >> 20;
1806 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1807 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1808 			 n_sads,
1809 			 show_dram_attr(pvt->info.dram_attr(reg)),
1810 			 gb, (mb*1000)/1024,
1811 			 ((u64)tmp_mb) << 20L,
1812 			 get_intlv_mode_str(reg, pvt->info.type),
1813 			 reg);
1814 		prv = limit;
1815 
1816 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1817 				      &reg);
1818 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
1819 		for (j = 0; j < 8; j++) {
1820 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
1821 			if (j > 0 && sad_interl == pkg)
1822 				break;
1823 
1824 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1825 				 n_sads, j, pkg);
1826 		}
1827 	}
1828 
1829 	if (pvt->info.type == KNIGHTS_LANDING)
1830 		return;
1831 
1832 	/*
1833 	 * Step 3) Get TAD range
1834 	 */
1835 	prv = 0;
1836 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
1837 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
1838 		limit = TAD_LIMIT(reg);
1839 		if (limit <= prv)
1840 			break;
1841 		tmp_mb = (limit + 1) >> 20;
1842 
1843 		gb = div_u64_rem(tmp_mb, 1024, &mb);
1844 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1845 			 n_tads, gb, (mb*1000)/1024,
1846 			 ((u64)tmp_mb) << 20L,
1847 			 (u32)(1 << TAD_SOCK(reg)),
1848 			 (u32)TAD_CH(reg) + 1,
1849 			 (u32)TAD_TGT0(reg),
1850 			 (u32)TAD_TGT1(reg),
1851 			 (u32)TAD_TGT2(reg),
1852 			 (u32)TAD_TGT3(reg),
1853 			 reg);
1854 		prv = limit;
1855 	}
1856 
1857 	/*
1858 	 * Step 4) Get TAD offsets, per each channel
1859 	 */
1860 	for (i = 0; i < NUM_CHANNELS; i++) {
1861 		if (!pvt->channel[i].dimms)
1862 			continue;
1863 		for (j = 0; j < n_tads; j++) {
1864 			pci_read_config_dword(pvt->pci_tad[i],
1865 					      tad_ch_nilv_offset[j],
1866 					      &reg);
1867 			tmp_mb = TAD_OFFSET(reg) >> 20;
1868 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1869 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1870 				 i, j,
1871 				 gb, (mb*1000)/1024,
1872 				 ((u64)tmp_mb) << 20L,
1873 				 reg);
1874 		}
1875 	}
1876 
1877 	/*
1878 	 * Step 6) Get RIR Wayness/Limit, per each channel
1879 	 */
1880 	for (i = 0; i < NUM_CHANNELS; i++) {
1881 		if (!pvt->channel[i].dimms)
1882 			continue;
1883 		for (j = 0; j < MAX_RIR_RANGES; j++) {
1884 			pci_read_config_dword(pvt->pci_tad[i],
1885 					      rir_way_limit[j],
1886 					      &reg);
1887 
1888 			if (!IS_RIR_VALID(reg))
1889 				continue;
1890 
1891 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
1892 			rir_way = 1 << RIR_WAY(reg);
1893 			gb = div_u64_rem(tmp_mb, 1024, &mb);
1894 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1895 				 i, j,
1896 				 gb, (mb*1000)/1024,
1897 				 ((u64)tmp_mb) << 20L,
1898 				 rir_way,
1899 				 reg);
1900 
1901 			for (k = 0; k < rir_way; k++) {
1902 				pci_read_config_dword(pvt->pci_tad[i],
1903 						      rir_offset[j][k],
1904 						      &reg);
1905 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
1906 
1907 				gb = div_u64_rem(tmp_mb, 1024, &mb);
1908 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1909 					 i, j, k,
1910 					 gb, (mb*1000)/1024,
1911 					 ((u64)tmp_mb) << 20L,
1912 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
1913 					 reg);
1914 			}
1915 		}
1916 	}
1917 }
1918 
1919 static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
1920 {
1921 	struct sbridge_dev *sbridge_dev;
1922 
1923 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
1924 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
1925 			return sbridge_dev->mci;
1926 	}
1927 	return NULL;
1928 }
1929 
1930 static int get_memory_error_data(struct mem_ctl_info *mci,
1931 				 u64 addr,
1932 				 u8 *socket, u8 *ha,
1933 				 long *channel_mask,
1934 				 u8 *rank,
1935 				 char **area_type, char *msg)
1936 {
1937 	struct mem_ctl_info	*new_mci;
1938 	struct sbridge_pvt *pvt = mci->pvt_info;
1939 	struct pci_dev		*pci_ha;
1940 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
1941 	int			sad_interl, idx, base_ch;
1942 	int			interleave_mode, shiftup = 0;
1943 	unsigned int		sad_interleave[MAX_INTERLEAVE];
1944 	u32			reg, dram_rule;
1945 	u8			ch_way, sck_way, pkg, sad_ha = 0;
1946 	u32			tad_offset;
1947 	u32			rir_way;
1948 	u32			mb, gb;
1949 	u64			ch_addr, offset, limit = 0, prv = 0;
1950 
1951 
1952 	/*
1953 	 * Step 0) Check if the address is at special memory ranges
1954 	 * The check bellow is probably enough to fill all cases where
1955 	 * the error is not inside a memory, except for the legacy
1956 	 * range (e. g. VGA addresses). It is unlikely, however, that the
1957 	 * memory controller would generate an error on that range.
