xref: /openbmc/linux/drivers/edac/ppc4xx_edac.c (revision b9ccfda2)
1 /*
2  * Copyright (c) 2008 Nuovation System Designs, LLC
3  *   Grant Erickson <gerickson@nuovations.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation; version 2 of the
8  * License.
9  *
10  */
11 
12 #include <linux/edac.h>
13 #include <linux/interrupt.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/of_platform.h>
20 #include <linux/types.h>
21 
22 #include <asm/dcr.h>
23 
24 #include "edac_core.h"
25 #include "ppc4xx_edac.h"
26 
27 /*
28  * This file implements a driver for monitoring and handling events
29  * associated with the IMB DDR2 ECC controller found in the AMCC/IBM
30  * 405EX[r], 440SP, 440SPe, 460EX, 460GT and 460SX.
31  *
32  * As realized in the 405EX[r], this controller features:
33  *
34  *   - Support for registered- and non-registered DDR1 and DDR2 memory.
35  *   - 32-bit or 16-bit memory interface with optional ECC.
36  *
37  *     o ECC support includes:
38  *
39  *       - 4-bit SEC/DED
40  *       - Aligned-nibble error detect
41  *       - Bypass mode
42  *
43  *   - Two (2) memory banks/ranks.
44  *   - Up to 1 GiB per bank/rank in 32-bit mode and up to 512 MiB per
45  *     bank/rank in 16-bit mode.
46  *
47  * As realized in the 440SP and 440SPe, this controller changes/adds:
48  *
49  *   - 64-bit or 32-bit memory interface with optional ECC.
50  *
51  *     o ECC support includes:
52  *
53  *       - 8-bit SEC/DED
54  *       - Aligned-nibble error detect
55  *       - Bypass mode
56  *
57  *   - Up to 4 GiB per bank/rank in 64-bit mode and up to 2 GiB
58  *     per bank/rank in 32-bit mode.
59  *
60  * As realized in the 460EX and 460GT, this controller changes/adds:
61  *
62  *   - 64-bit or 32-bit memory interface with optional ECC.
63  *
64  *     o ECC support includes:
65  *
66  *       - 8-bit SEC/DED
67  *       - Aligned-nibble error detect
68  *       - Bypass mode
69  *
70  *   - Four (4) memory banks/ranks.
71  *   - Up to 16 GiB per bank/rank in 64-bit mode and up to 8 GiB
72  *     per bank/rank in 32-bit mode.
73  *
74  * At present, this driver has ONLY been tested against the controller
75  * realization in the 405EX[r] on the AMCC Kilauea and Haleakala
76  * boards (256 MiB w/o ECC memory soldered onto the board) and a
77  * proprietary board based on those designs (128 MiB ECC memory, also
78  * soldered onto the board).
79  *
80  * Dynamic feature detection and handling needs to be added for the
81  * other realizations of this controller listed above.
82  *
83  * Eventually, this driver will likely be adapted to the above variant
84  * realizations of this controller as well as broken apart to handle
85  * the other known ECC-capable controllers prevalent in other 4xx
86  * processors:
87  *
88  *   - IBM SDRAM (405GP, 405CR and 405EP) "ibm,sdram-4xx"
89  *   - IBM DDR1 (440GP, 440GX, 440EP and 440GR) "ibm,sdram-4xx-ddr"
90  *   - Denali DDR1/DDR2 (440EPX and 440GRX) "denali,sdram-4xx-ddr2"
91  *
92  * For this controller, unfortunately, correctable errors report
93  * nothing more than the beat/cycle and byte/lane the correction
94  * occurred on and the check bit group that covered the error.
95  *
96  * In contrast, uncorrectable errors also report the failing address,
97  * the bus master and the transaction direction (i.e. read or write)
98  *
99  * Regardless of whether the error is a CE or a UE, we report the
100  * following pieces of information in the driver-unique message to the
101  * EDAC subsystem:
102  *
103  *   - Device tree path
104  *   - Bank(s)
105  *   - Check bit error group
106  *   - Beat(s)/lane(s)
107  */
108 
109 /* Preprocessor Definitions */
110 
111 #define EDAC_OPSTATE_INT_STR		"interrupt"
112 #define EDAC_OPSTATE_POLL_STR		"polled"
113 #define EDAC_OPSTATE_UNKNOWN_STR	"unknown"
114 
115 #define PPC4XX_EDAC_MODULE_NAME		"ppc4xx_edac"
116 #define PPC4XX_EDAC_MODULE_REVISION	"v1.0.0"
117 
118 #define PPC4XX_EDAC_MESSAGE_SIZE	256
119 
120 /*
121  * Kernel logging without an EDAC instance
122  */
123 #define ppc4xx_edac_printk(level, fmt, arg...) \
124 	edac_printk(level, "PPC4xx MC", fmt, ##arg)
125 
126 /*
127  * Kernel logging with an EDAC instance
128  */
129 #define ppc4xx_edac_mc_printk(level, mci, fmt, arg...) \
130 	edac_mc_chipset_printk(mci, level, "PPC4xx", fmt, ##arg)
131 
132 /*
133  * Macros to convert bank configuration size enumerations into MiB and
134  * page values.
135  */
136 #define SDRAM_MBCF_SZ_MiB_MIN		4
137 #define SDRAM_MBCF_SZ_TO_MiB(n)		(SDRAM_MBCF_SZ_MiB_MIN \
138 					 << (SDRAM_MBCF_SZ_DECODE(n)))
139 #define SDRAM_MBCF_SZ_TO_PAGES(n)	(SDRAM_MBCF_SZ_MiB_MIN \
140 					 << (20 - PAGE_SHIFT + \
141 					     SDRAM_MBCF_SZ_DECODE(n)))
142 
143 /*
144  * The ibm,sdram-4xx-ddr2 Device Control Registers (DCRs) are
145  * indirectly accessed and have a base and length defined by the
146  * device tree. The base can be anything; however, we expect the
147  * length to be precisely two registers, the first for the address
148  * window and the second for the data window.
149  */
150 #define SDRAM_DCR_RESOURCE_LEN		2
151 #define SDRAM_DCR_ADDR_OFFSET		0
152 #define SDRAM_DCR_DATA_OFFSET		1
153 
154 /*
155  * Device tree interrupt indices
156  */
157 #define INTMAP_ECCDED_INDEX		0	/* Double-bit Error Detect */
158 #define INTMAP_ECCSEC_INDEX		1	/* Single-bit Error Correct */
159 
160 /* Type Definitions */
161 
162 /*
163  * PPC4xx SDRAM memory controller private instance data
164  */
165 struct ppc4xx_edac_pdata {
166 	dcr_host_t dcr_host;	/* Indirect DCR address/data window mapping */
167 	struct {
168 		int sec;	/* Single-bit correctable error IRQ assigned */
169 		int ded;	/* Double-bit detectable error IRQ assigned */
170 	} irqs;
171 };
172 
173 /*
174  * Various status data gathered and manipulated when checking and
175  * reporting ECC status.
