xref: /openbmc/linux/drivers/edac/ppc4xx_edac.c (revision 2f190ac2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2008 Nuovation System Designs, LLC
4  *   Grant Erickson <gerickson@nuovations.com>
5  */
6 
7 #include <linux/edac.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/of_irq.h>
15 #include <linux/of_platform.h>
16 #include <linux/types.h>
17 
18 #include <asm/dcr.h>
19 
20 #include "edac_module.h"
21 #include "ppc4xx_edac.h"
22 
23 /*
24  * This file implements a driver for monitoring and handling events
25  * associated with the IMB DDR2 ECC controller found in the AMCC/IBM
26  * 405EX[r], 440SP, 440SPe, 460EX, 460GT and 460SX.
27  *
28  * As realized in the 405EX[r], this controller features:
29  *
30  *   - Support for registered- and non-registered DDR1 and DDR2 memory.
31  *   - 32-bit or 16-bit memory interface with optional ECC.
32  *
33  *     o ECC support includes:
34  *
35  *       - 4-bit SEC/DED
36  *       - Aligned-nibble error detect
37  *       - Bypass mode
38  *
39  *   - Two (2) memory banks/ranks.
40  *   - Up to 1 GiB per bank/rank in 32-bit mode and up to 512 MiB per
41  *     bank/rank in 16-bit mode.
42  *
43  * As realized in the 440SP and 440SPe, this controller changes/adds:
44  *
45  *   - 64-bit or 32-bit memory interface with optional ECC.
46  *
47  *     o ECC support includes:
48  *
49  *       - 8-bit SEC/DED
50  *       - Aligned-nibble error detect
51  *       - Bypass mode
52  *
53  *   - Up to 4 GiB per bank/rank in 64-bit mode and up to 2 GiB
54  *     per bank/rank in 32-bit mode.
55  *
56  * As realized in the 460EX and 460GT, this controller changes/adds:
57  *
58  *   - 64-bit or 32-bit memory interface with optional ECC.
59  *
60  *     o ECC support includes:
61  *
62  *       - 8-bit SEC/DED
63  *       - Aligned-nibble error detect
64  *       - Bypass mode
65  *
66  *   - Four (4) memory banks/ranks.
67  *   - Up to 16 GiB per bank/rank in 64-bit mode and up to 8 GiB
68  *     per bank/rank in 32-bit mode.
69  *
70  * At present, this driver has ONLY been tested against the controller
71  * realization in the 405EX[r] on the AMCC Kilauea and Haleakala
72  * boards (256 MiB w/o ECC memory soldered onto the board) and a
73  * proprietary board based on those designs (128 MiB ECC memory, also
74  * soldered onto the board).
75  *
76  * Dynamic feature detection and handling needs to be added for the
77  * other realizations of this controller listed above.
78  *
79  * Eventually, this driver will likely be adapted to the above variant
80  * realizations of this controller as well as broken apart to handle
81  * the other known ECC-capable controllers prevalent in other 4xx
82  * processors:
83  *
84  *   - IBM SDRAM (405GP, 405CR and 405EP) "ibm,sdram-4xx"
85  *   - IBM DDR1 (440GP, 440GX, 440EP and 440GR) "ibm,sdram-4xx-ddr"
86  *   - Denali DDR1/DDR2 (440EPX and 440GRX) "denali,sdram-4xx-ddr2"
87  *
88  * For this controller, unfortunately, correctable errors report
89  * nothing more than the beat/cycle and byte/lane the correction
90  * occurred on and the check bit group that covered the error.
91  *
92  * In contrast, uncorrectable errors also report the failing address,
93  * the bus master and the transaction direction (i.e. read or write)
94  *
95  * Regardless of whether the error is a CE or a UE, we report the
96  * following pieces of information in the driver-unique message to the
97  * EDAC subsystem:
98  *
99  *   - Device tree path
100  *   - Bank(s)
101  *   - Check bit error group
102  *   - Beat(s)/lane(s)
103  */
104 
105 /* Preprocessor Definitions */
106 
107 #define EDAC_OPSTATE_INT_STR		"interrupt"
108 #define EDAC_OPSTATE_POLL_STR		"polled"
109 #define EDAC_OPSTATE_UNKNOWN_STR	"unknown"
110 
111 #define PPC4XX_EDAC_MODULE_NAME		"ppc4xx_edac"
112 #define PPC4XX_EDAC_MODULE_REVISION	"v1.0.0"
113 
114 #define PPC4XX_EDAC_MESSAGE_SIZE	256
115 
116 /*
117  * Kernel logging without an EDAC instance
118  */
119 #define ppc4xx_edac_printk(level, fmt, arg...) \
120 	edac_printk(level, "PPC4xx MC", fmt, ##arg)
121 
122 /*
123  * Kernel logging with an EDAC instance
124  */
125 #define ppc4xx_edac_mc_printk(level, mci, fmt, arg...) \
126 	edac_mc_chipset_printk(mci, level, "PPC4xx", fmt, ##arg)
127 
128 /*
129  * Macros to convert bank configuration size enumerations into MiB and
130  * page values.
131  */
132 #define SDRAM_MBCF_SZ_MiB_MIN		4
133 #define SDRAM_MBCF_SZ_TO_MiB(n)		(SDRAM_MBCF_SZ_MiB_MIN \
134 					 << (SDRAM_MBCF_SZ_DECODE(n)))
135 #define SDRAM_MBCF_SZ_TO_PAGES(n)	(SDRAM_MBCF_SZ_MiB_MIN \
136 					 << (20 - PAGE_SHIFT + \
137 					     SDRAM_MBCF_SZ_DECODE(n)))
138 
139 /*
140  * The ibm,sdram-4xx-ddr2 Device Control Registers (DCRs) are
141  * indirectly accessed and have a base and length defined by the
142  * device tree. The base can be anything; however, we expect the
143  * length to be precisely two registers, the first for the address
144  * window and the second for the data window.
145  */
146 #define SDRAM_DCR_RESOURCE_LEN		2
147 #define SDRAM_DCR_ADDR_OFFSET		0
148 #define SDRAM_DCR_DATA_OFFSET		1
149 
150 /*
151  * Device tree interrupt indices
152  */
153 #define INTMAP_ECCDED_INDEX		0	/* Double-bit Error Detect */
154 #define INTMAP_ECCSEC_INDEX		1	/* Single-bit Error Correct */
155 
156 /* Type Definitions */
157 
158 /*
159  * PPC4xx SDRAM memory controller private instance data
160  */
161 struct ppc4xx_edac_pdata {
162 	dcr_host_t dcr_host;	/* Indirect DCR address/data window mapping */
163 	struct {
164 		int sec;	/* Single-bit correctable error IRQ assigned */
165 		int ded;	/* Double-bit detectable error IRQ assigned */
166 	} irqs;
167 };
168 
169 /*
170  * Various status data gathered and manipulated when checking and
171  * reporting ECC status.
