1 /* 2 * Driver for Pondicherry2 memory controller. 3 * 4 * Copyright (c) 2016, Intel Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms and conditions of the GNU General Public License, 8 * version 2, as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * [Derived from sb_edac.c] 16 * 17 * Translation of system physical addresses to DIMM addresses 18 * is a two stage process: 19 * 20 * First the Pondicherry 2 memory controller handles slice and channel interleaving 21 * in "sys2pmi()". This is (almost) completley common between platforms. 22 * 23 * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM, 24 * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters. 25 */ 26 27 #include <linux/module.h> 28 #include <linux/init.h> 29 #include <linux/pci.h> 30 #include <linux/pci_ids.h> 31 #include <linux/slab.h> 32 #include <linux/delay.h> 33 #include <linux/edac.h> 34 #include <linux/mmzone.h> 35 #include <linux/smp.h> 36 #include <linux/bitmap.h> 37 #include <linux/math64.h> 38 #include <linux/mod_devicetable.h> 39 #include <asm/cpu_device_id.h> 40 #include <asm/intel-family.h> 41 #include <asm/processor.h> 42 #include <asm/mce.h> 43 44 #include "edac_mc.h" 45 #include "edac_module.h" 46 #include "pnd2_edac.h" 47 48 #define APL_NUM_CHANNELS 4 49 #define DNV_NUM_CHANNELS 2 50 #define DNV_MAX_DIMMS 2 /* Max DIMMs per channel */ 51 52 enum type { 53 APL, 54 DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */ 55 }; 56 57 struct dram_addr { 58 int chan; 59 int dimm; 60 int rank; 61 int bank; 62 int row; 63 int col; 64 }; 65 66 struct pnd2_pvt { 67 int dimm_geom[APL_NUM_CHANNELS]; 68 u64 tolm, tohm; 69 }; 70 71 /* 72 * System address space is divided into multiple regions with 73 * different interleave rules in each. The as0/as1 regions 74 * have no interleaving at all. The as2 region is interleaved 75 * between two channels. The mot region is magic and may overlap 76 * other regions, with its interleave rules taking precedence. 77 * Addresses not in any of these regions are interleaved across 78 * all four channels. 79 */ 80 static struct region { 81 u64 base; 82 u64 limit; 83 u8 enabled; 84 } mot, as0, as1, as2; 85 86 static struct dunit_ops { 87 char *name; 88 enum type type; 89 int pmiaddr_shift; 90 int pmiidx_shift; 91 int channels; 92 int dimms_per_channel; 93 int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name); 94 int (*get_registers)(void); 95 int (*check_ecc)(void); 96 void (*mk_region)(char *name, struct region *rp, void *asym); 97 void (*get_dimm_config)(struct mem_ctl_info *mci); 98 int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, 99 struct dram_addr *daddr, char *msg); 100 } *ops; 101 102 static struct mem_ctl_info *pnd2_mci; 103 104 #define PND2_MSG_SIZE 256 105 106 /* Debug macros */ 107 #define pnd2_printk(level, fmt, arg...) \ 108 edac_printk(level, "pnd2", fmt, ##arg) 109 110 #define pnd2_mc_printk(mci, level, fmt, arg...) \ 111 edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg) 112 113 #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12 114 #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13 115 #define SELECTOR_DISABLED (-1) 116 #define _4GB (1ul << 32) 117 118 #define PMI_ADDRESS_WIDTH 31 119 #define PND_MAX_PHYS_BIT 39 120 121 #define APL_ASYMSHIFT 28 122 #define DNV_ASYMSHIFT 31 123 #define CH_HASH_MASK_LSB 6 124 #define SLICE_HASH_MASK_LSB 6 125 #define MOT_SLC_INTLV_BIT 12 126 #define LOG2_PMI_ADDR_GRANULARITY 5 127 #define MOT_SHIFT 24 128 129 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo)) 130 #define U64_LSHIFT(val, s) ((u64)(val) << (s)) 131 132 /* 133 * On Apollo Lake we access memory controller registers via a 134 * side-band mailbox style interface in a hidden PCI device 135 * configuration space. 136 */ 137 static struct pci_bus *p2sb_bus; 138 #define P2SB_DEVFN PCI_DEVFN(0xd, 0) 139 #define P2SB_ADDR_OFF 0xd0 140 #define P2SB_DATA_OFF 0xd4 141 #define P2SB_STAT_OFF 0xd8 142 #define P2SB_ROUT_OFF 0xda 143 #define P2SB_EADD_OFF 0xdc 144 #define P2SB_HIDE_OFF 0xe1 145 146 #define P2SB_BUSY 1 147 148 #define P2SB_READ(size, off, ptr) \ 149 pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr) 150 #define P2SB_WRITE(size, off, val) \ 151 pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val) 152 153 static bool p2sb_is_busy(u16 *status) 154 { 155 P2SB_READ(word, P2SB_STAT_OFF, status); 156 157 return !!(*status & P2SB_BUSY); 158 } 159 160 static int _apl_rd_reg(int port, int off, int op, u32 *data) 161 { 162 int retries = 0xff, ret; 163 u16 status; 164 u8 hidden; 165 166 /* Unhide the P2SB device, if it's hidden */ 167 P2SB_READ(byte, P2SB_HIDE_OFF, &hidden); 168 if (hidden) 169 P2SB_WRITE(byte, P2SB_HIDE_OFF, 0); 170 171 if (p2sb_is_busy(&status)) { 172 ret = -EAGAIN; 173 goto out; 174 } 175 176 P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off); 177 P2SB_WRITE(dword, P2SB_DATA_OFF, 0); 178 P2SB_WRITE(dword, P2SB_EADD_OFF, 0); 179 P2SB_WRITE(word, P2SB_ROUT_OFF, 0); 180 P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY); 181 182 while (p2sb_is_busy(&status)) { 183 if (retries-- == 0) { 184 ret = -EBUSY; 185 goto out; 186 } 187 } 188 189 P2SB_READ(dword, P2SB_DATA_OFF, data); 190 ret = (status >> 1) & 0x3; 191 out: 192 /* Hide the P2SB device, if it was hidden before */ 193 if (hidden) 194 P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden); 195 196 return ret; 197 } 198 199 static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) 200 { 201 int ret = 0; 202 203 edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op); 204 switch (sz) { 205 case 8: 206 ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4)); 207 /* fall through */ 208 case 4: 209 ret |= _apl_rd_reg(port, off, op, (u32 *)data); 210 pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name, 211 sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret); 212 break; 213 } 214 215 return ret; 216 } 217 218 static u64 