1 /* 2 * Driver for Pondicherry2 memory controller. 3 * 4 * Copyright (c) 2016, Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * [Derived from sb_edac.c] 16 * 17 * Translation of system physical addresses to DIMM addresses 18 * is a two stage process: 19 * 20 * First the Pondicherry 2 memory controller handles slice and channel interleaving 21 * in "sys2pmi()". This is (almost) completley common between platforms. 22 * 23 * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM, 24 * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters. 25 */ 26 27 #include <linux/module.h> 28 #include <linux/init.h> 29 #include <linux/pci.h> 30 #include <linux/pci_ids.h> 31 #include <linux/slab.h> 32 #include <linux/delay.h> 33 #include <linux/edac.h> 34 #include <linux/mmzone.h> 35 #include <linux/smp.h> 36 #include <linux/bitmap.h> 37 #include <linux/math64.h> 38 #include <linux/mod_devicetable.h> 39 #include <asm/cpu_device_id.h> 40 #include <asm/intel-family.h> 41 #include <asm/processor.h> 42 #include <asm/mce.h> 43 44 #include "edac_mc.h" 45 #include "edac_module.h" 46 #include "pnd2_edac.h" 47 48 #define EDAC_MOD_STR "pnd2_edac" 49 50 #define APL_NUM_CHANNELS 4 51 #define DNV_NUM_CHANNELS 2 52 #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */ 53 54 enum type { 55 APL, 56 DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */ 57 }; 58 59 struct dram_addr { 60 int chan; 61 int dimm; 62 int rank; 63 int bank; 64 int row; 65 int col; 66 }; 67 68 struct pnd2_pvt { 69 int dimm_geom[APL_NUM_CHANNELS]; 70 u64 tolm, tohm; 71 }; 72 73 /* 74 * System address space is divided into multiple regions with 75 * different interleave rules in each. The as0/as1 regions 76 * have no interleaving at all. The as2 region is interleaved 77 * between two channels. The mot region is magic and may overlap 78 * other regions, with its interleave rules taking precedence. 79 * Addresses not in any of these regions are interleaved across 80 * all four channels. 81 */ 82 static struct region { 83 u64 base; 84 u64 limit; 85 u8 enabled; 86 } mot, as0, as1, as2; 87 88 static struct dunit_ops { 89 char *name; 90 enum type type; 91 int pmiaddr_shift; 92 int pmiidx_shift; 93 int channels; 94 int dimms_per_channel; 95 int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name); 96 int (*get_registers)(void); 97 int (*check_ecc)(void); 98 void (*mk_region)(char *name, struct region *rp, void *asym); 99 void (*get_dimm_config)(struct mem_ctl_info *mci); 100 int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, 101 struct dram_addr *daddr, char *msg); 102 } *ops; 103 104 static struct mem_ctl_info *pnd2_mci; 105 106 #define PND2_MSG_SIZE 256 107 108 /* Debug macros */ 109 #define pnd2_printk(level, fmt, arg...) \ 110 edac_printk(level, "pnd2", fmt, ##arg) 111 112 #define pnd2_mc_printk(mci, level, fmt, arg...) \ 113 edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg) 114 115 #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12 116 #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13 117 #define SELECTOR_DISABLED (-1) 118 #define _4GB (1ul << 32) 119 120 #define PMI_ADDRESS_WIDTH 31 121 #define PND_MAX_PHYS_BIT 39 122 123 #define APL_ASYMSHIFT 28 124 #define DNV_ASYMSHIFT 31 125 #define CH_HASH_MASK_LSB 6 126 #define SLICE_HASH_MASK_LSB 6 127 #define MOT_SLC_INTLV_BIT 12 128 #define LOG2_PMI_ADDR_GRANULARITY 5 129 #define MOT_SHIFT 24 130 131 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo)) 132 #define U64_LSHIFT(val, s) ((u64)(val) << (s)) 133 134 /* 135 * On Apollo Lake we access memory controller registers via a 136 * side-band mailbox style interface in a hidden PCI device 137 * configuration space. 138 */ 139 static struct pci_bus *p2sb_bus; 140 #define P2SB_DEVFN PCI_DEVFN(0xd, 0) 141 #define P2SB_ADDR_OFF 0xd0 142 #define P2SB_DATA_OFF 0xd4 143 #define P2SB_STAT_OFF 0xd8 144 #define P2SB_ROUT_OFF 0xda 145 #define P2SB_EADD_OFF 0xdc 146 #define P2SB_HIDE_OFF 0xe1 147 148 #define P2SB_BUSY 1 149 150 #define P2SB_READ(size, off, ptr) \ 151 pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr) 152 #define P2SB_WRITE(size, off, val) \ 153 pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val) 154 155 static bool p2sb_is_busy(u16 *status) 156 { 157 P2SB_READ(word, P2SB_STAT_OFF, status); 158 159 return !!(*status & P2SB_BUSY); 160 } 161 162 static int _apl_rd_reg(int port, int off, int op, u32 *data) 163 { 164 int retries = 0xff, ret; 165 u16 status; 166 u8 hidden; 167 168 /* Unhide the P2SB device, if it's hidden */ 169 P2SB_READ(byte, P2SB_HIDE_OFF, &hidden); 170 if (hidden) 171 P2SB_WRITE(byte, P2SB_HIDE_OFF, 0); 172 173 if (p2sb_is_busy(&status)) { 174 ret = -EAGAIN; 175 goto out; 176 } 177 178 P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off); 179 P2SB_WRITE(dword, P2SB_DATA_OFF, 0); 180 P2SB_WRITE(dword, P2SB_EADD_OFF, 0); 181 P2SB_WRITE(word, P2SB_ROUT_OFF, 0); 182 P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY); 183 184 while (p2sb_is_busy(&status)) { 185 if (retries-- == 0) { 186 ret = -EBUSY; 187 goto out; 188 } 189 } 190 191 P2SB_READ(dword, P2SB_DATA_OFF, data); 192 ret = (status >> 1) & 0x3; 193 out: 194 /* Hide the P2SB device, if it was hidden before */ 195 if (hidden) 196 P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden); 197 198 return ret; 199 } 200 201 static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) 202 { 203 int ret = 0; 204 205 edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op); 206 switch (sz) { 207 case 8: 208 ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4)); 209 /* fall through */ 210 case 4: 211 ret |= _apl_rd_reg(port, off, op, (u32 *)data); 212 pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name, 213 sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret); 214 break; 215 } 216 217 return ret; 218 } 219 220 static u64 get_mem_ctrl_hub_base_addr(void) 221 { 222 struct b_cr_mchbar_lo_pci lo; 223 struct