172  */
173 struct ppc4xx_ecc_status {
174 	u32 ecces;
175 	u32 besr;
176 	u32 bearh;
177 	u32 bearl;
178 	u32 wmirq;
179 };
180 
181 /* Function Prototypes */
182 
183 static int ppc4xx_edac_probe(struct platform_device *device);
184 static int ppc4xx_edac_remove(struct platform_device *device);
185 
186 /* Global Variables */
187 
188 /*
189  * Device tree node type and compatible tuples this driver can match
190  * on.
191  */
192 static const struct of_device_id ppc4xx_edac_match[] = {
193 	{
194 		.compatible	= "ibm,sdram-4xx-ddr2"
195 	},
196 	{ }
197 };
198 MODULE_DEVICE_TABLE(of, ppc4xx_edac_match);
199 
200 static struct platform_driver ppc4xx_edac_driver = {
201 	.probe			= ppc4xx_edac_probe,
202 	.remove			= ppc4xx_edac_remove,
203 	.driver = {
204 		.name = PPC4XX_EDAC_MODULE_NAME,
205 		.of_match_table = ppc4xx_edac_match,
206 	},
207 };
208 
209 /*
210  * TODO: The row and channel parameters likely need to be dynamically
211  * set based on the aforementioned variant controller realizations.
212  */
213 static const unsigned ppc4xx_edac_nr_csrows = 2;
214 static const unsigned ppc4xx_edac_nr_chans = 1;
215 
216 /*
217  * Strings associated with PLB master IDs capable of being posted in
218  * SDRAM_BESR or SDRAM_WMIRQ on uncorrectable ECC errors.
219  */
220 static const char * const ppc4xx_plb_masters[9] = {
221 	[SDRAM_PLB_M0ID_ICU]	= "ICU",
222 	[SDRAM_PLB_M0ID_PCIE0]	= "PCI-E 0",
223 	[SDRAM_PLB_M0ID_PCIE1]	= "PCI-E 1",
224 	[SDRAM_PLB_M0ID_DMA]	= "DMA",
225 	[SDRAM_PLB_M0ID_DCU]	= "DCU",
226 	[SDRAM_PLB_M0ID_OPB]	= "OPB",
227 	[SDRAM_PLB_M0ID_MAL]	= "MAL",
228 	[SDRAM_PLB_M0ID_SEC]	= "SEC",
229 	[SDRAM_PLB_M0ID_AHB]	= "AHB"
230 };
231 
232 /**
233  * mfsdram - read and return controller register data
234  * @dcr_host: A pointer to the DCR mapping.
235  * @idcr_n: The indirect DCR register to read.
236  *
237  * This routine reads and returns the data associated with the
238  * controller's specified indirect DCR register.
239  *
240  * Returns the read data.
241  */
242 static inline u32
243 mfsdram(const dcr_host_t *dcr_host, unsigned int idcr_n)
244 {
245 	return __mfdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET,
246 			dcr_host->base + SDRAM_DCR_DATA_OFFSET,
247 			idcr_n);
248 }
249 
250 /**
251  * mtsdram - write controller register data
252  * @dcr_host: A pointer to the DCR mapping.
253  * @idcr_n: The indirect DCR register to write.
254  * @value: The data to write.
255  *
256  * This routine writes the provided data to the controller's specified
257  * indirect DCR register.
258  */
259 static inline void
260 mtsdram(const dcr_host_t *dcr_host, unsigned int idcr_n, u32 value)
261 {
262 	return __mtdcri(dcr_host->base + SDRAM_DCR_ADDR_OFFSET,
263 			dcr_host->base + SDRAM_DCR_DATA_OFFSET,
264 			idcr_n,
265 			value);
266 }
267 
268 /**
269  * ppc4xx_edac_check_bank_error - check a bank for an ECC bank error
270  * @status: A pointer to the ECC status structure to check for an
271  *          ECC bank error.
272  * @bank: The bank to check for an ECC error.
273  *
274  * This routine determines whether the specified bank has an ECC
275  * error.
276  *
277  * Returns true if the specified bank has an ECC error; otherwise,
278  * false.
279  */
280 static bool
281 ppc4xx_edac_check_bank_error(const struct ppc4xx_ecc_status *status,
282 			     unsigned int bank)
283 {
284 	switch (bank) {
285 	case 0:
286 		return status->ecces & SDRAM_ECCES_BK0ER;
287 	case 1:
288 		return status->ecces & SDRAM_ECCES_BK1ER;
289 	default:
290 		return false;
291 	}
292 }
293 
294 /**
295  * ppc4xx_edac_generate_bank_message - generate interpretted bank status message
296  * @mci: A pointer to the EDAC memory controller instance associated
297  *       with the bank message being generated.
298  * @status: A pointer to the ECC status structure to generate the
299  *          message from.
300  * @buffer: A pointer to the buffer in which to generate the
301  *          message.
302  * @size: The size, in bytes, of space available in buffer.
303  *
304  * This routine generates to the provided buffer the portion of the
305  * driver-unique report message associated with the ECCESS[BKNER]
306  * field of the specified ECC status.
307  *
308  * Returns the number of characters generated on success; otherwise, <
309  * 0 on error.
310  */
311 static int
312 ppc4xx_edac_generate_bank_message(const struct mem_ctl_info *mci,
313 				  const struct ppc4xx_ecc_status *status,
314 				  char *buffer,
315 				  size_t size)
316 {
317 	int n, total = 0;
318 	unsigned int row, rows;
319 
320 	n = snprintf(buffer, size, "%s: Banks: ", mci->dev_name);
321 
322 	if (n < 0 || n >= size)
323 		goto fail;
324 
325 	buffer += n;
326 	size -= n;
327 	total += n;
328 
329 	for (rows = 0, row = 0; row < mci->nr_csrows; row++) {
330 		if (ppc4xx_edac_check_bank_error(status, row)) {
331 			n = snprintf(buffer, size, "%s%u",
332 					(rows++ ? ", " : ""), row);
333 
334 			if (n < 0 || n >= size)
335 				goto fail;
336 
337 			buffer += n;
338 			size -= n;
339 			total += n;
340 		}
341 	}
342 
343 	n = snprintf(buffer, size, "%s; ", rows ? "" : "None");
344 
345 	if (n < 0 || n >= size)
346 		goto fail;
347 
348 	buffer += n;
349 	size -= n;
350 	total += n;
351 
352  fail:
353 	return total;
354 }
355 
356 /**
357  * ppc4xx_edac_generate_checkbit_message - generate interpretted checkbit message
358  * @mci: A pointer to the EDAC memory controller instance associated
359  *       with the checkbit message being generated.
360  * @status: A pointer to the ECC status structure to generate the
361  *          message from.
362  * @buffer: A pointer to the buffer in which to generate the
363  *          message.
364  * @size: The size, in bytes, of space available in buffer.
