1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Pondicherry2 memory controller. 4 * 5 * Copyright (c) 2016, Intel Corporation. 6 * 7 * [Derived from sb_edac.c] 8 * 9 * Translation of system physical addresses to DIMM addresses 10 * is a two stage process: 11 * 12 * First the Pondicherry 2 memory controller handles slice and channel interleaving 13 * in "sys2pmi()". This is (almost) completley common between platforms. 14 * 15 * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM, 16 * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/init.h> 21 #include <linux/pci.h> 22 #include <linux/pci_ids.h> 23 #include <linux/slab.h> 24 #include <linux/delay.h> 25 #include <linux/edac.h> 26 #include <linux/mmzone.h> 27 #include <linux/smp.h> 28 #include <linux/bitmap.h> 29 #include <linux/math64.h> 30 #include <linux/mod_devicetable.h> 31 #include <asm/cpu_device_id.h> 32 #include <asm/intel-family.h> 33 #include <asm/processor.h> 34 #include <asm/mce.h> 35 36 #include "edac_mc.h" 37 #include "edac_module.h" 38 #include "pnd2_edac.h" 39 40 #define EDAC_MOD_STR "pnd2_edac" 41 42 #define APL_NUM_CHANNELS 4 43 #define DNV_NUM_CHANNELS 2 44 #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */ 45 46 enum type { 47 APL, 48 DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */ 49 }; 50 51 struct dram_addr { 52 int chan; 53 int dimm; 54 int rank; 55 int bank; 56 int row; 57 int col; 58 }; 59 60 struct pnd2_pvt { 61 int dimm_geom[APL_NUM_CHANNELS]; 62 u64 tolm, tohm; 63 }; 64 65 /* 66 * System address space is divided into multiple regions with 67 * different interleave rules in each. The as0/as1 regions 68 * have no interleaving at all. The as2 region is interleaved 69 * between two channels. The mot region is magic and may overlap 70 * other regions, with its interleave rules taking precedence. 71 * Addresses not in any of these regions are interleaved across 72 * all four channels. 73 */ 74 static struct region { 75 u64 base; 76 u64 limit; 77 u8 enabled; 78 } mot, as0, as1, as2; 79 80 static struct dunit_ops { 81 char *name; 82 enum type type; 83 int pmiaddr_shift; 84 int pmiidx_shift; 85 int channels; 86 int dimms_per_channel; 87 int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name); 88 int (*get_registers)(void); 89 int (*check_ecc)(void); 90 void (*mk_region)(char *name, struct region *rp, void *asym); 91 void (*get_dimm_config)(struct mem_ctl_info *mci); 92 int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, 93 struct dram_addr *daddr, char *msg); 94 } *ops; 95 96 static struct mem_ctl_info *pnd2_mci; 97 98 #define PND2_MSG_SIZE 256 99 100 /* Debug macros */ 101 #define pnd2_printk(level, fmt, arg...) \ 102 edac_printk(level, "pnd2", fmt, ##arg) 103 104 #define pnd2_mc_printk(mci, level, fmt, arg...) \ 105 edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg) 106 107 #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12 108 #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13 109 #define SELECTOR_DISABLED (-1) 110 #define _4GB (1ul << 32) 111 112 #define PMI_ADDRESS_WIDTH 31 113 #define PND_MAX_PHYS_BIT 39 114 115 #define APL_ASYMSHIFT 28 116 #define DNV_ASYMSHIFT 31 117 #define CH_HASH_MASK_LSB 6 118 #define SLICE_HASH_MASK_LSB 6 119 #define MOT_SLC_INTLV_BIT 12 120 #define LOG2_PMI_ADDR_GRANULARITY 5 121 #define MOT_SHIFT 24 122 123 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo)) 124 #define U64_LSHIFT(val, s) ((u64)(val) << (s)) 125 126 /* 127 * On Apollo Lake we access memory controller registers via a 128 * side-band mailbox style interface in a hidden PCI device 129 * configuration space. 130 */ 131 static struct pci_bus *p2sb_bus; 132 #define P2SB_DEVFN PCI_DEVFN(0xd, 0) 133 #define P2SB_ADDR_OFF 0xd0 134 #define P2SB_DATA_OFF 0xd4 135 #define P2SB_STAT_OFF 0xd8 136 #define P2SB_ROUT_OFF 0xda 137 #define P2SB_EADD_OFF 0xdc 138 #define P2SB_HIDE_OFF 0xe1 139 140 #define P2SB_BUSY 1 141 142 #define P2SB_READ(size, off, ptr) \ 143 pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr) 144 #define P2SB_WRITE(size, off, val) \ 145 pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val) 146 147 static bool p2sb_is_busy(u16 *status) 148 { 149 P2SB_READ(word, P2SB_STAT_OFF, status); 150 151 return !!(*status & P2SB_BUSY); 152 } 153 154 static int _apl_rd_reg(int port, int off, int op, u32 *data) 155 { 156 int retries = 0xff, ret; 157 u16 status; 158 u8 hidden; 159 160 /* Unhide the P2SB device, if it's hidden */ 161 P2SB_READ(byte, P2SB_HIDE_OFF, &hidden); 162 if (hidden) 163 P2SB_WRITE(byte, P2SB_HIDE_OFF, 0); 164 165 if (p2sb_is_busy(&status)) { 166 ret = -EAGAIN; 167 goto out; 168 } 169 170 P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off); 171 P2SB_WRITE(dword, P2SB_DATA_OFF, 0); 172 P2SB_WRITE(dword, P2SB_EADD_OFF, 0); 173 P2SB_WRITE(word, P2SB_ROUT_OFF, 0); 174 P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY); 175 176 while (p2sb_is_busy(&status)) { 177 if (retries-- == 0) { 178 ret = -EBUSY; 179 goto out; 180 } 181 } 182 183 P2SB_READ(dword, P2SB_DATA_OFF, data); 184 ret = (status >> 1) & 0x3; 185 out: 186 /* Hide the P2SB device, if it was hidden before */ 187 if (hidden) 188 P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden); 189 190 return ret; 191 } 192 193 static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) 194 { 195 int ret = 0; 196 197 edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op); 198 switch (sz) { 199 case 8: 200 ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4)); 201 fallthrough; 202 case 4: 203 ret |= _apl_rd_reg(port, off, op, (u32 *)data); 204 pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name, 205 sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret); 206 break; 207 } 208 209 return ret; 210 } 211 212 static u64 get_mem_ctrl_hub_base_addr(void) 213 { 214 struct b_cr_mchbar_lo_pci lo; 215 struct b_cr_mchbar_hi_pci hi; 216 struct pci_dev *pdev; 217 218 