xref: /openbmc/linux/drivers/edac/mce_amd.c (revision d003d772)
1 #include <linux/module.h>
2 #include <linux/slab.h>
3 
4 #include <asm/cpu.h>
5 
6 #include "mce_amd.h"
7 
8 static struct amd_decoder_ops *fam_ops;
9 
10 static u8 xec_mask	 = 0xf;
11 
12 static bool report_gart_errors;
13 static void (*decode_dram_ecc)(int node_id, struct mce *m);
14 
15 void amd_report_gart_errors(bool v)
16 {
17 	report_gart_errors = v;
18 }
19 EXPORT_SYMBOL_GPL(amd_report_gart_errors);
20 
21 void amd_register_ecc_decoder(void (*f)(int, struct mce *))
22 {
23 	decode_dram_ecc = f;
24 }
25 EXPORT_SYMBOL_GPL(amd_register_ecc_decoder);
26 
27 void amd_unregister_ecc_decoder(void (*f)(int, struct mce *))
28 {
29 	if (decode_dram_ecc) {
30 		WARN_ON(decode_dram_ecc != f);
31 
32 		decode_dram_ecc = NULL;
33 	}
34 }
35 EXPORT_SYMBOL_GPL(amd_unregister_ecc_decoder);
36 
37 /*
38  * string representation for the different MCA reported error types, see F3x48
39  * or MSR0000_0411.
40  */
41 
42 /* transaction type */
43 static const char * const tt_msgs[] = { "INSN", "DATA", "GEN", "RESV" };
44 
45 /* cache level */
46 static const char * const ll_msgs[] = { "RESV", "L1", "L2", "L3/GEN" };
47 
48 /* memory transaction type */
49 static const char * const rrrr_msgs[] = {
50        "GEN", "RD", "WR", "DRD", "DWR", "IRD", "PRF", "EV", "SNP"
51 };
52 
53 /* participating processor */
54 const char * const pp_msgs[] = { "SRC", "RES", "OBS", "GEN" };
55 EXPORT_SYMBOL_GPL(pp_msgs);
56 
57 /* request timeout */
58 static const char * const to_msgs[] = { "no timeout", "timed out" };
59 
60 /* memory or i/o */
61 static const char * const ii_msgs[] = { "MEM", "RESV", "IO", "GEN" };
62 
63 /* internal error type */
64 static const char * const uu_msgs[] = { "RESV", "RESV", "HWA", "RESV" };
65 
66 static const char * const f15h_mc1_mce_desc[] = {
67 	"UC during a demand linefill from L2",
68 	"Parity error during data load from IC",
69 	"Parity error for IC valid bit",
70 	"Main tag parity error",
71 	"Parity error in prediction queue",
72 	"PFB data/address parity error",
73 	"Parity error in the branch status reg",
74 	"PFB promotion address error",
75 	"Tag error during probe/victimization",
76 	"Parity error for IC probe tag valid bit",
77 	"PFB non-cacheable bit parity error",
78 	"PFB valid bit parity error",			/* xec = 0xd */
79 	"Microcode Patch Buffer",			/* xec = 010 */
80 	"uop queue",
81 	"insn buffer",
82 	"predecode buffer",
83 	"fetch address FIFO",
84 	"dispatch uop queue"
85 };
86 
87 static const char * const f15h_mc2_mce_desc[] = {
88 	"Fill ECC error on data fills",			/* xec = 0x4 */
89 	"Fill parity error on insn fills",
90 	"Prefetcher request FIFO parity error",
91 	"PRQ address parity error",
92 	"PRQ data parity error",
93 	"WCC Tag ECC error",
94 	"WCC Data ECC error",
95 	"WCB Data parity error",
96 	"VB Data ECC or parity error",
97 	"L2 Tag ECC error",				/* xec = 0x10 */
98 	"Hard L2 Tag ECC error",
99 	"Multiple hits on L2 tag",
100 	"XAB parity error",
101 	"PRB address parity error"
102 };
103 
104 static const char * const mc4_mce_desc[] = {
105 	"DRAM ECC error detected on the NB",
106 	"CRC error detected on HT link",
107 	"Link-defined sync error packets detected on HT link",
108 	"HT Master abort",
109 	"HT Target abort",
110 	"Invalid GART PTE entry during GART table walk",
111 	"Unsupported atomic RMW received from an IO link",
112 	"Watchdog timeout due to lack of progress",
113 	"DRAM ECC error detected on the NB",
114 	"SVM DMA Exclusion Vector error",
115 	"HT data error detected on link",
116 	"Protocol error (link, L3, probe filter)",
117 	"NB internal arrays parity error",
118 	"DRAM addr/ctl signals parity error",
119 	"IO link transmission error",
120 	"L3 data cache ECC error",			/* xec = 0x1c */
121 	"L3 cache tag error",
122 	"L3 LRU parity bits error",
123 	"ECC Error in the Probe Filter directory"
124 };
125 
126 static const char * const mc5_mce_desc[] = {
127 	"CPU Watchdog timer expire",
128 	"Wakeup array dest tag",
129 	"AG payload array",
130 	"EX payload array",
131 	"IDRF array",
132 	"Retire dispatch queue",
133 	"Mapper checkpoint array",
134 	"Physical register file EX0 port",
135 	"Physical register file EX1 port",