get_mem_ctrl_hub_base_addr(void) 219 { 220 struct b_cr_mchbar_lo_pci lo; 221 struct b_cr_mchbar_hi_pci hi; 222 struct pci_dev *pdev; 223 224 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); 225 if (pdev) { 226 pci_read_config_dword(pdev, 0x48, (u32 *)&lo); 227 pci_read_config_dword(pdev, 0x4c, (u32 *)&hi); 228 pci_dev_put(pdev); 229 } else { 230 return 0; 231 } 232 233 if (!lo.enable) { 234 edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n"); 235 return 0; 236 } 237 238 return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15); 239 } 240 241 static u64 get_sideband_reg_base_addr(void) 242 { 243 struct pci_dev *pdev; 244 u32 hi, lo; 245 u8 hidden; 246 247 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL); 248 if (pdev) { 249 /* Unhide the P2SB device, if it's hidden */ 250 pci_read_config_byte(pdev, 0xe1, &hidden); 251 if (hidden) 252 pci_write_config_byte(pdev, 0xe1, 0); 253 254 pci_read_config_dword(pdev, 0x10, &lo); 255 pci_read_config_dword(pdev, 0x14, &hi); 256 lo &= 0xfffffff0; 257 258 /* Hide the P2SB device, if it was hidden before */ 259 if (hidden) 260 pci_write_config_byte(pdev, 0xe1, hidden); 261 262 pci_dev_put(pdev); 263 return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0)); 264 } else { 265 return 0xfd000000; 266 } 267 } 268 269 static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name) 270 { 271 struct pci_dev *pdev; 272 char *base; 273 u64 addr; 274 275 if (op == 4) { 276 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL); 277 if (!pdev) 278 return -ENODEV; 279 280 pci_read_config_dword(pdev, off, data); 281 pci_dev_put(pdev); 282 } else { 283 /* MMIO via memory controller hub base address */ 284 if (op == 0 && port == 0x4c) { 285 addr = get_mem_ctrl_hub_base_addr(); 286 if (!addr) 287 return -ENODEV; 288 } else { 289 /* MMIO via sideband register base address */ 290 addr = get_sideband_reg_base_addr(); 291 if (!addr) 292 return -ENODEV; 293 addr += (port << 16); 294 } 295 296 base = ioremap((resource_size_t)addr, 0x10000); 297 if (!base) 298 return -ENODEV; 299 300 if (sz == 8) 301 *(u32 *)(data + 4) = *(u32 *)(base + off + 4); 302 *(u32 *)data = *(u32 *)(base + off); 303 304 iounmap(base); 305 } 306 307 edac_dbg(2, "Read %s=%.8x_%.8x\n", name, 308 (sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data); 309 310 return 0; 311 } 312 313 #define RD_REGP(regp, regname, port) \ 314 ops->rd_reg(port, \ 315 regname##_offset, \ 316 regname##_r_opcode, \ 317 regp, sizeof(struct regname), \ 318 #regname) 319 320 #define RD_REG(regp, regname) \ 321 ops->rd_reg(regname ## _port, \ 322 regname##_offset, \ 323 regname##_r_opcode, \ 324 regp, sizeof(struct regname), \ 325 #regname) 326 327 static u64 top_lm, top_hm; 328 static bool two_slices; 329 static bool two_channels; /* Both PMI channels in one slice enabled */ 330 331 static u8 sym_chan_mask; 332 static u8 asym_chan_mask; 333 static u8 chan_mask; 334 335 static int slice_selector = -1; 336 static int chan_selector = -1; 337 static u64 slice_hash_mask; 338 static u64 chan_hash_mask; 339 340 static void mk_region(char *name, struct region *rp, u64 base, u64 limit) 341 { 342 rp->enabled = 1; 343 rp->base = base; 344 rp->limit = limit; 345 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit); 346 } 347 348 static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask) 349 { 350 if (mask == 0) { 351 pr_info(FW_BUG "MOT mask cannot be zero\n"); 352 return; 353 } 354 if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) { 355 pr_info(FW_BUG "MOT mask not power of two\n"); 356 return; 357 } 358 if (base & ~mask) { 359 pr_info(FW_BUG "MOT region base/mask alignment error\n"); 360 return; 361 } 362 rp->base = base; 363 rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0); 364 rp->enabled = 1; 365 edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit); 366 } 367 368 static bool in_region(struct region *rp, u64 addr) 369 { 370 if (!rp->enabled) 371 return false; 372 373 return rp->base <= addr && addr <= rp->limit; 374 } 375 376 static int gen_sym_mask(struct b_cr_slice_channel_hash *p) 377 { 378 int mask = 0; 379 380 if (!p->slice_0_mem_disabled) 381 mask |= p->sym_slice0_channel_enabled; 382 383 if (!p->slice_1_disabled) 384 mask |= p->sym_slice1_channel_enabled << 2; 385 386 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) 387 mask &= 0x5; 388 389 return mask; 390 } 391 392 static int gen_asym_mask(struct b_cr_slice_channel_hash *p, 393 struct b_cr_asym_mem_region0_mchbar *as0, 394 struct b_cr_asym_mem_region1_mchbar *as1, 395 struct b_cr_asym_2way_mem_region_mchbar *as2way) 396 { 397 const int intlv[] = { 0x5, 0xA, 0x3, 0xC }; 398 int mask = 0; 399 400 if (as2way->asym_2way_interleave_enable) 401 mask = intlv[as2way->asym_2way_intlv_mode]; 402 if (as0->slice0_asym_enable) 403 mask |= (1 << as0->slice0_asym_channel_select); 404 if (as1->slice1_asym_enable) 405 mask |= (4 << as1->slice1_asym_channel_select); 406 if (p->slice_0_mem_disabled) 407 mask &= 0xc; 408 if (p->slice_1_disabled) 409 mask &= 0x3; 410 if (p->ch_1_disabled || p->enable_pmi_dual_data_mode) 411 mask &= 0x5; 412 413 return mask; 414 } 415 416 static struct b_cr_tolud_pci tolud; 417 static struct b_cr_touud_lo_pci touud_lo; 418 static struct b_cr_touud_hi_pci touud_hi; 419 static struct b_cr_asym_mem_region0_mchbar asym0; 420 static struct b_cr_asym_mem_region1_mchbar asym1; 421 static struct b_cr_asym_2way_mem_region_mchbar asym_2way; 422 static struct b_cr_mot_out_base_mchbar mot_base; 423 static struct b_cr_mot_out_mask_mchbar mot_mask; 424 static struct b_cr_slice_channel_hash chash; 425 426 /* Apollo Lake dunit */ 427 /* 428 * Validated on board with just two DIMMs in the [0] and [2] positions 429 * in this array. Other port number matches documentation, but caution 430 * advised. 