176  */
177 struct ppc4xx_ecc_status {
178 	u32 ecces;
179 	u32 besr;
180 	u32 bearh;
181 	u32 bearl;
182 	u32 wmirq;
183 };
184 
185 /* Function Prototypes */
186 
187 static int ppc4xx_edac_probe(struct platform_device *device);
188 static int ppc4xx_edac_remove(struct platform_device *device);
189 
190 /* Global Variables */
191 
192 /*
193  * Device tree node type and compatible tuples this driver can match
194  * on.
195  */
196 static struct of_device_id ppc4xx_edac_match[] = {
197 	{
198 		.compatible	= "ibm,sdram-4xx-ddr2"
199 	},
200 	{ }
201 };
202 
203 static struct platform_driver ppc4xx_edac_driver = {
204 	.probe			= ppc4xx_edac_probe,
205 	.remove			= ppc4xx_edac_remove,
206 	.driver = {
207 		.owner = THIS_MODULE,
208 		.name = PPC4XX_EDAC_MODULE_NAME,
209 		.of_match_table = ppc4xx_edac_match,
210 	},
211 };
212 
213 /*
214  * TODO: The row and channel parameters likely need to be dynamically
215  * set based on the aforementioned variant controller realizations.
216  */
217 static const unsigned ppc4xx_edac_nr_csrows = 2;
218 static const unsigned ppc4xx_edac_nr_chans = 1;
219 
220 /*
221  * Strings associated with PLB master IDs capable of being posted in
222  * SDRAM_BESR or SDRAM_WMIRQ on uncorrectable ECC errors.
223  */
224 static const char * const ppc4xx_plb_masters[9] = {
225 	[SDRAM_PLB_M0ID_ICU]	= "ICU",
226 	[SDRAM_PLB_M0ID_PCIE0]	= "PCI-E 0",
227 	[SDRAM_PLB_M0ID_PCIE1]	= "PCI-E 1",
228 	[SDRAM_PLB_M0ID_DMA]	= "DMA",
229 	[SDRAM_PLB_M0ID_DCU]	= "DCU",
230 	[SDRAM_PLB_M0ID_OPB]	= "OPB",
231 	[SDRAM_PLB_M0ID_MAL]	= "MAL",
232 	[SDRAM_PLB_M0ID_SEC]	= "SEC",
233 	[SDRAM_PLB_M0ID_AHB]	= "AHB"
234 };
235 
236 /**
237  * mfsdram - read and return controller register data
238  * @dcr_host: A pointer to the DCR mapping.
239  * @idcr_n: The indirect DCR register to read.
240  *
241  * This routine reads and returns the data associated with the
242  * controller's specified indirect DCR register.
243  *
244  * Returns the read data.
245  */
246 static inline u32
247 mfsdram(const dcr_host_t *dcr_host, unsigned int idcr_n)
248 {
249 	return __mfdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET,
250 			dcr_host->base + SDRAM_DCR_DATA_OFFSET,
251 			idcr_n);
252 }
253 
254 /**
255  * mtsdram - write controller register data
256  * @dcr_host: A pointer to the DCR mapping.
257  * @idcr_n: The indirect DCR register to write.
258  * @value: The data to write.
259  *
260  * This routine writes the provided data to the controller's specified
261  * indirect DCR register.
262  */
263 static inline void
264 mtsdram(const dcr_host_t *dcr_host, unsigned int idcr_n, u32 value)
265 {
266 	return __mtdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET,
267 			dcr_host->base + SDRAM_DCR_DATA_OFFSET,
268 			idcr_n,
269 			value);
270 }
271 
272 /**
273  * ppc4xx_edac_check_bank_error - check a bank for an ECC bank error
274  * @status: A pointer to the ECC status structure to check for an
275  *          ECC bank error.
276  * @bank: The bank to check for an ECC error.
277  *
278  * This routine determines whether the specified bank has an ECC
279  * error.
280  *
281  * Returns true if the specified bank has an ECC error; otherwise,
282  * false.
283  */
284 static bool
285 ppc4xx_edac_check_bank_error(const struct ppc4xx_ecc_status *status,
286 			     unsigned int bank)
287 {
288 	switch (bank) {
289 	case 0:
290 		return status->ecces & SDRAM_ECCES_BK0ER;
291 	case 1:
292 		return status->ecces & SDRAM_ECCES_BK1ER;
293 	default:
294 		return false;
295 	}
296 }
297 
298 /**
299  * ppc4xx_edac_generate_bank_message - generate interpretted bank status message
300  * @mci: A pointer to the EDAC memory controller instance associated
301  *       with the bank message being generated.
302  * @status: A pointer to the ECC status structure to generate the
303  *          message from.
304  * @buffer: A pointer to the buffer in which to generate the
305  *          message.
306  * @size: The size, in bytes, of space available in buffer.
307  *
308  * This routine generates to the provided buffer the portion of the
309  * driver-unique report message associated with the ECCESS[BKNER]
310  * field of the specified ECC status.
311  *
312  * Returns the number of characters generated on success; otherwise, <
313  * 0 on error.
314  */
315 static int
316 ppc4xx_edac_generate_bank_message(const struct mem_ctl_info *mci,
317 				  const struct ppc4xx_ecc_status *status,
318 				  char *buffer,
319 				  size_t size)
320 {
321 	int n, total = 0;
322 	unsigned int row, rows;
323 
324 	n = snprintf(buffer, size, "%s: Banks: ", mci->dev_name);
325 
326 	if (n < 0 || n >= size)
327 		goto fail;
328 
329 	buffer += n;
330 	size -= n;
331 	total += n;
332 
333 	for (rows = 0, row = 0; row < mci->nr_csrows; row++) {
334 		if (ppc4xx_edac_check_bank_error(status, row)) {
335 			n = snprintf(buffer, size, "%s%u",
336 					(rows++ ? ", " : ""), row);
337 
338 			if (n < 0 || n >= size)
339 				goto fail;
340 
341 			buffer += n;
342 			size -= n;
343 			total += n;
344 		}
345 	}
346 
347 	n = snprintf(buffer, size, "%s; ", rows ? "" : "None");
348 
349 	if (n < 0 || n >= size)
350 		goto fail;
351 
352 	buffer += n;
353 	size -= n;
354 	total += n;
355 
356  fail:
357 	return total;
358 }
359 
360 /**
361  * ppc4xx_edac_generate_checkbit_message - generate interpretted checkbit message
362  * @mci: A pointer to the EDAC memory controller instance associated
363  *       with the checkbit message being generated.
364  * @status: A pointer to the ECC status structure to generate the
365  *          message from.
366  * @buffer: A pointer to the buffer in which to generate the
367  *          message.
368  * @size: The size, in bytes, of space available in buffer.
369  *
370  * This routine generates to the provided buffer the portion of the
371  * driver-unique report message associated with the ECCESS[CKBER]
372  * field of the specified ECC status.