1958 	 */
1959 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
1960 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
1961 		return -EINVAL;
1962 	}
1963 	if (addr >= (u64)pvt->tohm) {
1964 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
1965 		return -EINVAL;
1966 	}
1967 
1968 	/*
1969 	 * Step 1) Get socket
1970 	 */
1971 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
1972 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
1973 				      &reg);
1974 
1975 		if (!DRAM_RULE_ENABLE(reg))
1976 			continue;
1977 
1978 		limit = pvt->info.sad_limit(reg);
1979 		if (limit <= prv) {
1980 			sprintf(msg, "Can't discover the memory socket");
1981 			return -EINVAL;
1982 		}
1983 		if  (addr <= limit)
1984 			break;
1985 		prv = limit;
1986 	}
1987 	if (n_sads == pvt->info.max_sad) {
1988 		sprintf(msg, "Can't discover the memory socket");
1989 		return -EINVAL;
1990 	}
1991 	dram_rule = reg;
1992 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
1993 	interleave_mode = pvt->info.interleave_mode(dram_rule);
1994 
1995 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
1996 			      &reg);
1997 
1998 	if (pvt->info.type == SANDY_BRIDGE) {
1999 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
2000 		for (sad_way = 0; sad_way < 8; sad_way++) {
2001 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
2002 			if (sad_way > 0 && sad_interl == pkg)
2003 				break;
2004 			sad_interleave[sad_way] = pkg;
2005 			edac_dbg(0, "SAD interleave #%d: %d\n",
2006 				 sad_way, sad_interleave[sad_way]);
2007 		}
2008 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2009 			 pvt->sbridge_dev->mc,
2010 			 n_sads,
2011 			 addr,
2012 			 limit,
2013 			 sad_way + 7,
2014 			 !interleave_mode ? "" : "XOR[18:16]");
2015 		if (interleave_mode)
2016 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
2017 		else
2018 			idx = (addr >> 6) & 7;
2019 		switch (sad_way) {
2020 		case 1:
2021 			idx = 0;
2022 			break;
2023 		case 2:
2024 			idx = idx & 1;
2025 			break;
2026 		case 4:
2027 			idx = idx & 3;
2028 			break;
2029 		case 8:
2030 			break;
2031 		default:
2032 			sprintf(msg, "Can't discover socket interleave");
2033 			return -EINVAL;
2034 		}
2035 		*socket = sad_interleave[idx];
2036 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2037 			 idx, sad_way, *socket);
2038 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
2039 		int bits, a7mode = A7MODE(dram_rule);
2040 
2041 		if (a7mode) {
2042 			/* A7 mode swaps P9 with P6 */
2043 			bits = GET_BITFIELD(addr, 7, 8) << 1;
2044 			bits |= GET_BITFIELD(addr, 9, 9);
2045 		} else
2046 			bits = GET_BITFIELD(addr, 6, 8);
2047 
2048 		if (interleave_mode == 0) {
2049 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
2050 			idx = GET_BITFIELD(addr, 16, 18);
2051 			idx ^= bits;
2052 		} else
2053 			idx = bits;
2054 
2055 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2056 		*socket = sad_pkg_socket(pkg);
2057 		sad_ha = sad_pkg_ha(pkg);
2058 
2059 		if (a7mode) {
2060 			/* MCChanShiftUpEnable */
2061 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
2062 			shiftup = GET_BITFIELD(reg, 22, 22);
2063 		}
2064 
2065 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2066 			 idx, *socket, sad_ha, shiftup);
2067 	} else {
2068 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2069 		idx = (addr >> 6) & 7;
2070 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
2071 		*socket = sad_pkg_socket(pkg);
2072 		sad_ha = sad_pkg_ha(pkg);
2073 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2074 			 idx, *socket, sad_ha);
2075 	}
2076 
2077 	*ha = sad_ha;
2078 
2079 	/*
2080 	 * Move to the proper node structure, in order to access the
2081 	 * right PCI registers
2082 	 */
2083 	new_mci = get_mci_for_node_id(*socket, sad_ha);
2084 	if (!new_mci) {
2085 		sprintf(msg, "Struct for socket #%u wasn't initialized",
2086 			*socket);
2087 		return -EINVAL;
2088 	}
2089 	mci = new_mci;
2090 	pvt = mci->pvt_info;
2091 
2092 	/*
2093 	 * Step 2) Get memory channel
2094 	 */
2095 	prv = 0;
2096 	pci_ha = pvt->pci_ha;
2097 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
2098 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
2099 		limit = TAD_LIMIT(reg);
2100 		if (limit <= prv) {
2101 			sprintf(msg, "Can't discover the memory channel");
2102 			return -EINVAL;
2103 		}
2104 		if  (addr <= limit)
2105 			break;
2106 		prv = limit;
2107 	}
2108 	if (n_tads == MAX_TAD) {
2109 		sprintf(msg, "Can't discover the memory channel");
2110 		return -EINVAL;
2111 	}
2112 
2113 	ch_way = TAD_CH(reg) + 1;
2114 	sck_way = TAD_SOCK(reg);
2115 
2116 	if (ch_way == 3)
2117 		idx = addr >> 6;
2118 	else {
2119 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
2120 		if (pvt->is_chan_hash)
2121 			idx = haswell_chan_hash(idx, addr);
2122 	}
2123 	idx = idx % ch_way;
2124 
2125 	/*
2126 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2127 	 */
2128 	switch (idx) {
2129 	case 0:
2130 		base_ch = TAD_TGT0(reg);
2131 		break;
2132 	case 1:
2133 		base_ch = TAD_TGT1(reg);
2134 		break;
2135 	case 2:
2136 		base_ch = TAD_TGT2(reg);
2137 		break;
2138 	case 3:
2139 		base_ch = TAD_TGT3(reg);
2140 		break;
2141 	default:
2142 		sprintf(msg, "Can't discover the TAD target");
2143 		return -EINVAL;
2144 	}
2145 	*channel_mask = 1 << base_ch;
2146 
2147 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
2148 
2149 	if (pvt->mirror_mode == FULL_MIRRORING ||
2150 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
2151 		*channel_mask |= 1 << ((base_ch + 2) % 4);
2152 		switch(ch_way) {
2153 		case 2:
2154 		case 4:
2155 			sck_xch = (1 << sck_way) * (ch_way >> 1);
2156 			break;
2157 		default:
2158 			sprintf(msg, "Invalid mirror set. Can't decode addr");
2159 			return -EINVAL;
2160 		}
2161 
2162 		pvt->is_cur_addr_mirrored = true;
2163 	} else {
2164 		sck_xch = (1 << sck_way) * ch_way;
2165 		pvt->is_cur_addr_mirrored = false;
2166 	}
2167 
2168 	if (pvt->is_lockstep)
2169 		*channel_mask |= 1 << ((base_ch + 1) % 4);
2170 
2171 	offset = TAD_OFFSET(tad_offset);
2172 
2173 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2174 		 n_tads,
2175 		 addr,
2176 		 limit,
2177 		 sck_way,
2178 		 ch_way,
2179 		 offset,
2180 		 idx,
2181 		 base_ch,
2182 		 *channel_mask);
2183 
2184 	/* Calculate channel address */
2185 	/* Remove the TAD offset */
2186 
2187 	if (offset > addr) {
2188 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2189 			offset, addr);
2190 		return -EINVAL;
2191 	}
2192 
2193 	ch_addr = addr - offset;
2194 	ch_addr >>= (6 + shiftup);
2195 	ch_addr /= sck_xch;
2196 	ch_addr <<= (6 + shiftup);
2197 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
2198 
2199 	/*
2200 	 * Step 3) Decode rank
2201 	 */
2202 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
2203 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
2204 
2205 		if (!IS_RIR_VALID(reg))