136 	"Physical register file AG0 port",
137 	"Physical register file AG1 port",
138 	"Flag register file",
139 	"DE error occurred",
140 	"Retire status queue"
141 };
142 
143 static const char * const mc6_mce_desc[] = {
144 	"Hardware Assertion",
145 	"Free List",
146 	"Physical Register File",
147 	"Retire Queue",
148 	"Scheduler table",
149 	"Status Register File",
150 };
151 
152 /* Scalable MCA error strings */
153 static const char * const smca_ls_mce_desc[] = {
154 	"Load queue parity error",
155 	"Store queue parity error",
156 	"Miss address buffer payload parity error",
157 	"Level 1 TLB parity error",
158 	"DC Tag error type 5",
159 	"DC Tag error type 6",
160 	"DC Tag error type 1",
161 	"Internal error type 1",
162 	"Internal error type 2",
163 	"System Read Data Error Thread 0",
164 	"System Read Data Error Thread 1",
165 	"DC Tag error type 2",
166 	"DC Data error type 1 and poison consumption",
167 	"DC Data error type 2",
168 	"DC Data error type 3",
169 	"DC Tag error type 4",
170 	"Level 2 TLB parity error",
171 	"PDC parity error",
172 	"DC Tag error type 3",
173 	"DC Tag error type 5",
174 	"L2 Fill Data error",
175 };
176 
177 static const char * const smca_if_mce_desc[] = {
178 	"Op Cache Microtag Probe Port Parity Error",
179 	"IC Microtag or Full Tag Multi-hit Error",
180 	"IC Full Tag Parity Error",
181 	"IC Data Array Parity Error",
182 	"Decoupling Queue PhysAddr Parity Error",
183 	"L0 ITLB Parity Error",
184 	"L1 ITLB Parity Error",
185 	"L2 ITLB Parity Error",
186 	"BPQ Thread 0 Snoop Parity Error",
187 	"BPQ Thread 1 Snoop Parity Error",
188 	"L1 BTB Multi-Match Error",
189 	"L2 BTB Multi-Match Error",
190 	"L2 Cache Response Poison Error",
191 	"System Read Data Error",
192 };
193 
194 static const char * const smca_l2_mce_desc[] = {
195 	"L2M Tag Multiple-Way-Hit error",
196 	"L2M Tag or State Array ECC Error",
197 	"L2M Data Array ECC Error",
198 	"Hardware Assert Error",
199 };
200 
201 static const char * const smca_de_mce_desc[] = {
202 	"Micro-op cache tag parity error",
203 	"Micro-op cache data parity error",
204 	"Instruction buffer parity error",
205 	"Micro-op queue parity error",
206 	"Instruction dispatch queue parity error",
207 	"Fetch address FIFO parity error",
208 	"Patch RAM data parity error",
209 	"Patch RAM sequencer parity error",
210 	"Micro-op buffer parity error"
211 };
212 
213 static const char * const smca_ex_mce_desc[] = {
214 	"Watchdog Timeout error",
215 	"Physical register file parity error",
216 	"Flag register file parity error",
217 	"Immediate displacement register file parity error",
218 	"Address generator payload parity error",
219 	"EX payload parity error",
220 	"Checkpoint queue parity error",
221 	"Retire dispatch queue parity error",
222 	"Retire status queue parity error",
223 	"Scheduling queue parity error",
224 	"Branch buffer queue parity error",
225 	"Hardware Assertion error",
226 };
227 
228 static const char * const smca_fp_mce_desc[] = {
229 	"Physical register file (PRF) parity error",
230 	"Freelist (FL) parity error",
231 	"Schedule queue parity error",
232 	"NSQ parity error",
233 	"Retire queue (RQ) parity error",
234 	"Status register file (SRF) parity error",
235 	"Hardware assertion",
236 };
237 
238 static const char * const smca_l3_mce_desc[] = {
239 	"Shadow Tag Macro ECC Error",
240 	"Shadow Tag Macro Multi-way-hit Error",
241 	"L3M Tag ECC Error",
242 	"L3M Tag Multi-way-hit Error",
243 	"L3M Data ECC Error",
244 	"SDP Parity Error or SystemReadDataError from XI",
245 	"L3 Victim Queue Parity Error",
246 	"L3 Hardware Assertion",
247 };
248 
249 static const char * const smca_cs_mce_desc[] = {
250 	"Illegal Request",
251 	"Address Violation",
252 	"Security Violation",
253 	"Illegal Response",
254 	"Unexpected Response",
255 	"Request or Probe Parity Error",
256 	"Read Response Parity Error",
257 	"Atomic Request Parity Error",
258 	"Probe Filter ECC Error",
259 };
260 
261 static const char * const smca_cs2_mce_desc[] = {
262 	"Illegal Request",
263 	"Address Violation",
264 	"Security Violation",
265 	"Illegal Response",
266 	"Unexpected Response",
267 	"Request or Probe Parity Error",
268 	"Read Response Parity Error",
269 	"Atomic Request Parity Error",