431 */ 432 static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 }; 433 static struct d_cr_drp0 drp0[APL_NUM_CHANNELS]; 434 435 /* Denverton dunit */ 436 static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 }; 437 static struct d_cr_dsch dsch; 438 static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS]; 439 static struct d_cr_drp drp[DNV_NUM_CHANNELS]; 440 static struct d_cr_dmap dmap[DNV_NUM_CHANNELS]; 441 static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS]; 442 static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS]; 443 static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS]; 444 static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS]; 445 static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS]; 446 447 static void apl_mk_region(char *name, struct region *rp, void *asym) 448 { 449 struct b_cr_asym_mem_region0_mchbar *a = asym; 450 451 mk_region(name, rp, 452 U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT), 453 U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) + 454 GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); 455 } 456 457 static void dnv_mk_region(char *name, struct region *rp, void *asym) 458 { 459 struct b_cr_asym_mem_region_denverton *a = asym; 460 461 mk_region(name, rp, 462 U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT), 463 U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) + 464 GENMASK_ULL(DNV_ASYMSHIFT - 1, 0)); 465 } 466 467 static int apl_get_registers(void) 468 { 469 int ret = -ENODEV; 470 int i; 471 472 if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar)) 473 return -ENODEV; 474 475 /* 476 * RD_REGP() will fail for unpopulated or non-existent 477 * DIMM slots. Return success if we find at least one DIMM. 478 */ 479 for (i = 0; i < APL_NUM_CHANNELS; i++) 480 if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i])) 481 ret = 0; 482 483 return ret; 484 } 485 486 static int dnv_get_registers(void) 487 { 488 int i; 489 490 if (RD_REG(&dsch, d_cr_dsch)) 491 return -ENODEV; 492 493 for (i = 0; i < DNV_NUM_CHANNELS; i++) 494 if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) || 495 RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) || 496 RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) || 497 RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) || 498 RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) || 499 RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) || 500 RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) || 501 RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i])) 502 return -ENODEV; 503 504 return 0; 505 } 506 507 /* 508 * Read all the h/w config registers once here (they don't 509 * change at run time. Figure out which address ranges have 510 * which interleave characteristics. 511 */ 512 static int get_registers(void) 513 { 514 const int intlv[] = { 10, 11, 12, 12 }; 515 516 if (RD_REG(&tolud, b_cr_tolud_pci) || 517 RD_REG(&touud_lo, b_cr_touud_lo_pci) || 518 RD_REG(&touud_hi, b_cr_touud_hi_pci) || 519 RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) || 520 RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) || 521 RD_REG(&mot_base, b_cr_mot_out_base_mchbar) || 522 RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) || 523 RD_REG(&chash, b_cr_slice_channel_hash)) 524 return -ENODEV; 525 526 if (ops->get_registers()) 527 return -ENODEV; 528 529 if (ops->type == DNV) { 530 /* PMI channel idx (always 0) for asymmetric region */ 531 asym0.slice0_asym_channel_select = 0; 532 asym1.slice1_asym_channel_select = 0; 533 /* PMI channel bitmap (always 1) for symmetric region */ 534 chash.sym_slice0_channel_enabled = 0x1; 535 chash.sym_slice1_channel_enabled = 0x1; 536 } 537 538 if (asym0.slice0_asym_enable) 539 ops->mk_region("as0", &as0, &asym0); 540 541 if (asym1.slice1_asym_enable) 542 ops->mk_region("as1", &as1, &asym1); 543 544 if (asym_2way.asym_2way_interleave_enable) { 545 mk_region("as2way", &as2, 546 U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT), 547 U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) + 548 GENMASK_ULL(APL_ASYMSHIFT - 1, 0)); 549 } 550 551 if (mot_base.imr_en) { 552 mk_region_mask("mot", &mot, 553 U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT), 554 U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT)); 555 } 556 557 top_lm = U64_LSHIFT(tolud.tolud, 20); 558 top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20); 559 560 two_slices = !chash.slice_1_disabled && 561 !chash.slice_0_mem_disabled && 562 (chash.sym_slice0_channel_enabled != 0) && 563 (chash.sym_slice1_channel_enabled != 0); 564 two_channels = !chash.ch_1_disabled && 565 !chash.enable_pmi_dual_data_mode && 566 ((chash.sym_slice0_channel_enabled == 3) || 567 (chash.sym_slice1_channel_enabled == 3)); 568 569 sym_chan_mask = gen_sym_mask(&chash); 570 asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way); 571 chan_mask = sym_chan_mask | asym_chan_mask; 572 573 if (two_slices && !two_channels) { 574 if (chash.hvm_mode) 575 slice_selector = 29; 576 else 577 slice_selector = intlv[chash.interleave_mode]; 578 } else if (!two_slices && two_channels) { 579 if (chash.hvm_mode) 580 chan_selector = 29; 581 else 582 chan_selector = intlv[chash.interleave_mode]; 583 } else if (two_slices && two_channels) { 584 if (chash.hvm_mode) { 585 slice_selector = 29; 586 chan_selector = 30; 587 } else { 588 slice_selector = intlv[chash.interleave_mode]; 589 chan_selector = intlv[chash.interleave_mode] + 1; 590 } 591 } 592 593 if (two_slices) { 594 if (!chash.hvm_mode) 595 slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB; 596 if (!two_channels) 597 slice_hash_mask |= BIT_ULL(slice_selector); 598 } 599 600 if (two_channels) { 601 if (!chash.hvm_mode) 602 chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB; 603 if (!two_slices) 604 chan_hash_mask |= BIT_ULL(chan_selector); 605 } 606 607 return 0; 608 } 609 610 /* Get a contiguous memory address (remove the MMIO gap) */ 611 static u64 remove_mmio_gap(u64 sys) 612 { 613 return (sys < _4GB) ? sys : sys - (_4GB - top_lm); 614 } 615 616 /* Squeeze out one address bit, shift upper part down to fill gap */ 617 static void remove_addr_bit(u64 *addr, int bitidx) 618 { 619 u64 mask; 620 621 if (bitidx == -1) 622 return; 623 624 mask = (1ull << bitidx) - 1; 625 *addr = ((*addr >> 1) & ~mask) | (*addr & mask); 626 } 627 628 /* XOR all the bits from addr specified in mask */ 629 static int hash_by_mask(u64 addr, u64 mask) 630 { 631 u64 result = addr & mask; 632 633 result = (result >> 32) ^ result; 634 result = (result >> 16) ^ result; 635 result = (result >> 8) ^ result; 636 result = (result >> 4) ^ result; 637 result = (result >> 2) ^ result; 638 result = (result >> 1) ^ result; 639 640 return (int)result & 1; 641 } 642 643 /* 644 * First stage decode. Take the system address and figure out which 645 * second stage will deal with it based on interleave modes. 