2206 			continue;
2207 
2208 		limit = pvt->info.rir_limit(reg);
2209 		gb = div_u64_rem(limit >> 20, 1024, &mb);
2210 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2211 			 n_rir,
2212 			 gb, (mb*1000)/1024,
2213 			 limit,
2214 			 1 << RIR_WAY(reg));
2215 		if  (ch_addr <= limit)
2216 			break;
2217 	}
2218 	if (n_rir == MAX_RIR_RANGES) {
2219 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
2220 			ch_addr);
2221 		return -EINVAL;
2222 	}
2223 	rir_way = RIR_WAY(reg);
2224 
2225 	if (pvt->is_close_pg)
2226 		idx = (ch_addr >> 6);
2227 	else
2228 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
2229 	idx %= 1 << rir_way;
2230 
2231 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
2232 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
2233 
2234 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2235 		 n_rir,
2236 		 ch_addr,
2237 		 limit,
2238 		 rir_way,
2239 		 idx);
2240 
2241 	return 0;
2242 }
2243 
2244 static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
2245 					  const struct mce *m, u8 *socket,
2246 					  u8 *ha, long *channel_mask,
2247 					  char *msg)
2248 {
2249 	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
2250 	struct mem_ctl_info *new_mci;
2251 	struct sbridge_pvt *pvt;
2252 	struct pci_dev *pci_ha;
2253 	bool tad0;
2254 
2255 	if (channel >= NUM_CHANNELS) {
2256 		sprintf(msg, "Invalid channel 0x%x", channel);
2257 		return -EINVAL;
2258 	}
2259 
2260 	pvt = mci->pvt_info;
2261 	if (!pvt->info.get_ha) {
2262 		sprintf(msg, "No get_ha()");
2263 		return -EINVAL;
2264 	}
2265 	*ha = pvt->info.get_ha(m->bank);
2266 	if (*ha != 0 && *ha != 1) {
2267 		sprintf(msg, "Impossible bank %d", m->bank);
2268 		return -EINVAL;
2269 	}
2270 
2271 	*socket = m->socketid;
2272 	new_mci = get_mci_for_node_id(*socket, *ha);
2273 	if (!new_mci) {
2274 		strcpy(msg, "mci socket got corrupted!");
2275 		return -EINVAL;
2276 	}
2277 
2278 	pvt = new_mci->pvt_info;
2279 	pci_ha = pvt->pci_ha;
2280 	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
2281 	tad0 = m->addr <= TAD_LIMIT(reg);
2282 
2283 	*channel_mask = 1 << channel;
2284 	if (pvt->mirror_mode == FULL_MIRRORING ||
2285 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
2286 		*channel_mask |= 1 << ((channel + 2) % 4);
2287 		pvt->is_cur_addr_mirrored = true;
2288 	} else {
2289 		pvt->is_cur_addr_mirrored = false;
2290 	}
2291 
2292 	if (pvt->is_lockstep)
2293 		*channel_mask |= 1 << ((channel + 1) % 4);
2294 
2295 	return 0;
2296 }
2297 
2298 /****************************************************************************
2299 	Device initialization routines: put/get, init/exit
2300  ****************************************************************************/
2301 
2302 /*
2303  *	sbridge_put_all_devices	'put' all the devices that we have
2304  *				reserved via 'get'
2305  */
2306 static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
2307 {
2308 	int i;
2309 
2310 	edac_dbg(0, "\n");
2311 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2312 		struct pci_dev *pdev = sbridge_dev->pdev[i];
2313 		if (!pdev)
2314 			continue;
2315 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2316 			 pdev->bus->number,
2317 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2318 		pci_dev_put(pdev);
2319 	}
2320 }
2321 
2322 static void sbridge_put_all_devices(void)
2323 {
2324 	struct sbridge_dev *sbridge_dev, *tmp;
2325 
2326 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
2327 		sbridge_put_devices(sbridge_dev);
2328 		free_sbridge_dev(sbridge_dev);
2329 	}
2330 }
2331 
2332 static int sbridge_get_onedevice(struct pci_dev **prev,
2333 				 u8 *num_mc,
2334 				 const struct pci_id_table *table,
2335 				 const unsigned devno,
2336 				 const int multi_bus)
2337 {
2338 	struct sbridge_dev *sbridge_dev = NULL;
2339 	const struct pci_id_descr *dev_descr = &table->descr[devno];
2340 	struct pci_dev *pdev = NULL;
2341 	int seg = 0;
2342 	u8 bus = 0;
2343 	int i = 0;
2344 
2345 	sbridge_printk(KERN_DEBUG,
2346 		"Seeking for: PCI ID %04x:%04x\n",
2347 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2348 
2349 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
2350 			      dev_descr->dev_id, *prev);
2351 
2352 	if (!pdev) {
2353 		if (*prev) {
2354 			*prev = pdev;
2355 			return 0;
2356 		}
2357 
2358 		if (dev_descr->optional)
2359 			return 0;
2360 
2361 		/* if the HA wasn't found */
2362 		if (devno == 0)
2363 			return -ENODEV;
2364 
2365 		sbridge_printk(KERN_INFO,
2366 			"Device not found: %04x:%04x\n",
2367 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2368 
2369 		/* End of list, leave */
2370 		return -ENODEV;
2371 	}
2372 	seg = pci_domain_nr(pdev->bus);
2373 	bus = pdev->bus->number;
2374 
2375 next_imc:
2376 	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
2377 				      multi_bus, sbridge_dev);
2378 	if (!sbridge_dev) {
2379 		/* If the HA1 wasn't found, don't create EDAC second memory controller */
2380 		if (dev_descr->dom == IMC1 && devno != 1) {
2381 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
2382 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2383 			pci_dev_put(pdev);
2384 			return 0;
2385 		}
2386 
2387 		if (dev_descr->dom == SOCK)
2388 			goto out_imc;
2389 
2390 		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
2391 		if (!sbridge_dev) {
2392 			pci_dev_put(pdev);
2393 			return -ENOMEM;
2394 		}
2395 		(*num_mc)++;
2396 	}
2397 
2398 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
2399 		sbridge_printk(KERN_ERR,
2400 			"Duplicated device for %04x:%04x\n",
2401 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2402 		pci_dev_put(pdev);
2403 		return -ENODEV;
2404 	}
2405 
2406 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
2407 
2408 	/* pdev belongs to more than one IMC, do extra gets */
2409 	if (++i > 1)
2410 		pci_dev_get(pdev);
2411 
2412 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
2413 		goto next_imc;
2414 
2415 out_imc:
2416 	/* Be sure that the device is enabled */
2417 	if (unlikely(pci_enable_device(pdev) < 0)) {
2418 		sbridge_printk(KERN_ERR,
2419 			"Couldn't enable %04x:%04x\n",
2420 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2421 		return -ENODEV;
2422 	}
2423 
2424 	edac_dbg(0, "Detected %04x:%04x\n",
2425 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
2426 
2427 	/*
2428 	 * As stated on drivers/pci/search.c, the reference count for
2429 	 * @from is always decremented if it is not %NULL. So, as we need
2430 	 * to get all devices up to null, we need to do a get for the device
2431 	 */
2432 	pci_dev_get(pdev);
2433 
2434 	*prev = pdev;
2435 
2436 	return 0;
2437 }
2438 
2439 /*
2440  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2441  *			     devices we want to reference for this driver.
2442  * @num_mc: pointer to the memory controllers count, to be incremented in case
2443  *	    of success.