270 	"SDP read response had no match in the CS queue",
271 	"Probe Filter Protocol Error",
272 	"Probe Filter ECC Error",
273 	"SDP read response had an unexpected RETRY error",
274 	"Counter overflow error",
275 	"Counter underflow error",
276 };
277 
278 static const char * const smca_pie_mce_desc[] = {
279 	"Hardware Assert",
280 	"Register security violation",
281 	"Link Error",
282 	"Poison data consumption",
283 	"A deferred error was detected in the DF"
284 };
285 
286 static const char * const smca_umc_mce_desc[] = {
287 	"DRAM ECC error",
288 	"Data poison error",
289 	"SDP parity error",
290 	"Advanced peripheral bus error",
291 	"Address/Command parity error",
292 	"Write data CRC error",
293 	"DCQ SRAM ECC error",
294 	"AES SRAM ECC error",
295 };
296 
297 static const char * const smca_pb_mce_desc[] = {
298 	"An ECC error in the Parameter Block RAM array",
299 };
300 
301 static const char * const smca_psp_mce_desc[] = {
302 	"An ECC or parity error in a PSP RAM instance",
303 };
304 
305 static const char * const smca_psp2_mce_desc[] = {
306 	"High SRAM ECC or parity error",
307 	"Low SRAM ECC or parity error",
308 	"Instruction Cache Bank 0 ECC or parity error",
309 	"Instruction Cache Bank 1 ECC or parity error",
310 	"Instruction Tag Ram 0 parity error",
311 	"Instruction Tag Ram 1 parity error",
312 	"Data Cache Bank 0 ECC or parity error",
313 	"Data Cache Bank 1 ECC or parity error",
314 	"Data Cache Bank 2 ECC or parity error",
315 	"Data Cache Bank 3 ECC or parity error",
316 	"Data Tag Bank 0 parity error",
317 	"Data Tag Bank 1 parity error",
318 	"Data Tag Bank 2 parity error",
319 	"Data Tag Bank 3 parity error",
320 	"Dirty Data Ram parity error",
321 	"TLB Bank 0 parity error",
322 	"TLB Bank 1 parity error",
323 	"System Hub Read Buffer ECC or parity error",
324 };
325 
326 static const char * const smca_smu_mce_desc[] = {
327 	"An ECC or parity error in an SMU RAM instance",
328 };
329 
330 static const char * const smca_smu2_mce_desc[] = {
331 	"High SRAM ECC or parity error",
332 	"Low SRAM ECC or parity error",
333 	"Data Cache Bank A ECC or parity error",
334 	"Data Cache Bank B ECC or parity error",
335 	"Data Tag Cache Bank A ECC or parity error",
336 	"Data Tag Cache Bank B ECC or parity error",
337 	"Instruction Cache Bank A ECC or parity error",
338 	"Instruction Cache Bank B ECC or parity error",
339 	"Instruction Tag Cache Bank A ECC or parity error",
340 	"Instruction Tag Cache Bank B ECC or parity error",
341 	"System Hub Read Buffer ECC or parity error",
342 };
343 
344 static const char * const smca_mp5_mce_desc[] = {
345 	"High SRAM ECC or parity error",
346 	"Low SRAM ECC or parity error",
347 	"Data Cache Bank A ECC or parity error",
348 	"Data Cache Bank B ECC or parity error",
349 	"Data Tag Cache Bank A ECC or parity error",
350 	"Data Tag Cache Bank B ECC or parity error",
351 	"Instruction Cache Bank A ECC or parity error",
352 	"Instruction Cache Bank B ECC or parity error",
353 	"Instruction Tag Cache Bank A ECC or parity error",
354 	"Instruction Tag Cache Bank B ECC or parity error",
355 };
356 
357 static const char * const smca_nbio_mce_desc[] = {
358 	"ECC or Parity error",
359 	"PCIE error",
360 	"SDP ErrEvent error",
361 	"SDP Egress Poison Error",
362 	"IOHC Internal Poison Error",
363 };
364 
365 static const char * const smca_pcie_mce_desc[] = {
366 	"CCIX PER Message logging",
367 	"CCIX Read Response with Status: Non-Data Error",
368 	"CCIX Write Response with Status: Non-Data Error",
369 	"CCIX Read Response with Status: Data Error",
370 	"CCIX Non-okay write response with data error",
371 };
372 
373 struct smca_mce_desc {
374 	const char * const *descs;
375 	unsigned int num_descs;
376 };
377 
378 static struct smca_mce_desc smca_mce_descs[] = {
379 	[SMCA_LS]	= { smca_ls_mce_desc,	ARRAY_SIZE(smca_ls_mce_desc)	},
380 	[SMCA_IF]	= { smca_if_mce_desc,	ARRAY_SIZE(smca_if_mce_desc)	},
381 	[SMCA_L2_CACHE]	= { smca_l2_mce_desc,	ARRAY_SIZE(smca_l2_mce_desc)	},
382 	[SMCA_DE]	= { smca_de_mce_desc,	ARRAY_SIZE(smca_de_mce_desc)	},
383 	[SMCA_EX]	= { smca_ex_mce_desc,	ARRAY_SIZE(smca_ex_mce_desc)	},
384 	[SMCA_FP]	= { smca_fp_mce_desc,	ARRAY_SIZE(smca_fp_mce_desc)	},
385 	[SMCA_L3_CACHE]	= { smca_l3_mce_desc,	ARRAY_SIZE(smca_l3_mce_desc)	},