b_cr_mchbar_hi_pci hi; 224 struct pci_dev *pdev; 225 226 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); 227 if (pdev) { 228 pci_read_config_dword(pdev, 0x48, (u32 *)&lo); 229 pci_read_config_dword(pdev, 0x4c, (u32 *)&hi); 230 pci_dev_put(pdev); 231 } else { 232 return 0; 233 } 234 235 if (!lo.enable) { 236 edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n"); 237 return 0; 238 } 239 240 return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15); 241 } 242 243 static u64 get_sideband_reg_base_addr(void) 244 { 245 struct pci_dev *pdev; 246 u32 hi, lo; 247 u8 hidden; 248 249 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL); 250 if (pdev) { 251 /* Unhide the P2SB device, if it's hidden */ 252 pci_read_config_byte(pdev, 0xe1, &hidden); 253 if (hidden) 254 pci_write_config_byte(pdev, 0xe1, 0); 255 256 pci_read_config_dword(pdev, 0x10, &lo); 257 pci_read_config_dword(pdev, 0x14, &hi); 258 lo &= 0xfffffff0; 259 260 /* Hide the P2SB device, if it was hidden before */ 261 if (hidden) 262 pci_write_config_byte(pdev, 0xe1, hidden); 263 264 pci_dev_put(pdev); 265 return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0)); 266 } else { 267 return 0xfd000000; 268 } 269 } 270 271 static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) 272 { 273 struct pci_dev *pdev; 274 char *base; 275 u64 addr; 276 277 if (op == 4) { 278 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); 279 if (!pdev) 280 return -ENODEV; 281 282 pci_read_config_dword(pdev, off, data); 283 pci_dev_put(pdev); 284 } else { 285 /* MMIO via memory controller hub base address */ 286 if (op == 0 && port == 0x4c) { 287 addr = get_mem_ctrl_hub_base_addr(); 288 if (!addr) 289 return -ENODEV; 290 } else { 291 /* MMIO via sideband register base address */ 292 addr = get_sideband_reg_base_addr(); 293 if (!addr) 294 return -ENODEV; 295 addr += (port << 16); 296 } 297 298 base = ioremap((resource_size_t)addr, 0x10000); 299 if (!base) 300 return -ENODEV; 301 302 if (sz == 8) 303 *(u32 *)(data + 4) = *(u32 *)(base + off + 4); 304 *(u32 *)data = *(u32 *)(base + off); 305 306 iounmap(base); 307 } 308 309 edac_dbg(2, "Read %s=%.8x_%.8x\n", name, 310 (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data); 311 312 return 0; 313 } 314 315 #define RD_REGP(regp, regname, port) \ 316 ops->rd_reg(port, \ 317 regname##_offset, \ 318 regname##_r_opcode, \ 319 regp, sizeof(struct regname), \ 320 #regname) 321 322 #define RD_REG(regp, regname) \ 323 ops->rd_reg(regname ## _port, \ 324 regname##_offset, \ 325 regname##_r_opcode, \ 326 regp, sizeof(struct regname), \ 327 #regname) 328 329 static u64 top_lm, top_hm; 330 static bool two_slices; 331 static bool two_channels; /* Both PMI channels in one slice enabled */ 332 333 static u8 sym_chan_mask; 334 static u8 asym_chan_mask; 335 static u8 chan_mask; 336 337 static int slice_selector = -1; 338 static int chan_selector = -1; 339 static u64 slice_hash_mask; 340 static u64 chan_hash_mask; 341 342 static void mk_region(char *name, struct region *rp, u64 base, u64 limit) 343 { 344 rp->enabled = 1; 345 rp->base = base; 346 rp->limit = limit; 347 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit); 348 } 349 350 static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask) 351 { 352 if (mask == 0) { 353 pr_info(FW_BUG "MOT mask cannot be zero\n"); 354 return; 355 } 356 if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) { 357 pr_info(FW_BUG "MOT mask not power of two\n"); 358 return; 359 } 360 if (base & ~mask) { 361 pr_info(FW_BUG "MOT region base/mask alignment error\n"); 362 return; 363 } 364 rp->base = base; 365 rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0); 366 rp->enabled = 1; 367 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit); 368 } 369 370 static bool in_region(struct region *rp, u64 addr) 371 { 372 if (!rp->enabled) 373 return false; 374 375 return rp->base <= addr && addr <= rp->limit; 376 } 377 378 static int gen_sym_mask(struct b_cr_slice_channel_hash *p) 379 { 380 int mask = 0; 381 382 if (!p->slice_0_mem_disabled) 383 mask |= p->sym_slice0_channel_enabled; 384 385 if (!p->slice_1_disabled) 386 mask |= p->sym_slice1_channel_enabled << 2; 387 388 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) 389 mask &= 0x5; 390 391 return mask; 392 } 393 394 static int gen_asym_mask(struct b_cr_slice_channel_hash *p, 395 struct b_cr_asym_mem_region0_mchbar *as0, 396 struct b_cr_asym_mem_region1_mchbar *as1, 397 struct b_cr_asym_2way_mem_region_mchbar *as2way) 398 { 399 const int intlv[] = { 0x5, 0xA, 0x3, 0xC }; 400 int mask = 0; 401 402 if (as2way->asym_2way_interleave_enable) 403 mask = intlv[as2way->asym_2way_intlv_mode]; 404 if (as0->slice0_asym_enable) 405 mask |= (1 << as0->slice0_asym_channel_select); 406 if (as1->slice1_asym_enable) 407 mask |= (4 << as1->slice1_asym_channel_select); 408 if (p->slice_0_mem_disabled) 409 mask &= 0xc; 410 if (p->slice_1_disabled) 411 mask &= 0x3; 412 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) 413 mask &= 0x5; 414 415 return mask; 416 } 417 418 static struct b_cr_tolud_pci tolud; 419 static struct b_cr_touud_lo_pci touud_lo; 420 static struct b_cr_touud_hi_pci touud_hi; 421 static struct b_cr_asym_mem_region0_mchbar asym0; 422 static struct b_cr_asym_mem_region1_mchbar asym1; 423 static struct b_cr_asym_2way_mem_region_mchbar asym_2way; 424 static struct b_cr_mot_out_base_mchbar mot_base; 425 static struct b_cr_mot_out_mask_mchbar mot_mask; 426 static struct b_cr_slice_channel_hash chash; 427 428 /* Apollo Lake dunit */ 429 /* 430 * Validated on board with just two DIMMs in the [0] and [2] positions 431 * in this array. Other port number matches documentation, but caution 432 * advised. 