2444  * @table: model specific table
2445  *
2446  * returns 0 in case of success or error code
2447  */
2448 static int sbridge_get_all_devices(u8 *num_mc,
2449 					const struct pci_id_table *table)
2450 {
2451 	int i, rc;
2452 	struct pci_dev *pdev = NULL;
2453 	int allow_dups = 0;
2454 	int multi_bus = 0;
2455 
2456 	if (table->type == KNIGHTS_LANDING)
2457 		allow_dups = multi_bus = 1;
2458 	while (table && table->descr) {
2459 		for (i = 0; i < table->n_devs_per_sock; i++) {
2460 			if (!allow_dups || i == 0 ||
2461 					table->descr[i].dev_id !=
2462 						table->descr[i-1].dev_id) {
2463 				pdev = NULL;
2464 			}
2465 			do {
2466 				rc = sbridge_get_onedevice(&pdev, num_mc,
2467 							   table, i, multi_bus);
2468 				if (rc < 0) {
2469 					if (i == 0) {
2470 						i = table->n_devs_per_sock;
2471 						break;
2472 					}
2473 					sbridge_put_all_devices();
2474 					return -ENODEV;
2475 				}
2476 			} while (pdev && !allow_dups);
2477 		}
2478 		table++;
2479 	}
2480 
2481 	return 0;
2482 }
2483 
2484 /*
2485  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
2486  * the format: XXXa. So we can convert from a device to the corresponding
2487  * channel like this
2488  */
2489 #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
2490 
2491 static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
2492 				 struct sbridge_dev *sbridge_dev)
2493 {
2494 	struct sbridge_pvt *pvt = mci->pvt_info;
2495 	struct pci_dev *pdev;
2496 	u8 saw_chan_mask = 0;
2497 	int i;
2498 
2499 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2500 		pdev = sbridge_dev->pdev[i];
2501 		if (!pdev)
2502 			continue;
2503 
2504 		switch (pdev->device) {
2505 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
2506 			pvt->pci_sad0 = pdev;
2507 			break;
2508 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
2509 			pvt->pci_sad1 = pdev;
2510 			break;
2511 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
2512 			pvt->pci_br0 = pdev;
2513 			break;
2514 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
2515 			pvt->pci_ha = pdev;
2516 			break;
2517 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
2518 			pvt->pci_ta = pdev;
2519 			break;
2520 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
2521 			pvt->pci_ras = pdev;
2522 			break;
2523 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
2524 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
2525 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
2526 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
2527 		{
2528 			int id = TAD_DEV_TO_CHAN(pdev->device);
2529 			pvt->pci_tad[id] = pdev;
2530 			saw_chan_mask |= 1 << id;
2531 		}
2532 			break;
2533 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
2534 			pvt->pci_ddrio = pdev;
2535 			break;
2536 		default:
2537 			goto error;
2538 		}
2539 
2540 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2541 			 pdev->vendor, pdev->device,
2542 			 sbridge_dev->bus,
2543 			 pdev);
2544 	}
2545 
2546 	/* Check if everything were registered */
2547 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
2548 	    !pvt->pci_ras || !pvt->pci_ta)
2549 		goto enodev;
2550 
2551 	if (saw_chan_mask != 0x0f)
2552 		goto enodev;
2553 	return 0;
2554 
2555 enodev:
2556 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2557 	return -ENODEV;
2558 
2559 error:
2560 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
2561 		       PCI_VENDOR_ID_INTEL, pdev->device);
2562 	return -EINVAL;
2563 }
2564 
2565 static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
2566 				 struct sbridge_dev *sbridge_dev)
2567 {
2568 	struct sbridge_pvt *pvt = mci->pvt_info;
2569 	struct pci_dev *pdev;
2570 	u8 saw_chan_mask = 0;
2571 	int i;
2572 
2573 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2574 		pdev = sbridge_dev->pdev[i];
2575 		if (!pdev)
2576 			continue;
2577 
2578 		switch (pdev->device) {
2579 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
2580 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
2581 			pvt->pci_ha = pdev;
2582 			break;
2583 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
2584 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
2585 			pvt->pci_ta = pdev;
2586 			break;
2587 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
2588 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
2589 			pvt->pci_ras = pdev;
2590 			break;
2591 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
2592 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
2593 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
2594 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
2595 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
2596 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
2597 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
2598 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
2599 		{
2600 			int id = TAD_DEV_TO_CHAN(pdev->device);
2601 			pvt->pci_tad[id] = pdev;
2602 			saw_chan_mask |= 1 << id;
2603 		}
2604 			break;
2605 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
2606 			pvt->pci_ddrio = pdev;
2607 			break;
2608 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
2609 			pvt->pci_ddrio = pdev;
2610 			break;
2611 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
2612 			pvt->pci_sad0 = pdev;
2613 			break;
2614 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
2615 			pvt->pci_br0 = pdev;
2616 			break;
2617 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
2618 			pvt->pci_br1 = pdev;
2619 			break;
2620 		default:
2621 			goto error;
2622 		}
2623 
2624 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2625 			 sbridge_dev->bus,
2626 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2627 			 pdev);
2628 	}
2629 
2630 	/* Check if everything were registered */
2631 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
2632 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
2633 		goto enodev;
2634 
2635 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2636 	    saw_chan_mask != 0x03)   /* -EP */
2637 		goto enodev;
2638 	return 0;
2639 
2640 enodev:
2641 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2642 	return -ENODEV;
2643 
2644 error:
2645 	sbridge_printk(KERN_ERR,
2646 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
2647 			pdev->device);
2648 	return -EINVAL;
2649 }
2650 
2651 static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
2652 				 struct sbridge_dev *sbridge_dev)
2653 {
2654 	struct sbridge_pvt *pvt = mci->pvt_info;
2655 	struct pci_dev *pdev;
2656 	u8 saw_chan_mask = 0;
2657 	int i;
2658 
2659 	/* there's only one device per system; not tied to any bus */
2660 	if (pvt->info.pci_vtd == NULL)
2661 		/* result will be checked later */
2662 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2663 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
2664 						   NULL);
2665 
2666 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2667 		pdev = sbridge_dev->pdev[i];
2668 		if (!pdev)
2669 			continue;
2670 
2671 		switch (pdev->device) {
2672 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
2673 			pvt->pci_sad0 = pdev;
2674 			break;
2675 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
2676 			pvt->pci_sad1 = pdev;
2677 			break;
2678 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
2679 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
2680 			pvt->pci_ha = pdev;
2681 			break;
2682 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
2683 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
2684 			pvt->pci_ta = pdev;
2685 			break;
2686 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
2687 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
2688 			pvt->pci_ras = pdev;
2689 			break;
2690 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
2691 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
2692 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
2693 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
2694 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
2695 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
2696 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
2697 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
2698 		{
2699 			int id = TAD_DEV_TO_CHAN(pdev->device);
2700 			pvt->pci_tad[id] = pdev;
2701 			saw_chan_mask |= 1 << id;
2702 		}
2703 			break;
2704 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
2705 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