373  *
374  * Returns the number of characters generated on success; otherwise, <
375  * 0 on error.
376  */
377 static int
378 ppc4xx_edac_generate_checkbit_message(const struct mem_ctl_info *mci,
379 				      const struct ppc4xx_ecc_status *status,
380 				      char *buffer,
381 				      size_t size)
382 {
383 	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
384 	const char *ckber = NULL;
385 
386 	switch (status->ecces & SDRAM_ECCES_CKBER_MASK) {
387 	case SDRAM_ECCES_CKBER_NONE:
388 		ckber = "None";
389 		break;
390 	case SDRAM_ECCES_CKBER_32_ECC_0_3:
391 		ckber = "ECC0:3";
392 		break;
393 	case SDRAM_ECCES_CKBER_32_ECC_4_8:
394 		switch (mfsdram(&pdata->dcr_host, SDRAM_MCOPT1) &
395 			SDRAM_MCOPT1_WDTH_MASK) {
396 		case SDRAM_MCOPT1_WDTH_16:
397 			ckber = "ECC0:3";
398 			break;
399 		case SDRAM_MCOPT1_WDTH_32:
400 			ckber = "ECC4:8";
401 			break;
402 		default:
403 			ckber = "Unknown";
404 			break;
405 		}
406 		break;
407 	case SDRAM_ECCES_CKBER_32_ECC_0_8:
408 		ckber = "ECC0:8";
409 		break;
410 	default:
411 		ckber = "Unknown";
412 		break;
413 	}
414 
415 	return snprintf(buffer, size, "Checkbit Error: %s", ckber);
416 }
417 
418 /**
419  * ppc4xx_edac_generate_lane_message - generate interpretted byte lane message
420  * @mci: A pointer to the EDAC memory controller instance associated
421  *       with the byte lane message being generated.
422  * @status: A pointer to the ECC status structure to generate the
423  *          message from.
424  * @buffer: A pointer to the buffer in which to generate the
425  *          message.
426  * @size: The size, in bytes, of space available in buffer.
427  *
428  * This routine generates to the provided buffer the portion of the
429  * driver-unique report message associated with the ECCESS[BNCE]
430  * field of the specified ECC status.
431  *
432  * Returns the number of characters generated on success; otherwise, <
433  * 0 on error.
434  */
435 static int
436 ppc4xx_edac_generate_lane_message(const struct mem_ctl_info *mci,
437 				  const struct ppc4xx_ecc_status *status,
438 				  char *buffer,
439 				  size_t size)
440 {
441 	int n, total = 0;
442 	unsigned int lane, lanes;
443 	const unsigned int first_lane = 0;
444 	const unsigned int lane_count = 16;
445 
446 	n = snprintf(buffer, size, "; Byte Lane Errors: ");
447 
448 	if (n < 0 || n >= size)
449 		goto fail;
450 
451 	buffer += n;
452 	size -= n;
453 	total += n;
454 
455 	for (lanes = 0, lane = first_lane; lane < lane_count; lane++) {
456 		if ((status->ecces & SDRAM_ECCES_BNCE_ENCODE(lane)) != 0) {
457 			n = snprintf(buffer, size,
458 				     "%s%u",
459 				     (lanes++ ? ", " : ""), lane);
460 
461 			if (n < 0 || n >= size)
462 				goto fail;
463 
464 			buffer += n;
465 			size -= n;
466 			total += n;
467 		}
468 	}
469 
470 	n = snprintf(buffer, size, "%s; ", lanes ? "" : "None");
471 
472 	if (n < 0 || n >= size)
473 		goto fail;
474 
475 	buffer += n;
476 	size -= n;
477 	total += n;
478 
479  fail:
480 	return total;
481 }
482 
483 /**
484  * ppc4xx_edac_generate_ecc_message - generate interpretted ECC status message
485  * @mci: A pointer to the EDAC memory controller instance associated
486  *       with the ECCES message being generated.
487  * @status: A pointer to the ECC status structure to generate the
488  *          message from.
489  * @buffer: A pointer to the buffer in which to generate the
490  *          message.
491  * @size: The size, in bytes, of space available in buffer.
492  *
493  * This routine generates to the provided buffer the portion of the
494  * driver-unique report message associated with the ECCESS register of
495  * the specified ECC status.
496  *
497  * Returns the number of characters generated on success; otherwise, <
498  * 0 on error.
499  */
500 static int
501 ppc4xx_edac_generate_ecc_message(const struct mem_ctl_info *mci,
502 				 const struct ppc4xx_ecc_status *status,
503 				 char *buffer,
504 				 size_t size)
505 {
506 	int n, total = 0;
507 
508 	n = ppc4xx_edac_generate_bank_message(mci, status, buffer, size);
509 
510 	if (n < 0 || n >= size)
511 		goto fail;
512 
513 	buffer += n;
514 	size -= n;
515 	total += n;
516 
517 	n = ppc4xx_edac_generate_checkbit_message(mci, status, buffer, size);
518 
519 	if (n < 0 || n >= size)
520 		goto fail;
521 
522 	buffer += n;
523 	size -= n;
524 	total += n;
525 
526 	n = ppc4xx_edac_generate_lane_message(mci, status, buffer, size);
527 
528 	if (n < 0 || n >= size)
529 		goto fail;
530 
531 	buffer += n;
532 	size -= n;
533 	total += n;
534 
535  fail:
536 	return total;
537 }
538 
539 /**
540  * ppc4xx_edac_generate_plb_message - generate interpretted PLB status message
541  * @mci: A pointer to the EDAC memory controller instance associated
542  *       with the PLB message being generated.
543  * @status: A pointer to the ECC status structure to generate the
544  *          message from.
545  * @buffer: A pointer to the buffer in which to generate the
546  *          message.
547  * @size: The size, in bytes, of space available in buffer.
548  *
549  * This routine generates to the provided buffer the portion of the
550  * driver-unique report message associated with the PLB-related BESR
551  * and/or WMIRQ registers of the specified ECC status.
552  *
553  * Returns the number of characters generated on success; otherwise, <
554  * 0 on error.
555  */
556 static int
557 ppc4xx_edac_generate_plb_message(const struct mem_ctl_info *mci,
558 				 const struct ppc4xx_ecc_status *status,
559 				 char *buffer,
560 				 size_t size)
561 {
562 	unsigned int master;
563 	bool read;
564 
565 	if ((status->besr & SDRAM_BESR_MASK) == 0)
566 		return 0;
567 
568 	if ((status->besr & SDRAM_BESR_M0ET_MASK) == SDRAM_BESR_M0ET_NONE)
569 		return 0;
570 
571 	read = ((status->besr & SDRAM_BESR_M0RW_MASK) == SDRAM_BESR_M0RW_READ);
572 
573 	master = SDRAM_BESR_M0ID_DECODE(status->besr);
574 
575 	return snprintf(buffer, size,
576 			"%s error w/ PLB master %u \"%s\"; ",
577 			(read ? "Read" : "Write"),
578 			master,
579 			(((master >= SDRAM_PLB_M0ID_FIRST) &&
580 			  (master <= SDRAM_PLB_M0ID_LAST)) ?