365  *
366  * This routine generates to the provided buffer the portion of the
367  * driver-unique report message associated with the ECCESS[CKBER]
368  * field of the specified ECC status.
369  *
370  * Returns the number of characters generated on success; otherwise, <
371  * 0 on error.
372  */
373 static int
374 ppc4xx_edac_generate_checkbit_message(const struct mem_ctl_info *mci,
375 				      const struct ppc4xx_ecc_status *status,
376 				      char *buffer,
377 				      size_t size)
378 {
379 	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
380 	const char *ckber = NULL;
381 
382 	switch (status->ecces & SDRAM_ECCES_CKBER_MASK) {
383 	case SDRAM_ECCES_CKBER_NONE:
384 		ckber = "None";
385 		break;
386 	case SDRAM_ECCES_CKBER_32_ECC_0_3:
387 		ckber = "ECC0:3";
388 		break;
389 	case SDRAM_ECCES_CKBER_32_ECC_4_8:
390 		switch (mfsdram(&pdata->dcr_host, SDRAM_MCOPT1) &
391 			SDRAM_MCOPT1_WDTH_MASK) {
392 		case SDRAM_MCOPT1_WDTH_16:
393 			ckber = "ECC0:3";
394 			break;
395 		case SDRAM_MCOPT1_WDTH_32:
396 			ckber = "ECC4:8";
397 			break;
398 		default:
399 			ckber = "Unknown";
400 			break;
401 		}
402 		break;
403 	case SDRAM_ECCES_CKBER_32_ECC_0_8:
404 		ckber = "ECC0:8";
405 		break;
406 	default:
407 		ckber = "Unknown";
408 		break;
409 	}
410 
411 	return snprintf(buffer, size, "Checkbit Error: %s", ckber);
412 }
413 
414 /**
415  * ppc4xx_edac_generate_lane_message - generate interpretted byte lane message
416  * @mci: A pointer to the EDAC memory controller instance associated
417  *       with the byte lane message being generated.
418  * @status: A pointer to the ECC status structure to generate the
419  *          message from.
420  * @buffer: A pointer to the buffer in which to generate the
421  *          message.
422  * @size: The size, in bytes, of space available in buffer.
423  *
424  * This routine generates to the provided buffer the portion of the
425  * driver-unique report message associated with the ECCESS[BNCE]
426  * field of the specified ECC status.
427  *
428  * Returns the number of characters generated on success; otherwise, <
429  * 0 on error.
430  */
431 static int
432 ppc4xx_edac_generate_lane_message(const struct mem_ctl_info *mci,
433 				  const struct ppc4xx_ecc_status *status,
434 				  char *buffer,
435 				  size_t size)
436 {
437 	int n, total = 0;
438 	unsigned int lane, lanes;
439 	const unsigned int first_lane = 0;
440 	const unsigned int lane_count = 16;
441 
442 	n = snprintf(buffer, size, "; Byte Lane Errors: ");
443 
444 	if (n < 0 || n >= size)
445 		goto fail;
446 
447 	buffer += n;
448 	size -= n;
449 	total += n;
450 
451 	for (lanes = 0, lane = first_lane; lane < lane_count; lane++) {
452 		if ((status->ecces & SDRAM_ECCES_BNCE_ENCODE(lane)) != 0) {
453 			n = snprintf(buffer, size,
454 				     "%s%u",
455 				     (lanes++ ? ", " : ""), lane);
456 
457 			if (n < 0 || n >= size)
458 				goto fail;
459 
460 			buffer += n;
461 			size -= n;
462 			total += n;
463 		}
464 	}
465 
466 	n = snprintf(buffer, size, "%s; ", lanes ? "" : "None");
467 
468 	if (n < 0 || n >= size)
469 		goto fail;
470 
471 	buffer += n;
472 	size -= n;
473 	total += n;
474 
475  fail:
476 	return total;
477 }
478 
479 /**
480  * ppc4xx_edac_generate_ecc_message - generate interpretted ECC status message
481  * @mci: A pointer to the EDAC memory controller instance associated
482  *       with the ECCES message being generated.
483  * @status: A pointer to the ECC status structure to generate the
484  *          message from.
485  * @buffer: A pointer to the buffer in which to generate the
486  *          message.
487  * @size: The size, in bytes, of space available in buffer.
488  *
489  * This routine generates to the provided buffer the portion of the
490  * driver-unique report message associated with the ECCESS register of
491  * the specified ECC status.
492  *
493  * Returns the number of characters generated on success; otherwise, <
494  * 0 on error.
495  */
496 static int
497 ppc4xx_edac_generate_ecc_message(const struct mem_ctl_info *mci,
498 				 const struct ppc4xx_ecc_status *status,
499 				 char *buffer,
500 				 size_t size)
501 {
502 	int n, total = 0;
503 
504 	n = ppc4xx_edac_generate_bank_message(mci, status, buffer, size);
505 
506 	if (n < 0 || n >= size)
507 		goto fail;
508 
509 	buffer += n;
510 	size -= n;
511 	total += n;
512 
513 	n = ppc4xx_edac_generate_checkbit_message(mci, status, buffer, size);
514 
515 	if (n < 0 || n >= size)
516 		goto fail;
517 
518 	buffer += n;
519 	size -= n;
520 	total += n;
521 
522 	n = ppc4xx_edac_generate_lane_message(mci, status, buffer, size);
523 
524 	if (n < 0 || n >= size)
525 		goto fail;
526 
527 	buffer += n;
528 	size -= n;
529 	total += n;
530 
531  fail:
532 	return total;
533 }
534 
535 /**
536  * ppc4xx_edac_generate_plb_message - generate interpretted PLB status message
537  * @mci: A pointer to the EDAC memory controller instance associated
538  *       with the PLB message being generated.
539  * @status: A pointer to the ECC status structure to generate the
540  *          message from.
541  * @buffer: A pointer to the buffer in which to generate the
542  *          message.
543  * @size: The size, in bytes, of space available in buffer.
544  *
545  * This routine generates to the provided buffer the portion of the
546  * driver-unique report message associated with the PLB-related BESR
547  * and/or WMIRQ registers of the specified ECC status.
548  *
549  * Returns the number of characters generated on success; otherwise, <
550  * 0 on error.
551  */
552 static int
553 ppc4xx_edac_generate_plb_message(const struct mem_ctl_info *mci,
554 				 const struct ppc4xx_ecc_status *status,
555 				 char *buffer,
556 				 size_t size)
557 {
558 	unsigned int master;
559 	bool read;
560 
561 	if ((status->besr & SDRAM_BESR_MASK) == 0)
562 		return 0;
563 
564 	if ((status->besr & SDRAM_BESR_M0ET_MASK) == SDRAM_BESR_M0ET_NONE)
565 		return 0;
566 
567 	read = ((status->besr & SDRAM_BESR_M0RW_MASK) == SDRAM_BESR_M0RW_READ);
568 
569 	master = SDRAM_BESR_M0ID_DECODE(status->besr);
570 
571 	return snprintf(buffer, size,
572 			"%s error w/ PLB master %u \"%s\"; ",
573 			(read ? "Read" : "Write"),
574 			master,
575 			(((master >= SDRAM_PLB_M0ID_FIRST) &&
576 			  (master <= SDRAM_PLB_M0ID_LAST)) ?