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); 219 if (pdev) { 220 pci_read_config_dword(pdev, 0x48, (u32 *)&lo); 221 pci_read_config_dword(pdev, 0x4c, (u32 *)&hi); 222 pci_dev_put(pdev); 223 } else { 224 return 0; 225 } 226 227 if (!lo.enable) { 228 edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n"); 229 return 0; 230 } 231 232 return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15); 233 } 234 235 static u64 get_sideband_reg_base_addr(void) 236 { 237 struct pci_dev *pdev; 238 u32 hi, lo; 239 u8 hidden; 240 241 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL); 242 if (pdev) { 243 /* Unhide the P2SB device, if it's hidden */ 244 pci_read_config_byte(pdev, 0xe1, &hidden); 245 if (hidden) 246 pci_write_config_byte(pdev, 0xe1, 0); 247 248 pci_read_config_dword(pdev, 0x10, &lo); 249 pci_read_config_dword(pdev, 0x14, &hi); 250 lo &= 0xfffffff0; 251 252 /* Hide the P2SB device, if it was hidden before */ 253 if (hidden) 254 pci_write_config_byte(pdev, 0xe1, hidden); 255 256 pci_dev_put(pdev); 257 return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0)); 258 } else { 259 return 0xfd000000; 260 } 261 } 262 263 #define DNV_MCHBAR_SIZE 0x8000 264 #define DNV_SB_PORT_SIZE 0x10000 265 static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) 266 { 267 struct pci_dev *pdev; 268 char *base; 269 u64 addr; 270 unsigned long size; 271 272 if (op == 4) { 273 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); 274 if (!pdev) 275 return -ENODEV; 276 277 pci_read_config_dword(pdev, off, data); 278 pci_dev_put(pdev); 279 } else { 280 /* MMIO via memory controller hub base address */ 281 if (op == 0 && port == 0x4c) { 282 addr = get_mem_ctrl_hub_base_addr(); 283 if (!addr) 284 return -ENODEV; 285 size = DNV_MCHBAR_SIZE; 286 } else { 287 /* MMIO via sideband register base address */ 288 addr = get_sideband_reg_base_addr(); 289 if (!addr) 290 return -ENODEV; 291 addr += (port << 16); 292 size = DNV_SB_PORT_SIZE; 293 } 294 295 base = ioremap((resource_size_t)addr, size); 296 if (!base) 297 return -ENODEV; 298 299 if (sz == 8) 300 *(u32 *)(data + 4) = *(u32 *)(base + off + 4); 301 *(u32 *)data = *(u32 *)(base + off); 302 303 iounmap(base); 304 } 305 306 edac_dbg(2, "Read %s=%.8x_%.8x\n", name, 307 (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data); 308 309 return 0; 310 } 311 312 #define RD_REGP(regp, regname, port) \ 313 ops->rd_reg(port, \ 314 regname##_offset, \ 315 regname##_r_opcode, \ 316 regp, sizeof(struct regname), \ 317 #regname) 318 319 #define RD_REG(regp, regname) \ 320 ops->rd_reg(regname ## _port, \ 321 regname##_offset, \ 322 regname##_r_opcode, \ 323 regp, sizeof(struct regname), \ 324 #regname) 325 326 static u64 top_lm, top_hm; 327 static bool two_slices; 328 static bool two_channels; /* Both PMI channels in one slice enabled */ 329 330 static u8 sym_chan_mask; 331 static u8 asym_chan_mask; 332 static u8 chan_mask; 333 334 static int slice_selector = -1; 335 static int chan_selector = -1; 336 static u64 slice_hash_mask; 337 static u64 chan_hash_mask; 338 339 static void mk_region(char *name, struct region *rp, u64 base, u64 limit) 340 { 341 rp->enabled = 1; 342 rp->base = base; 343 rp->limit = limit; 344 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit); 345 } 346 347 static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask) 348 { 349 if (mask == 0) { 350 pr_info(FW_BUG "MOT mask cannot be zero\n"); 351 return; 352 } 353 if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) { 354 pr_info(FW_BUG "MOT mask not power of two\n"); 355 return; 356 } 357 if (base & ~mask) { 358 pr_info(FW_BUG "MOT region base/mask alignment error\n"); 359 return; 360 } 361 rp->base = base; 362 rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0); 363 rp->enabled = 1; 364 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit); 365 } 366 367 static bool in_region(struct region *rp, u64 addr) 368 { 369 if (!rp->enabled) 370 return false; 371 372 return rp->base <= addr && addr <= rp->limit; 373 } 374 375 static int gen_sym_mask(struct b_cr_slice_channel_hash *p) 376 { 377 int mask = 0; 378 379 if (!p->slice_0_mem_disabled) 380 mask |= p->sym_slice0_channel_enabled; 381 382 if (!p->slice_1_disabled) 383 mask |= p->sym_slice1_channel_enabled << 2; 384 385 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) 386 mask &= 0x5; 387 388 return mask; 389 } 390 391 static int gen_asym_mask(struct b_cr_slice_channel_hash *p, 392 struct b_cr_asym_mem_region0_mchbar *as0, 393 struct b_cr_asym_mem_region1_mchbar *as1, 394 struct b_cr_asym_2way_mem_region_mchbar *as2way) 395 { 396 const int intlv[] = { 0x5, 0xA, 0x3, 0xC }; 397 int mask = 0; 398 399 if (as2way->asym_2way_interleave_enable) 400 mask = intlv[as2way->asym_2way_intlv_mode]; 401 if (as0->slice0_asym_enable) 402 mask |= (1 << as0->slice0_asym_channel_select); 403 if (as1->slice1_asym_enable) 404 mask |= (4 << as1->slice1_asym_channel_select); 405 if (p->slice_0_mem_disabled) 406 mask &= 0xc; 407 if (p->slice_1_disabled) 408 mask &= 0x3; 409 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) 410 mask &= 0x5; 411 412 return mask; 413 } 414 415 static struct b_cr_tolud_pci tolud; 416 static struct b_cr_touud_lo_pci touud_lo; 417 static struct b_cr_touud_hi_pci touud_hi; 418 static struct b_cr_asym_mem_region0_mchbar asym0; 419 static struct b_cr_asym_mem_region1_mchbar asym1; 420 static struct b_cr_asym_2way_mem_region_mchbar asym_2way; 421 static struct b_cr_mot_out_base_mchbar mot_base; 422 static struct b_cr_mot_out_mask_mchbar mot_mask; 423 static struct b_cr_slice_channel_hash chash; 424 425 /* Apollo Lake dunit */ 426 /* 427 * Validated on board with just two DIMMs in the [0] and [2] positions 428 * in this array. Other port number matches documentation, but caution 429 * advised. 