581 			 ppc4xx_plb_masters[master] : "UNKNOWN"));
582 }
583 
584 /**
585  * ppc4xx_edac_generate_message - generate interpretted status message
586  * @mci: A pointer to the EDAC memory controller instance associated
587  *       with the driver-unique message being generated.
588  * @status: A pointer to the ECC status structure to generate the
589  *          message from.
590  * @buffer: A pointer to the buffer in which to generate the
591  *          message.
592  * @size: The size, in bytes, of space available in buffer.
593  *
594  * This routine generates to the provided buffer the driver-unique
595  * EDAC report message from the specified ECC status.
596  */
597 static void
598 ppc4xx_edac_generate_message(const struct mem_ctl_info *mci,
599 			     const struct ppc4xx_ecc_status *status,
600 			     char *buffer,
601 			     size_t size)
602 {
603 	int n;
604 
605 	if (buffer == NULL || size == 0)
606 		return;
607 
608 	n = ppc4xx_edac_generate_ecc_message(mci, status, buffer, size);
609 
610 	if (n < 0 || n >= size)
611 		return;
612 
613 	buffer += n;
614 	size -= n;
615 
616 	ppc4xx_edac_generate_plb_message(mci, status, buffer, size);
617 }
618 
619 #ifdef DEBUG
620 /**
621  * ppc4xx_ecc_dump_status - dump controller ECC status registers
622  * @mci: A pointer to the EDAC memory controller instance
623  *       associated with the status being dumped.
624  * @status: A pointer to the ECC status structure to generate the
625  *          dump from.
626  *
627  * This routine dumps to the kernel log buffer the raw and
628  * interpretted specified ECC status.
629  */
630 static void
631 ppc4xx_ecc_dump_status(const struct mem_ctl_info *mci,
632 		       const struct ppc4xx_ecc_status *status)
633 {
634 	char message[PPC4XX_EDAC_MESSAGE_SIZE];
635 
636 	ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
637 
638 	ppc4xx_edac_mc_printk(KERN_INFO, mci,
639 			      "\n"
640 			      "\tECCES: 0x%08x\n"
641 			      "\tWMIRQ: 0x%08x\n"
642 			      "\tBESR:  0x%08x\n"
643 			      "\tBEAR:  0x%08x%08x\n"
644 			      "\t%s\n",
645 			      status->ecces,
646 			      status->wmirq,
647 			      status->besr,
648 			      status->bearh,
649 			      status->bearl,
650 			      message);
651 }
652 #endif /* DEBUG */
653 
654 /**
655  * ppc4xx_ecc_get_status - get controller ECC status
656  * @mci: A pointer to the EDAC memory controller instance
657  *       associated with the status being retrieved.
658  * @status: A pointer to the ECC status structure to populate the
659  *          ECC status with.
660  *
661  * This routine reads and masks, as appropriate, all the relevant
662  * status registers that deal with ibm,sdram-4xx-ddr2 ECC errors.
663  * While we read all of them, for correctable errors, we only expect
664  * to deal with ECCES. For uncorrectable errors, we expect to deal
665  * with all of them.
666  */
667 static void
668 ppc4xx_ecc_get_status(const struct mem_ctl_info *mci,
669 		      struct ppc4xx_ecc_status *status)
670 {
671 	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
672 	const dcr_host_t *dcr_host = &pdata->dcr_host;
673 
674 	status->ecces = mfsdram(dcr_host, SDRAM_ECCES) & SDRAM_ECCES_MASK;
675 	status->wmirq = mfsdram(dcr_host, SDRAM_WMIRQ) & SDRAM_WMIRQ_MASK;
676 	status->besr  = mfsdram(dcr_host, SDRAM_BESR)  & SDRAM_BESR_MASK;
677 	status->bearl = mfsdram(dcr_host, SDRAM_BEARL);
678 	status->bearh = mfsdram(dcr_host, SDRAM_BEARH);
679 }
680 
681 /**
682  * ppc4xx_ecc_clear_status - clear controller ECC status
683  * @mci: A pointer to the EDAC memory controller instance
684  *       associated with the status being cleared.
685  * @status: A pointer to the ECC status structure containing the
686  *          values to write to clear the ECC status.
687  *
688  * This routine clears--by writing the masked (as appropriate) status
689  * values back to--the status registers that deal with
690  * ibm,sdram-4xx-ddr2 ECC errors.
691  */
692 static void
693 ppc4xx_ecc_clear_status(const struct mem_ctl_info *mci,
694 			const struct ppc4xx_ecc_status *status)
695 {
696 	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
697 	const dcr_host_t *dcr_host = &pdata->dcr_host;
698 
699 	mtsdram(dcr_host, SDRAM_ECCES,	status->ecces & SDRAM_ECCES_MASK);
700 	mtsdram(dcr_host, SDRAM_WMIRQ,	status->wmirq & SDRAM_WMIRQ_MASK);
701 	mtsdram(dcr_host, SDRAM_BESR,	status->besr & SDRAM_BESR_MASK);
702 	mtsdram(dcr_host, SDRAM_BEARL,	0);
703 	mtsdram(dcr_host, SDRAM_BEARH,	0);
704 }
705 
706 /**
707  * ppc4xx_edac_handle_ce - handle controller correctable ECC error (CE)
708  * @mci: A pointer to the EDAC memory controller instance
709  *       associated with the correctable error being handled and reported.
710  * @status: A pointer to the ECC status structure associated with
711  *          the correctable error being handled and reported.
712  *
713  * This routine handles an ibm,sdram-4xx-ddr2 controller ECC
714  * correctable error. Per the aforementioned discussion, there's not
715  * enough status available to use the full EDAC correctable error
716  * interface, so we just pass driver-unique message to the "no info"
717  * interface.
718  */
719 static void
720 ppc4xx_edac_handle_ce(struct mem_ctl_info *mci,
721 		      const struct ppc4xx_ecc_status *status)
722 {
723 	int row;
724 	char message[PPC4XX_EDAC_MESSAGE_SIZE];
725 
726 	ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
727 
728 	for (row = 0; row < mci->nr_csrows; row++)
729 		if (ppc4xx_edac_check_bank_error(status, row))
730 			edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
731 					     0, 0, 0,
732 					     row, 0, -1,
733 					     message, "", NULL);
734 }
735 
736 /**
737  * ppc4xx_edac_handle_ue - handle controller uncorrectable ECC error (UE)
738  * @mci: A pointer to the EDAC memory controller instance
739  *       associated with the uncorrectable error being handled and
740  *       reported.
741  * @status: A pointer to the ECC status structure associated with
742  *          the uncorrectable error being handled and reported.