386 	[SMCA_CS]	= { smca_cs_mce_desc,	ARRAY_SIZE(smca_cs_mce_desc)	},
387 	[SMCA_CS_V2]	= { smca_cs2_mce_desc,	ARRAY_SIZE(smca_cs2_mce_desc)	},
388 	[SMCA_PIE]	= { smca_pie_mce_desc,	ARRAY_SIZE(smca_pie_mce_desc)	},
389 	[SMCA_UMC]	= { smca_umc_mce_desc,	ARRAY_SIZE(smca_umc_mce_desc)	},
390 	[SMCA_PB]	= { smca_pb_mce_desc,	ARRAY_SIZE(smca_pb_mce_desc)	},
391 	[SMCA_PSP]	= { smca_psp_mce_desc,	ARRAY_SIZE(smca_psp_mce_desc)	},
392 	[SMCA_PSP_V2]	= { smca_psp2_mce_desc,	ARRAY_SIZE(smca_psp2_mce_desc)	},
393 	[SMCA_SMU]	= { smca_smu_mce_desc,	ARRAY_SIZE(smca_smu_mce_desc)	},
394 	[SMCA_SMU_V2]	= { smca_smu2_mce_desc,	ARRAY_SIZE(smca_smu2_mce_desc)	},
395 	[SMCA_MP5]	= { smca_mp5_mce_desc,	ARRAY_SIZE(smca_mp5_mce_desc)	},
396 	[SMCA_NBIO]	= { smca_nbio_mce_desc,	ARRAY_SIZE(smca_nbio_mce_desc)	},
397 	[SMCA_PCIE]	= { smca_pcie_mce_desc,	ARRAY_SIZE(smca_pcie_mce_desc)	},
398 };
399 
400 static bool f12h_mc0_mce(u16 ec, u8 xec)
401 {
402 	bool ret = false;
403 
404 	if (MEM_ERROR(ec)) {
405 		u8 ll = LL(ec);
406 		ret = true;
407 
408 		if (ll == LL_L2)
409 			pr_cont("during L1 linefill from L2.\n");
410 		else if (ll == LL_L1)
411 			pr_cont("Data/Tag %s error.\n", R4_MSG(ec));
412 		else
413 			ret = false;
414 	}
415 	return ret;
416 }
417 
418 static bool f10h_mc0_mce(u16 ec, u8 xec)
419 {
420 	if (R4(ec) == R4_GEN && LL(ec) == LL_L1) {
421 		pr_cont("during data scrub.\n");
422 		return true;
423 	}
424 	return f12h_mc0_mce(ec, xec);
425 }
426 
427 static bool k8_mc0_mce(u16 ec, u8 xec)
428 {
429 	if (BUS_ERROR(ec)) {
430 		pr_cont("during system linefill.\n");
431 		return true;
432 	}
433 
434 	return f10h_mc0_mce(ec, xec);
435 }
436 
437 static bool cat_mc0_mce(u16 ec, u8 xec)
438 {
439 	u8 r4	 = R4(ec);
440 	bool ret = true;
441 
442 	if (MEM_ERROR(ec)) {
443 
444 		if (TT(ec) != TT_DATA || LL(ec) != LL_L1)
445 			return false;
446 
447 		switch (r4) {
448 		case R4_DRD:
449 		case R4_DWR:
450 			pr_cont("Data/Tag parity error due to %s.\n",
451 				(r4 == R4_DRD ? "load/hw prf" : "store"));
452 			break;
453 		case R4_EVICT:
454 			pr_cont("Copyback parity error on a tag miss.\n");
455 			break;
456 		case R4_SNOOP:
457 			pr_cont("Tag parity error during snoop.\n");
458 			break;
459 		default:
460 			ret = false;
461 		}
462 	} else if (BUS_ERROR(ec)) {
463 
464 		if ((II(ec) != II_MEM && II(ec) != II_IO) || LL(ec) != LL_LG)
465 			return false;
466 
467 		pr_cont("System read data error on a ");
468 
469 		switch (r4) {
470 		case R4_RD:
471 			pr_cont("TLB reload.\n");
472 			break;
473 		case R4_DWR:
474 			pr_cont("store.\n");
475 			break;
476 		case R4_DRD:
477 			pr_cont("load.\n");
478 			break;
479 		default:
480 			ret = false;
481 		}
482 	} else {
483 		ret = false;
484 	}
485 
486 	return ret;
487 }
488 
489 static bool f15h_mc0_mce(u16 ec, u8 xec)
490 {
491 	bool ret = true;
492 
493 	if (MEM_ERROR(ec)) {
494 
495 		switch (xec) {
496 		case 0x0:
497 			pr_cont("Data Array access error.\n");
498 			break;
499 
500 		case 0x1:
501 			pr_cont("UC error during a linefill from L2/NB.\n");
502 			break;
503 
504 		case 0x2:
505 		case 0x11:
506 			pr_cont("STQ access error.\n");
507 			break;
508 
509 		case 0x3:
510 			pr_cont("SCB access error.\n");
511 			break;
512 
513 		case 0x10:
514 			pr_cont("Tag error.\n");
515 			break;
516 
517 		case 0x12:
518 			pr_cont("LDQ access error.\n");
519 			break;
520 
521 		default:
522 			ret = false;
523 		}
524 	} else if (BUS_ERROR(ec)) {
525 
526 		if (!xec)
527 			pr_cont("System Read Data Error.\n");
528 		else
529 			pr_cont(" Internal error condition type %d.\n", xec);
530 	} else if (INT_ERROR(ec)) {
531 		if (xec <= 0x1f)
532 			pr_cont("Hardware Assert.\n");
533 		else
534 			ret = false;
535 
536 	} else
537 		ret = false;
538 
539 	return ret;
540 }
541 
542 static void decode_mc0_mce(struct mce *m)
543 {
544 	u16 ec = EC(m->status);
545 	u8 xec = XEC(m->status, xec_mask);
546 
547 	pr_emerg(HW_ERR "MC0 Error: ");
548 
549 	/* TLB error signatures are the same across families */
550 	if (TLB_ERROR(ec)) {
551 		if (TT(ec) == TT_DATA) {
552 			pr_cont("%s TLB %s.\n", LL_MSG(ec),
553 				((xec == 2) ? "locked miss"
554 					    : (xec ? "multimatch" : "parity")));