646 */ 647 static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg) 648 { 649 u64 contig_addr, contig_base, contig_offset, contig_base_adj; 650 int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : 651 MOT_CHAN_INTLV_BIT_1SLC_2CH; 652 int slice_intlv_bit_rm = SELECTOR_DISABLED; 653 int chan_intlv_bit_rm = SELECTOR_DISABLED; 654 /* Determine if address is in the MOT region. */ 655 bool mot_hit = in_region(&mot, addr); 656 /* Calculate the number of symmetric regions enabled. */ 657 int sym_channels = hweight8(sym_chan_mask); 658 659 /* 660 * The amount we need to shift the asym base can be determined by the 661 * number of enabled symmetric channels. 662 * NOTE: This can only work because symmetric memory is not supposed 663 * to do a 3-way interleave. 664 */ 665 int sym_chan_shift = sym_channels >> 1; 666 667 /* Give up if address is out of range, or in MMIO gap */ 668 if (addr >= (1ul << PND_MAX_PHYS_BIT) || 669 (addr >= top_lm && addr < _4GB) || addr >= top_hm) { 670 snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr); 671 return -EINVAL; 672 } 673 674 /* Get a contiguous memory address (remove the MMIO gap) */ 675 contig_addr = remove_mmio_gap(addr); 676 677 if (in_region(&as0, addr)) { 678 *pmiidx = asym0.slice0_asym_channel_select; 679 680 contig_base = remove_mmio_gap(as0.base); 681 contig_offset = contig_addr - contig_base; 682 contig_base_adj = (contig_base >> sym_chan_shift) * 683 ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1); 684 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); 685 } else if (in_region(&as1, addr)) { 686 *pmiidx = 2u + asym1.slice1_asym_channel_select; 687 688 contig_base = remove_mmio_gap(as1.base); 689 contig_offset = contig_addr - contig_base; 690 contig_base_adj = (contig_base >> sym_chan_shift) * 691 ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1); 692 contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull); 693 } else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) { 694 bool channel1; 695 696 mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH; 697 *pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1; 698 channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) : 699 hash_by_mask(contig_addr, chan_hash_mask); 700 *pmiidx |= (u32)channel1; 701 702 contig_base = remove_mmio_gap(as2.base); 703 chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector; 704 contig_offset = contig_addr - contig_base; 705 remove_addr_bit(&contig_offset, chan_intlv_bit_rm); 706 contig_addr = (contig_base >> sym_chan_shift) + contig_offset; 707 } else { 708 /* Otherwise we're in normal, boring symmetric mode. */ 709 *pmiidx = 0u; 710 711 if (two_slices) { 712 bool slice1; 713 714 if (mot_hit) { 715 slice_intlv_bit_rm = MOT_SLC_INTLV_BIT; 716 slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1; 717 } else { 718 slice_intlv_bit_rm = slice_selector; 719 slice1 = hash_by_mask(addr, slice_hash_mask); 720 } 721 722 *pmiidx = (u32)slice1 << 1; 723 } 724 725 if (two_channels) { 726 bool channel1; 727 728 mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH : 729 MOT_CHAN_INTLV_BIT_1SLC_2CH; 730 731 if (mot_hit) { 732 chan_intlv_bit_rm = mot_intlv_bit; 733 channel1 = (addr >> mot_intlv_bit) & 1; 734 } else { 735 chan_intlv_bit_rm = chan_selector; 736 channel1 = hash_by_mask(contig_addr, chan_hash_mask); 737 } 738 739 *pmiidx |= (u32)channel1; 740 } 741 } 742 743 /* Remove the chan_selector bit first */ 744 remove_addr_bit(&contig_addr, chan_intlv_bit_rm); 745 /* Remove the slice bit (we remove it second because it must be lower */ 746 remove_addr_bit(&contig_addr, slice_intlv_bit_rm); 747 *pmiaddr = contig_addr; 748 749 return 0; 750 } 751 752 /* Translate PMI address to memory (rank, row, bank, column) */ 753 #define C(n) (0x10 | (n)) /* column */ 754 #define B(n) (0x20 | (n)) /* bank */ 755 #define R(n) (0x40 | (n)) /* row */ 756 #define RS (0x80) /* rank */ 757 758 /* addrdec values */ 759 #define AMAP_1KB 0 760 #define AMAP_2KB 1 761 #define AMAP_4KB 2 762 #define AMAP_RSVD 3 763 764 /* dden values */ 765 #define DEN_4Gb 0 766 #define DEN_8Gb 2 767 768 /* dwid values */ 769 #define X8 0 770 #define X16 1 771 772 static struct dimm_geometry { 773 u8 addrdec; 774 u8 dden; 775 u8 dwid; 776 u8 rowbits, colbits; 777 u16 bits[PMI_ADDRESS_WIDTH]; 778 } dimms[] = { 779 { 780 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16, 781 .rowbits = 15, .colbits = 10, 782 .bits = { 783 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 784 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 785 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 786 0, 0, 0, 0 787 } 788 }, 789 { 790 .addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8, 791 .rowbits = 16, .colbits = 10, 792 .bits = { 793 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 794 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 795 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 796 R(15), 0, 0, 0 797 } 798 }, 799 { 800 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16, 801 .rowbits = 16, .colbits = 10, 802 .bits = { 803 