743  *
744  * This routine handles an ibm,sdram-4xx-ddr2 controller ECC
745  * uncorrectable error.
746  */
747 static void
748 ppc4xx_edac_handle_ue(struct mem_ctl_info *mci,
749 		      const struct ppc4xx_ecc_status *status)
750 {
751 	const u64 bear = ((u64)status->bearh << 32 | status->bearl);
752 	const unsigned long page = bear >> PAGE_SHIFT;
753 	const unsigned long offset = bear & ~PAGE_MASK;
754 	int row;
755 	char message[PPC4XX_EDAC_MESSAGE_SIZE];
756 
757 	ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
758 
759 	for (row = 0; row < mci->nr_csrows; row++)
760 		if (ppc4xx_edac_check_bank_error(status, row))
761 			edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
762 					     page, offset, 0,
763 					     row, 0, -1,
764 					     message, "", NULL);
765 }
766 
767 /**
768  * ppc4xx_edac_check - check controller for ECC errors
769  * @mci: A pointer to the EDAC memory controller instance
770  *       associated with the ibm,sdram-4xx-ddr2 controller being
771  *       checked.
772  *
773  * This routine is used to check and post ECC errors and is called by
774  * both the EDAC polling thread and this driver's CE and UE interrupt
775  * handler.
776  */
777 static void
778 ppc4xx_edac_check(struct mem_ctl_info *mci)
779 {
780 #ifdef DEBUG
781 	static unsigned int count;
782 #endif
783 	struct ppc4xx_ecc_status status;
784 
785 	ppc4xx_ecc_get_status(mci, &status);
786 
787 #ifdef DEBUG
788 	if (count++ % 30 == 0)
789 		ppc4xx_ecc_dump_status(mci, &status);
790 #endif
791 
792 	if (status.ecces & SDRAM_ECCES_UE)
793 		ppc4xx_edac_handle_ue(mci, &status);
794 
795 	if (status.ecces & SDRAM_ECCES_CE)
796 		ppc4xx_edac_handle_ce(mci, &status);
797 
798 	ppc4xx_ecc_clear_status(mci, &status);
799 }
800 
801 /**
802  * ppc4xx_edac_isr - SEC (CE) and DED (UE) interrupt service routine
803  * @irq:    The virtual interrupt number being serviced.
804  * @dev_id: A pointer to the EDAC memory controller instance
805  *          associated with the interrupt being handled.
806  *
807  * This routine implements the interrupt handler for both correctable
808  * (CE) and uncorrectable (UE) ECC errors for the ibm,sdram-4xx-ddr2
809  * controller. It simply calls through to the same routine used during
810  * polling to check, report and clear the ECC status.
811  *
812  * Unconditionally returns IRQ_HANDLED.
813  */
814 static irqreturn_t
815 ppc4xx_edac_isr(int irq, void *dev_id)
816 {
817 	struct mem_ctl_info *mci = dev_id;
818 
819 	ppc4xx_edac_check(mci);
820 
821 	return IRQ_HANDLED;
822 }
823 
824 /**
825  * ppc4xx_edac_get_dtype - return the controller memory width
826  * @mcopt1: The 32-bit Memory Controller Option 1 register value
827  *          currently set for the controller, from which the width
828  *          is derived.
829  *
830  * This routine returns the EDAC device type width appropriate for the
831  * current controller configuration.
832  *
833  * TODO: This needs to be conditioned dynamically through feature
834  * flags or some such when other controller variants are supported as
835  * the 405EX[r] is 16-/32-bit and the others are 32-/64-bit with the
836  * 16- and 64-bit field definition/value/enumeration (b1) overloaded
837  * among them.
838  *
839  * Returns a device type width enumeration.
840  */
841 static enum dev_type __devinit
842 ppc4xx_edac_get_dtype(u32 mcopt1)
843 {
844 	switch (mcopt1 & SDRAM_MCOPT1_WDTH_MASK) {
845 	case SDRAM_MCOPT1_WDTH_16:
846 		return DEV_X2;
847 	case SDRAM_MCOPT1_WDTH_32:
848 		return DEV_X4;
849 	default:
850 		return DEV_UNKNOWN;
851 	}
852 }
853 
854 /**
855  * ppc4xx_edac_get_mtype - return controller memory type
856  * @mcopt1: The 32-bit Memory Controller Option 1 register value
857  *          currently set for the controller, from which the memory type
858  *          is derived.
859  *
860  * This routine returns the EDAC memory type appropriate for the
861  * current controller configuration.
862  *
863  * Returns a memory type enumeration.
864  */
865 static enum mem_type __devinit
866 ppc4xx_edac_get_mtype(u32 mcopt1)
867 {
868 	bool rden = ((mcopt1 & SDRAM_MCOPT1_RDEN_MASK) == SDRAM_MCOPT1_RDEN);
869 
870 	switch (mcopt1 & SDRAM_MCOPT1_DDR_TYPE_MASK) {
871 	case SDRAM_MCOPT1_DDR2_TYPE:
872 		return rden ? MEM_RDDR2 : MEM_DDR2;
873 	case SDRAM_MCOPT1_DDR1_TYPE:
874 		return rden ? MEM_RDDR : MEM_DDR;
875 	default:
876 		return MEM_UNKNOWN;
877 	}
878 }
879 
880 /**
881  * ppc4xx_edac_init_csrows - initialize driver instance rows
882  * @mci: A pointer to the EDAC memory controller instance
883  *       associated with the ibm,sdram-4xx-ddr2 controller for which
884  *       the csrows (i.e. banks/ranks) are being initialized.
885  * @mcopt1: The 32-bit Memory Controller Option 1 register value
886  *          currently set for the controller, from which bank width
887  *          and memory typ information is derived.
888  *
889  * This routine initializes the virtual "chip select rows" associated
890  * with the EDAC memory controller instance. An ibm,sdram-4xx-ddr2
891  * controller bank/rank is mapped to a row.
892  *
893  * Returns 0 if OK; otherwise, -EINVAL if the memory bank size
894  * configuration cannot be determined.
895  */
896 static int __devinit
897 ppc4xx_edac_init_csrows(struct mem_ctl_info *mci, u32 mcopt1)
898 {
899 	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
900 	int status = 0;
901 	enum mem_type mtype;
902 	enum dev_type dtype;
903 	enum edac_type edac_mode;
904 	int row, j;
905 	u32 mbxcf, size, nr_pages;
906 
907 	/* Establish the memory type and width */
908 
909 	mtype = ppc4xx_edac_get_mtype(mcopt1);
910 	dtype = ppc4xx_edac_get_dtype(mcopt1);
911 
912 	/* Establish EDAC mode */
913 
914 	if (mci->edac_cap & EDAC_FLAG_SECDED)
915 		edac_mode = EDAC_SECDED;
916 	else if (mci->edac_cap & EDAC_FLAG_EC)
917 		edac_mode = EDAC_EC;
918 	else
919 		edac_mode = EDAC_NONE;
920 
921 	/*
922 	 * Initialize each chip select row structure which correspond
923 	 * 1:1 with a controller bank/rank.