433 */ 434 static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 }; 435 static struct d_cr_drp0 drp0[APL_NUM_CHANNELS]; 436 437 /* Denverton dunit */ 438 static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 }; 439 static struct d_cr_dsch dsch; 440 static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS]; 441 static struct d_cr_drp drp[DNV_NUM_CHANNELS]; 442 static struct d_cr_dmap dmap[DNV_NUM_CHANNELS]; 443 static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS]; 444 static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS]; 445 static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS]; 446 static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS]; 447 static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS]; 448 449 static void apl_mk_region(char *name, struct region *rp, void *asym) 450 { 451 struct b_cr_asym_mem_region0_mchbar *a = asym; 452 453 mk_region(name, rp, 454 U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT), 455 U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) + 456 GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); 457 } 458 459 static void dnv_mk_region(char *name, struct region *rp, void *asym) 460 { 461 struct b_cr_asym_mem_region_denverton *a = asym; 462 463 mk_region(name, rp, 464 U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT), 465 U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) + 466 GENMASK_ULL(DNV_ASYMSHIFT - 1, 0)); 467 } 468 469 static int apl_get_registers(void) 470 { 471 int ret = -ENODEV; 472 int i; 473 474 if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar)) 475 return -ENODEV; 476 477 /* 478 * RD_REGP() will fail for unpopulated or non-existent 479 * DIMM slots. Return success if we find at least one DIMM. 480 */ 481 for (i = 0; i < APL_NUM_CHANNELS; i++) 482 if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i])) 483 ret = 0; 484 485 return ret; 486 } 487 488 static int dnv_get_registers(void) 489 { 490 int i; 491 492 if (RD_REG(&dsch, d_cr_dsch)) 493 return -ENODEV; 494 495 for (i = 0; i < DNV_NUM_CHANNELS; i++) 496 if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) || 497 RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) || 498 RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) || 499 RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) || 500 RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) || 501 RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) || 502 RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) || 503 RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i])) 504 return -ENODEV; 505 506 return 0; 507 } 508 509 /* 510 * Read all the h/w config registers once here (they don't 511 * change at run time. Figure out which address ranges have 512 * which interleave characteristics. 513 */ 514 static int get_registers(void) 515 { 516 const int intlv[] = { 10, 11, 12, 12 }; 517 518 if (RD_REG(&tolud, b_cr_tolud_pci) || 519 RD_REG(&touud_lo, b_cr_touud_lo_pci) || 520 RD_REG(&touud_hi, b_cr_touud_hi_pci) || 521 RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) || 522 RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) || 523 RD_REG(&mot_base, b_cr_mot_out_base_mchbar) || 524 RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) || 525 RD_REG(&chash, b_cr_slice_channel_hash)) 526 return -ENODEV; 527 528 if (ops->get_registers()) 529 return -ENODEV; 530 531 if (ops->type == DNV) { 532 /* PMI channel idx (always 0) for asymmetric region */ 533 asym0.slice0_asym_channel_select = 0; 534 asym1.slice1_asym_channel_select = 0; 535 /* PMI channel bitmap (always 1) for symmetric region */ 536 chash.sym_slice0_channel_enabled = 0x1; 537 chash.sym_slice1_channel_enabled = 0x1; 538 } 539 540 if (asym0.slice0_asym_enable) 541 ops->mk_region("as0", &as0, &asym0); 542 543 if (asym1.slice1_asym_enable) 544 ops->mk_region("as1", &as1, &asym1); 545 546 if (asym_2way.asym_2way_interleave_enable) { 547 mk_region("as2way", &as2, 548 U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT), 549 U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) + 550 GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); 551 } 552 553 if (mot_base.imr_en) { 554 mk_region_mask("mot", &mot, 555 U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT), 556 U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT)); 557 } 558 559 top_lm = U64_LSHIFT(tolud.tolud, 20); 560 top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20); 561 562 two_slices = !chash.slice_1_disabled && 563 !chash.slice_0_mem_disabled && 564 (chash.sym_slice0_channel_enabled != 0) && 565 (chash.sym_slice1_channel_enabled != 0); 566 two_channels = !chash.ch_1_disabled && 567 !chash.enable_pmi_dual_data_mode && 568 ((chash.sym_slice0_channel_enabled == 3) || 569 (chash.sym_slice1_channel_enabled == 3)); 570 571 sym_chan_mask = gen_sym_mask(&chash); 572 asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way); 573 chan_mask = sym_chan_mask | asym_chan_mask; 574 575 if (two_slices && !two_channels) { 576 if (chash.hvm_mode) 577 slice_selector = 29; 578 else 579 slice_selector = intlv[chash.interleave_mode]; 580 } else if (!two_slices && two_channels) { 581 if (chash.hvm_mode) 582 chan_selector = 29; 583 else 584 chan_selector = intlv[chash.interleave_mode]; 585 } else if (two_slices && two_channels) { 586 if (chash.hvm_mode) { 587 slice_selector = 29; 588 chan_selector = 30; 589 } else { 590 slice_selector = intlv[chash.interleave_mode]; 591 chan_selector = intlv[chash.interleave_mode] + 1; 592 } 593 } 594 595 if (two_slices) { 596 if (!chash.hvm_mode) 597 slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB; 598 if (!two_channels) 599 slice_hash_mask |= BIT_ULL(slice_selector); 600 } 601 602 if (two_channels) { 603 if (!chash.hvm_mode) 604 chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB; 605 if (!two_slices) 606 chan_hash_mask |= BIT_ULL(chan_selector); 607 } 608 609 return 0; 610 } 611 612 /* Get a contiguous memory address (remove the MMIO gap) */ 613 static u64 remove_mmio_gap(u64 sys) 614 { 615 return (sys < _4GB) ? sys : sys - (_4GB - top_lm); 616 } 617 618 /* Squeeze out one address bit, shift upper part down to fill gap */ 619 static void remove_addr_bit(u64 *addr, int bitidx) 620 { 621 u64 mask; 622 623 if (bitidx == -1) 624 return; 625 626 mask = (1ull << bitidx) - 1; 627 *addr = ((*addr >> 1) & ~mask) | (*addr & mask); 628 } 629 630 /* XOR all the bits from addr specified in mask */ 631 static int hash_by_mask(u64 addr, u64 mask) 632 { 633 u64 result = addr & mask; 634 635 result = (result >> 32) ^ result; 636 result = (result >> 16) ^ result; 637 result = (result >> 8) ^ result; 638 result = (result >> 4) ^ result; 639 result = (result >> 2) ^ result; 640 result = (result >> 1) ^ result; 641 642 return (int)result & 1; 643 } 644 645 /* 646 * First stage decode. Take the system address and figure out which 647 * second stage will deal with it based on interleave modes. 