2706 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
2707 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
2708 			if (!pvt->pci_ddrio)
2709 				pvt->pci_ddrio = pdev;
2710 			break;
2711 		default:
2712 			break;
2713 		}
2714 
2715 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2716 			 sbridge_dev->bus,
2717 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2718 			 pdev);
2719 	}
2720 
2721 	/* Check if everything were registered */
2722 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2723 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2724 		goto enodev;
2725 
2726 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2727 	    saw_chan_mask != 0x03)   /* -EP */
2728 		goto enodev;
2729 	return 0;
2730 
2731 enodev:
2732 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2733 	return -ENODEV;
2734 }
2735 
2736 static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
2737 				 struct sbridge_dev *sbridge_dev)
2738 {
2739 	struct sbridge_pvt *pvt = mci->pvt_info;
2740 	struct pci_dev *pdev;
2741 	u8 saw_chan_mask = 0;
2742 	int i;
2743 
2744 	/* there's only one device per system; not tied to any bus */
2745 	if (pvt->info.pci_vtd == NULL)
2746 		/* result will be checked later */
2747 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
2748 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
2749 						   NULL);
2750 
2751 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2752 		pdev = sbridge_dev->pdev[i];
2753 		if (!pdev)
2754 			continue;
2755 
2756 		switch (pdev->device) {
2757 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
2758 			pvt->pci_sad0 = pdev;
2759 			break;
2760 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
2761 			pvt->pci_sad1 = pdev;
2762 			break;
2763 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
2764 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
2765 			pvt->pci_ha = pdev;
2766 			break;
2767 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
2768 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
2769 			pvt->pci_ta = pdev;
2770 			break;
2771 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
2772 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
2773 			pvt->pci_ras = pdev;
2774 			break;
2775 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
2776 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
2777 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
2778 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
2779 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
2780 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
2781 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
2782 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
2783 		{
2784 			int id = TAD_DEV_TO_CHAN(pdev->device);
2785 			pvt->pci_tad[id] = pdev;
2786 			saw_chan_mask |= 1 << id;
2787 		}
2788 			break;
2789 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
2790 			pvt->pci_ddrio = pdev;
2791 			break;
2792 		default:
2793 			break;
2794 		}
2795 
2796 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2797 			 sbridge_dev->bus,
2798 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
2799 			 pdev);
2800 	}
2801 
2802 	/* Check if everything were registered */
2803 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
2804 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
2805 		goto enodev;
2806 
2807 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
2808 	    saw_chan_mask != 0x03)   /* -EP */
2809 		goto enodev;
2810 	return 0;
2811 
2812 enodev:
2813 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2814 	return -ENODEV;
2815 }
2816 
2817 static int knl_mci_bind_devs(struct mem_ctl_info *mci,
2818 			struct sbridge_dev *sbridge_dev)
2819 {
2820 	struct sbridge_pvt *pvt = mci->pvt_info;
2821 	struct pci_dev *pdev;
2822 	int dev, func;
2823 
2824 	int i;
2825 	int devidx;
2826 
2827 	for (i = 0; i < sbridge_dev->n_devs; i++) {
2828 		pdev = sbridge_dev->pdev[i];
2829 		if (!pdev)
2830 			continue;
2831 
2832 		/* Extract PCI device and function. */
2833 		dev = (pdev->devfn >> 3) & 0x1f;
2834 		func = pdev->devfn & 0x7;
2835 
2836 		switch (pdev->device) {
2837 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
2838 			if (dev == 8)
2839 				pvt->knl.pci_mc0 = pdev;
2840 			else if (dev == 9)
2841 				pvt->knl.pci_mc1 = pdev;
2842 			else {
2843 				sbridge_printk(KERN_ERR,
2844 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
2845 					dev, func);
2846 				continue;
2847 			}
2848 			break;
2849 
2850 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
2851 			pvt->pci_sad0 = pdev;
2852 			break;
2853 
2854 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
2855 			pvt->pci_sad1 = pdev;
2856 			break;
2857 
2858 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
2859 			/* There are one of these per tile, and range from
2860 			 * 1.14.0 to 1.18.5.
2861 			 */
2862 			devidx = ((dev-14)*8)+func;
2863 
2864 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
2865 				sbridge_printk(KERN_ERR,
2866 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2867 					dev, func);
2868 				continue;
2869 			}
2870 
2871 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
2872 
2873 			pvt->knl.pci_cha[devidx] = pdev;
2874 			break;
2875 
2876 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
2877 			devidx = -1;
2878 
2879 			/*
2880 			 *  MC0 channels 0-2 are device 9 function 2-4,
2881 			 *  MC1 channels 3-5 are device 8 function 2-4.
2882 			 */
2883 
2884 			if (dev == 9)
2885 				devidx = func-2;
2886 			else if (dev == 8)
2887 				devidx = 3 + (func-2);
2888 
2889 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
2890 				sbridge_printk(KERN_ERR,
2891 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2892 					dev, func);
2893 				continue;
2894 			}
2895 
2896 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
2897 			pvt->knl.pci_channel[devidx] = pdev;
2898 			break;
2899 
2900 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
2901 			pvt->knl.pci_mc_info = pdev;
2902 			break;
2903 
2904 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
2905 			pvt->pci_ta = pdev;
2906 			break;
2907 
2908 		default:
2909 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
2910 				pdev->device);
2911 			break;
2912 		}
2913 	}
2914 
2915 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
2916 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
2917 	    !pvt->pci_ta) {
2918 		goto enodev;
2919 	}
2920 
2921 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
2922 		if (!pvt->knl.pci_channel[i]) {
2923 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
2924 			goto enodev;
2925 		}
2926 	}
2927 
2928 	for (i = 0; i < KNL_MAX_CHAS; i++) {
2929 		if (!pvt->knl.pci_cha[i]) {
2930 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
2931 			goto enodev;
2932 		}
2933 	}
2934 
2935 	return 0;
2936 
2937 enodev:
2938 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
2939 	return -ENODEV;
2940 }
2941 
2942 /****************************************************************************
2943 			Error check routines
2944  ****************************************************************************/
2945 
2946 /*
2947  * While Sandy Bridge has error count registers, SMI BIOS read values from
2948  * and resets the counters. So, they are not reliable for the OS to read
2949  * from them. So, we have no option but to just trust on whatever MCE is
2950  * telling us about the errors.
2951  */
2952 static void sbridge_mce_output_error(struct mem_ctl_info *mci,
2953 				    const struct mce *m)
2954 {
2955 	struct mem_ctl_info *new_mci;
2956 	struct sbridge_pvt *pvt = mci->pvt_info;
2957 	enum hw_event_mc_err_type tp_event;
2958 	char *type, *optype, msg[256];
2959 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
2960 	bool overflow = GET_BITFIELD(m->status, 62, 62);
2961 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
2962 	bool recoverable;
2963 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
2964 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
2965 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
2966 	u32 channel = GET_BITFIELD(m->status, 0, 3);
2967 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
2968 	/*
2969 	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
2970 	 * A value 6 is for cache line aligned address, a value 12 is for page
2971 	 * aligned address reported by patrol scrubber.