430 */ 431 static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 }; 432 static struct d_cr_drp0 drp0[APL_NUM_CHANNELS]; 433 434 /* Denverton dunit */ 435 static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 }; 436 static struct d_cr_dsch dsch; 437 static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS]; 438 static struct d_cr_drp drp[DNV_NUM_CHANNELS]; 439 static struct d_cr_dmap dmap[DNV_NUM_CHANNELS]; 440 static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS]; 441 static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS]; 442 static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS]; 443 static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS]; 444 static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS]; 445 446 static void apl_mk_region(char *name, struct region *rp, void *asym) 447 { 448 struct b_cr_asym_mem_region0_mchbar *a = asym; 449 450 mk_region(name, rp, 451 U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT), 452 U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) + 453 GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); 454 } 455 456 static void dnv_mk_region(char *name, struct region *rp, void *asym) 457 { 458 struct b_cr_asym_mem_region_denverton *a = asym; 459 460 mk_region(name, rp, 461 U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT), 462 U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) + 463 GENMASK_ULL(DNV_ASYMSHIFT - 1, 0)); 464 } 465 466 static int apl_get_registers(void) 467 { 468 int ret = -ENODEV; 469 int i; 470 471 if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar)) 472 return -ENODEV; 473 474 /* 475 * RD_REGP() will fail for unpopulated or non-existent 476 * DIMM slots. Return success if we find at least one DIMM. 477 */ 478 for (i = 0; i < APL_NUM_CHANNELS; i++) 479 if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i])) 480 ret = 0; 481 482 return ret; 483 } 484 485 static int dnv_get_registers(void) 486 { 487 int i; 488 489 if (RD_REG(&dsch, d_cr_dsch)) 490 return -ENODEV; 491 492 for (i = 0; i < DNV_NUM_CHANNELS; i++) 493 if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) || 494 RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) || 495 RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) || 496 RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) || 497 RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) || 498 RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) || 499 RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) || 500 RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i])) 501 return -ENODEV; 502 503 return 0; 504 } 505 506 /* 507 * Read all the h/w config registers once here (they don't 508 * change at run time. Figure out which address ranges have 509 * which interleave characteristics. 510 */ 511 static int get_registers(void) 512 { 513 const int intlv[] = { 10, 11, 12, 12 }; 514 515 if (RD_REG(&tolud, b_cr_tolud_pci) || 516 RD_REG(&touud_lo, b_cr_touud_lo_pci) || 517 RD_REG(&touud_hi, b_cr_touud_hi_pci) || 518 RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) || 519 RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) || 520 RD_REG(&mot_base, b_cr_mot_out_base_mchbar) || 521 RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) || 522 RD_REG(&chash, b_cr_slice_channel_hash)) 523 return -ENODEV; 524 525 if (ops->get_registers()) 526 return -ENODEV; 527 528 if (ops->type == DNV) { 529 /* PMI channel idx (always 0) for asymmetric region */ 530 asym0.slice0_asym_channel_select = 0; 531 asym1.slice1_asym_channel_select = 0; 532 /* PMI channel bitmap (always 1) for symmetric region */ 533 chash.sym_slice0_channel_enabled = 0x1; 534 chash.sym_slice1_channel_enabled = 0x1; 535 } 536 537 if (asym0.slice0_asym_enable) 538 ops->mk_region("as0", &as0, &asym0); 539 540 if (asym1.slice1_asym_enable) 541 ops->mk_region("as1", &as1, &asym1); 542 543 if (asym_2way.asym_2way_interleave_enable) { 544 mk_region("as2way", &as2, 545 U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT), 546 U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) + 547 GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); 548 } 549 550 if (mot_base.imr_en) { 551 mk_region_mask("mot", &mot, 552 U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT), 553 U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT)); 554 } 555 556 top_lm = U64_LSHIFT(tolud.tolud, 20); 557 top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20); 558 559 two_slices = !chash.slice_1_disabled && 560 !chash.slice_0_mem_disabled && 561 (chash.sym_slice0_channel_enabled != 0) && 562 (chash.sym_slice1_channel_enabled != 0); 563 two_channels = !chash.ch_1_disabled && 564 !chash.enable_pmi_dual_data_mode && 565 ((chash.sym_slice0_channel_enabled == 3) || 566 (chash.sym_slice1_channel_enabled == 3)); 567 568 sym_chan_mask = gen_sym_mask(&chash); 569 asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way); 570 chan_mask = sym_chan_mask | asym_chan_mask; 571 572 if (two_slices && !two_channels) { 573 if (chash.hvm_mode) 574 slice_selector = 29; 575 else 576 slice_selector = intlv[chash.interleave_mode]; 577 } else if (!two_slices && two_channels) { 578 if (chash.hvm_mode) 579 chan_selector = 29; 580 else 581 chan_selector = intlv[chash.interleave_mode]; 582 } else if (two_slices && two_channels) { 583 if (chash.hvm_mode) { 584 slice_selector = 29; 585 chan_selector = 30; 586 } else { 587 slice_selector = intlv[chash.interleave_mode]; 588 chan_selector = intlv[chash.interleave_mode] + 1; 589 } 590 } 591 592 if (two_slices) { 593 if (!chash.hvm_mode) 594 slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB; 595 if (!two_channels) 596 slice_hash_mask |= BIT_ULL(slice_selector); 597 } 598 599 if (two_channels) { 600 if (!chash.hvm_mode) 601 chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB; 602 if (!two_slices) 603 chan_hash_mask |= BIT_ULL(chan_selector); 604 } 605 606 return 0; 607 } 608 609 /* Get a contiguous memory address (remove the MMIO gap) */ 610 static u64 remove_mmio_gap(u64 sys) 611 { 612 return (sys < _4GB) ? sys : sys - (_4GB - top_lm); 613 } 614 615 /* Squeeze out one address bit, shift upper part down to fill gap */ 616 static void remove_addr_bit(u64 *addr, int bitidx) 617 { 618 u64 mask; 619 620 if (bitidx == -1) 621 return; 622 623 mask = (1ull << bitidx) - 1; 624 *addr = ((*addr >> 1) & ~mask) | (*addr & mask); 625 } 626 627 /* XOR all the bits from addr specified in mask */ 628 static int hash_by_mask(u64 addr, u64 mask) 629 { 630 u64 result = addr & mask; 631 632 result = (result >> 32) ^ result; 633 result = (result >> 16) ^ result; 634 result = (result >> 8) ^ result; 635 result = (result >> 4) ^ result; 636 result = (result >> 2) ^ result; 637 result = (result >> 1) ^ result; 638 639 return (int)result & 1; 640 } 641 642 /* 643 * First stage decode. Take the system address and figure out which 644 * second stage will deal with it based on interleave modes. 