648 */ 649 static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg) 650 { 651 u64 contig_addr, contig_base, contig_offset, contig_base_adj; 652 int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : 653 MOT_CHAN_INTLV_BIT_1SLC_2CH; 654 int slice_intlv_bit_rm = SELECTOR_DISABLED; 655 int chan_intlv_bit_rm = SELECTOR_DISABLED; 656 /* Determine if address is in the MOT region. */ 657 bool mot_hit = in_region(&mot, addr); 658 /* Calculate the number of symmetric regions enabled. */ 659 int sym_channels = hweight8(sym_chan_mask); 660 661 /* 662 * The amount we need to shift the asym base can be determined by the 663 * number of enabled symmetric channels. 664 * NOTE: This can only work because symmetric memory is not supposed 665 * to do a 3-way interleave. 666 */ 667 int sym_chan_shift = sym_channels >> 1; 668 669 /* Give up if address is out of range, or in MMIO gap */ 670 if (addr >= (1ul << PND_MAX_PHYS_BIT) || 671 (addr >= top_lm && addr < _4GB) || addr >= top_hm) { 672 snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr); 673 return -EINVAL; 674 } 675 676 /* Get a contiguous memory address (remove the MMIO gap) */ 677 contig_addr = remove_mmio_gap(addr); 678 679 if (in_region(&as0, addr)) { 680 *pmiidx = asym0.slice0_asym_channel_select; 681 682 contig_base = remove_mmio_gap(as0.base); 683 contig_offset = contig_addr - contig_base; 684 contig_base_adj = (contig_base >> sym_chan_shift) * 685 ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1); 686 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); 687 } else if (in_region(&as1, addr)) { 688 *pmiidx = 2u + asym1.slice1_asym_channel_select; 689 690 contig_base = remove_mmio_gap(as1.base); 691 contig_offset = contig_addr - contig_base; 692 contig_base_adj = (contig_base >> sym_chan_shift) * 693 ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1); 694 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); 695 } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) { 696 bool channel1; 697 698 mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH; 699 *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1; 700 channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) : 701 hash_by_mask(contig_addr, chan_hash_mask); 702 *pmiidx |= (u32)channel1; 703 704 contig_base = remove_mmio_gap(as2.base); 705 chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector; 706 contig_offset = contig_addr - contig_base; 707 remove_addr_bit(&contig_offset, chan_intlv_bit_rm); 708 contig_addr = (contig_base >> sym_chan_shift) + contig_offset; 709 } else { 710 /* Otherwise we're in normal, boring symmetric mode. */ 711 *pmiidx = 0u; 712 713 if (two_slices) { 714 bool slice1; 715 716 if (mot_hit) { 717 slice_intlv_bit_rm = MOT_SLC_INTLV_BIT; 718 slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1; 719 } else { 720 slice_intlv_bit_rm = slice_selector; 721 slice1 = hash_by_mask(addr, slice_hash_mask); 722 } 723 724 *pmiidx = (u32)slice1 << 1; 725 } 726 727 if (two_channels) { 728 bool channel1; 729 730 mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : 731 MOT_CHAN_INTLV_BIT_1SLC_2CH; 732 733 if (mot_hit) { 734 chan_intlv_bit_rm = mot_intlv_bit; 735 channel1 = (addr >> mot_intlv_bit) & 1; 736 } else { 737 chan_intlv_bit_rm = chan_selector; 738 channel1 = hash_by_mask(contig_addr, chan_hash_mask); 739 } 740 741 *pmiidx |= (u32)channel1; 742 } 743 } 744 745 /* Remove the chan_selector bit first */ 746 remove_addr_bit(&contig_addr, chan_intlv_bit_rm); 747 /* Remove the slice bit (we remove it second because it must be lower */ 748 remove_addr_bit(&contig_addr, slice_intlv_bit_rm); 749 *pmiaddr = contig_addr; 750 751 return 0; 752 } 753 754 /* Translate PMI address to memory (rank, row, bank, column) */ 755 #define C(n) (0x10 | (n)) /* column */ 756 #define B(n) (0x20 | (n)) /* bank */ 757 #define R(n) (0x40 | (n)) /* row */ 758 #define RS (0x80) /* rank */ 759 760 /* addrdec values */ 761 #define AMAP_1KB 0 762 #define AMAP_2KB 1 763 #define AMAP_4KB 2 764 #define AMAP_RSVD 3 765 766 /* dden values */ 767 #define DEN_4Gb 0 768 #define DEN_8Gb 2 769 770 /* dwid values */ 771 #define X8 0 772 #define X16 1 773 774 static struct dimm_geometry { 775 u8 addrdec; 776 u8 dden; 777 u8 dwid; 778 u8 rowbits, colbits; 779 u16 bits[PMI_ADDRESS_WIDTH]; 780 } dimms[] = { 781 { 782 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16, 783 .rowbits = 15, .colbits = 10, 784 .bits = { 785 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 786 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 787 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 788 0, 0, 0, 0 789 } 790 }, 791 { 792 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8, 793 .rowbits = 16, .colbits = 10, 794 .bits = { 795 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 796 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 797 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 798 R(15), 0, 0, 0 799 } 800 }, 801 { 802 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16, 803 .rowbits = 16, .colbits = 10, 804 .bits = { 805 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 