555 			return;
556 		}
557 	} else if (fam_ops->mc0_mce(ec, xec))
558 		;
559 	else
560 		pr_emerg(HW_ERR "Corrupted MC0 MCE info?\n");
561 }
562 
563 static bool k8_mc1_mce(u16 ec, u8 xec)
564 {
565 	u8 ll	 = LL(ec);
566 	bool ret = true;
567 
568 	if (!MEM_ERROR(ec))
569 		return false;
570 
571 	if (ll == 0x2)
572 		pr_cont("during a linefill from L2.\n");
573 	else if (ll == 0x1) {
574 		switch (R4(ec)) {
575 		case R4_IRD:
576 			pr_cont("Parity error during data load.\n");
577 			break;
578 
579 		case R4_EVICT:
580 			pr_cont("Copyback Parity/Victim error.\n");
581 			break;
582 
583 		case R4_SNOOP:
584 			pr_cont("Tag Snoop error.\n");
585 			break;
586 
587 		default:
588 			ret = false;
589 			break;
590 		}
591 	} else
592 		ret = false;
593 
594 	return ret;
595 }
596 
597 static bool cat_mc1_mce(u16 ec, u8 xec)
598 {
599 	u8 r4    = R4(ec);
600 	bool ret = true;
601 
602 	if (!MEM_ERROR(ec))
603 		return false;
604 
605 	if (TT(ec) != TT_INSTR)
606 		return false;
607 
608 	if (r4 == R4_IRD)
609 		pr_cont("Data/tag array parity error for a tag hit.\n");
610 	else if (r4 == R4_SNOOP)
611 		pr_cont("Tag error during snoop/victimization.\n");
612 	else if (xec == 0x0)
613 		pr_cont("Tag parity error from victim castout.\n");
614 	else if (xec == 0x2)
615 		pr_cont("Microcode patch RAM parity error.\n");
616 	else
617 		ret = false;
618 
619 	return ret;
620 }
621 
622 static bool f15h_mc1_mce(u16 ec, u8 xec)
623 {
624 	bool ret = true;
625 
626 	if (!MEM_ERROR(ec))
627 		return false;
628 
629 	switch (xec) {
630 	case 0x0 ... 0xa:
631 		pr_cont("%s.\n", f15h_mc1_mce_desc[xec]);
632 		break;
633 
634 	case 0xd:
635 		pr_cont("%s.\n", f15h_mc1_mce_desc[xec-2]);
636 		break;
637 
638 	case 0x10:
639 		pr_cont("%s.\n", f15h_mc1_mce_desc[xec-4]);
640 		break;
641 
642 	case 0x11 ... 0x15:
643 		pr_cont("Decoder %s parity error.\n", f15h_mc1_mce_desc[xec-4]);
644 		break;
645 
646 	default:
647 		ret = false;
648 	}
649 	return ret;
650 }
651 
652 static void decode_mc1_mce(struct mce *m)
653 {
654 	u16 ec = EC(m->status);
655 	u8 xec = XEC(m->status, xec_mask);
656 
657 	pr_emerg(HW_ERR "MC1 Error: ");
658 
659 	if (TLB_ERROR(ec))
660 		pr_cont("%s TLB %s.\n", LL_MSG(ec),
661 			(xec ? "multimatch" : "parity error"));
662 	else if (BUS_ERROR(ec)) {
663 		bool k8 = (boot_cpu_data.x86 == 0xf && (m->status & BIT_64(58)));
664 
665 		pr_cont("during %s.\n", (k8 ? "system linefill" : "NB data read"));
666 	} else if (INT_ERROR(ec)) {
667 		if (xec <= 0x3f)
668 			pr_cont("Hardware Assert.\n");
669 		else
670 			goto wrong_mc1_mce;
671 	} else if (fam_ops->mc1_mce(ec, xec))
672 		;
673 	else
674 		goto wrong_mc1_mce;
675 
676 	return;
677 
678 wrong_mc1_mce:
679 	pr_emerg(HW_ERR "Corrupted MC1 MCE info?\n");
680 }
681 
682 static bool k8_mc2_mce(u16 ec, u8 xec)
683 {
684 	bool ret = true;
685 
686 	if (xec == 0x1)
687 		pr_cont(" in the write data buffers.\n");
688 	else if (xec == 0x3)
689 		pr_cont(" in the victim data buffers.\n");
690 	else if (xec == 0x2 && MEM_ERROR(ec))
691 		pr_cont(": %s error in the L2 cache tags.\n", R4_MSG(ec));
692 	else if (xec == 0x0) {
693 		if (TLB_ERROR(ec))
694 			pr_cont("%s error in a Page Descriptor Cache or Guest TLB.\n",
695 				TT_MSG(ec));
696 		else if (BUS_ERROR(ec))
697 			pr_cont(": %s/ECC error in data read from NB: %s.\n",
698 				R4_MSG(ec), PP_MSG(ec));
699 		else if (MEM_ERROR(ec)) {
700 			u8 r4 = R4(ec);
701 
702 			if (r4 >= 0x7)
703 				pr_cont(": %s error during data copyback.\n",
704 					R4_MSG(ec));
705 			else if (r4 <= 0x1)
706 				pr_cont(": %s parity/ECC error during data "
707 					"access from L2.\n", R4_MSG(ec));
708 			else
709 				ret = false;
710 		} else
711 			ret = false;
712 	} else
713 		ret = false;
714 
715 	return ret;
716 }
717 
718 static bool f15h_mc2_mce(u16 ec, u8 xec)
719 {
720 	bool ret = true;
721 
722 	if (TLB_ERROR(ec)) {
723 		if (xec == 0x0)
724 			pr_cont("Data parity TLB read error.\n");
725 		else if (xec == 0x1)
726 			pr_cont("Poison data provided for TLB fill.\n");
727 		else
728 			ret = false;
729 	} else if (BUS_ERROR(ec)) {
730 		if (xec > 2)
731 			ret = false;
732 
733 		pr_cont("Error during attempted NB data read.\n");
734 	} else if (MEM_ERROR(ec)) {