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 804 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 805 R(10), C(7), C(8), C(9), R(11), RS, R(12), R(13), R(14), 806 R(15), 0, 0, 0 807 } 808 }, 809 { 810 .addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8, 811 .rowbits = 16, .colbits = 11, 812 .bits = { 813 C(2), C(3), C(4), C(5), C(6), B(0), B(1), B(2), R(0), 814 R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), R(9), 815 R(10), C(7), C(8), C(9), R(11), RS, C(11), R(12), R(13), 816 R(14), R(15), 0, 0 817 } 818 }, 819 { 820 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16, 821 .rowbits = 15, .colbits = 10, 822 .bits = { 823 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 824 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 825 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 826 0, 0, 0, 0 827 } 828 }, 829 { 830 .addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8, 831 .rowbits = 16, .colbits = 10, 832 .bits = { 833 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 834 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 835 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 836 R(15), 0, 0, 0 837 } 838 }, 839 { 840 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16, 841 .rowbits = 16, .colbits = 10, 842 .bits = { 843 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 844 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 845 R(9), R(10), C(8), C(9), R(11), RS, R(12), R(13), R(14), 846 R(15), 0, 0, 0 847 } 848 }, 849 { 850 .addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8, 851 .rowbits = 16, .colbits = 11, 852 .bits = { 853 C(2), C(3), C(4), C(5), C(6), C(7), B(0), B(1), B(2), 854 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), R(8), 855 R(9), R(10), C(8), C(9), R(11), RS, C(11), R(12), R(13), 856 R(14), R(15), 0, 0 857 } 858 }, 859 { 860 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16, 861 .rowbits = 15, .colbits = 10, 862 .bits = { 863 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 864 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 865 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 866 0, 0, 0, 0 867 } 868 }, 869 { 870 .addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8, 871 .rowbits = 16, .colbits = 10, 872 .bits = { 873 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 874 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 875 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 876 R(15), 0, 0, 0 877 } 878 }, 879 { 880 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16, 881 .rowbits = 16, .colbits = 10, 882 .bits = { 883 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 884 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 885 R(8), R(9), R(10), C(9), R(11), RS, R(12), R(13), R(14), 886 R(15), 0, 0, 0 887 } 888 }, 889 { 890 .addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8, 891 .rowbits = 16, .colbits = 11, 892 .bits = { 893 C(2), C(3), C(4), C(5), C(6), C(7), C(8), B(0), B(1), 894 B(2), R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7), 895 R(8), R(9), R(10), C(9), R(11), RS, C(11), R(12), R(13), 896 R(14), R(15), 0, 0 897 } 898 } 899 }; 900 901 static int bank_hash(u64 pmiaddr, int idx, int shft) 902 { 903 int bhash = 0; 904 905 switch (idx) { 906 case 0: 907 bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1; 908 break; 909 case 1: 910 bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1; 911 bhash ^= ((pmiaddr >> 22) & 1) << 1; 912 break; 913 case 2: 914 bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2; 915 break; 916 } 917 918 return bhash; 919 } 920 921 static int rank_hash(u64 pmiaddr) 922 { 923 return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1; 924 } 925 926 /* Second stage decode. Compute rank, bank, row & column. */ 927 static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, 928 struct dram_addr *daddr, char *msg) 929 { 930 struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx]; 931 struct pnd2_pvt *pvt = mci->pvt_info; 932 int g = pvt->dimm_geom[pmiidx]; 933 struct dimm_geometry *d = &dimms[g]; 934 int column = 0, bank = 0, row = 0, rank = 0; 935 int i, idx, type, skiprs = 0; 936 937 for (i = 0; i < PMI_ADDRESS_WIDTH; i++) { 938 int bit = (pmiaddr >> i) & 1; 939 940 if (i + skiprs >= PMI_ADDRESS_WIDTH) { 941 snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n"); 942 return -EINVAL; 943 } 944 945 type = d->bits[i + skiprs] & ~0xf; 946 idx = d->bits[i + skiprs] & 0xf; 947 948 /* 949 * On single rank DIMMs ignore the rank select bit 950 * and shift remainder of "bits[]" down one place. 951 */ 952 if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) { 953 skiprs = 1; 954 type = d->bits[i + skiprs] & ~0xf; 955 idx = d->bits[i + skiprs] & 0xf; 956 } 957 958 switch (type) { 959 case C(0): 960 column |= (bit << idx); 961 break; 962 case B(0): 963 bank |= (bit << idx); 964 if (cr_drp0->bahen) 965 bank ^= bank_hash(pmiaddr, idx, d->addrdec); 966 break; 967 case R(0): 968 row |= (bit << idx); 969 break; 970 case RS: 971 rank = bit; 972 if (cr_drp0->rsien) 973 rank ^= rank_hash(pmiaddr); 974 break; 975 default: 976 if (bit) { 977 snprintf(msg, PND2_MSG_SIZE, "Bad translation\n"); 978 return -EINVAL; 979 } 980 goto done; 981 } 982 } 983 984 done: 985 daddr->col = column; 986 daddr->bank = bank; 987 daddr->row = row; 988 daddr->rank = rank; 989 daddr->dimm = 0; 990 991 return 0; 992 } 993 994 /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */ 995 #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out)) 996 997 static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx, 998 struct dram_addr *daddr, char *msg) 999 { 1000 /* Rank 0 or 1 */ 1001 daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0); 1002 /* Rank 2 or 3 */ 1003 daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1); 1004 1005 /* 1006 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we 1007 * flip them if DIMM1 is larger than DIMM0. 