577 			 ppc4xx_plb_masters[master] : "UNKNOWN"));
578 }
579 
580 /**
581  * ppc4xx_edac_generate_message - generate interpretted status message
582  * @mci: A pointer to the EDAC memory controller instance associated
583  *       with the driver-unique message being generated.
584  * @status: A pointer to the ECC status structure to generate the
585  *          message from.
586  * @buffer: A pointer to the buffer in which to generate the
587  *          message.
588  * @size: The size, in bytes, of space available in buffer.
589  *
590  * This routine generates to the provided buffer the driver-unique
591  * EDAC report message from the specified ECC status.
592  */
593 static void
594 ppc4xx_edac_generate_message(const struct mem_ctl_info *mci,
595 			     const struct ppc4xx_ecc_status *status,
596 			     char *buffer,
597 			     size_t size)
598 {
599 	int n;
600 
601 	if (buffer == NULL || size == 0)
602 		return;
603 
604 	n = ppc4xx_edac_generate_ecc_message(mci, status, buffer, size);
605 
606 	if (n < 0 || n >= size)
607 		return;
608 
609 	buffer += n;
610 	size -= n;
611 
612 	ppc4xx_edac_generate_plb_message(mci, status, buffer, size);
613 }
614 
615 #ifdef DEBUG
616 /**
617  * ppc4xx_ecc_dump_status - dump controller ECC status registers
618  * @mci: A pointer to the EDAC memory controller instance
619  *       associated with the status being dumped.
620  * @status: A pointer to the ECC status structure to generate the
621  *          dump from.
622  *
623  * This routine dumps to the kernel log buffer the raw and
624  * interpretted specified ECC status.
625  */
626 static void
627 ppc4xx_ecc_dump_status(const struct mem_ctl_info *mci,
628 		       const struct ppc4xx_ecc_status *status)
629 {
630 	char message[PPC4XX_EDAC_MESSAGE_SIZE];
631 
632 	ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
633 
634 	ppc4xx_edac_mc_printk(KERN_INFO, mci,
635 			      "\n"
636 			      "\tECCES: 0x%08x\n"
637 			      "\tWMIRQ: 0x%08x\n"
638 			      "\tBESR:  0x%08x\n"
639 			      "\tBEAR:  0x%08x%08x\n"
640 			      "\t%s\n",
641 			      status->ecces,
642 			      status->wmirq,
643 			      status->besr,
644 			      status->bearh,
645 			      status->bearl,
646 			      message);
647 }
648 #endif /* DEBUG */
649 
650 /**
651  * ppc4xx_ecc_get_status - get controller ECC status
652  * @mci: A pointer to the EDAC memory controller instance
653  *       associated with the status being retrieved.
654  * @status: A pointer to the ECC status structure to populate the
655  *          ECC status with.
656  *
657  * This routine reads and masks, as appropriate, all the relevant
658  * status registers that deal with ibm,sdram-4xx-ddr2 ECC errors.
659  * While we read all of them, for correctable errors, we only expect
660  * to deal with ECCES. For uncorrectable errors, we expect to deal
661  * with all of them.
662  */
663 static void
664 ppc4xx_ecc_get_status(const struct mem_ctl_info *mci,
665 		      struct ppc4xx_ecc_status *status)
666 {
667 	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
668 	const dcr_host_t *dcr_host = &pdata->dcr_host;
669 
670 	status->ecces = mfsdram(dcr_host, SDRAM_ECCES) & SDRAM_ECCES_MASK;
671 	status->wmirq = mfsdram(dcr_host, SDRAM_WMIRQ) & SDRAM_WMIRQ_MASK;
672 	status->besr  = mfsdram(dcr_host, SDRAM_BESR)  & SDRAM_BESR_MASK;
673 	status->bearl = mfsdram(dcr_host, SDRAM_BEARL);
674 	status->bearh = mfsdram(dcr_host, SDRAM_BEARH);
675 }
676 
677 /**
678  * ppc4xx_ecc_clear_status - clear controller ECC status
679  * @mci: A pointer to the EDAC memory controller instance
680  *       associated with the status being cleared.
681  * @status: A pointer to the ECC status structure containing the
682  *          values to write to clear the ECC status.
683  *
684  * This routine clears--by writing the masked (as appropriate) status
685  * values back to--the status registers that deal with
686  * ibm,sdram-4xx-ddr2 ECC errors.
687  */
688 static void
689 ppc4xx_ecc_clear_status(const struct mem_ctl_info *mci,
690 			const struct ppc4xx_ecc_status *status)
691 {
692 	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
693 	const dcr_host_t *dcr_host = &pdata->dcr_host;
694 
695 	mtsdram(dcr_host, SDRAM_ECCES,	status->ecces & SDRAM_ECCES_MASK);
696 	mtsdram(dcr_host, SDRAM_WMIRQ,	status->wmirq & SDRAM_WMIRQ_MASK);
697 	mtsdram(dcr_host, SDRAM_BESR,	status->besr & SDRAM_BESR_MASK);
698 	mtsdram(dcr_host, SDRAM_BEARL,	0);
699 	mtsdram(dcr_host, SDRAM_BEARH,	0);
700 }
701 
702 /**
703  * ppc4xx_edac_handle_ce - handle controller correctable ECC error (CE)
704  * @mci: A pointer to the EDAC memory controller instance
705  *       associated with the correctable error being handled and reported.
706  * @status: A pointer to the ECC status structure associated with
707  *          the correctable error being handled and reported.
708  *
709  * This routine handles an ibm,sdram-4xx-ddr2 controller ECC
710  * correctable error. Per the aforementioned discussion, there's not
711  * enough status available to use the full EDAC correctable error
712  * interface, so we just pass driver-unique message to the "no info"
713  * interface.
714  */
715 static void
716 ppc4xx_edac_handle_ce(struct mem_ctl_info *mci,
717 		      const struct ppc4xx_ecc_status *status)
718 {
719 	int row;
720 	char message[PPC4XX_EDAC_MESSAGE_SIZE];
721 
722 	ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
723 
724 	for (row = 0; row < mci->nr_csrows; row++)
725 		if (ppc4xx_edac_check_bank_error(status, row))
726 			edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
727 					     0, 0, 0,
728 					     row, 0, -1,
729 					     message, "");
730 }
731 
732 /**
733  * ppc4xx_edac_handle_ue - handle controller uncorrectable ECC error (UE)
734  * @mci: A pointer to the EDAC memory controller instance
735  *       associated with the uncorrectable error being handled and
736  *       reported.