645 */ 646 static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg) 647 { 648 u64 contig_addr, contig_base, contig_offset, contig_base_adj; 649 int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : 650 MOT_CHAN_INTLV_BIT_1SLC_2CH; 651 int slice_intlv_bit_rm = SELECTOR_DISABLED; 652 int chan_intlv_bit_rm = SELECTOR_DISABLED; 653 /* Determine if address is in the MOT region. */ 654 bool mot_hit = in_region(&mot, addr); 655 /* Calculate the number of symmetric regions enabled. */ 656 int sym_channels = hweight8(sym_chan_mask); 657 658 /* 659 * The amount we need to shift the asym base can be determined by the 660 * number of enabled symmetric channels. 661 * NOTE: This can only work because symmetric memory is not supposed 662 * to do a 3-way interleave. 663 */ 664 int sym_chan_shift = sym_channels >> 1; 665 666 /* Give up if address is out of range, or in MMIO gap */ 667 if (addr >= (1ul << PND_MAX_PHYS_BIT) || 668 (addr >= top_lm && addr < _4GB) || addr >= top_hm) { 669 snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr); 670 return -EINVAL; 671 } 672 673 /* Get a contiguous memory address (remove the MMIO gap) */ 674 contig_addr = remove_mmio_gap(addr); 675 676 if (in_region(&as0, addr)) { 677 *pmiidx = asym0.slice0_asym_channel_select; 678 679 contig_base = remove_mmio_gap(as0.base); 680 contig_offset = contig_addr - contig_base; 681 contig_base_adj = (contig_base >> sym_chan_shift) * 682 ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1); 683 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); 684 } else if (in_region(&as1, addr)) { 685 *pmiidx = 2u + asym1.slice1_asym_channel_select; 686 687 contig_base = remove_mmio_gap(as1.base); 688 contig_offset = contig_addr - contig_base; 689 contig_base_adj = (contig_base >> sym_chan_shift) * 690 ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1); 691 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); 692 } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) { 693 bool channel1; 694 695 mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH; 696 *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1; 697 channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) : 698 hash_by_mask(contig_addr, chan_hash_mask); 699 *pmiidx |= (u32)channel1; 700 701 contig_base = remove_mmio_gap(as2.base); 702 chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector; 703 contig_offset = contig_addr - contig_base; 704 remove_addr_bit(&contig_offset, chan_intlv_bit_rm); 705 contig_addr = (contig_base >> sym_chan_shift) + contig_offset; 706 } else { 707 /* Otherwise we're in normal, boring symmetric mode. */ 708 *pmiidx = 0u; 709 710 if (two_slices) { 711 bool slice1; 712 713 if (mot_hit) { 714 slice_intlv_bit_rm = MOT_SLC_INTLV_BIT; 715 slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1; 716 } else { 717 slice_intlv_bit_rm = slice_selector; 718 slice1 = hash_by_mask(addr, slice_hash_mask); 719 } 720 721 *pmiidx = (u32)slice1 << 1; 722 } 723 724 if (two_channels) { 725 bool channel1; 726 727 mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : 728 MOT_CHAN_INTLV_BIT_1SLC_2CH; 729 730 if (mot_hit) { 731 chan_intlv_bit_rm = mot_intlv_bit; 732 channel1 = (addr >> mot_intlv_bit) & 1; 733 } else { 734 chan_intlv_bit_rm = chan_selector; 735 channel1 = hash_by_mask(contig_addr, chan_hash_mask); 736 } 737 738 *pmiidx |= (u32)channel1; 739 } 740 } 741 742 /* Remove the chan_selector bit first */ 743 remove_addr_bit(&contig_addr, chan_intlv_bit_rm); 744 /* Remove the slice bit (we remove it second because it must be lower */ 745 remove_addr_bit(&contig_addr, slice_intlv_bit_rm); 746 *pmiaddr = contig_addr; 747 748 return 0; 749 } 750 751 /* Translate PMI address to memory (rank, row, bank, column) */ 752 #define C(n) (0x10 | (n)) /* column */ 753 #define B(n) (0x20 | (n)) /* bank */ 754 #define R(n) (0x40 | (n)) /* row */ 755 #define RS (0x80) /* rank */ 756 757 /* addrdec values */ 758 #define AMAP_1KB 0 759 #define AMAP_2KB 1 760 #define AMAP_4KB 2 761 #define AMAP_RSVD 3 762 763 /* dden values */ 764 #define DEN_4Gb 0 765 #define DEN_8Gb 2 766 767 /* dwid values */ 768 #define X8 0 769 #define X16 1 770 771 static struct dimm_geometry { 772 u8 addrdec; 773 u8 dden; 774 u8 dwid; 775 u8 rowbits, colbits; 776 u16 bits[PMI_ADDRESS_WIDTH]; 777 } dimms[] = { 778 { 779 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16, 780 .rowbits = 15, .colbits = 10, 781 .bits = { 782 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 783 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 784 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 785 0, 0, 0, 0 786 } 787 }, 788 { 789 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8, 790 .rowbits = 16, .colbits = 10, 791 .bits = { 792 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 793 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 794 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 795 R(15), 0, 0, 0 796 } 797 }, 798 { 799 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16, 800 .rowbits = 16, .colbits = 10, 801 .bits = { 802 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 803 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 804 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 805 R(15), 0, 0, 0 806 } 807 }, 808 { 809 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8, 810 .rowbits = 16, .colbits = 11, 811 .bits = { 812 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 813 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 814 R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13), 815 R(14), R(15), 0, 0 816 } 817 }, 818 { 819 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16, 820 .rowbits = 15, .colbits = 10, 821 .bits = { 822 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 823 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 824 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 825 0, 0, 0, 0 826 } 827 }, 828 { 829 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8, 830 .rowbits = 16, .colbits = 10, 831 .bits = { 832 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 833 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 834 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 835 R(15), 0, 0, 0 836 } 837 }, 838 { 839 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16, 840 .rowbits = 16, .colbits = 10, 841 .bits = { 842 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 843 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 844 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 845 R(15), 0, 0, 0 846 } 847 }, 848 { 849 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8, 850 .rowbits = 16, .colbits = 11, 851 .bits = { 852 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 853 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 854 R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13), 855 R(14), R(15), 0, 0 856 } 857 }, 858 { 859 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16, 860 .rowbits = 15, .colbits = 10, 861 .bits = { 862 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 863 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 864 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 865 0, 0, 0, 0 866 } 867 }, 868 { 869 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8, 870 .rowbits = 16, .colbits = 10, 871 .bits = { 872 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 873 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 874 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 875 R(15), 0, 0, 0 876 } 877 }, 878 { 879 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16, 880 .rowbits = 16, .colbits = 10, 881 .bits = { 882 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 883 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 884 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 885 R(15), 0, 0, 0 886 } 887 }, 888 { 889 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8, 890 .rowbits = 16, .colbits = 11, 891 .bits = { 892 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 893 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 894 R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13), 895 R(14), R(15), 0, 0 896 } 897 } 898 }; 899 900 static int bank_hash(u64 pmiaddr, int idx, int shft) 901 { 902 int bhash = 0; 903 904 switch (idx) { 905 case 0: 906 bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1; 907 break; 908 case 1: 909 bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1; 910 bhash ^= ((pmiaddr >> 22) & 1) << 1; 911 break; 912 case 2: 913 bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2; 914 break; 915 } 916 917 return bhash; 918 } 919 920 static int rank_hash(u64 pmiaddr) 921 { 922 return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1; 923 } 924 925 /* Second stage decode. Compute rank, bank, row & column. */ 926 static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, 927 struct dram_addr *daddr, char *msg) 928 { 929 struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx]; 930 struct pnd2_pvt *pvt = mci->pvt_info; 931 int g = pvt->dimm_geom[pmiidx]; 932 struct dimm_geometry *d = &dimms[g]; 933 int column = 0, bank = 0, row = 0, rank = 0; 934 int i, idx, type, skiprs = 0; 935 936 for (i = 0; i < PMI_ADDRESS_WIDTH; i++) { 937 int bit = (pmiaddr >> i) & 1; 938 939 if (i + skiprs >= PMI_ADDRESS_WIDTH) { 940 snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n"); 941 return -EINVAL; 942 } 943 944 type = d->bits[i + skiprs] & ~0xf; 945 idx = d->bits[i + skiprs] & 0xf; 946 947 /* 948 * On single rank DIMMs ignore the rank select bit 949 * and shift remainder of "bits[]" down one place. 950 */ 951 if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) { 952 skiprs = 1; 953 type = d->bits[i + skiprs] & ~0xf; 954 idx = d->bits[i + skiprs] & 0xf; 955 } 956 957 switch (type) { 958 case C(0): 959 column |= (bit << idx); 960 break; 961 case B(0): 962 bank |= (bit << idx); 963 if (cr_drp0->bahen) 964 bank ^= bank_hash(pmiaddr, idx, d->addrdec); 965 break; 966 case R(0): 967 row |= (bit << idx); 968 break; 969 case RS: 970 rank = bit; 971 if (cr_drp0->rsien) 972 rank ^= rank_hash(pmiaddr); 973 break; 974 default: 975 if (bit) { 976 snprintf(msg, PND2_MSG_SIZE, "Bad translation\n"); 977 return -EINVAL; 978 } 979 goto done; 980 } 981 } 982 983 done: 984 daddr->col = column; 985 daddr->bank = bank; 986 daddr->row = row; 987 daddr->rank = rank; 988 daddr->dimm = 0; 989 990 return 0; 991 } 992 993 /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */ 994 #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out)) 995 996 static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, 997 struct dram_addr *daddr, char *msg) 998 { 999 /* Rank 0 or 1 */ 1000 daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0); 1001 /* Rank 2 or 3 */ 1002 daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1); 1003 1004 /* 1005 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we 1006 * flip them if DIMM1 is larger than DIMM0. 