806 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 807 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 808 R(15), 0, 0, 0 809 } 810 }, 811 { 812 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8, 813 .rowbits = 16, .colbits = 11, 814 .bits = { 815 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 816 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 817 R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13), 818 R(14), R(15), 0, 0 819 } 820 }, 821 { 822 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16, 823 .rowbits = 15, .colbits = 10, 824 .bits = { 825 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 826 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 827 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 828 0, 0, 0, 0 829 } 830 }, 831 { 832 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8, 833 .rowbits = 16, .colbits = 10, 834 .bits = { 835 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 836 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 837 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 838 R(15), 0, 0, 0 839 } 840 }, 841 { 842 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16, 843 .rowbits = 16, .colbits = 10, 844 .bits = { 845 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 846 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 847 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 848 R(15), 0, 0, 0 849 } 850 }, 851 { 852 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8, 853 .rowbits = 16, .colbits = 11, 854 .bits = { 855 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 856 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 857 R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13), 858 R(14), R(15), 0, 0 859 } 860 }, 861 { 862 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16, 863 .rowbits = 15, .colbits = 10, 864 .bits = { 865 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 866 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 867 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 868 0, 0, 0, 0 869 } 870 }, 871 { 872 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8, 873 .rowbits = 16, .colbits = 10, 874 .bits = { 875 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 876 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 877 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 878 R(15), 0, 0, 0 879 } 880 }, 881 { 882 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16, 883 .rowbits = 16, .colbits = 10, 884 .bits = { 885 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 886 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 887 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 888 R(15), 0, 0, 0 889 } 890 }, 891 { 892 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8, 893 .rowbits = 16, .colbits = 11, 894 .bits = { 895 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 896 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 897 R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13), 898 R(14), R(15), 0, 0 899 } 900 } 901 }; 902 903 static int bank_hash(u64 pmiaddr, int idx, int shft) 904 { 905 int bhash = 0; 906 907 switch (idx) { 908 case 0: 909 bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1; 910 break; 911 case 1: 912 bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1; 913 bhash ^= ((pmiaddr >> 22) & 1) << 1; 914 break; 915 case 2: 916 bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2; 917 break; 918 } 919 920 return bhash; 921 } 922 923 static int rank_hash(u64 pmiaddr) 924 { 925 return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1; 926 } 927 928 /* Second stage decode. Compute rank, bank, row & column. */ 929 static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, 930 struct dram_addr *daddr, char *msg) 931 { 932 struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx]; 933 struct pnd2_pvt *pvt = mci->pvt_info; 934 int g = pvt->dimm_geom[pmiidx]; 935 struct dimm_geometry *d = &dimms[g]; 936 int column = 0, bank = 0, row = 0, rank = 0; 937 int i, idx, type, skiprs = 0; 938 939 for (i = 0; i < PMI_ADDRESS_WIDTH; i++) { 940 int bit = (pmiaddr >> i) & 1; 941 942 if (i + skiprs >= PMI_ADDRESS_WIDTH) { 943 snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n"); 944 return -EINVAL; 945 } 946 947 type = d->bits[i + skiprs] & ~0xf; 948 idx = d->bits[i + skiprs] & 0xf; 949 950 /* 951 * On single rank DIMMs ignore the rank select bit 952 * and shift remainder of "bits[]" down one place. 953 */ 954 if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) { 955 skiprs = 1; 956 type = d->bits[i + skiprs] & ~0xf; 957 idx = d->bits[i + skiprs] & 0xf; 958 } 959 960 switch (type) { 961 case C(0): 962 column |= (bit << idx); 963 break; 964 case B(0): 965 bank |= (bit << idx); 966 if (cr_drp0->bahen) 967 bank ^= bank_hash(pmiaddr, idx, d->addrdec); 968 break; 969 case R(0): 970 row |= (bit << idx); 971 break; 972 case RS: 973 rank = bit; 974 if (cr_drp0->rsien) 975 rank ^= rank_hash(pmiaddr); 976 break; 977 default: 978 if (bit) { 979 snprintf(msg, PND2_MSG_SIZE, "Bad translation\n"); 980 return -EINVAL; 981 } 982 goto done; 983 } 984 } 985 986 done: 987 daddr->col = column; 988 daddr->bank = bank; 989 daddr->row = row; 990 daddr->rank = rank; 991 daddr->dimm = 0; 992 993 return 0; 994 } 995 996 /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */ 997 #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out)) 998 999 static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, 1000 struct dram_addr *daddr, char *msg) 1001 { 1002 /* Rank 0 or 1 */ 1003 daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0); 1004 /* Rank 2 or 3 */ 1005 daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1); 1006 1007 /* 1008 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we 1009 * flip them if DIMM1 is larger than DIMM0. 