737  * @status: A pointer to the ECC status structure associated with
738  *          the uncorrectable error being handled and reported.
739  *
740  * This routine handles an ibm,sdram-4xx-ddr2 controller ECC
741  * uncorrectable error.
742  */
743 static void
744 ppc4xx_edac_handle_ue(struct mem_ctl_info *mci,
745 		      const struct ppc4xx_ecc_status *status)
746 {
747 	const u64 bear = ((u64)status->bearh << 32 | status->bearl);
748 	const unsigned long page = bear >> PAGE_SHIFT;
749 	const unsigned long offset = bear & ~PAGE_MASK;
750 	int row;
751 	char message[PPC4XX_EDAC_MESSAGE_SIZE];
752 
753 	ppc4xx_edac_generate_message(mci, status, message, sizeof(message));
754 
755 	for (row = 0; row < mci->nr_csrows; row++)
756 		if (ppc4xx_edac_check_bank_error(status, row))
757 			edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
758 					     page, offset, 0,
759 					     row, 0, -1,
760 					     message, "");
761 }
762 
763 /**
764  * ppc4xx_edac_check - check controller for ECC errors
765  * @mci: A pointer to the EDAC memory controller instance
766  *       associated with the ibm,sdram-4xx-ddr2 controller being
767  *       checked.
768  *
769  * This routine is used to check and post ECC errors and is called by
770  * both the EDAC polling thread and this driver's CE and UE interrupt
771  * handler.
772  */
773 static void
774 ppc4xx_edac_check(struct mem_ctl_info *mci)
775 {
776 #ifdef DEBUG
777 	static unsigned int count;
778 #endif
779 	struct ppc4xx_ecc_status status;
780 
781 	ppc4xx_ecc_get_status(mci, &status);
782 
783 #ifdef DEBUG
784 	if (count++ % 30 == 0)
785 		ppc4xx_ecc_dump_status(mci, &status);
786 #endif
787 
788 	if (status.ecces & SDRAM_ECCES_UE)
789 		ppc4xx_edac_handle_ue(mci, &status);
790 
791 	if (status.ecces & SDRAM_ECCES_CE)
792 		ppc4xx_edac_handle_ce(mci, &status);
793 
794 	ppc4xx_ecc_clear_status(mci, &status);
795 }
796 
797 /**
798  * ppc4xx_edac_isr - SEC (CE) and DED (UE) interrupt service routine
799  * @irq:    The virtual interrupt number being serviced.
800  * @dev_id: A pointer to the EDAC memory controller instance
801  *          associated with the interrupt being handled.
802  *
803  * This routine implements the interrupt handler for both correctable
804  * (CE) and uncorrectable (UE) ECC errors for the ibm,sdram-4xx-ddr2
805  * controller. It simply calls through to the same routine used during
806  * polling to check, report and clear the ECC status.
807  *
808  * Unconditionally returns IRQ_HANDLED.
809  */
810 static irqreturn_t
811 ppc4xx_edac_isr(int irq, void *dev_id)
812 {
813 	struct mem_ctl_info *mci = dev_id;
814 
815 	ppc4xx_edac_check(mci);
816 
817 	return IRQ_HANDLED;
818 }
819 
820 /**
821  * ppc4xx_edac_get_dtype - return the controller memory width
822  * @mcopt1: The 32-bit Memory Controller Option 1 register value
823  *          currently set for the controller, from which the width
824  *          is derived.
825  *
826  * This routine returns the EDAC device type width appropriate for the
827  * current controller configuration.
828  *
829  * TODO: This needs to be conditioned dynamically through feature
830  * flags or some such when other controller variants are supported as
831  * the 405EX[r] is 16-/32-bit and the others are 32-/64-bit with the
832  * 16- and 64-bit field definition/value/enumeration (b1) overloaded
833  * among them.
834  *
835  * Returns a device type width enumeration.
836  */
837 static enum dev_type ppc4xx_edac_get_dtype(u32 mcopt1)
838 {
839 	switch (mcopt1 & SDRAM_MCOPT1_WDTH_MASK) {
840 	case SDRAM_MCOPT1_WDTH_16:
841 		return DEV_X2;
842 	case SDRAM_MCOPT1_WDTH_32:
843 		return DEV_X4;
844 	default:
845 		return DEV_UNKNOWN;
846 	}
847 }
848 
849 /**
850  * ppc4xx_edac_get_mtype - return controller memory type
851  * @mcopt1: The 32-bit Memory Controller Option 1 register value
852  *          currently set for the controller, from which the memory type
853  *          is derived.
854  *
855  * This routine returns the EDAC memory type appropriate for the
856  * current controller configuration.
857  *
858  * Returns a memory type enumeration.
859  */
860 static enum mem_type ppc4xx_edac_get_mtype(u32 mcopt1)
861 {
862 	bool rden = ((mcopt1 & SDRAM_MCOPT1_RDEN_MASK) == SDRAM_MCOPT1_RDEN);
863 
864 	switch (mcopt1 & SDRAM_MCOPT1_DDR_TYPE_MASK) {
865 	case SDRAM_MCOPT1_DDR2_TYPE:
866 		return rden ? MEM_RDDR2 : MEM_DDR2;
867 	case SDRAM_MCOPT1_DDR1_TYPE:
868 		return rden ? MEM_RDDR : MEM_DDR;
869 	default:
870 		return MEM_UNKNOWN;
871 	}
872 }
873 
874 /**
875  * ppc4xx_edac_init_csrows - initialize driver instance rows
876  * @mci: A pointer to the EDAC memory controller instance
877  *       associated with the ibm,sdram-4xx-ddr2 controller for which
878  *       the csrows (i.e. banks/ranks) are being initialized.
879  * @mcopt1: The 32-bit Memory Controller Option 1 register value
880  *          currently set for the controller, from which bank width
881  *          and memory typ information is derived.
882  *
883  * This routine initializes the virtual "chip select rows" associated
884  * with the EDAC memory controller instance. An ibm,sdram-4xx-ddr2
885  * controller bank/rank is mapped to a row.
886  *
887  * Returns 0 if OK; otherwise, -EINVAL if the memory bank size
888  * configuration cannot be determined.
889  */
890 static int ppc4xx_edac_init_csrows(struct mem_ctl_info *mci, u32 mcopt1)
891 {
892 	const struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
893 	int status = 0;
894 	enum mem_type mtype;
895 	enum dev_type dtype;
896 	enum edac_type edac_mode;
897 	int row, j;
898 	u32 mbxcf, size, nr_pages;
899 
900 	/* Establish the memory type and width */
901 
902 	mtype = ppc4xx_edac_get_mtype(mcopt1);
903 	dtype = ppc4xx_edac_get_dtype(mcopt1);
904 
905 	/* Establish EDAC mode */
906 
907 	if (mci->edac_cap & EDAC_FLAG_SECDED)
908 		edac_mode = EDAC_SECDED;
909 	else if (mci->edac_cap & EDAC_FLAG_EC)
910 		edac_mode = EDAC_EC;
911 	else
912 		edac_mode = EDAC_NONE;
913 
914 	/*
915 	 * Initialize each chip select row structure which correspond
916 	 * 1:1 with a controller bank/rank.