735 		switch (xec) {
736 		case 0x4 ... 0xc:
737 			pr_cont("%s.\n", f15h_mc2_mce_desc[xec - 0x4]);
738 			break;
739 
740 		case 0x10 ... 0x14:
741 			pr_cont("%s.\n", f15h_mc2_mce_desc[xec - 0x7]);
742 			break;
743 
744 		default:
745 			ret = false;
746 		}
747 	} else if (INT_ERROR(ec)) {
748 		if (xec <= 0x3f)
749 			pr_cont("Hardware Assert.\n");
750 		else
751 			ret = false;
752 	}
753 
754 	return ret;
755 }
756 
757 static bool f16h_mc2_mce(u16 ec, u8 xec)
758 {
759 	u8 r4 = R4(ec);
760 
761 	if (!MEM_ERROR(ec))
762 		return false;
763 
764 	switch (xec) {
765 	case 0x04 ... 0x05:
766 		pr_cont("%cBUFF parity error.\n", (r4 == R4_RD) ? 'I' : 'O');
767 		break;
768 
769 	case 0x09 ... 0x0b:
770 	case 0x0d ... 0x0f:
771 		pr_cont("ECC error in L2 tag (%s).\n",
772 			((r4 == R4_GEN)   ? "BankReq" :
773 			((r4 == R4_SNOOP) ? "Prb"     : "Fill")));
774 		break;
775 
776 	case 0x10 ... 0x19:
777 	case 0x1b:
778 		pr_cont("ECC error in L2 data array (%s).\n",
779 			(((r4 == R4_RD) && !(xec & 0x3)) ? "Hit"  :
780 			((r4 == R4_GEN)   ? "Attr" :
781 			((r4 == R4_EVICT) ? "Vict" : "Fill"))));
782 		break;
783 
784 	case 0x1c ... 0x1d:
785 	case 0x1f:
786 		pr_cont("Parity error in L2 attribute bits (%s).\n",
787 			((r4 == R4_RD)  ? "Hit"  :
788 			((r4 == R4_GEN) ? "Attr" : "Fill")));
789 		break;
790 
791 	default:
792 		return false;
793 	}
794 
795 	return true;
796 }
797 
798 static void decode_mc2_mce(struct mce *m)
799 {
800 	u16 ec = EC(m->status);
801 	u8 xec = XEC(m->status, xec_mask);
802 
803 	pr_emerg(HW_ERR "MC2 Error: ");
804 
805 	if (!fam_ops->mc2_mce(ec, xec))
806 		pr_cont(HW_ERR "Corrupted MC2 MCE info?\n");
807 }
808 
809 static void decode_mc3_mce(struct mce *m)
810 {
811 	u16 ec = EC(m->status);
812 	u8 xec = XEC(m->status, xec_mask);
813 
814 	if (boot_cpu_data.x86 >= 0x14) {
815 		pr_emerg("You shouldn't be seeing MC3 MCE on this cpu family,"
816 			 " please report on LKML.\n");
817 		return;
818 	}
819 
820 	pr_emerg(HW_ERR "MC3 Error");
821 
822 	if (xec == 0x0) {
823 		u8 r4 = R4(ec);
824 
825 		if (!BUS_ERROR(ec) || (r4 != R4_DRD && r4 != R4_DWR))
826 			goto wrong_mc3_mce;
827 
828 		pr_cont(" during %s.\n", R4_MSG(ec));
829 	} else
830 		goto wrong_mc3_mce;
831 
832 	return;
833 
834  wrong_mc3_mce:
835 	pr_emerg(HW_ERR "Corrupted MC3 MCE info?\n");
836 }
837 
838 static void decode_mc4_mce(struct mce *m)
839 {
840 	unsigned int fam = x86_family(m->cpuid);
841 	int node_id = amd_get_nb_id(m->extcpu);
842 	u16 ec = EC(m->status);
843 	u8 xec = XEC(m->status, 0x1f);
844 	u8 offset = 0;
845 
846 	pr_emerg(HW_ERR "MC4 Error (node %d): ", node_id);
847 
848 	switch (xec) {
849 	case 0x0 ... 0xe:
850 
851 		/* special handling for DRAM ECCs */
852 		if (xec == 0x0 || xec == 0x8) {
853 			/* no ECCs on F11h */
854 			if (fam == 0x11)
855 				goto wrong_mc4_mce;
856 
857 			pr_cont("%s.\n", mc4_mce_desc[xec]);
858 
859 			if (decode_dram_ecc)
860 				decode_dram_ecc(node_id, m);
861 			return;
862 		}
863 		break;
864 
865 	case 0xf:
866 		if (TLB_ERROR(ec))
867 			pr_cont("GART Table Walk data error.\n");
868 		else if (BUS_ERROR(ec))
869 			pr_cont("DMA Exclusion Vector Table Walk error.\n");
870 		else
871 			goto wrong_mc4_mce;
872 		return;
873 
874 	case 0x19:
875 		if (fam == 0x15 || fam == 0x16)
876 			pr_cont("Compute Unit Data Error.\n");
877 		else
878 			goto wrong_mc4_mce;
879 		return;
880 
881 	case 0x1c ... 0x1f:
882 		offset = 13;
883 		break;
884 
885 	default:
886 		goto wrong_mc4_mce;
887 	}
888 
889 	pr_cont("%s.\n", mc4_mce_desc[xec - offset]);
890 	return;
891 
892  wrong_mc4_mce:
893 	pr_emerg(HW_ERR "Corrupted MC4 MCE info?\n");
894 }
895 
896 static void decode_mc5_mce(struct mce *m)
897 {
898 	unsigned int fam = x86_family(m->cpuid);
899 	u16 ec = EC(m->status);
900 	u8 xec = XEC(m->status, xec_mask);
901 
902 	if (fam == 0xf || fam == 0x11)
903 		goto wrong_mc5_mce;
904 
905 	pr_emerg(HW_ERR "MC5 Error: ");
906 
907 	if (INT_ERROR(ec)) {
908 		if (xec <= 0x1f) {
909 			pr_cont("Hardware Assert.\n");
910 			return;
911 		} else
912 			goto wrong_mc5_mce;
913 	}
914 
915 	if (xec == 0x0 || xec == 0xc)
916 		pr_cont("%s.\n", mc5_mce_desc[xec]);
917 	else if (xec <= 0xd)
918 		pr_cont("%s parity error.\n", mc5_mce_desc[xec]);