1008 */ 1009 daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip; 1010 1011 daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0); 1012 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1); 1013 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2); 1014 if (dsch.ddr4en) 1015 daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3); 1016 if (dmap1[pmiidx].bxor) { 1017 if (dsch.ddr4en) { 1018 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0); 1019 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1); 1020 if (dsch.chan_width == 0) 1021 /* 64/72 bit dram channel width */ 1022 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); 1023 else 1024 /* 32/40 bit dram channel width */ 1025 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); 1026 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3); 1027 } else { 1028 daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0); 1029 daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1); 1030 if (dsch.chan_width == 0) 1031 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2); 1032 else 1033 daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2); 1034 } 1035 } 1036 1037 daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0); 1038 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1); 1039 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2); 1040 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3); 1041 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4); 1042 daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5); 1043 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6); 1044 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7); 1045 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8); 1046 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9); 1047 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10); 1048 daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11); 1049 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12); 1050 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13); 1051 if (dmap4[pmiidx].row14 != 31) 1052 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14); 1053 if (dmap4[pmiidx].row15 != 31) 1054 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15); 1055 if (dmap4[pmiidx].row16 != 31) 1056 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16); 1057 if (dmap4[pmiidx].row17 != 31) 1058 daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17); 1059 1060 daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3); 1061 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4); 1062 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5); 1063 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6); 1064 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7); 1065 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8); 1066 daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9); 1067 if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f) 1068 daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11); 1069 1070 return 0; 1071 } 1072 1073 static int check_channel(int ch) 1074 { 1075 if (drp0[ch].dramtype != 0) { 1076 pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch); 1077 return 1; 1078 } else if (drp0[ch].eccen == 0) { 1079 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); 1080 return 1; 1081 } 1082 return 0; 1083 } 1084 1085 static int apl_check_ecc_active(void) 1086 { 1087 int i, ret = 0; 1088 1089 /* Check dramtype and ECC mode for each present DIMM */ 1090 for (i = 0; i < APL_NUM_CHANNELS; i++) 1091 if (chan_mask & BIT(i)) 1092 ret += check_channel(i); 1093 return ret ? -EINVAL : 0; 1094 } 1095 1096 #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3) 1097 1098 static int check_unit(int ch) 1099 { 1100 struct d_cr_drp *d = &drp[ch]; 1101 1102 if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) { 1103 pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch); 1104 return 1; 1105 } 1106 return 0; 1107 } 1108 1109 static int dnv_check_ecc_active(void) 1110 { 1111 int i, ret = 0; 1112 1113 for (i = 0; i < DNV_NUM_CHANNELS; i++) 1114 ret += check_unit(i); 1115 return ret ? -EINVAL : 0; 1116 } 1117 1118 static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr, 1119 struct dram_addr *daddr, char *msg) 1120 { 1121 u64 pmiaddr; 1122 u32 pmiidx; 1123 int ret; 1124 1125 ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg); 1126 if (ret) 1127 return ret; 1128 1129 pmiaddr >>= ops->pmiaddr_shift; 1130 /* pmi channel idx to dimm channel idx */ 1131 pmiidx >>= ops->pmiidx_shift; 1132 daddr->chan = pmiidx; 1133 1134 ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg); 1135 if (ret) 1136 return ret; 1137 1138 edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", 1139 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col); 1140 1141 return 0; 1142 } 1143 1144 static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m, 1145 struct dram_addr *daddr) 1146 { 1147 enum hw_event_mc_err_type tp_event; 1148 char *optype, msg[PND2_MSG_SIZE]; 1149 bool ripv = m->mcgstatus & MCG_STATUS_RIPV; 1150 bool overflow = m->status & MCI_STATUS_OVER; 1151 bool uc_err = m->status & MCI_STATUS_UC; 1152 bool recov = m->status & MCI_STATUS_S; 1153 u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); 1154 u32 mscod = GET_BITFIELD(m->status, 16, 31); 1155 u32 errcode = GET_BITFIELD(m->status, 0, 15); 1156 u32 optypenum = GET_BITFIELD(m->status, 4, 6); 1157 int rc; 1158 1159 tp_event = uc_err ? (ripv ? HW_EVENT_ERR_FATAL : HW_EVENT_ERR_UNCORRECTED) : 1160 HW_EVENT_ERR_CORRECTED; 1161 1162 /* 1163 * According with Table 15-9 of the Intel Architecture spec vol 3A, 1164 * memory errors should fit in this mask: 1165 * 000f 0000 1mmm cccc (binary) 1166 * where: 1167 * f = Correction Report Filtering Bit. If 1, subsequent errors 1168 * won't be shown 1169 * mmm = error type 1170 * cccc = channel 1171 * If the mask doesn't match, report an error to the parsing logic 1172 */ 1173 if (!