917 	 */
918 
919 	for (row = 0; row < mci->nr_csrows; row++) {
920 		struct csrow_info *csi = mci->csrows[row];
921 
922 		/*
923 		 * Get the configuration settings for this
924 		 * row/bank/rank and skip disabled banks.
925 		 */
926 
927 		mbxcf = mfsdram(&pdata->dcr_host, SDRAM_MBXCF(row));
928 
929 		if ((mbxcf & SDRAM_MBCF_BE_MASK) != SDRAM_MBCF_BE_ENABLE)
930 			continue;
931 
932 		/* Map the bank configuration size setting to pages. */
933 
934 		size = mbxcf & SDRAM_MBCF_SZ_MASK;
935 
936 		switch (size) {
937 		case SDRAM_MBCF_SZ_4MB:
938 		case SDRAM_MBCF_SZ_8MB:
939 		case SDRAM_MBCF_SZ_16MB:
940 		case SDRAM_MBCF_SZ_32MB:
941 		case SDRAM_MBCF_SZ_64MB:
942 		case SDRAM_MBCF_SZ_128MB:
943 		case SDRAM_MBCF_SZ_256MB:
944 		case SDRAM_MBCF_SZ_512MB:
945 		case SDRAM_MBCF_SZ_1GB:
946 		case SDRAM_MBCF_SZ_2GB:
947 		case SDRAM_MBCF_SZ_4GB:
948 		case SDRAM_MBCF_SZ_8GB:
949 			nr_pages = SDRAM_MBCF_SZ_TO_PAGES(size);
950 			break;
951 		default:
952 			ppc4xx_edac_mc_printk(KERN_ERR, mci,
953 					      "Unrecognized memory bank %d "
954 					      "size 0x%08x\n",
955 					      row, SDRAM_MBCF_SZ_DECODE(size));
956 			status = -EINVAL;
957 			goto done;
958 		}
959 
960 		/*
961 		 * It's unclear exactly what grain should be set to
962 		 * here. The SDRAM_ECCES register allows resolution of
963 		 * an error down to a nibble which would potentially
964 		 * argue for a grain of '1' byte, even though we only
965 		 * know the associated address for uncorrectable
966 		 * errors. This value is not used at present for
967 		 * anything other than error reporting so getting it
968 		 * wrong should be of little consequence. Other
969 		 * possible values would be the PLB width (16), the
970 		 * page size (PAGE_SIZE) or the memory width (2 or 4).
971 		 */
972 		for (j = 0; j < csi->nr_channels; j++) {
973 			struct dimm_info *dimm = csi->channels[j]->dimm;
974 
975 			dimm->nr_pages  = nr_pages / csi->nr_channels;
976 			dimm->grain	= 1;
977 
978 			dimm->mtype	= mtype;
979 			dimm->dtype	= dtype;
980 
981 			dimm->edac_mode	= edac_mode;
982 		}
983 	}
984 
985  done:
986 	return status;
987 }
988 
989 /**
990  * ppc4xx_edac_mc_init - initialize driver instance
991  * @mci: A pointer to the EDAC memory controller instance being
992  *       initialized.
993  * @op: A pointer to the OpenFirmware device tree node associated
994  *      with the controller this EDAC instance is bound to.
995  * @dcr_host: A pointer to the DCR data containing the DCR mapping
996  *            for this controller instance.
997  * @mcopt1: The 32-bit Memory Controller Option 1 register value
998  *          currently set for the controller, from which ECC capabilities
999  *          and scrub mode are derived.
1000  *
1001  * This routine performs initialization of the EDAC memory controller
1002  * instance and related driver-private data associated with the
1003  * ibm,sdram-4xx-ddr2 memory controller the instance is bound to.
1004  *
1005  * Returns 0 if OK; otherwise, < 0 on error.
1006  */
1007 static int ppc4xx_edac_mc_init(struct mem_ctl_info *mci,
1008 			       struct platform_device *op,
1009 			       const dcr_host_t *dcr_host, u32 mcopt1)
1010 {
1011 	int status = 0;
1012 	const u32 memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK);
1013 	struct ppc4xx_edac_pdata *pdata = NULL;
1014 	const struct device_node *np = op->dev.of_node;
1015 
1016 	if (of_match_device(ppc4xx_edac_match, &op->dev) == NULL)
1017 		return -EINVAL;
1018 
1019 	/* Initial driver pointers and private data */
1020 
1021 	mci->pdev		= &op->dev;
1022 
1023 	dev_set_drvdata(mci->pdev, mci);
1024 
1025 	pdata			= mci->pvt_info;
1026 
1027 	pdata->dcr_host		= *dcr_host;
1028 
1029 	/* Initialize controller capabilities and configuration */
1030 
1031 	mci->mtype_cap		= (MEM_FLAG_DDR | MEM_FLAG_RDDR |
1032 				   MEM_FLAG_DDR2 | MEM_FLAG_RDDR2);
1033 
1034 	mci->edac_ctl_cap	= (EDAC_FLAG_NONE |
1035 				   EDAC_FLAG_EC |
1036 				   EDAC_FLAG_SECDED);
1037 
1038 	mci->scrub_cap		= SCRUB_NONE;
1039 	mci->scrub_mode		= SCRUB_NONE;
1040 
1041 	/*
1042 	 * Update the actual capabilites based on the MCOPT1[MCHK]
1043 	 * settings. Scrubbing is only useful if reporting is enabled.
1044 	 */
1045 
1046 	switch (memcheck) {
1047 	case SDRAM_MCOPT1_MCHK_CHK:
1048 		mci->edac_cap	= EDAC_FLAG_EC;
1049 		break;
1050 	case SDRAM_MCOPT1_MCHK_CHK_REP:
1051 		mci->edac_cap	= (EDAC_FLAG_EC | EDAC_FLAG_SECDED);
1052 		mci->scrub_mode	= SCRUB_SW_SRC;
1053 		break;
1054 	default:
1055 		mci->edac_cap	= EDAC_FLAG_NONE;
1056 		break;
1057 	}
1058 
1059 	/* Initialize strings */
1060 
1061 	mci->mod_name		= PPC4XX_EDAC_MODULE_NAME;
1062 	mci->ctl_name		= ppc4xx_edac_match->compatible;
1063 	mci->dev_name		= np->full_name;
1064 
1065 	/* Initialize callbacks */
1066 
1067 	mci->edac_check		= ppc4xx_edac_check;
1068 	mci->ctl_page_to_phys	= NULL;
1069 
1070 	/* Initialize chip select rows */
1071 
1072 	status = ppc4xx_edac_init_csrows(mci, mcopt1);
1073 
1074 	if (status)
1075 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1076 				      "Failed to initialize rows!\n");
1077 
1078 	return status;
1079 }
1080 
1081 /**
1082  * ppc4xx_edac_register_irq - setup and register controller interrupts
1083  * @op: A pointer to the OpenFirmware device tree node associated
1084  *      with the controller this EDAC instance is bound to.