919 	else
920 		goto wrong_mc5_mce;
921 
922 	return;
923 
924  wrong_mc5_mce:
925 	pr_emerg(HW_ERR "Corrupted MC5 MCE info?\n");
926 }
927 
928 static void decode_mc6_mce(struct mce *m)
929 {
930 	u8 xec = XEC(m->status, xec_mask);
931 
932 	pr_emerg(HW_ERR "MC6 Error: ");
933 
934 	if (xec > 0x5)
935 		goto wrong_mc6_mce;
936 
937 	pr_cont("%s parity error.\n", mc6_mce_desc[xec]);
938 	return;
939 
940  wrong_mc6_mce:
941 	pr_emerg(HW_ERR "Corrupted MC6 MCE info?\n");
942 }
943 
944 /* Decode errors according to Scalable MCA specification */
945 static void decode_smca_error(struct mce *m)
946 {
947 	struct smca_hwid *hwid;
948 	enum smca_bank_types bank_type;
949 	const char *ip_name;
950 	u8 xec = XEC(m->status, xec_mask);
951 
952 	if (m->bank >= ARRAY_SIZE(smca_banks))
953 		return;
954 
955 	hwid = smca_banks[m->bank].hwid;
956 	if (!hwid)
957 		return;
958 
959 	bank_type = hwid->bank_type;
960 
961 	if (bank_type == SMCA_RESERVED) {
962 		pr_emerg(HW_ERR "Bank %d is reserved.\n", m->bank);
963 		return;
964 	}
965 
966 	ip_name = smca_get_long_name(bank_type);
967 
968 	pr_emerg(HW_ERR "%s Ext. Error Code: %d", ip_name, xec);
969 
970 	/* Only print the decode of valid error codes */
971 	if (xec < smca_mce_descs[bank_type].num_descs &&
972 			(hwid->xec_bitmap & BIT_ULL(xec))) {
973 		pr_cont(", %s.\n", smca_mce_descs[bank_type].descs[xec]);
974 	}
975 
976 	if (bank_type == SMCA_UMC && xec == 0 && decode_dram_ecc)
977 		decode_dram_ecc(cpu_to_node(m->extcpu), m);
978 }
979 
980 static inline void amd_decode_err_code(u16 ec)
981 {
982 	if (INT_ERROR(ec)) {
983 		pr_emerg(HW_ERR "internal: %s\n", UU_MSG(ec));
984 		return;
985 	}
986 
987 	pr_emerg(HW_ERR "cache level: %s", LL_MSG(ec));
988 
989 	if (BUS_ERROR(ec))
990 		pr_cont(", mem/io: %s", II_MSG(ec));
991 	else
992 		pr_cont(", tx: %s", TT_MSG(ec));
993 
994 	if (MEM_ERROR(ec) || BUS_ERROR(ec)) {
995 		pr_cont(", mem-tx: %s", R4_MSG(ec));
996 
997 		if (BUS_ERROR(ec))
998 			pr_cont(", part-proc: %s (%s)", PP_MSG(ec), TO_MSG(ec));
999 	}
1000 
1001 	pr_cont("\n");
1002 }
1003 
1004 /*
1005  * Filter out unwanted MCE signatures here.
1006  */
1007 static bool amd_filter_mce(struct mce *m)
1008 {
1009 	/*
1010 	 * NB GART TLB error reporting is disabled by default.
1011 	 */
1012 	if (m->bank == 4 && XEC(m->status, 0x1f) == 0x5 && !report_gart_errors)
1013 		return true;
1014 
1015 	return false;
1016 }
1017 
1018 static const char *decode_error_status(struct mce *m)
1019 {
1020 	if (m->status & MCI_STATUS_UC) {
1021 		if (m->status & MCI_STATUS_PCC)
1022 			return "System Fatal error.";
1023 		if (m->mcgstatus & MCG_STATUS_RIPV)
1024 			return "Uncorrected, software restartable error.";
1025 		return "Uncorrected, software containable error.";
1026 	}
1027 
1028 	if (m->status & MCI_STATUS_DEFERRED)
1029 		return "Deferred error, no action required.";
1030 
1031 	return "Corrected error, no action required.";
1032 }
1033 
1034 static int
1035 amd_decode_mce(struct notifier_block *nb, unsigned long val, void *data)
1036 {
1037 	struct mce *m = (struct mce *)data;
1038 	unsigned int fam = x86_family(m->cpuid);
1039 	int ecc;
1040 
1041 	if (amd_filter_mce(m))
1042 		return NOTIFY_STOP;
1043 
1044 	pr_emerg(HW_ERR "%s\n", decode_error_status(m));
1045 
1046 	pr_emerg(HW_ERR "CPU:%d (%x:%x:%x) MC%d_STATUS[%s|%s|%s|%s|%s",
1047 		m->extcpu,
1048 		fam, x86_model(m->cpuid), x86_stepping(m->cpuid),
1049 		m->bank,
1050 		((m->status & MCI_STATUS_OVER)	? "Over"  : "-"),
1051 		((m->status & MCI_STATUS_UC)	? "UE"	  :
1052 		 (m->status & MCI_STATUS_DEFERRED) ? "-"  : "CE"),
1053 		((m->status & MCI_STATUS_MISCV)	? "MiscV" : "-"),
1054 		((m->status & MCI_STATUS_ADDRV)	? "AddrV" : "-"),
1055 		((m->status & MCI_STATUS_PCC)	? "PCC"	  : "-"));
1056 
1057 	if (boot_cpu_has(X86_FEATURE_SMCA)) {
1058 		u32 low, high;
1059 		u32 addr = MSR_AMD64_SMCA_MCx_CONFIG(m->bank);
1060 
1061 		if (!rdmsr_safe(addr, &low, &high) &&
1062 		    (low & MCI_CONFIG_MCAX))
1063 			pr_cont("|%s", ((m->status & MCI_STATUS_TCC) ? "TCC" : "-"));
1064 
1065 		pr_cont("|%s", ((m->status & MCI_STATUS_SYNDV) ? "SyndV" : "-"));
1066 	}
1067 
1068 	/* do the two bits[14:13] together */
1069 	ecc = (m->status >> 45) & 0x3;