((errcode & 0xef80) == 0x80)) { 1174 optype = "Can't parse: it is not a mem"; 1175 } else { 1176 switch (optypenum) { 1177 case 0: 1178 optype = "generic undef request error"; 1179 break; 1180 case 1: 1181 optype = "memory read error"; 1182 break; 1183 case 2: 1184 optype = "memory write error"; 1185 break; 1186 case 3: 1187 optype = "addr/cmd error"; 1188 break; 1189 case 4: 1190 optype = "memory scrubbing error"; 1191 break; 1192 default: 1193 optype = "reserved"; 1194 break; 1195 } 1196 } 1197 1198 /* Only decode errors with an valid address (ADDRV) */ 1199 if (!(m->status & MCI_STATUS_ADDRV)) 1200 return; 1201 1202 rc = get_memory_error_data(mci, m->addr, daddr, msg); 1203 if (rc) 1204 goto address_error; 1205 1206 snprintf(msg, sizeof(msg), 1207 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d", 1208 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod, 1209 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col); 1210 1211 edac_dbg(0, "%s\n", msg); 1212 1213 /* Call the helper to output message */ 1214 edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT, 1215 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg); 1216 1217 return; 1218 1219 address_error: 1220 edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, ""); 1221 } 1222 1223 static void apl_get_dimm_config(struct mem_ctl_info *mci) 1224 { 1225 struct pnd2_pvt *pvt = mci->pvt_info; 1226 struct dimm_info *dimm; 1227 struct d_cr_drp0 *d; 1228 u64 capacity; 1229 int i, g; 1230 1231 for (i = 0; i < APL_NUM_CHANNELS; i++) { 1232 if (!(chan_mask & BIT(i))) 1233 continue; 1234 1235 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, 0, 0); 1236 if (!dimm) { 1237 edac_dbg(0, "No allocated DIMM for channel %d\n", i); 1238 continue; 1239 } 1240 1241 d = &drp0[i]; 1242 for (g = 0; g < ARRAY_SIZE(dimms); g++) 1243 if (dimms[g].addrdec == d->addrdec && 1244 dimms[g].dden == d->dden && 1245 dimms[g].dwid == d->dwid) 1246 break; 1247 1248 if (g == ARRAY_SIZE(dimms)) { 1249 edac_dbg(0, "Channel %d: unrecognized DIMM\n", i); 1250 continue; 1251 } 1252 1253 pvt->dimm_geom[i] = g; 1254 capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) * 1255 (1ul << dimms[g].colbits); 1256 edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3)); 1257 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); 1258 dimm->grain = 32; 1259 dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16; 1260 dimm->mtype = MEM_DDR3; 1261 dimm->edac_mode = EDAC_SECDED; 1262 snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2); 1263 } 1264 } 1265 1266 static const int dnv_dtypes[] = { 1267 DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN 1268 }; 1269 1270 static void dnv_get_dimm_config(struct mem_ctl_info *mci) 1271 { 1272 int i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype; 1273 struct dimm_info *dimm; 1274 struct d_cr_drp *d; 1275 u64 capacity; 1276 1277 if (dsch.ddr4en) { 1278 memtype = MEM_DDR4; 1279 banks = 16; 1280 colbits = 10; 1281 } else { 1282 memtype = MEM_DDR3; 1283 banks = 8; 1284 } 1285 1286 for (i = 0; i < DNV_NUM_CHANNELS; i++) { 1287 if (dmap4[i].row14 == 31) 1288 rowbits = 14; 1289 else if (dmap4[i].row15 == 31) 1290 rowbits = 15; 1291 else if (dmap4[i].row16 == 31) 1292 rowbits = 16; 1293 else if (dmap4[i].row17 == 31) 1294 rowbits = 17; 1295 else 1296 rowbits = 18; 1297 1298 if (memtype == MEM_DDR3) { 1299 if (dmap1[i].ca11 != 0x3f) 1300 colbits = 12; 1301 else 1302 colbits = 10; 1303 } 1304 1305 d = &drp[i]; 1306 /* DIMM0 is present if rank0 and/or rank1 is enabled */ 1307 ranks_of_dimm[0] = d->rken0 + d->rken1; 1308 /* DIMM1 is present if rank2 and/or rank3 is enabled */ 1309 ranks_of_dimm[1] = d->rken2 + d->rken3; 1310 1311 for (j = 0; j < DNV_MAX_DIMMS; j++) { 1312 if (!ranks_of_dimm[j]) 1313 continue; 1314 1315 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, i, j, 0); 1316 if (!dimm) { 1317 edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j); 1318 continue; 1319 } 1320 1321 capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits); 1322 edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3)); 1323 dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3)); 1324 dimm->grain = 32; 1325 dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1]; 1326 dimm->mtype = memtype; 1327 dimm->edac_mode = EDAC_SECDED; 1328 snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j); 1329 } 1330 } 1331 } 1332 1333 static int pnd2_register_mci(struct mem_ctl_info **ppmci) 1334 { 1335 struct edac_mc_layer layers[2]; 1336 struct mem_ctl_info *mci; 1337 struct pnd2_pvt *pvt; 1338 int rc; 1339 1340 rc = ops->check_ecc(); 1341 if (rc < 0) 1342 return rc; 1343 1344 /* Allocate a new MC control structure */ 1345 layers[0].type = EDAC_MC_LAYER_CHANNEL; 1346 layers[0].size = ops->channels; 1347 layers[0].is_virt_csrow = false; 1348 layers[1].type = EDAC_MC_LAYER_SLOT; 1349 layers[1].size = ops->dimms_per_channel; 1350 layers[1].is_virt_csrow = true; 1351 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt)); 1352 if (!mci) 1353 return -ENOMEM; 1354 1355 pvt = mci->pvt_info; 1356 memset(pvt, 0, sizeof(*pvt)); 1357 1358 mci->mod_name = "pnd2_edac.c"; 1359 mci->dev_name = ops->name; 1360 mci->ctl_name = "Pondicherry2"; 1361 1362 /* Get dimm basic config and the memory layout */ 1363 ops->get_dimm_config(mci); 1364 1365 if (edac_mc_add_mc(mci)) { 1366 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 1367 edac_mc_free(mci); 1368 return -EINVAL; 1369 } 1370 1371 *ppmci = mci; 1372 1373 return 0; 1374 } 1375 1376 static void pnd2_unregister_mci(struct mem_ctl_info *mci) 1377 { 1378 if (unlikely(!mci || !mci->pvt_info)) { 1379 pnd2_printk(KERN_ERR, "Couldn't find mci handler\n"); 1380 return; 1381 } 1382 1383 /* Remove MC sysfs nodes */ 1384 edac_mc_del_mc(NULL); 1385 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 1386 edac_mc_free(mci); 1387 } 1388 1389 /* 1390 * Callback function registered with core kernel mce code. 1391 * Called once for each logged error. 