1085  * @mci: A pointer to the EDAC memory controller instance
1086  *       associated with the ibm,sdram-4xx-ddr2 controller for which
1087  *       interrupts are being registered.
1088  *
1089  * This routine parses the correctable (CE) and uncorrectable error (UE)
1090  * interrupts from the device tree node and maps and assigns them to
1091  * the associated EDAC memory controller instance.
1092  *
1093  * Returns 0 if OK; otherwise, -ENODEV if the interrupts could not be
1094  * mapped and assigned.
1095  */
1096 static int ppc4xx_edac_register_irq(struct platform_device *op,
1097 				    struct mem_ctl_info *mci)
1098 {
1099 	int status = 0;
1100 	int ded_irq, sec_irq;
1101 	struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
1102 	struct device_node *np = op->dev.of_node;
1103 
1104 	ded_irq = irq_of_parse_and_map(np, INTMAP_ECCDED_INDEX);
1105 	sec_irq = irq_of_parse_and_map(np, INTMAP_ECCSEC_INDEX);
1106 
1107 	if (!ded_irq || !sec_irq) {
1108 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1109 				      "Unable to map interrupts.\n");
1110 		status = -ENODEV;
1111 		goto fail;
1112 	}
1113 
1114 	status = request_irq(ded_irq,
1115 			     ppc4xx_edac_isr,
1116 			     0,
1117 			     "[EDAC] MC ECCDED",
1118 			     mci);
1119 
1120 	if (status < 0) {
1121 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1122 				      "Unable to request irq %d for ECC DED",
1123 				      ded_irq);
1124 		status = -ENODEV;
1125 		goto fail1;
1126 	}
1127 
1128 	status = request_irq(sec_irq,
1129 			     ppc4xx_edac_isr,
1130 			     0,
1131 			     "[EDAC] MC ECCSEC",
1132 			     mci);
1133 
1134 	if (status < 0) {
1135 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1136 				      "Unable to request irq %d for ECC SEC",
1137 				      sec_irq);
1138 		status = -ENODEV;
1139 		goto fail2;
1140 	}
1141 
1142 	ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCDED irq is %d\n", ded_irq);
1143 	ppc4xx_edac_mc_printk(KERN_INFO, mci, "ECCSEC irq is %d\n", sec_irq);
1144 
1145 	pdata->irqs.ded = ded_irq;
1146 	pdata->irqs.sec = sec_irq;
1147 
1148 	return 0;
1149 
1150  fail2:
1151 	free_irq(sec_irq, mci);
1152 
1153  fail1:
1154 	free_irq(ded_irq, mci);
1155 
1156  fail:
1157 	return status;
1158 }
1159 
1160 /**
1161  * ppc4xx_edac_map_dcrs - locate and map controller registers
1162  * @np: A pointer to the device tree node containing the DCR
1163  *      resources to map.
1164  * @dcr_host: A pointer to the DCR data to populate with the
1165  *            DCR mapping.
1166  *
1167  * This routine attempts to locate in the device tree and map the DCR
1168  * register resources associated with the controller's indirect DCR
1169  * address and data windows.
1170  *
1171  * Returns 0 if the DCRs were successfully mapped; otherwise, < 0 on
1172  * error.
1173  */
1174 static int ppc4xx_edac_map_dcrs(const struct device_node *np,
1175 				dcr_host_t *dcr_host)
1176 {
1177 	unsigned int dcr_base, dcr_len;
1178 
1179 	if (np == NULL || dcr_host == NULL)
1180 		return -EINVAL;
1181 
1182 	/* Get the DCR resource extent and sanity check the values. */
1183 
1184 	dcr_base = dcr_resource_start(np, 0);
1185 	dcr_len = dcr_resource_len(np, 0);
1186 
1187 	if (dcr_base == 0 || dcr_len == 0) {
1188 		ppc4xx_edac_printk(KERN_ERR,
1189 				   "Failed to obtain DCR property.\n");
1190 		return -ENODEV;
1191 	}
1192 
1193 	if (dcr_len != SDRAM_DCR_RESOURCE_LEN) {
1194 		ppc4xx_edac_printk(KERN_ERR,
1195 				   "Unexpected DCR length %d, expected %d.\n",
1196 				   dcr_len, SDRAM_DCR_RESOURCE_LEN);
1197 		return -ENODEV;
1198 	}
1199 
1200 	/*  Attempt to map the DCR extent. */
1201 
1202 	*dcr_host = dcr_map(np, dcr_base, dcr_len);
1203 
1204 	if (!DCR_MAP_OK(*dcr_host)) {
1205 		ppc4xx_edac_printk(KERN_INFO, "Failed to map DCRs.\n");
1206 		    return -ENODEV;
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 /**
1213  * ppc4xx_edac_probe - check controller and bind driver
1214  * @op: A pointer to the OpenFirmware device tree node associated
1215  *      with the controller being probed for driver binding.
1216  *
1217  * This routine probes a specific ibm,sdram-4xx-ddr2 controller
1218  * instance for binding with the driver.
1219  *
1220  * Returns 0 if the controller instance was successfully bound to the
1221  * driver; otherwise, < 0 on error.
1222  */
1223 static int ppc4xx_edac_probe(struct platform_device *op)
1224 {
1225 	int status = 0;
1226 	u32 mcopt1, memcheck;
1227 	dcr_host_t dcr_host;
1228 	const struct device_node *np = op->dev.of_node;
1229 	struct mem_ctl_info *mci = NULL;
1230 	struct edac_mc_layer layers[2];
1231 	static int ppc4xx_edac_instance;
1232 
1233 	/*
1234 	 * At this point, we only support the controller realized on
1235 	 * the AMCC PPC 405EX[r]. Reject anything else.
1236 	 */
1237 
1238 	if (!of_device_is_compatible(np, "ibm,sdram-405ex") &&
1239 	    !of_device_is_compatible(np, "ibm,sdram-405exr")) {
1240 		ppc4xx_edac_printk(KERN_NOTICE,
1241 				   "Only the PPC405EX[r] is supported.\n");
1242 		return -ENODEV;
1243 	}
1244 
1245 	/*
1246 	 * Next, get the DCR property and attempt to map it so that we
1247 	 * can probe the controller.
1248 	 */
1249 
1250 	status = ppc4xx_edac_map_dcrs(np, &dcr_host);
1251 
1252 	if (status)
1253 		return status;
1254 
1255 	/*
1256 	 * First determine whether ECC is enabled at all. If not,
1257 	 * there is no useful checking or monitoring that can be done
1258 	 * for this controller.