1070 	if (ecc)
1071 		pr_cont("|%sECC", ((ecc == 2) ? "C" : "U"));
1072 
1073 	if (fam >= 0x15) {
1074 		pr_cont("|%s", (m->status & MCI_STATUS_DEFERRED ? "Deferred" : "-"));
1075 
1076 		/* F15h, bank4, bit 43 is part of McaStatSubCache. */
1077 		if (fam != 0x15 || m->bank != 4)
1078 			pr_cont("|%s", (m->status & MCI_STATUS_POISON ? "Poison" : "-"));
1079 	}
1080 
1081 	if (fam >= 0x17)
1082 		pr_cont("|%s", (m->status & MCI_STATUS_SCRUB ? "Scrub" : "-"));
1083 
1084 	pr_cont("]: 0x%016llx\n", m->status);
1085 
1086 	if (m->status & MCI_STATUS_ADDRV)
1087 		pr_emerg(HW_ERR "Error Addr: 0x%016llx\n", m->addr);
1088 
1089 	if (boot_cpu_has(X86_FEATURE_SMCA)) {
1090 		pr_emerg(HW_ERR "IPID: 0x%016llx", m->ipid);
1091 
1092 		if (m->status & MCI_STATUS_SYNDV)
1093 			pr_cont(", Syndrome: 0x%016llx", m->synd);
1094 
1095 		pr_cont("\n");
1096 
1097 		decode_smca_error(m);
1098 		goto err_code;
1099 	}
1100 
1101 	if (m->tsc)
1102 		pr_emerg(HW_ERR "TSC: %llu\n", m->tsc);
1103 
1104 	if (!fam_ops)
1105 		goto err_code;
1106 
1107 	switch (m->bank) {
1108 	case 0:
1109 		decode_mc0_mce(m);
1110 		break;
1111 
1112 	case 1:
1113 		decode_mc1_mce(m);
1114 		break;
1115 
1116 	case 2:
1117 		decode_mc2_mce(m);
1118 		break;
1119 
1120 	case 3:
1121 		decode_mc3_mce(m);
1122 		break;
1123 
1124 	case 4:
1125 		decode_mc4_mce(m);
1126 		break;
1127 
1128 	case 5:
1129 		decode_mc5_mce(m);
1130 		break;
1131 
1132 	case 6:
1133 		decode_mc6_mce(m);
1134 		break;
1135 
1136 	default:
1137 		break;
1138 	}
1139 
1140  err_code:
1141 	amd_decode_err_code(m->status & 0xffff);
1142 
1143 	return NOTIFY_STOP;
1144 }
1145 
1146 static struct notifier_block amd_mce_dec_nb = {
1147 	.notifier_call	= amd_decode_mce,
1148 	.priority	= MCE_PRIO_EDAC,
1149 };
1150 
1151 static int __init mce_amd_init(void)
1152 {
1153 	struct cpuinfo_x86 *c = &boot_cpu_data;
1154 
1155 	if (c->x86_vendor != X86_VENDOR_AMD &&
1156 	    c->x86_vendor != X86_VENDOR_HYGON)
1157 		return -ENODEV;
1158 
1159 	fam_ops = kzalloc(sizeof(struct amd_decoder_ops), GFP_KERNEL);
1160 	if (!fam_ops)
1161 		return -ENOMEM;
1162 
1163 	switch (c->x86) {
1164 	case 0xf:
1165 		fam_ops->mc0_mce = k8_mc0_mce;
1166 		fam_ops->mc1_mce = k8_mc1_mce;
1167 		fam_ops->mc2_mce = k8_mc2_mce;
1168 		break;
1169 
1170 	case 0x10:
1171 		fam_ops->mc0_mce = f10h_mc0_mce;
1172 		fam_ops->mc1_mce = k8_mc1_mce;
1173 		fam_ops->mc2_mce = k8_mc2_mce;
1174 		break;
1175 
1176 	case 0x11:
1177 		fam_ops->mc0_mce = k8_mc0_mce;
1178 		fam_ops->mc1_mce = k8_mc1_mce;
1179 		fam_ops->mc2_mce = k8_mc2_mce;
1180 		break;
1181 
1182 	case 0x12:
1183 		fam_ops->mc0_mce = f12h_mc0_mce;
1184 		fam_ops->mc1_mce = k8_mc1_mce;
1185 		fam_ops->mc2_mce = k8_mc2_mce;
1186 		break;
1187 
1188 	case 0x14:
1189 		fam_ops->mc0_mce = cat_mc0_mce;
1190 		fam_ops->mc1_mce = cat_mc1_mce;
1191 		fam_ops->mc2_mce = k8_mc2_mce;
1192 		break;
1193 
1194 	case 0x15:
1195 		xec_mask = c->x86_model == 0x60 ? 0x3f : 0x1f;
1196 
1197 		fam_ops->mc0_mce = f15h_mc0_mce;
1198 		fam_ops->mc1_mce = f15h_mc1_mce;
1199 		fam_ops->mc2_mce = f15h_mc2_mce;
1200 		break;
1201 
1202 	case 0x16:
1203 		xec_mask = 0x1f;
1204 		fam_ops->mc0_mce = cat_mc0_mce;
1205 		fam_ops->mc1_mce = cat_mc1_mce;
1206 		fam_ops->mc2_mce = f16h_mc2_mce;
1207 		break;
1208 
1209 	case 0x17:
1210 	case 0x18:
1211 		xec_mask = 0x3f;
1212 		if (!boot_cpu_has(X86_FEATURE_SMCA)) {
1213 			printk(KERN_WARNING "Decoding supported only on Scalable MCA processors.\n");
1214 			goto err_out;
1215 		}
1216 		break;
1217 
1218 	default:
1219 		printk(KERN_WARNING "Huh? What family is it: 0x%x?!\n", c->x86);
1220 		goto err_out;
1221 	}
1222 
1223 	pr_info("MCE: In-kernel MCE decoding enabled.\n");
1224 
1225 	mce_register_decode_chain(&amd_mce_dec_nb);
1226 
1227 	return 0;
1228 
1229 err_out:
1230 	kfree(fam_ops);
1231 	fam_ops = NULL;
1232 	return -EINVAL;
1233 }
1234 early_initcall(mce_amd_init);
1235 
1236 #ifdef MODULE
1237 static void __exit mce_amd_exit(void)
1238 {
1239 	mce_unregister_decode_chain(&amd_mce_dec_nb);
1240 	kfree(fam_ops);
1241 }
1242 
1243 MODULE_DESCRIPTION("AMD MCE decoder");
1244 MODULE_ALIAS("edac-mce-amd");
1245 MODULE_LICENSE("GPL");
1246 module_exit(mce_amd_exit);
1247 #endif
1248