2972 	 */
2973 	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
2974 	long channel_mask, first_channel;
2975 	u8  rank = 0xff, socket, ha;
2976 	int rc, dimm;
2977 	char *area_type = "DRAM";
2978 
2979 	if (pvt->info.type != SANDY_BRIDGE)
2980 		recoverable = true;
2981 	else
2982 		recoverable = GET_BITFIELD(m->status, 56, 56);
2983 
2984 	if (uncorrected_error) {
2985 		core_err_cnt = 1;
2986 		if (ripv) {
2987 			type = "FATAL";
2988 			tp_event = HW_EVENT_ERR_FATAL;
2989 		} else {
2990 			type = "NON_FATAL";
2991 			tp_event = HW_EVENT_ERR_UNCORRECTED;
2992 		}
2993 	} else {
2994 		type = "CORRECTED";
2995 		tp_event = HW_EVENT_ERR_CORRECTED;
2996 	}
2997 
2998 	/*
2999 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
3000 	 * memory errors should fit in this mask:
3001 	 *	000f 0000 1mmm cccc (binary)
3002 	 * where:
3003 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
3004 	 *	    won't be shown
3005 	 *	mmm = error type
3006 	 *	cccc = channel
3007 	 * If the mask doesn't match, report an error to the parsing logic
3008 	 */
3009 	switch (optypenum) {
3010 	case 0:
3011 		optype = "generic undef request error";
3012 		break;
3013 	case 1:
3014 		optype = "memory read error";
3015 		break;
3016 	case 2:
3017 		optype = "memory write error";
3018 		break;
3019 	case 3:
3020 		optype = "addr/cmd error";
3021 		break;
3022 	case 4:
3023 		optype = "memory scrubbing error";
3024 		break;
3025 	default:
3026 		optype = "reserved";
3027 		break;
3028 	}
3029 
3030 	if (pvt->info.type == KNIGHTS_LANDING) {
3031 		if (channel == 14) {
3032 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3033 				overflow ? " OVERFLOW" : "",
3034 				(uncorrected_error && recoverable)
3035 				? " recoverable" : "",
3036 				mscod, errcode,
3037 				m->bank);
3038 		} else {
3039 			char A = *("A");
3040 
3041 			/*
3042 			 * Reported channel is in range 0-2, so we can't map it
3043 			 * back to mc. To figure out mc we check machine check
3044 			 * bank register that reported this error.
3045 			 * bank15 means mc0 and bank16 means mc1.
3046 			 */
3047 			channel = knl_channel_remap(m->bank == 16, channel);
3048 			channel_mask = 1 << channel;
3049 
3050 			snprintf(msg, sizeof(msg),
3051 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3052 				overflow ? " OVERFLOW" : "",
3053 				(uncorrected_error && recoverable)
3054 				? " recoverable" : " ",
3055 				mscod, errcode, channel, A + channel);
3056 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
3057 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3058 				channel, 0, -1,
3059 				optype, msg);
3060 		}
3061 		return;
3062 	} else if (lsb < 12) {
3063 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
3064 					   &channel_mask, &rank,
3065 					   &area_type, msg);
3066 	} else {
3067 		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
3068 						    &channel_mask, msg);
3069 	}
3070 
3071 	if (rc < 0)
3072 		goto err_parsing;
3073 	new_mci = get_mci_for_node_id(socket, ha);
3074 	if (!new_mci) {
3075 		strcpy(msg, "Error: socket got corrupted!");
3076 		goto err_parsing;
3077 	}
3078 	mci = new_mci;
3079 	pvt = mci->pvt_info;
3080 
3081 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
3082 
3083 	if (rank == 0xff)
3084 		dimm = -1;
3085 	else if (rank < 4)
3086 		dimm = 0;
3087 	else if (rank < 8)
3088 		dimm = 1;
3089 	else
3090 		dimm = 2;
3091 
3092 	/*
3093 	 * FIXME: On some memory configurations (mirror, lockstep), the
3094 	 * Memory Controller can't point the error to a single DIMM. The
3095 	 * EDAC core should be handling the channel mask, in order to point
3096 	 * to the group of dimm's where the error may be happening.
3097 	 */
3098 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
3099 		channel = first_channel;
3100 
3101 	snprintf(msg, sizeof(msg),
3102 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3103 		 overflow ? " OVERFLOW" : "",
3104 		 (uncorrected_error && recoverable) ? " recoverable" : "",
3105 		 area_type,
3106 		 mscod, errcode,
3107 		 socket, ha,
3108 		 channel_mask,
3109 		 rank);
3110 
3111 	edac_dbg(0, "%s\n", msg);
3112 
3113 	/* FIXME: need support for channel mask */
3114 
3115 	if (channel == CHANNEL_UNSPECIFIED)
3116 		channel = -1;
3117 
3118 	/* Call the helper to output message */
3119 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
3120 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
3121 			     channel, dimm, -1,
3122 			     optype, msg);
3123 	return;
3124 err_parsing:
3125 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
3126 			     -1, -1, -1,
3127 			     msg, "");
3128 
3129 }
3130 
3131 /*
3132  * Check that logging is enabled and that this is the right type
3133  * of error for us to handle.
3134  */
3135 static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
3136 				   void *data)
3137 {
3138 	struct mce *mce = (struct mce *)data;
3139 	struct mem_ctl_info *mci;
3140 	char *type;
3141 
3142 	if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3143 		return NOTIFY_DONE;
3144 
3145 	/*
3146 	 * Just let mcelog handle it if the error is
3147 	 * outside the memory controller. A memory error
3148 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3149 	 * bit 12 has an special meaning.