1010 */ 1011 daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip; 1012 1013 daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0); 1014 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1); 1015 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2); 1016 if (dsch.ddr4en) 1017 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3); 1018 if (dmap1[pmiidx].bxor) { 1019 if (dsch.ddr4en) { 1020 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0); 1021 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1); 1022 if (dsch.chan_width == 0) 1023 /* 64/72 bit dram channel width */ 1024 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); 1025 else 1026 /* 32/40 bit dram channel width */ 1027 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); 1028 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3); 1029 } else { 1030 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0); 1031 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1); 1032 if (dsch.chan_width == 0) 1033 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); 1034 else 1035 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); 1036 } 1037 } 1038 1039 daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0); 1040 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1); 1041 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2); 1042 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3); 1043 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4); 1044 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5); 1045 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6); 1046 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7); 1047 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8); 1048 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9); 1049 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10); 1050 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11); 1051 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12); 1052 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13); 1053 if (dmap4[pmiidx].row14 != 31) 1054 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14); 1055 if (dmap4[pmiidx].row15 != 31) 1056 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15); 1057 if (dmap4[pmiidx].row16 != 31) 1058 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16); 1059 if (dmap4[pmiidx].row17 != 31) 1060 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17); 1061 1062 daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3); 1063 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4); 1064 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5); 1065 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6); 1066 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7); 1067 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8); 1068 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9); 1069 if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f) 1070 daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11); 1071 1072 return 0; 1073 } 1074 1075 static int check_channel(int ch) 1076 { 1077 if (drp0[ch].dramtype != 0) { 1078 pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch); 1079 return 1; 1080 } else if (drp0[ch].eccen == 0) { 1081 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); 1082 return 1; 1083 } 1084 return 0; 1085 } 1086 1087 static int apl_check_ecc_active(void) 1088 { 1089 int i, ret = 0; 1090 1091 /* Check dramtype and ECC mode for each present DIMM */ 1092 for (i = 0; i < APL_NUM_CHANNELS; i++) 1093 if (chan_mask & BIT(i)) 1094 ret += check_channel(i); 1095 return ret ? -EINVAL : 0; 1096 } 1097 1098 #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3) 1099 1100 static int check_unit(int ch) 1101 { 1102 struct d_cr_drp *d = &drp[ch]; 1103 1104 if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) { 1105 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); 1106 return 1; 1107 } 1108 return 0; 1109 } 1110 1111 static int dnv_check_ecc_active(void) 1112 { 1113 int i, ret = 0; 1114 1115 for (i = 0; i < DNV_NUM_CHANNELS; i++) 1116 ret += check_unit(i); 1117 return ret ? -EINVAL : 0; 1118 } 1119 1120 static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, 1121 struct dram_addr *daddr, char *msg) 1122 { 1123 u64 pmiaddr; 1124 u32 pmiidx; 1125 int ret; 1126 1127 ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg); 1128 if (ret) 1129 return ret; 1130 1131 pmiaddr >>= ops->pmiaddr_shift; 1132 /* pmi channel idx to dimm channel idx */ 1133 pmiidx >>= ops->pmiidx_shift; 1134 daddr->chan = pmiidx; 1135 1136 ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg); 1137 if (ret) 1138 return ret; 1139 1140 edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", 1141 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col); 1142 1143 return 0; 1144 } 1145 1146 static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, 1147 struct dram_addr *daddr) 1148 { 1149 enum hw_event_mc_err_type tp_event; 1150 char *optype, msg[PND2_MSG_SIZE]; 1151 bool ripv = m->mcgstatus & MCG_STATUS_RIPV; 1152 bool overflow = m->status & MCI_STATUS_OVER; 1153 bool uc_err = m->status & MCI_STATUS_UC; 1154 bool recov = m->status & MCI_STATUS_S; 1155 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); 1156 u32 mscod = GET_BITFIELD(m->status, 16, 31); 1157 u32 errcode = GET_BITFIELD(m->status, 0, 15); 1158 u32 optypenum = GET_BITFIELD(m->status, 4, 6); 1159 int rc; 1160 1161 tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) : 1162 HW_EVENT_ERR_CORRECTED; 1163 1164 /* 1165 * According with Table 15-9 of the Intel Architecture spec vol 3A, 1166 * memory errors should fit in this mask: 1167 * 000f 0000 1mmm cccc (binary) 1168 * where: 1169 * f = Correction Report Filtering Bit. If 1, subsequent errors 1170 * won't be shown 1171 * mmm = error type 1172 * cccc = channel 1173 * If the mask doesn't match, report an error to the parsing logic 1174 */ 1175 if (!