1007 */ 1008 daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip; 1009 1010 daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0); 1011 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1); 1012 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2); 1013 if (dsch.ddr4en) 1014 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3); 1015 if (dmap1[pmiidx].bxor) { 1016 if (dsch.ddr4en) { 1017 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0); 1018 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1); 1019 if (dsch.chan_width == 0) 1020 /* 64/72 bit dram channel width */ 1021 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); 1022 else 1023 /* 32/40 bit dram channel width */ 1024 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); 1025 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3); 1026 } else { 1027 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0); 1028 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1); 1029 if (dsch.chan_width == 0) 1030 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); 1031 else 1032 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); 1033 } 1034 } 1035 1036 daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0); 1037 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1); 1038 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2); 1039 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3); 1040 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4); 1041 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5); 1042 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6); 1043 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7); 1044 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8); 1045 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9); 1046 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10); 1047 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11); 1048 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12); 1049 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13); 1050 if (dmap4[pmiidx].row14 != 31) 1051 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14); 1052 if (dmap4[pmiidx].row15 != 31) 1053 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15); 1054 if (dmap4[pmiidx].row16 != 31) 1055 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16); 1056 if (dmap4[pmiidx].row17 != 31) 1057 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17); 1058 1059 daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3); 1060 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4); 1061 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5); 1062 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6); 1063 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7); 1064 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8); 1065 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9); 1066 if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f) 1067 daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11); 1068 1069 return 0; 1070 } 1071 1072 static int check_channel(int ch) 1073 { 1074 if (drp0[ch].dramtype != 0) { 1075 pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch); 1076 return 1; 1077 } else if (drp0[ch].eccen == 0) { 1078 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); 1079 return 1; 1080 } 1081 return 0; 1082 } 1083 1084 static int apl_check_ecc_active(void) 1085 { 1086 int i, ret = 0; 1087 1088 /* Check dramtype and ECC mode for each present DIMM */ 1089 for (i = 0; i < APL_NUM_CHANNELS; i++) 1090 if (chan_mask & BIT(i)) 1091 ret += check_channel(i); 1092 return ret ? -EINVAL : 0; 1093 } 1094 1095 #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3) 1096 1097 static int check_unit(int ch) 1098 { 1099 struct d_cr_drp *d = &drp[ch]; 1100 1101 if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) { 1102 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); 1103 return 1; 1104 } 1105 return 0; 1106 } 1107 1108 static int dnv_check_ecc_active(void) 1109 { 1110 int i, ret = 0; 1111 1112 for (i = 0; i < DNV_NUM_CHANNELS; i++) 1113 ret += check_unit(i); 1114 return ret ? -EINVAL : 0; 1115 } 1116 1117 static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, 1118 struct dram_addr *daddr, char *msg) 1119 { 1120 u64 pmiaddr; 1121 u32 pmiidx; 1122 int ret; 1123 1124 ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg); 1125 if (ret) 1126 return ret; 1127 1128 pmiaddr >>= ops->pmiaddr_shift; 1129 /* pmi channel idx to dimm channel idx */ 1130 pmiidx >>= ops->pmiidx_shift; 1131 daddr->chan = pmiidx; 1132 1133 ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg); 1134 if (ret) 1135 return ret; 1136 1137 edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", 1138 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col); 1139 1140 return 0; 1141 } 1142 1143 static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, 1144 struct dram_addr *daddr) 1145 { 1146 enum hw_event_mc_err_type tp_event; 1147 char *optype, msg[PND2_MSG_SIZE]; 1148 bool ripv = m->mcgstatus & MCG_STATUS_RIPV; 1149 bool overflow = m->status & MCI_STATUS_OVER; 1150 bool uc_err = m->status & MCI_STATUS_UC; 1151 bool recov = m->status & MCI_STATUS_S; 1152 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); 1153 u32 mscod = GET_BITFIELD(m->status, 16, 31); 1154 u32 errcode = GET_BITFIELD(m->status, 0, 15); 1155 u32 optypenum = GET_BITFIELD(m->status, 4, 6); 1156 int rc; 1157 1158 tp_event = uc_err ? (ripv ? HW_EVENT_ERR_UNCORRECTED : HW_EVENT_ERR_FATAL) : 1159 HW_EVENT_ERR_CORRECTED; 1160 1161 /* 1162 * According with Table 15-9 of the Intel Architecture spec vol 3A, 1163 * memory errors should fit in this mask: 1164 * 000f 0000 1mmm cccc (binary) 1165 * where: 1166 * f = Correction Report Filtering Bit. If 1, subsequent errors 1167 * won't be shown 1168 * mmm = error type 1169 * cccc = channel 1170 * If the mask doesn't match, report an error to the parsing logic 1171 */ 1172 if (!