3150 	 */
3151 	if ((mce->status & 0xefff) >> 7 != 1)
3152 		return NOTIFY_DONE;
3153 
3154 	/* Check ADDRV bit in STATUS */
3155 	if (!GET_BITFIELD(mce->status, 58, 58))
3156 		return NOTIFY_DONE;
3157 
3158 	/* Check MISCV bit in STATUS */
3159 	if (!GET_BITFIELD(mce->status, 59, 59))
3160 		return NOTIFY_DONE;
3161 
3162 	/* Check address type in MISC (physical address only) */
3163 	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
3164 		return NOTIFY_DONE;
3165 
3166 	mci = get_mci_for_node_id(mce->socketid, IMC0);
3167 	if (!mci)
3168 		return NOTIFY_DONE;
3169 
3170 	if (mce->mcgstatus & MCG_STATUS_MCIP)
3171 		type = "Exception";
3172 	else
3173 		type = "Event";
3174 
3175 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
3176 
3177 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
3178 			  "Bank %d: %016Lx\n", mce->extcpu, type,
3179 			  mce->mcgstatus, mce->bank, mce->status);
3180 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
3181 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
3182 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
3183 
3184 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
3185 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
3186 			  mce->time, mce->socketid, mce->apicid);
3187 
3188 	sbridge_mce_output_error(mci, mce);
3189 
3190 	/* Advice mcelog that the error were handled */
3191 	return NOTIFY_STOP;
3192 }
3193 
3194 static struct notifier_block sbridge_mce_dec = {
3195 	.notifier_call	= sbridge_mce_check_error,
3196 	.priority	= MCE_PRIO_EDAC,
3197 };
3198 
3199 /****************************************************************************
3200 			EDAC register/unregister logic
3201  ****************************************************************************/
3202 
3203 static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
3204 {
3205 	struct mem_ctl_info *mci = sbridge_dev->mci;
3206 	struct sbridge_pvt *pvt;
3207 
3208 	if (unlikely(!mci || !mci->pvt_info)) {
3209 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
3210 
3211 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
3212 		return;
3213 	}
3214 
3215 	pvt = mci->pvt_info;
3216 
3217 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3218 		 mci, &sbridge_dev->pdev[0]->dev);
3219 
3220 	/* Remove MC sysfs nodes */
3221 	edac_mc_del_mc(mci->pdev);
3222 
3223 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
3224 	kfree(mci->ctl_name);
3225 	edac_mc_free(mci);
3226 	sbridge_dev->mci = NULL;
3227 }
3228 
3229 static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
3230 {
3231 	struct mem_ctl_info *mci;
3232 	struct edac_mc_layer layers[2];
3233 	struct sbridge_pvt *pvt;
3234 	struct pci_dev *pdev = sbridge_dev->pdev[0];
3235 	int rc;
3236 
3237 	/* allocate a new MC control structure */
3238 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
3239 	layers[0].size = type == KNIGHTS_LANDING ?
3240 		KNL_MAX_CHANNELS : NUM_CHANNELS;
3241 	layers[0].is_virt_csrow = false;
3242 	layers[1].type = EDAC_MC_LAYER_SLOT;
3243 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
3244 	layers[1].is_virt_csrow = true;
3245 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
3246 			    sizeof(*pvt));
3247 
3248 	if (unlikely(!mci))
3249 		return -ENOMEM;
3250 
3251 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
3252 		 mci, &pdev->dev);
3253 
3254 	pvt = mci->pvt_info;
3255 	memset(pvt, 0, sizeof(*pvt));
3256 
3257 	/* Associate sbridge_dev and mci for future usage */
3258 	pvt->sbridge_dev = sbridge_dev;
3259 	sbridge_dev->mci = mci;
3260 
3261 	mci->mtype_cap = type == KNIGHTS_LANDING ?
3262 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
3263 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
3264 	mci->edac_cap = EDAC_FLAG_NONE;
3265 	mci->mod_name = EDAC_MOD_STR;
3266 	mci->dev_name = pci_name(pdev);
3267 	mci->ctl_page_to_phys = NULL;
3268 
3269 	pvt->info.type = type;
3270 	switch (type) {
3271 	case IVY_BRIDGE:
3272 		pvt->info.rankcfgr = IB_RANK_CFG_A;
3273 		pvt->info.get_tolm = ibridge_get_tolm;
3274 		pvt->info.get_tohm = ibridge_get_tohm;
3275 		pvt->info.dram_rule = ibridge_dram_rule;
3276 		pvt->info.get_memory_type = get_memory_type;
3277 		pvt->info.get_node_id = get_node_id;
3278 		pvt->info.get_ha = ibridge_get_ha;
3279 		pvt->info.rir_limit = rir_limit;
3280 		pvt->info.sad_limit = sad_limit;
3281 		pvt->info.interleave_mode = interleave_mode;
3282 		pvt->info.dram_attr = dram_attr;
3283 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3284 		pvt->info.interleave_list = ibridge_interleave_list;
3285 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3286 		pvt->info.get_width = ibridge_get_width;
3287 
3288 		/* Store pci devices at mci for faster access */
3289 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
3290 		if (unlikely(rc < 0))
3291 			goto fail0;
3292 		get_source_id(mci);
3293 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
3294 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3295 		break;
3296 	case SANDY_BRIDGE:
3297 		pvt->info.rankcfgr = SB_RANK_CFG_A;
3298 		pvt->info.get_tolm = sbridge_get_tolm;
3299 		pvt->info.get_tohm = sbridge_get_tohm;
3300 		pvt->info.dram_rule = sbridge_dram_rule;
3301 		pvt->info.get_memory_type = get_memory_type;
3302 		pvt->info.get_node_id = get_node_id;
3303 		pvt->info.get_ha = sbridge_get_ha;
3304 		pvt->info.rir_limit = rir_limit;
3305 		pvt->info.sad_limit = sad_limit;
3306 		pvt->info.interleave_mode = interleave_mode;
3307 		pvt->info.dram_attr = dram_attr;
3308 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
3309 		pvt->info.interleave_list = sbridge_interleave_list;
3310 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
3311 		pvt->info.get_width = sbridge_get_width;
3312 
3313 		/* Store pci devices at mci for faster access */
3314 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
3315 		if (unlikely(rc < 0))
3316 			goto fail0;
3317 		get_source_id(mci);
3318 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
3319 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3320 		break;
3321 	case HASWELL:
3322 		/* rankcfgr isn't used */
3323 		pvt->info.get_tolm = haswell_get_tolm;
3324 		pvt->info.get_tohm = haswell_get_tohm;
3325 		pvt->info.dram_rule = ibridge_dram_rule;
3326 		pvt->info.get_memory_type = haswell_get_memory_type;
3327 		pvt->info.get_node_id = haswell_get_node_id;
3328 		pvt->info.get_ha = ibridge_get_ha;
3329 		pvt->info.rir_limit = haswell_rir_limit;
3330 		pvt->info.sad_limit = sad_limit;
3331 		pvt->info.interleave_mode = interleave_mode;
3332 		pvt->info.dram_attr = dram_attr;
3333 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3334 		pvt->info.interleave_list = ibridge_interleave_list;
3335 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3336 		pvt->info.get_width = ibridge_get_width;
3337 
3338 		/* Store pci devices at mci for faster access */
3339 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