924 	 */
925 
926 	for (row = 0; row < mci->nr_csrows; row++) {
927 		struct csrow_info *csi = &mci->csrows[row];
928 
929 		/*
930 		 * Get the configuration settings for this
931 		 * row/bank/rank and skip disabled banks.
932 		 */
933 
934 		mbxcf = mfsdram(&pdata->dcr_host, SDRAM_MBXCF(row));
935 
936 		if ((mbxcf & SDRAM_MBCF_BE_MASK) != SDRAM_MBCF_BE_ENABLE)
937 			continue;
938 
939 		/* Map the bank configuration size setting to pages. */
940 
941 		size = mbxcf & SDRAM_MBCF_SZ_MASK;
942 
943 		switch (size) {
944 		case SDRAM_MBCF_SZ_4MB:
945 		case SDRAM_MBCF_SZ_8MB:
946 		case SDRAM_MBCF_SZ_16MB:
947 		case SDRAM_MBCF_SZ_32MB:
948 		case SDRAM_MBCF_SZ_64MB:
949 		case SDRAM_MBCF_SZ_128MB:
950 		case SDRAM_MBCF_SZ_256MB:
951 		case SDRAM_MBCF_SZ_512MB:
952 		case SDRAM_MBCF_SZ_1GB:
953 		case SDRAM_MBCF_SZ_2GB:
954 		case SDRAM_MBCF_SZ_4GB:
955 		case SDRAM_MBCF_SZ_8GB:
956 			nr_pages = SDRAM_MBCF_SZ_TO_PAGES(size);
957 			break;
958 		default:
959 			ppc4xx_edac_mc_printk(KERN_ERR, mci,
960 					      "Unrecognized memory bank %d "
961 					      "size 0x%08x\n",
962 					      row, SDRAM_MBCF_SZ_DECODE(size));
963 			status = -EINVAL;
964 			goto done;
965 		}
966 
967 		/*
968 		 * It's unclear exactly what grain should be set to
969 		 * here. The SDRAM_ECCES register allows resolution of
970 		 * an error down to a nibble which would potentially
971 		 * argue for a grain of '1' byte, even though we only
972 		 * know the associated address for uncorrectable
973 		 * errors. This value is not used at present for
974 		 * anything other than error reporting so getting it
975 		 * wrong should be of little consequence. Other
976 		 * possible values would be the PLB width (16), the
977 		 * page size (PAGE_SIZE) or the memory width (2 or 4).
978 		 */
979 		for (j = 0; j < csi->nr_channels; j++) {
980 			struct dimm_info *dimm = csi->channels[j].dimm;
981 
982 			dimm->nr_pages  = nr_pages / csi->nr_channels;
983 			dimm->grain	= 1;
984 
985 			dimm->mtype	= mtype;
986 			dimm->dtype	= dtype;
987 
988 			dimm->edac_mode	= edac_mode;
989 		}
990 	}
991 
992  done:
993 	return status;
994 }
995 
996 /**
997  * ppc4xx_edac_mc_init - initialize driver instance
998  * @mci: A pointer to the EDAC memory controller instance being
999  *       initialized.
1000  * @op: A pointer to the OpenFirmware device tree node associated
1001  *      with the controller this EDAC instance is bound to.
1002  * @dcr_host: A pointer to the DCR data containing the DCR mapping
1003  *            for this controller instance.
1004  * @mcopt1: The 32-bit Memory Controller Option 1 register value
1005  *          currently set for the controller, from which ECC capabilities
1006  *          and scrub mode are derived.
1007  *
1008  * This routine performs initialization of the EDAC memory controller
1009  * instance and related driver-private data associated with the
1010  * ibm,sdram-4xx-ddr2 memory controller the instance is bound to.
1011  *
1012  * Returns 0 if OK; otherwise, < 0 on error.
1013  */
1014 static int __devinit
1015 ppc4xx_edac_mc_init(struct mem_ctl_info *mci,
1016 		    struct platform_device *op,
1017 		    const dcr_host_t *dcr_host,
1018 		    u32 mcopt1)
1019 {
1020 	int status = 0;
1021 	const u32 memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK);
1022 	struct ppc4xx_edac_pdata *pdata = NULL;
1023 	const struct device_node *np = op->dev.of_node;
1024 
1025 	if (of_match_device(ppc4xx_edac_match, &op->dev) == NULL)
1026 		return -EINVAL;
1027 
1028 	/* Initial driver pointers and private data */
1029 
1030 	mci->dev		= &op->dev;
1031 
1032 	dev_set_drvdata(mci->dev, mci);
1033 
1034 	pdata			= mci->pvt_info;
1035 
1036 	pdata->dcr_host		= *dcr_host;
1037 	pdata->irqs.sec		= NO_IRQ;
1038 	pdata->irqs.ded		= NO_IRQ;
1039 
1040 	/* Initialize controller capabilities and configuration */
1041 
1042 	mci->mtype_cap		= (MEM_FLAG_DDR | MEM_FLAG_RDDR |
1043 				   MEM_FLAG_DDR2 | MEM_FLAG_RDDR2);
1044 
1045 	mci->edac_ctl_cap	= (EDAC_FLAG_NONE |
1046 				   EDAC_FLAG_EC |
1047 				   EDAC_FLAG_SECDED);
1048 
1049 	mci->scrub_cap		= SCRUB_NONE;
1050 	mci->scrub_mode		= SCRUB_NONE;
1051 
1052 	/*
1053 	 * Update the actual capabilites based on the MCOPT1[MCHK]
1054 	 * settings. Scrubbing is only useful if reporting is enabled.
1055 	 */
1056 
1057 	switch (memcheck) {
1058 	case SDRAM_MCOPT1_MCHK_CHK:
1059 		mci->edac_cap	= EDAC_FLAG_EC;
1060 		break;
1061 	case SDRAM_MCOPT1_MCHK_CHK_REP:
1062 		mci->edac_cap	= (EDAC_FLAG_EC | EDAC_FLAG_SECDED);
1063 		mci->scrub_mode	= SCRUB_SW_SRC;
1064 		break;
1065 	default:
1066 		mci->edac_cap	= EDAC_FLAG_NONE;
1067 		break;
1068 	}
1069 
1070 	/* Initialize strings */
1071 
1072 	mci->mod_name		= PPC4XX_EDAC_MODULE_NAME;
1073 	mci->mod_ver		= PPC4XX_EDAC_MODULE_REVISION;
1074 	mci->ctl_name		= ppc4xx_edac_match->compatible,
1075 	mci->dev_name		= np->full_name;
1076 
1077 	/* Initialize callbacks */
1078 
1079 	mci->edac_check		= ppc4xx_edac_check;
1080 	mci->ctl_page_to_phys	= NULL;
1081 
1082 	/* Initialize chip select rows */
1083 
1084 	status = ppc4xx_edac_init_csrows(mci, mcopt1);
1085 
1086 	if (status)
1087 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1088 				      "Failed to initialize rows!\n");
1089 
1090 	return status;
1091 }
1092 
1093 /**
1094  * ppc4xx_edac_register_irq - setup and register controller interrupts
1095  * @op: A pointer to the OpenFirmware device tree node associated
1096  *      with the controller this EDAC instance is bound to.