((errcode & 0xef80) == 0x80)) { 1173 optype = "Can't parse: it is not a mem"; 1174 } else { 1175 switch (optypenum) { 1176 case 0: 1177 optype = "generic undef request error"; 1178 break; 1179 case 1: 1180 optype = "memory read error"; 1181 break; 1182 case 2: 1183 optype = "memory write error"; 1184 break; 1185 case 3: 1186 optype = "addr/cmd error"; 1187 break; 1188 case 4: 1189 optype = "memory scrubbing error"; 1190 break; 1191 default: 1192 optype = "reserved"; 1193 break; 1194 } 1195 } 1196 1197 /* Only decode errors with an valid address (ADDRV) */ 1198 if (!(m->status & MCI_STATUS_ADDRV)) 1199 return; 1200 1201 rc = get_memory_error_data(mci, m->addr, daddr, msg); 1202 if (rc) 1203 goto address_error; 1204 1205 snprintf(msg, sizeof(msg), 1206 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d", 1207 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod, 1208 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col); 1209 1210 edac_dbg(0, "%s\n", msg); 1211 1212 /* Call the helper to output message */ 1213 edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, 1214 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg); 1215 1216 return; 1217 1218 address_error: 1219 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); 1220 } 1221 1222 static void apl_get_dimm_config(struct mem_ctl_info *mci) 1223 { 1224 struct pnd2_pvt *pvt = mci->pvt_info; 1225 struct dimm_info *dimm; 1226 struct d_cr_drp0 *d; 1227 u64 capacity; 1228 int i, g; 1229 1230 for (i = 0; i < APL_NUM_CHANNELS; i++) { 1231 if (!(chan_mask & BIT(i))) 1232 continue; 1233 1234 dimm = edac_get_dimm(mci, i, 0, 0); 1235 if (!dimm) { 1236 edac_dbg(0, "No allocated DIMM for channel %d\n", i); 1237 continue; 1238 } 1239 1240 d = &drp0[i]; 1241 for (g = 0; g < ARRAY_SIZE(dimms); g++) 1242 if (dimms[g].addrdec == d->addrdec && 1243 dimms[g].dden == d->dden && 1244 dimms[g].dwid == d->dwid) 1245 break; 1246 1247 if (g == ARRAY_SIZE(dimms)) { 1248 edac_dbg(0, "Channel %d: unrecognized DIMM\n", i); 1249 continue; 1250 } 1251 1252 pvt->dimm_geom[i] = g; 1253 capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) * 1254 (1ul << dimms[g].colbits); 1255 edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3)); 1256 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); 1257 dimm->grain = 32; 1258 dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16; 1259 dimm->mtype = MEM_DDR3; 1260 dimm->edac_mode = EDAC_SECDED; 1261 snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2); 1262 } 1263 } 1264 1265 static const int dnv_dtypes[] = { 1266 DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN 1267 }; 1268 1269 static void dnv_get_dimm_config(struct mem_ctl_info *mci) 1270 { 1271 int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype; 1272 struct dimm_info *dimm; 1273 struct d_cr_drp *d; 1274 u64 capacity; 1275 1276 if (dsch.ddr4en) { 1277 memtype = MEM_DDR4; 1278 banks = 16; 1279 colbits = 10; 1280 } else { 1281 memtype = MEM_DDR3; 1282 banks = 8; 1283 } 1284 1285 for (i = 0; i < DNV_NUM_CHANNELS; i++) { 1286 if (dmap4[i].row14 == 31) 1287 rowbits = 14; 1288 else if (dmap4[i].row15 == 31) 1289 rowbits = 15; 1290 else if (dmap4[i].row16 == 31) 1291 rowbits = 16; 1292 else if (dmap4[i].row17 == 31) 1293 rowbits = 17; 1294 else 1295 rowbits = 18; 1296 1297 if (memtype == MEM_DDR3) { 1298 if (dmap1[i].ca11 != 0x3f) 1299 colbits = 12; 1300 else 1301 colbits = 10; 1302 } 1303 1304 d = &drp[i]; 1305 /* DIMM0 is present if rank0 and/or rank1 is enabled */ 1306 ranks_of_dimm[0] = d->rken0 + d->rken1; 1307 /* DIMM1 is present if rank2 and/or rank3 is enabled */ 1308 ranks_of_dimm[1] = d->rken2 + d->rken3; 1309 1310 for (j = 0; j < DNV_MAX_DIMMS; j++) { 1311 if (!ranks_of_dimm[j]) 1312 continue; 1313 1314 dimm = edac_get_dimm(mci, i, j, 0); 1315 if (!dimm) { 1316 edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j); 1317 continue; 1318 } 1319 1320 capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits); 1321 edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3)); 1322 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); 1323 dimm->grain = 32; 1324 dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1]; 1325 dimm->mtype = memtype; 1326 dimm->edac_mode = EDAC_SECDED; 1327 snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j); 1328 } 1329 } 1330 } 1331 1332 static int pnd2_register_mci(struct mem_ctl_info **ppmci) 1333 { 1334 struct edac_mc_layer layers[2]; 1335 struct mem_ctl_info *mci; 1336 struct pnd2_pvt *pvt; 1337 int rc; 1338 1339 rc = ops->check_ecc(); 1340 if (rc < 0) 1341 return rc; 1342 1343 /* Allocate a new MC control structure */ 1344 layers[0].type = EDAC_MC_LAYER_CHANNEL; 1345 layers[0].size = ops->channels; 1346 layers[0].is_virt_csrow = false; 1347 layers[1].type = EDAC_MC_LAYER_SLOT; 1348 layers[1].size = ops->dimms_per_channel; 1349 layers[1].is_virt_csrow = true; 1350 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); 1351 if (!mci) 1352 return -ENOMEM; 1353 1354 pvt = mci->pvt_info; 1355 memset(pvt, 0, sizeof(*pvt)); 1356 1357 mci->mod_name = EDAC_MOD_STR; 1358 mci->dev_name = ops->name; 1359 mci->ctl_name = "Pondicherry2"; 1360 1361 /* Get dimm basic config and the memory layout */ 1362 ops->get_dimm_config(mci); 1363 1364 if (edac_mc_add_mc(mci)) { 1365 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 1366 edac_mc_free(mci); 1367 return -EINVAL; 1368 } 1369 1370 *ppmci = mci; 1371 1372 return 0; 1373 } 1374 1375 static void pnd2_unregister_mci(struct mem_ctl_info *mci) 1376 { 1377 if (unlikely(!mci || !mci->pvt_info)) { 1378 pnd2_printk(KERN_ERR, "Couldn't find mci handler\n"); 1379 return; 1380 } 1381 1382 /* Remove MC sysfs nodes */ 1383 edac_mc_del_mc(NULL); 1384 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 1385 edac_mc_free(mci); 1386 } 1387 1388 /* 1389 * Callback function registered with core kernel mce code. 1390 * Called once for each logged error. 