3340 		if (unlikely(rc < 0))
3341 			goto fail0;
3342 		get_source_id(mci);
3343 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
3344 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3345 		break;
3346 	case BROADWELL:
3347 		/* rankcfgr isn't used */
3348 		pvt->info.get_tolm = haswell_get_tolm;
3349 		pvt->info.get_tohm = haswell_get_tohm;
3350 		pvt->info.dram_rule = ibridge_dram_rule;
3351 		pvt->info.get_memory_type = haswell_get_memory_type;
3352 		pvt->info.get_node_id = haswell_get_node_id;
3353 		pvt->info.get_ha = ibridge_get_ha;
3354 		pvt->info.rir_limit = haswell_rir_limit;
3355 		pvt->info.sad_limit = sad_limit;
3356 		pvt->info.interleave_mode = interleave_mode;
3357 		pvt->info.dram_attr = dram_attr;
3358 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
3359 		pvt->info.interleave_list = ibridge_interleave_list;
3360 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3361 		pvt->info.get_width = broadwell_get_width;
3362 
3363 		/* Store pci devices at mci for faster access */
3364 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
3365 		if (unlikely(rc < 0))
3366 			goto fail0;
3367 		get_source_id(mci);
3368 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
3369 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3370 		break;
3371 	case KNIGHTS_LANDING:
3372 		/* pvt->info.rankcfgr == ??? */
3373 		pvt->info.get_tolm = knl_get_tolm;
3374 		pvt->info.get_tohm = knl_get_tohm;
3375 		pvt->info.dram_rule = knl_dram_rule;
3376 		pvt->info.get_memory_type = knl_get_memory_type;
3377 		pvt->info.get_node_id = knl_get_node_id;
3378 		pvt->info.get_ha = knl_get_ha;
3379 		pvt->info.rir_limit = NULL;
3380 		pvt->info.sad_limit = knl_sad_limit;
3381 		pvt->info.interleave_mode = knl_interleave_mode;
3382 		pvt->info.dram_attr = dram_attr_knl;
3383 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
3384 		pvt->info.interleave_list = knl_interleave_list;
3385 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
3386 		pvt->info.get_width = knl_get_width;
3387 
3388 		rc = knl_mci_bind_devs(mci, sbridge_dev);
3389 		if (unlikely(rc < 0))
3390 			goto fail0;
3391 		get_source_id(mci);
3392 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
3393 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
3394 		break;
3395 	}
3396 
3397 	if (!mci->ctl_name) {
3398 		rc = -ENOMEM;
3399 		goto fail0;
3400 	}
3401 
3402 	/* Get dimm basic config and the memory layout */
3403 	rc = get_dimm_config(mci);
3404 	if (rc < 0) {
3405 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
3406 		goto fail;
3407 	}
3408 	get_memory_layout(mci);
3409 
3410 	/* record ptr to the generic device */
3411 	mci->pdev = &pdev->dev;
3412 
3413 	/* add this new MC control structure to EDAC's list of MCs */
3414 	if (unlikely(edac_mc_add_mc(mci))) {
3415 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3416 		rc = -EINVAL;
3417 		goto fail;
3418 	}
3419 
3420 	return 0;
3421 
3422 fail:
3423 	kfree(mci->ctl_name);
3424 fail0:
3425 	edac_mc_free(mci);
3426 	sbridge_dev->mci = NULL;
3427 	return rc;
3428 }
3429 
3430 static const struct x86_cpu_id sbridge_cpuids[] = {
3431 	INTEL_CPU_FAM6(SANDYBRIDGE_X,	  pci_dev_descr_sbridge_table),
3432 	INTEL_CPU_FAM6(IVYBRIDGE_X,	  pci_dev_descr_ibridge_table),
3433 	INTEL_CPU_FAM6(HASWELL_X,	  pci_dev_descr_haswell_table),
3434 	INTEL_CPU_FAM6(BROADWELL_X,	  pci_dev_descr_broadwell_table),
3435 	INTEL_CPU_FAM6(BROADWELL_XEON_D,  pci_dev_descr_broadwell_table),
3436 	INTEL_CPU_FAM6(XEON_PHI_KNL,	  pci_dev_descr_knl_table),
3437 	INTEL_CPU_FAM6(XEON_PHI_KNM,	  pci_dev_descr_knl_table),
3438 	{ }
3439 };
3440 MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
3441 
3442 /*
3443  *	sbridge_probe	Get all devices and register memory controllers
3444  *			present.
3445  *	return:
3446  *		0 for FOUND a device
3447  *		< 0 for error code
3448  */
3449 
3450 static int sbridge_probe(const struct x86_cpu_id *id)
3451 {
3452 	int rc = -ENODEV;
3453 	u8 mc, num_mc = 0;
3454 	struct sbridge_dev *sbridge_dev;
3455 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
3456 
3457 	/* get the pci devices we want to reserve for our use */
3458 	rc = sbridge_get_all_devices(&num_mc, ptable);
3459 
3460 	if (unlikely(rc < 0)) {
3461 		edac_dbg(0, "couldn't get all devices\n");
3462 		goto fail0;
3463 	}
3464 
3465 	mc = 0;
3466 
3467 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
3468 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3469 			 mc, mc + 1, num_mc);
3470 
3471 		sbridge_dev->mc = mc++;
3472 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
3473 		if (unlikely(rc < 0))
3474 			goto fail1;
3475 	}
3476 
3477 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
3478 
3479 	return 0;
3480 
3481 fail1:
3482 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3483 		sbridge_unregister_mci(sbridge_dev);
3484 
3485 	sbridge_put_all_devices();
3486 fail0:
3487 	return rc;
3488 }
3489 
3490 /*
3491  *	sbridge_remove	cleanup
3492  *
3493  */
3494 static void sbridge_remove(void)
3495 {
3496 	struct sbridge_dev *sbridge_dev;
3497 
3498 	edac_dbg(0, "\n");
3499 
3500 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
3501 		sbridge_unregister_mci(sbridge_dev);
3502 
3503 	/* Release PCI resources */
3504 	sbridge_put_all_devices();
3505 }
3506 
3507 /*
3508  *	sbridge_init		Module entry function
3509  *			Try to initialize this module for its devices
3510  */
3511 static int __init sbridge_init(void)
3512 {
3513 	const struct x86_cpu_id *id;
3514 	const char *owner;
3515 	int rc;
3516 
3517 	edac_dbg(2, "\n");
3518 
3519 	owner = edac_get_owner();
3520 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
3521 		return -EBUSY;
3522 
3523 	id = x86_match_cpu(sbridge_cpuids);
3524 	if (!id)
3525 		return -ENODEV;
3526 
3527 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
3528 	opstate_init();
3529 
3530 	rc = sbridge_probe(id);
3531 
3532 	if (rc >= 0) {
3533 		mce_register_decode_chain(&sbridge_mce_dec);
3534 		if (edac_get_report_status() == EDAC_REPORTING_DISABLED)
3535 			sbridge_printk(KERN_WARNING, "Loading driver, error reporting disabled.\n");
3536 		return 0;
3537 	}
3538 
3539 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
3540 		      rc);
3541 
3542 	return rc;
3543 }
3544 
3545 /*
3546  *	sbridge_exit()	Module exit function
3547  *			Unregister the driver
3548  */
3549 static void __exit sbridge_exit(void)
3550 {
3551 	edac_dbg(2, "\n");
3552 	sbridge_remove();
3553 	mce_unregister_decode_chain(&sbridge_mce_dec);
3554 }
3555 
3556 module_init(sbridge_init);
3557 module_exit(sbridge_exit);
3558 
3559 module_param(edac_op_state, int, 0444);
3560 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
3561 
3562 MODULE_LICENSE("GPL");
3563 MODULE_AUTHOR("Mauro Carvalho Chehab");
3564 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3565 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
3566 		   SBRIDGE_REVISION);
3567