1097  * @mci: A pointer to the EDAC memory controller instance
1098  *       associated with the ibm,sdram-4xx-ddr2 controller for which
1099  *       interrupts are being registered.
1100  *
1101  * This routine parses the correctable (CE) and uncorrectable error (UE)
1102  * interrupts from the device tree node and maps and assigns them to
1103  * the associated EDAC memory controller instance.
1104  *
1105  * Returns 0 if OK; otherwise, -ENODEV if the interrupts could not be
1106  * mapped and assigned.
1107  */
1108 static int __devinit
1109 ppc4xx_edac_register_irq(struct platform_device *op, struct mem_ctl_info *mci)
1110 {
1111 	int status = 0;
1112 	int ded_irq, sec_irq;
1113 	struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
1114 	struct device_node *np = op->dev.of_node;
1115 
1116 	ded_irq = irq_of_parse_and_map(np, INTMAP_ECCDED_INDEX);
1117 	sec_irq = irq_of_parse_and_map(np, INTMAP_ECCSEC_INDEX);
1118 
1119 	if (ded_irq == NO_IRQ || sec_irq == NO_IRQ) {
1120 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1121 				      "Unable to map interrupts.\n");
1122 		status = -ENODEV;
1123 		goto fail;
1124 	}
1125 
1126 	status = request_irq(ded_irq,
1127 			     ppc4xx_edac_isr,
1128 			     IRQF_DISABLED,
1129 			     "[EDAC] MC ECCDED",
1130 			     mci);
1131 
1132 	if (status < 0) {
1133 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1134 				      "Unable to request irq %d for ECC DED",
1135 				      ded_irq);
1136 		status = -ENODEV;
1137 		goto fail1;
1138 	}
1139 
1140 	status = request_irq(sec_irq,
1141 			     ppc4xx_edac_isr,
1142 			     IRQF_DISABLED,
1143 			     "[EDAC] MC ECCSEC",
1144 			     mci);
1145 
1146 	if (status < 0) {
1147 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1148 				      "Unable to request irq %d for ECC SEC",
1149 				      sec_irq);
1150 		status = -ENODEV;
1151 		goto fail2;
1152 	}
1153 
1154 	ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCDED irq is %d\n", ded_irq);
1155 	ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCSEC irq is %d\n", sec_irq);
1156 
1157 	pdata->irqs.ded = ded_irq;
1158 	pdata->irqs.sec = sec_irq;
1159 
1160 	return 0;
1161 
1162  fail2:
1163 	free_irq(sec_irq, mci);
1164 
1165  fail1:
1166 	free_irq(ded_irq, mci);
1167 
1168  fail:
1169 	return status;
1170 }
1171 
1172 /**
1173  * ppc4xx_edac_map_dcrs - locate and map controller registers
1174  * @np: A pointer to the device tree node containing the DCR
1175  *      resources to map.
1176  * @dcr_host: A pointer to the DCR data to populate with the
1177  *            DCR mapping.
1178  *
1179  * This routine attempts to locate in the device tree and map the DCR
1180  * register resources associated with the controller's indirect DCR
1181  * address and data windows.
1182  *
1183  * Returns 0 if the DCRs were successfully mapped; otherwise, < 0 on
1184  * error.
1185  */
1186 static int __devinit
1187 ppc4xx_edac_map_dcrs(const struct device_node *np, dcr_host_t *dcr_host)
1188 {
1189 	unsigned int dcr_base, dcr_len;
1190 
1191 	if (np == NULL || dcr_host == NULL)
1192 		return -EINVAL;
1193 
1194 	/* Get the DCR resource extent and sanity check the values. */
1195 
1196 	dcr_base = dcr_resource_start(np, 0);
1197 	dcr_len = dcr_resource_len(np, 0);
1198 
1199 	if (dcr_base == 0 || dcr_len == 0) {
1200 		ppc4xx_edac_printk(KERN_ERR,
1201 				   "Failed to obtain DCR property.\n");
1202 		return -ENODEV;
1203 	}
1204 
1205 	if (dcr_len != SDRAM_DCR_RESOURCE_LEN) {
1206 		ppc4xx_edac_printk(KERN_ERR,
1207 				   "Unexpected DCR length %d, expected %d.\n",
1208 				   dcr_len, SDRAM_DCR_RESOURCE_LEN);
1209 		return -ENODEV;
1210 	}
1211 
1212 	/*  Attempt to map the DCR extent. */
1213 
1214 	*dcr_host = dcr_map(np, dcr_base, dcr_len);
1215 
1216 	if (!DCR_MAP_OK(*dcr_host)) {
1217 		ppc4xx_edac_printk(KERN_INFO, "Failed to map DCRs.\n");
1218 		    return -ENODEV;
1219 	}
1220 
1221 	return 0;
1222 }
1223 
1224 /**
1225  * ppc4xx_edac_probe - check controller and bind driver
1226  * @op: A pointer to the OpenFirmware device tree node associated
1227  *      with the controller being probed for driver binding.
1228  *
1229  * This routine probes a specific ibm,sdram-4xx-ddr2 controller
1230  * instance for binding with the driver.
1231  *
1232  * Returns 0 if the controller instance was successfully bound to the
1233  * driver; otherwise, < 0 on error.
1234  */
1235 static int __devinit ppc4xx_edac_probe(struct platform_device *op)
1236 {
1237 	int status = 0;
1238 	u32 mcopt1, memcheck;
1239 	dcr_host_t dcr_host;
1240 	const struct device_node *np = op->dev.of_node;
1241 	struct mem_ctl_info *mci = NULL;
1242 	struct edac_mc_layer layers[2];
1243 	static int ppc4xx_edac_instance;
1244 
1245 	/*
1246 	 * At this point, we only support the controller realized on
1247 	 * the AMCC PPC 405EX[r]. Reject anything else.
1248 	 */
1249 
1250 	if (!of_device_is_compatible(np, "ibm,sdram-405ex") &&
1251 	    !of_device_is_compatible(np, "ibm,sdram-405exr")) {
1252 		ppc4xx_edac_printk(KERN_NOTICE,
1253 				   "Only the PPC405EX[r] is supported.\n");
1254 		return -ENODEV;
1255 	}
1256 
1257 	/*
1258 	 * Next, get the DCR property and attempt to map it so that we
1259 	 * can probe the controller.