((errcode & 0xef80) == 0x80)) { 1176 optype = "Can't parse: it is not a mem"; 1177 } else { 1178 switch (optypenum) { 1179 case 0: 1180 optype = "generic undef request error"; 1181 break; 1182 case 1: 1183 optype = "memory read error"; 1184 break; 1185 case 2: 1186 optype = "memory write error"; 1187 break; 1188 case 3: 1189 optype = "addr/cmd error"; 1190 break; 1191 case 4: 1192 optype = "memory scrubbing error"; 1193 break; 1194 default: 1195 optype = "reserved"; 1196 break; 1197 } 1198 } 1199 1200 /* Only decode errors with an valid address (ADDRV) */ 1201 if (!(m->status & MCI_STATUS_ADDRV)) 1202 return; 1203 1204 rc = get_memory_error_data(mci, m->addr, daddr, msg); 1205 if (rc) 1206 goto address_error; 1207 1208 snprintf(msg, sizeof(msg), 1209 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d", 1210 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod, 1211 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col); 1212 1213 edac_dbg(0, "%s\n", msg); 1214 1215 /* Call the helper to output message */ 1216 edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, 1217 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg); 1218 1219 return; 1220 1221 address_error: 1222 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); 1223 } 1224 1225 static void apl_get_dimm_config(struct mem_ctl_info *mci) 1226 { 1227 struct pnd2_pvt *pvt = mci->pvt_info; 1228 struct dimm_info *dimm; 1229 struct d_cr_drp0 *d; 1230 u64 capacity; 1231 int i, g; 1232 1233 for (i = 0; i < APL_NUM_CHANNELS; i++) { 1234 if (!(chan_mask & BIT(i))) 1235 continue; 1236 1237 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0); 1238 if (!dimm) { 1239 edac_dbg(0, "No allocated DIMM for channel %d\n", i); 1240 continue; 1241 } 1242 1243 d = &drp0[i]; 1244 for (g = 0; g < ARRAY_SIZE(dimms); g++) 1245 if (dimms[g].addrdec == d->addrdec && 1246 dimms[g].dden == d->dden && 1247 dimms[g].dwid == d->dwid) 1248 break; 1249 1250 if (g == ARRAY_SIZE(dimms)) { 1251 edac_dbg(0, "Channel %d: unrecognized DIMM\n", i); 1252 continue; 1253 } 1254 1255 pvt->dimm_geom[i] = g; 1256 capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) * 1257 (1ul << dimms[g].colbits); 1258 edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3)); 1259 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); 1260 dimm->grain = 32; 1261 dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16; 1262 dimm->mtype = MEM_DDR3; 1263 dimm->edac_mode = EDAC_SECDED; 1264 snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2); 1265 } 1266 } 1267 1268 static const int dnv_dtypes[] = { 1269 DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN 1270 }; 1271 1272 static void dnv_get_dimm_config(struct mem_ctl_info *mci) 1273 { 1274 int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype; 1275 struct dimm_info *dimm; 1276 struct d_cr_drp *d; 1277 u64 capacity; 1278 1279 if (dsch.ddr4en) { 1280 memtype = MEM_DDR4; 1281 banks = 16; 1282 colbits = 10; 1283 } else { 1284 memtype = MEM_DDR3; 1285 banks = 8; 1286 } 1287 1288 for (i = 0; i < DNV_NUM_CHANNELS; i++) { 1289 if (dmap4[i].row14 == 31) 1290 rowbits = 14; 1291 else if (dmap4[i].row15 == 31) 1292 rowbits = 15; 1293 else if (dmap4[i].row16 == 31) 1294 rowbits = 16; 1295 else if (dmap4[i].row17 == 31) 1296 rowbits = 17; 1297 else 1298 rowbits = 18; 1299 1300 if (memtype == MEM_DDR3) { 1301 if (dmap1[i].ca11 != 0x3f) 1302 colbits = 12; 1303 else 1304 colbits = 10; 1305 } 1306 1307 d = &drp[i]; 1308 /* DIMM0 is present if rank0 and/or rank1 is enabled */ 1309 ranks_of_dimm[0] = d->rken0 + d->rken1; 1310 /* DIMM1 is present if rank2 and/or rank3 is enabled */ 1311 ranks_of_dimm[1] = d->rken2 + d->rken3; 1312 1313 for (j = 0; j < DNV_MAX_DIMMS; j++) { 1314 if (!ranks_of_dimm[j]) 1315 continue; 1316 1317 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); 1318 if (!dimm) { 1319 edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j); 1320 continue; 1321 } 1322 1323 capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits); 1324 edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3)); 1325 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); 1326 dimm->grain = 32; 1327 dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1]; 1328 dimm->mtype = memtype; 1329 dimm->edac_mode = EDAC_SECDED; 1330 snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j); 1331 } 1332 } 1333 } 1334 1335 static int pnd2_register_mci(struct mem_ctl_info **ppmci) 1336 { 1337 struct edac_mc_layer layers[2]; 1338 struct mem_ctl_info *mci; 1339 struct pnd2_pvt *pvt; 1340 int rc; 1341 1342 rc = ops->check_ecc(); 1343 if (rc < 0) 1344 return rc; 1345 1346 /* Allocate a new MC control structure */ 1347 layers[0].type = EDAC_MC_LAYER_CHANNEL; 1348 layers[0].size = ops->channels; 1349 layers[0].is_virt_csrow = false; 1350 layers[1].type = EDAC_MC_LAYER_SLOT; 1351 layers[1].size = ops->dimms_per_channel; 1352 layers[1].is_virt_csrow = true; 1353 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); 1354 if (!mci) 1355 return -ENOMEM; 1356 1357 pvt = mci->pvt_info; 1358 memset(pvt, 0, sizeof(*pvt)); 1359 1360 mci->mod_name = EDAC_MOD_STR; 1361 mci->dev_name = ops->name; 1362 mci->ctl_name = "Pondicherry2"; 1363 1364 /* Get dimm basic config and the memory layout */ 1365 ops->get_dimm_config(mci); 1366 1367 if (edac_mc_add_mc(mci)) { 1368 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 1369 edac_mc_free(mci); 1370 return -EINVAL; 1371 } 1372 1373 *ppmci = mci; 1374 1375 return 0; 1376 } 1377 1378 static void pnd2_unregister_mci(struct mem_ctl_info *mci) 1379 { 1380 if (unlikely(!mci || !mci->pvt_info)) { 1381 pnd2_printk(KERN_ERR, "Couldn't find mci handler\n"); 1382 return; 1383 } 1384 1385 /* Remove MC sysfs nodes */ 1386 edac_mc_del_mc(NULL); 1387 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 1388 edac_mc_free(mci); 1389 } 1390 1391 /* 1392 * Callback function registered with core kernel mce code. 1393 * Called once for each logged error. 