1391 */ 1392 static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) 1393 { 1394 struct mce *mce = (struct mce *)data; 1395 struct mem_ctl_info *mci; 1396 struct dram_addr daddr; 1397 char *type; 1398 1399 mci = pnd2_mci; 1400 if (!mci || (mce->kflags & MCE_HANDLED_CEC)) 1401 return NOTIFY_DONE; 1402 1403 /* 1404 * Just let mcelog handle it if the error is 1405 * outside the memory controller. A memory error 1406 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. 1407 * bit 12 has an special meaning. 1408 */ 1409 if ((mce->status & 0xefff) >> 7 != 1) 1410 return NOTIFY_DONE; 1411 1412 if (mce->mcgstatus & MCG_STATUS_MCIP) 1413 type = "Exception"; 1414 else 1415 type = "Event"; 1416 1417 pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n"); 1418 pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n", 1419 mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); 1420 pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc); 1421 pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr); 1422 pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc); 1423 pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", 1424 mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); 1425 1426 pnd2_mce_output_error(mci, mce, &daddr); 1427 1428 /* Advice mcelog that the error were handled */ 1429 mce->kflags |= MCE_HANDLED_EDAC; 1430 return NOTIFY_OK; 1431 } 1432 1433 static struct notifier_block pnd2_mce_dec = { 1434 .notifier_call = pnd2_mce_check_error, 1435 .priority = MCE_PRIO_EDAC, 1436 }; 1437 1438 #ifdef CONFIG_EDAC_DEBUG 1439 /* 1440 * Write an address to this file to exercise the address decode 1441 * logic in this driver. 1442 */ 1443 static u64 pnd2_fake_addr; 1444 #define PND2_BLOB_SIZE 1024 1445 static char pnd2_result[PND2_BLOB_SIZE]; 1446 static struct dentry *pnd2_test; 1447 static struct debugfs_blob_wrapper pnd2_blob = { 1448 .data = pnd2_result, 1449 .size = 0 1450 }; 1451 1452 static int debugfs_u64_set(void *data, u64 val) 1453 { 1454 struct dram_addr daddr; 1455 struct mce m; 1456 1457 *(u64 *)data = val; 1458 m.mcgstatus = 0; 1459 /* ADDRV + MemRd + Unknown channel */ 1460 m.status = MCI_STATUS_ADDRV + 0x9f; 1461 m.addr = val; 1462 pnd2_mce_output_error(pnd2_mci, &m, &daddr); 1463 snprintf(pnd2_blob.data, PND2_BLOB_SIZE, 1464 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", 1465 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col); 1466 pnd2_blob.size = strlen(pnd2_blob.data); 1467 1468 return 0; 1469 } 1470 DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); 1471 1472 static void setup_pnd2_debug(void) 1473 { 1474 pnd2_test = edac_debugfs_create_dir("pnd2_test"); 1475 edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test, 1476 &pnd2_fake_addr, &fops_u64_wo); 1477 debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob); 1478 } 1479 1480 static void teardown_pnd2_debug(void) 1481 { 1482 debugfs_remove_recursive(pnd2_test); 1483 } 1484 #else 1485 static void setup_pnd2_debug(void) {} 1486 static void teardown_pnd2_debug(void) {} 1487 #endif /* CONFIG_EDAC_DEBUG */ 1488 1489 1490 static int pnd2_probe(void) 1491 { 1492 int rc; 1493 1494 edac_dbg(2, "\n"); 1495 rc = get_registers(); 1496 if (rc) 1497 return rc; 1498 1499 return pnd2_register_mci(&pnd2_mci); 1500 } 1501 1502 static void pnd2_remove(void) 1503 { 1504 edac_dbg(0, "\n"); 1505 pnd2_unregister_mci(pnd2_mci); 1506 } 1507 1508 static struct dunit_ops apl_ops = { 1509 .name = "pnd2/apl", 1510 .type = APL, 1511 .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY, 1512 .pmiidx_shift = 0, 1513 .channels = APL_NUM_CHANNELS, 1514 .dimms_per_channel = 1, 1515 .rd_reg = apl_rd_reg, 1516 .get_registers = apl_get_registers, 1517 .check_ecc = apl_check_ecc_active, 1518 .mk_region = apl_mk_region, 1519 .get_dimm_config = apl_get_dimm_config, 1520 .pmi2mem = apl_pmi2mem, 1521 }; 1522 1523 static struct dunit_ops dnv_ops = { 1524 .name = "pnd2/dnv", 1525 .type = DNV, 1526 .pmiaddr_shift = 0, 1527 .pmiidx_shift = 1, 1528 .channels = DNV_NUM_CHANNELS, 1529 .dimms_per_channel = 2, 1530 .rd_reg = dnv_rd_reg, 1531 .get_registers = dnv_get_registers, 1532 .check_ecc = dnv_check_ecc_active, 1533 .mk_region = dnv_mk_region, 1534 .get_dimm_config = dnv_get_dimm_config, 1535 .pmi2mem = dnv_pmi2mem, 1536 }; 1537 1538 static const struct x86_cpu_id pnd2_cpuids[] = { 1539 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &apl_ops), 1540 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &dnv_ops), 1541 { } 1542 }; 1543 MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids); 1544 1545 static int __init pnd2_init(void) 1546 { 1547 const struct x86_cpu_id *id; 1548 const char *owner; 1549 int rc; 1550 1551 edac_dbg(2, "\n"); 1552 1553 owner = edac_get_owner(); 1554 if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR))) 1555 return -EBUSY; 1556 1557 id = x86_match_cpu(pnd2_cpuids); 1558 if (!id) 1559 return -ENODEV; 1560 1561 ops = (struct dunit_ops *)id->driver_data; 1562 1563 if (ops->type == APL) { 1564 p2sb_bus = pci_find_bus(0, 0); 1565 if (!p2sb_bus) 1566 return -ENODEV; 1567 } 1568 1569 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 1570 opstate_init(); 1571 1572 rc = pnd2_probe(); 1573 if (rc < 0) { 1574 pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); 1575 return rc; 1576 } 1577 1578 if (!pnd2_mci) 1579 return -ENODEV; 1580 1581 mce_register_decode_chain(&pnd2_mce_dec); 1582 setup_pnd2_debug(); 1583 1584 return 0; 1585 } 1586 1587 static void __exit pnd2_exit(void) 1588 { 1589 edac_dbg(2, "\n"); 1590 teardown_pnd2_debug(); 1591 mce_unregister_decode_chain(&pnd2_mce_dec); 1592 pnd2_remove(); 1593 } 1594 1595 module_init(pnd2_init); 1596 module_exit(pnd2_exit); 1597 1598 module_param(edac_op_state, int, 0444); 1599 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 1600 1601 MODULE_LICENSE("GPL v2"); 1602 MODULE_AUTHOR("Tony Luck"); 1603 MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller"); 1604