1260 	 */
1261 
1262 	status = ppc4xx_edac_map_dcrs(np, &dcr_host);
1263 
1264 	if (status)
1265 		return status;
1266 
1267 	/*
1268 	 * First determine whether ECC is enabled at all. If not,
1269 	 * there is no useful checking or monitoring that can be done
1270 	 * for this controller.
1271 	 */
1272 
1273 	mcopt1 = mfsdram(&dcr_host, SDRAM_MCOPT1);
1274 	memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK);
1275 
1276 	if (memcheck == SDRAM_MCOPT1_MCHK_NON) {
1277 		ppc4xx_edac_printk(KERN_INFO, "%s: No ECC memory detected or "
1278 				   "ECC is disabled.\n", np->full_name);
1279 		status = -ENODEV;
1280 		goto done;
1281 	}
1282 
1283 	/*
1284 	 * At this point, we know ECC is enabled, allocate an EDAC
1285 	 * controller instance and perform the appropriate
1286 	 * initialization.
1287 	 */
1288 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1289 	layers[0].size = ppc4xx_edac_nr_csrows;
1290 	layers[0].is_virt_csrow = true;
1291 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1292 	layers[1].size = ppc4xx_edac_nr_chans;
1293 	layers[1].is_virt_csrow = false;
1294 	mci = edac_mc_alloc(ppc4xx_edac_instance, ARRAY_SIZE(layers), layers,
1295 			    sizeof(struct ppc4xx_edac_pdata));
1296 	if (mci == NULL) {
1297 		ppc4xx_edac_printk(KERN_ERR, "%s: "
1298 				   "Failed to allocate EDAC MC instance!\n",
1299 				   np->full_name);
1300 		status = -ENOMEM;
1301 		goto done;
1302 	}
1303 
1304 	status = ppc4xx_edac_mc_init(mci, op, &dcr_host, mcopt1);
1305 
1306 	if (status) {
1307 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1308 				      "Failed to initialize instance!\n");
1309 		goto fail;
1310 	}
1311 
1312 	/*
1313 	 * We have a valid, initialized EDAC instance bound to the
1314 	 * controller. Attempt to register it with the EDAC subsystem
1315 	 * and, if necessary, register interrupts.
1316 	 */
1317 
1318 	if (edac_mc_add_mc(mci)) {
1319 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1320 				      "Failed to add instance!\n");
1321 		status = -ENODEV;
1322 		goto fail;
1323 	}
1324 
1325 	if (edac_op_state == EDAC_OPSTATE_INT) {
1326 		status = ppc4xx_edac_register_irq(op, mci);
1327 
1328 		if (status)
1329 			goto fail1;
1330 	}
1331 
1332 	ppc4xx_edac_instance++;
1333 
1334 	return 0;
1335 
1336  fail1:
1337 	edac_mc_del_mc(mci->dev);
1338 
1339  fail:
1340 	edac_mc_free(mci);
1341 
1342  done:
1343 	return status;
1344 }
1345 
1346 /**
1347  * ppc4xx_edac_remove - unbind driver from controller
1348  * @op: A pointer to the OpenFirmware device tree node associated
1349  *      with the controller this EDAC instance is to be unbound/removed
1350  *      from.
1351  *
1352  * This routine unbinds the EDAC memory controller instance associated
1353  * with the specified ibm,sdram-4xx-ddr2 controller described by the
1354  * OpenFirmware device tree node passed as a parameter.
1355  *
1356  * Unconditionally returns 0.
1357  */
1358 static int
1359 ppc4xx_edac_remove(struct platform_device *op)
1360 {
1361 	struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
1362 	struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
1363 
1364 	if (edac_op_state == EDAC_OPSTATE_INT) {
1365 		free_irq(pdata->irqs.sec, mci);
1366 		free_irq(pdata->irqs.ded, mci);
1367 	}
1368 
1369 	dcr_unmap(pdata->dcr_host, SDRAM_DCR_RESOURCE_LEN);
1370 
1371 	edac_mc_del_mc(mci->dev);
1372 	edac_mc_free(mci);
1373 
1374 	return 0;
1375 }
1376 
1377 /**
1378  * ppc4xx_edac_opstate_init - initialize EDAC reporting method
1379  *
1380  * This routine ensures that the EDAC memory controller reporting
1381  * method is mapped to a sane value as the EDAC core defines the value
1382  * to EDAC_OPSTATE_INVAL by default. We don't call the global
1383  * opstate_init as that defaults to polling and we want interrupt as
1384  * the default.
1385  */
1386 static inline void __init
1387 ppc4xx_edac_opstate_init(void)
1388 {
1389 	switch (edac_op_state) {
1390 	case EDAC_OPSTATE_POLL:
1391 	case EDAC_OPSTATE_INT:
1392 		break;
1393 	default:
1394 		edac_op_state = EDAC_OPSTATE_INT;
1395 		break;
1396 	}
1397 
1398 	ppc4xx_edac_printk(KERN_INFO, "Reporting type: %s\n",
1399 			   ((edac_op_state == EDAC_OPSTATE_POLL) ?
1400 			    EDAC_OPSTATE_POLL_STR :
1401 			    ((edac_op_state == EDAC_OPSTATE_INT) ?
1402 			     EDAC_OPSTATE_INT_STR :
1403 			     EDAC_OPSTATE_UNKNOWN_STR)));
1404 }
1405 
1406 /**
1407  * ppc4xx_edac_init - driver/module insertion entry point
1408  *
1409  * This routine is the driver/module insertion entry point. It
1410  * initializes the EDAC memory controller reporting state and
1411  * registers the driver as an OpenFirmware device tree platform
1412  * driver.
1413  */
1414 static int __init
1415 ppc4xx_edac_init(void)
1416 {
1417 	ppc4xx_edac_printk(KERN_INFO, PPC4XX_EDAC_MODULE_REVISION "\n");
1418 
1419 	ppc4xx_edac_opstate_init();
1420 
1421 	return platform_driver_register(&ppc4xx_edac_driver);
1422 }
1423 
1424 /**
1425  * ppc4xx_edac_exit - driver/module removal entry point
1426  *
1427  * This routine is the driver/module removal entry point. It
1428  * unregisters the driver as an OpenFirmware device tree platform
1429  * driver.
1430  */
1431 static void __exit
1432 ppc4xx_edac_exit(void)
1433 {
1434 	platform_driver_unregister(&ppc4xx_edac_driver);
1435 }
1436 
1437 module_init(ppc4xx_edac_init);
1438 module_exit(ppc4xx_edac_exit);
1439 
1440 MODULE_LICENSE("GPL v2");
1441 MODULE_AUTHOR("Grant Erickson <gerickson@nuovations.com>");
1442 MODULE_DESCRIPTION("EDAC MC Driver for the PPC4xx IBM DDR2 Memory Controller");
1443 module_param(edac_op_state, int, 0444);
1444 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting State: "
1445 		 "0=" EDAC_OPSTATE_POLL_STR ", 2=" EDAC_OPSTATE_INT_STR);
1446