1259 	 */
1260 
1261 	mcopt1 = mfsdram(&dcr_host, SDRAM_MCOPT1);
1262 	memcheck = (mcopt1 & SDRAM_MCOPT1_MCHK_MASK);
1263 
1264 	if (memcheck == SDRAM_MCOPT1_MCHK_NON) {
1265 		ppc4xx_edac_printk(KERN_INFO, "%pOF: No ECC memory detected or "
1266 				   "ECC is disabled.\n", np);
1267 		status = -ENODEV;
1268 		goto done;
1269 	}
1270 
1271 	/*
1272 	 * At this point, we know ECC is enabled, allocate an EDAC
1273 	 * controller instance and perform the appropriate
1274 	 * initialization.
1275 	 */
1276 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1277 	layers[0].size = ppc4xx_edac_nr_csrows;
1278 	layers[0].is_virt_csrow = true;
1279 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1280 	layers[1].size = ppc4xx_edac_nr_chans;
1281 	layers[1].is_virt_csrow = false;
1282 	mci = edac_mc_alloc(ppc4xx_edac_instance, ARRAY_SIZE(layers), layers,
1283 			    sizeof(struct ppc4xx_edac_pdata));
1284 	if (mci == NULL) {
1285 		ppc4xx_edac_printk(KERN_ERR, "%pOF: "
1286 				   "Failed to allocate EDAC MC instance!\n",
1287 				   np);
1288 		status = -ENOMEM;
1289 		goto done;
1290 	}
1291 
1292 	status = ppc4xx_edac_mc_init(mci, op, &dcr_host, mcopt1);
1293 
1294 	if (status) {
1295 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1296 				      "Failed to initialize instance!\n");
1297 		goto fail;
1298 	}
1299 
1300 	/*
1301 	 * We have a valid, initialized EDAC instance bound to the
1302 	 * controller. Attempt to register it with the EDAC subsystem
1303 	 * and, if necessary, register interrupts.
1304 	 */
1305 
1306 	if (edac_mc_add_mc(mci)) {
1307 		ppc4xx_edac_mc_printk(KERN_ERR, mci,
1308 				      "Failed to add instance!\n");
1309 		status = -ENODEV;
1310 		goto fail;
1311 	}
1312 
1313 	if (edac_op_state == EDAC_OPSTATE_INT) {
1314 		status = ppc4xx_edac_register_irq(op, mci);
1315 
1316 		if (status)
1317 			goto fail1;
1318 	}
1319 
1320 	ppc4xx_edac_instance++;
1321 
1322 	return 0;
1323 
1324  fail1:
1325 	edac_mc_del_mc(mci->pdev);
1326 
1327  fail:
1328 	edac_mc_free(mci);
1329 
1330  done:
1331 	return status;
1332 }
1333 
1334 /**
1335  * ppc4xx_edac_remove - unbind driver from controller
1336  * @op: A pointer to the OpenFirmware device tree node associated
1337  *      with the controller this EDAC instance is to be unbound/removed
1338  *      from.
1339  *
1340  * This routine unbinds the EDAC memory controller instance associated
1341  * with the specified ibm,sdram-4xx-ddr2 controller described by the
1342  * OpenFirmware device tree node passed as a parameter.
1343  *
1344  * Unconditionally returns 0.
1345  */
1346 static int
1347 ppc4xx_edac_remove(struct platform_device *op)
1348 {
1349 	struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
1350 	struct ppc4xx_edac_pdata *pdata = mci->pvt_info;
1351 
1352 	if (edac_op_state == EDAC_OPSTATE_INT) {
1353 		free_irq(pdata->irqs.sec, mci);
1354 		free_irq(pdata->irqs.ded, mci);
1355 	}
1356 
1357 	dcr_unmap(pdata->dcr_host, SDRAM_DCR_RESOURCE_LEN);
1358 
1359 	edac_mc_del_mc(mci->pdev);
1360 	edac_mc_free(mci);
1361 
1362 	return 0;
1363 }
1364 
1365 /**
1366  * ppc4xx_edac_opstate_init - initialize EDAC reporting method
1367  *
1368  * This routine ensures that the EDAC memory controller reporting
1369  * method is mapped to a sane value as the EDAC core defines the value
1370  * to EDAC_OPSTATE_INVAL by default. We don't call the global
1371  * opstate_init as that defaults to polling and we want interrupt as
1372  * the default.
1373  */
1374 static inline void __init
1375 ppc4xx_edac_opstate_init(void)
1376 {
1377 	switch (edac_op_state) {
1378 	case EDAC_OPSTATE_POLL:
1379 	case EDAC_OPSTATE_INT:
1380 		break;
1381 	default:
1382 		edac_op_state = EDAC_OPSTATE_INT;
1383 		break;
1384 	}
1385 
1386 	ppc4xx_edac_printk(KERN_INFO, "Reporting type: %s\n",
1387 			   ((edac_op_state == EDAC_OPSTATE_POLL) ?
1388 			    EDAC_OPSTATE_POLL_STR :
1389 			    ((edac_op_state == EDAC_OPSTATE_INT) ?
1390 			     EDAC_OPSTATE_INT_STR :
1391 			     EDAC_OPSTATE_UNKNOWN_STR)));
1392 }
1393 
1394 /**
1395  * ppc4xx_edac_init - driver/module insertion entry point
1396  *
1397  * This routine is the driver/module insertion entry point. It
1398  * initializes the EDAC memory controller reporting state and
1399  * registers the driver as an OpenFirmware device tree platform
1400  * driver.
1401  */
1402 static int __init
1403 ppc4xx_edac_init(void)
1404 {
1405 	ppc4xx_edac_printk(KERN_INFO, PPC4XX_EDAC_MODULE_REVISION "\n");
1406 
1407 	ppc4xx_edac_opstate_init();
1408 
1409 	return platform_driver_register(&ppc4xx_edac_driver);
1410 }
1411 
1412 /**
1413  * ppc4xx_edac_exit - driver/module removal entry point
1414  *
1415  * This routine is the driver/module removal entry point. It
1416  * unregisters the driver as an OpenFirmware device tree platform
1417  * driver.
1418  */
1419 static void __exit
1420 ppc4xx_edac_exit(void)
1421 {
1422 	platform_driver_unregister(&ppc4xx_edac_driver);
1423 }
1424 
1425 module_init(ppc4xx_edac_init);
1426 module_exit(ppc4xx_edac_exit);
1427 
1428 MODULE_LICENSE("GPL v2");
1429 MODULE_AUTHOR("Grant Erickson <gerickson@nuovations.com>");
1430 MODULE_DESCRIPTION("EDAC MC Driver for the PPC4xx IBM DDR2 Memory Controller");
1431 module_param(edac_op_state, int, 0444);
1432 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting State: "
1433 		 "0=" EDAC_OPSTATE_POLL_STR ", 2=" EDAC_OPSTATE_INT_STR);
1434