1394 */ 1395 static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) 1396 { 1397 struct mce *mce = (struct mce *)data; 1398 struct mem_ctl_info *mci; 1399 struct dram_addr daddr; 1400 char *type; 1401 1402 if (edac_get_report_status() == EDAC_REPORTING_DISABLED) 1403 return NOTIFY_DONE; 1404 1405 mci = pnd2_mci; 1406 if (!mci) 1407 return NOTIFY_DONE; 1408 1409 /* 1410 * Just let mcelog handle it if the error is 1411 * outside the memory controller. A memory error 1412 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. 1413 * bit 12 has an special meaning. 1414 */ 1415 if ((mce->status & 0xefff) >> 7 != 1) 1416 return NOTIFY_DONE; 1417 1418 if (mce->mcgstatus & MCG_STATUS_MCIP) 1419 type = "Exception"; 1420 else 1421 type = "Event"; 1422 1423 pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n"); 1424 pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n", 1425 mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); 1426 pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc); 1427 pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr); 1428 pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc); 1429 pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", 1430 mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); 1431 1432 pnd2_mce_output_error(mci, mce, &daddr); 1433 1434 /* Advice mcelog that the error were handled */ 1435 return NOTIFY_STOP; 1436 } 1437 1438 static struct notifier_block pnd2_mce_dec = { 1439 .notifier_call = pnd2_mce_check_error, 1440 }; 1441 1442 #ifdef CONFIG_EDAC_DEBUG 1443 /* 1444 * Write an address to this file to exercise the address decode 1445 * logic in this driver. 1446 */ 1447 static u64 pnd2_fake_addr; 1448 #define PND2_BLOB_SIZE 1024 1449 static char pnd2_result[PND2_BLOB_SIZE]; 1450 static struct dentry *pnd2_test; 1451 static struct debugfs_blob_wrapper pnd2_blob = { 1452 .data = pnd2_result, 1453 .size = 0 1454 }; 1455 1456 static int debugfs_u64_set(void *data, u64 val) 1457 { 1458 struct dram_addr daddr; 1459 struct mce m; 1460 1461 *(u64 *)data = val; 1462 m.mcgstatus = 0; 1463 /* ADDRV + MemRd + Unknown channel */ 1464 m.status = MCI_STATUS_ADDRV + 0x9f; 1465 m.addr = val; 1466 pnd2_mce_output_error(pnd2_mci, &m, &daddr); 1467 snprintf(pnd2_blob.data, PND2_BLOB_SIZE, 1468 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", 1469 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col); 1470 pnd2_blob.size = strlen(pnd2_blob.data); 1471 1472 return 0; 1473 } 1474 DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); 1475 1476 static void setup_pnd2_debug(void) 1477 { 1478 pnd2_test = edac_debugfs_create_dir("pnd2_test"); 1479 edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test, 1480 &pnd2_fake_addr, &fops_u64_wo); 1481 debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob); 1482 } 1483 1484 static void teardown_pnd2_debug(void) 1485 { 1486 debugfs_remove_recursive(pnd2_test); 1487 } 1488 #else 1489 static void setup_pnd2_debug(void) {} 1490 static void teardown_pnd2_debug(void) {} 1491 #endif /* CONFIG_EDAC_DEBUG */ 1492 1493 1494 static int pnd2_probe(void) 1495 { 1496 int rc; 1497 1498 edac_dbg(2, "\n"); 1499 rc = get_registers(); 1500 if (rc) 1501 return rc; 1502 1503 return pnd2_register_mci(&pnd2_mci); 1504 } 1505 1506 static void pnd2_remove(void) 1507 { 1508 edac_dbg(0, "\n"); 1509 pnd2_unregister_mci(pnd2_mci); 1510 } 1511 1512 static struct dunit_ops apl_ops = { 1513 .name = "pnd2/apl", 1514 .type = APL, 1515 .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY, 1516 .pmiidx_shift = 0, 1517 .channels = APL_NUM_CHANNELS, 1518 .dimms_per_channel = 1, 1519 .rd_reg = apl_rd_reg, 1520 .get_registers = apl_get_registers, 1521 .check_ecc = apl_check_ecc_active, 1522 .mk_region = apl_mk_region, 1523 .get_dimm_config = apl_get_dimm_config, 1524 .pmi2mem = apl_pmi2mem, 1525 }; 1526 1527 static struct dunit_ops dnv_ops = { 1528 .name = "pnd2/dnv", 1529 .type = DNV, 1530 .pmiaddr_shift = 0, 1531 .pmiidx_shift = 1, 1532 .channels = DNV_NUM_CHANNELS, 1533 .dimms_per_channel = 2, 1534 .rd_reg = dnv_rd_reg, 1535 .get_registers = dnv_get_registers, 1536 .check_ecc = dnv_check_ecc_active, 1537 .mk_region = dnv_mk_region, 1538 .get_dimm_config = dnv_get_dimm_config, 1539 .pmi2mem = dnv_pmi2mem, 1540 }; 1541 1542 static const struct x86_cpu_id pnd2_cpuids[] = { 1543 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops }, 1544 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_DENVERTON, 0, (kernel_ulong_t)&dnv_ops }, 1545 { } 1546 }; 1547 MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids); 1548 1549 static int __init pnd2_init(void) 1550 { 1551 const struct x86_cpu_id *id; 1552 const char *owner; 1553 int rc; 1554 1555 edac_dbg(2, "\n"); 1556 1557 owner = edac_get_owner(); 1558 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) 1559 return -EBUSY; 1560 1561 id = x86_match_cpu(pnd2_cpuids); 1562 if (!id) 1563 return -ENODEV; 1564 1565 ops = (struct dunit_ops *)id->driver_data; 1566 1567 if (ops->type == APL) { 1568 p2sb_bus = pci_find_bus(0, 0); 1569 if (!p2sb_bus) 1570 return -ENODEV; 1571 } 1572 1573 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 1574 opstate_init(); 1575 1576 rc = pnd2_probe(); 1577 if (rc < 0) { 1578 pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); 1579 return rc; 1580 } 1581 1582 if (!pnd2_mci) 1583 return -ENODEV; 1584 1585 mce_register_decode_chain(&pnd2_mce_dec); 1586 setup_pnd2_debug(); 1587 1588 return 0; 1589 } 1590 1591 static void __exit pnd2_exit(void) 1592 { 1593 edac_dbg(2, "\n"); 1594 teardown_pnd2_debug(); 1595 mce_unregister_decode_chain(&pnd2_mce_dec); 1596 pnd2_remove(); 1597 } 1598 1599 module_init(pnd2_init); 1600 module_exit(pnd2_exit); 1601 1602 module_param(edac_op_state, int, 0444); 1603 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 1604 1605 MODULE_LICENSE("GPL v2"); 1606 MODULE_AUTHOR("Tony Luck"); 1607 MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller"); 1608