1392 */ 1393 static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data) 1394 { 1395 struct mce *mce = (struct mce *)data; 1396 struct mem_ctl_info *mci; 1397 struct dram_addr daddr; 1398 char *type; 1399 1400 if (edac_get_report_status() == EDAC_REPORTING_DISABLED) 1401 return NOTIFY_DONE; 1402 1403 mci = pnd2_mci; 1404 if (!mci) 1405 return NOTIFY_DONE; 1406 1407 /* 1408 * Just let mcelog handle it if the error is 1409 * outside the memory controller. A memory error 1410 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. 1411 * bit 12 has an special meaning. 1412 */ 1413 if ((mce->status & 0xefff) >> 7 != 1) 1414 return NOTIFY_DONE; 1415 1416 if (mce->mcgstatus & MCG_STATUS_MCIP) 1417 type = "Exception"; 1418 else 1419 type = "Event"; 1420 1421 pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n"); 1422 pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n", 1423 mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status); 1424 pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc); 1425 pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr); 1426 pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc); 1427 pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", 1428 mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid); 1429 1430 pnd2_mce_output_error(mci, mce, &daddr); 1431 1432 /* Advice mcelog that the error were handled */ 1433 return NOTIFY_STOP; 1434 } 1435 1436 static struct notifier_block pnd2_mce_dec = { 1437 .notifier_call = pnd2_mce_check_error, 1438 }; 1439 1440 #ifdef CONFIG_EDAC_DEBUG 1441 /* 1442 * Write an address to this file to exercise the address decode 1443 * logic in this driver. 1444 */ 1445 static u64 pnd2_fake_addr; 1446 #define PND2_BLOB_SIZE 1024 1447 static char pnd2_result[PND2_BLOB_SIZE]; 1448 static struct dentry *pnd2_test; 1449 static struct debugfs_blob_wrapper pnd2_blob = { 1450 .data = pnd2_result, 1451 .size = 0 1452 }; 1453 1454 static int debugfs_u64_set(void *data, u64 val) 1455 { 1456 struct dram_addr daddr; 1457 struct mce m; 1458 1459 *(u64 *)data = val; 1460 m.mcgstatus = 0; 1461 /* ADDRV + MemRd + Unknown channel */ 1462 m.status = MCI_STATUS_ADDRV + 0x9f; 1463 m.addr = val; 1464 pnd2_mce_output_error(pnd2_mci, &m, &daddr); 1465 snprintf(pnd2_blob.data, PND2_BLOB_SIZE, 1466 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n", 1467 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col); 1468 pnd2_blob.size = strlen(pnd2_blob.data); 1469 1470 return 0; 1471 } 1472 DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n"); 1473 1474 static void setup_pnd2_debug(void) 1475 { 1476 pnd2_test = edac_debugfs_create_dir("pnd2_test"); 1477 edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test, 1478 &pnd2_fake_addr, &fops_u64_wo); 1479 debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob); 1480 } 1481 1482 static void teardown_pnd2_debug(void) 1483 { 1484 debugfs_remove_recursive(pnd2_test); 1485 } 1486 #else 1487 static void setup_pnd2_debug(void) {} 1488 static void teardown_pnd2_debug(void) {} 1489 #endif /* CONFIG_EDAC_DEBUG */ 1490 1491 1492 static int pnd2_probe(void) 1493 { 1494 int rc; 1495 1496 edac_dbg(2, "\n"); 1497 rc = get_registers(); 1498 if (rc) 1499 return rc; 1500 1501 return pnd2_register_mci(&pnd2_mci); 1502 } 1503 1504 static void pnd2_remove(void) 1505 { 1506 edac_dbg(0, "\n"); 1507 pnd2_unregister_mci(pnd2_mci); 1508 } 1509 1510 static struct dunit_ops apl_ops = { 1511 .name = "pnd2/apl", 1512 .type = APL, 1513 .pmiaddr_shift = LOG2_PMI_ADDR_GRANULARITY, 1514 .pmiidx_shift = 0, 1515 .channels = APL_NUM_CHANNELS, 1516 .dimms_per_channel = 1, 1517 .rd_reg = apl_rd_reg, 1518 .get_registers = apl_get_registers, 1519 .check_ecc = apl_check_ecc_active, 1520 .mk_region = apl_mk_region, 1521 .get_dimm_config = apl_get_dimm_config, 1522 .pmi2mem = apl_pmi2mem, 1523 }; 1524 1525 static struct dunit_ops dnv_ops = { 1526 .name = "pnd2/dnv", 1527 .type = DNV, 1528 .pmiaddr_shift = 0, 1529 .pmiidx_shift = 1, 1530 .channels = DNV_NUM_CHANNELS, 1531 .dimms_per_channel = 2, 1532 .rd_reg = dnv_rd_reg, 1533 .get_registers = dnv_get_registers, 1534 .check_ecc = dnv_check_ecc_active, 1535 .mk_region = dnv_mk_region, 1536 .get_dimm_config = dnv_get_dimm_config, 1537 .pmi2mem = dnv_pmi2mem, 1538 }; 1539 1540 static const struct x86_cpu_id pnd2_cpuids[] = { 1541 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_GOLDMONT, 0, (kernel_ulong_t)&apl_ops }, 1542 { X86_VENDOR_INTEL, 6, INTEL_FAM6_ATOM_DENVERTON, 0, (kernel_ulong_t)&dnv_ops }, 1543 { } 1544 }; 1545 MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids); 1546 1547 static int __init pnd2_init(void) 1548 { 1549 const struct x86_cpu_id *id; 1550 int rc; 1551 1552 edac_dbg(2, "\n"); 1553 1554 id = x86_match_cpu(pnd2_cpuids); 1555 if (!id) 1556 return -ENODEV; 1557 1558 ops = (struct dunit_ops *)id->driver_data; 1559 1560 if (ops->type == APL) { 1561 p2sb_bus = pci_find_bus(0, 0); 1562 if (!p2sb_bus) 1563 return -ENODEV; 1564 } 1565 1566 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 1567 opstate_init(); 1568 1569 rc = pnd2_probe(); 1570 if (rc < 0) { 1571 pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc); 1572 return rc; 1573 } 1574 1575 if (!pnd2_mci) 1576 return -ENODEV; 1577 1578 mce_register_decode_chain(&pnd2_mce_dec); 1579 setup_pnd2_debug(); 1580 1581 return 0; 1582 } 1583 1584 static void __exit pnd2_exit(void) 1585 { 1586 edac_dbg(2, "\n"); 1587 teardown_pnd2_debug(); 1588 mce_unregister_decode_chain(&pnd2_mce_dec); 1589 pnd2_remove(); 1590 } 1591 1592 module_init(pnd2_init); 1593 module_exit(pnd2_exit); 1594 1595 module_param(edac_op_state, int, 0444); 1596 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 1597 1598 MODULE_LICENSE("GPL v2"); 1599 MODULE_AUTHOR("Tony Luck"); 1600 MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller"); 1601