xref: /openbmc/linux/drivers/edac/mce_amd.c (revision 0ad53fe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/module.h>
3 #include <linux/slab.h>
4 
5 #include <asm/cpu.h>
6 
7 #include "mce_amd.h"
8 
9 static struct amd_decoder_ops fam_ops;
10 
11 static u8 xec_mask	 = 0xf;
12 
13 static void (*decode_dram_ecc)(int node_id, struct mce *m);
14 
15 void amd_register_ecc_decoder(void (*f)(int, struct mce *))
16 {
17 	decode_dram_ecc = f;
18 }
19 EXPORT_SYMBOL_GPL(amd_register_ecc_decoder);
20 
21 void amd_unregister_ecc_decoder(void (*f)(int, struct mce *))
22 {
23 	if (decode_dram_ecc) {
24 		WARN_ON(decode_dram_ecc != f);
25 
26 		decode_dram_ecc = NULL;
27 	}
28 }
29 EXPORT_SYMBOL_GPL(amd_unregister_ecc_decoder);
30 
31 /*
32  * string representation for the different MCA reported error types, see F3x48
33  * or MSR0000_0411.
34  */
35 
36 /* transaction type */
37 static const char * const tt_msgs[] = { "INSN", "DATA", "GEN", "RESV" };
38 
39 /* cache level */
40 static const char * const ll_msgs[] = { "RESV", "L1", "L2", "L3/GEN" };
41 
42 /* memory transaction type */
43 static const char * const rrrr_msgs[] = {
44        "GEN", "RD", "WR", "DRD", "DWR", "IRD", "PRF", "EV", "SNP"
45 };
46 
47 /* participating processor */
48 const char * const pp_msgs[] = { "SRC", "RES", "OBS", "GEN" };
49 EXPORT_SYMBOL_GPL(pp_msgs);
50 
51 /* request timeout */
52 static const char * const to_msgs[] = { "no timeout", "timed out" };
53 
54 /* memory or i/o */
55 static const char * const ii_msgs[] = { "MEM", "RESV", "IO", "GEN" };
56 
57 /* internal error type */
58 static const char * const uu_msgs[] = { "RESV", "RESV", "HWA", "RESV" };
59 
60 static const char * const f15h_mc1_mce_desc[] = {
61 	"UC during a demand linefill from L2",
62 	"Parity error during data load from IC",
63 	"Parity error for IC valid bit",
64 	"Main tag parity error",
65 	"Parity error in prediction queue",
66 	"PFB data/address parity error",
67 	"Parity error in the branch status reg",
68 	"PFB promotion address error",
69 	"Tag error during probe/victimization",
70 	"Parity error for IC probe tag valid bit",
71 	"PFB non-cacheable bit parity error",
72 	"PFB valid bit parity error",			/* xec = 0xd */
73 	"Microcode Patch Buffer",			/* xec = 010 */
74 	"uop queue",
75 	"insn buffer",
76 	"predecode buffer",
77 	"fetch address FIFO",
78 	"dispatch uop queue"
79 };
80 
81 static const char * const f15h_mc2_mce_desc[] = {
82 	"Fill ECC error on data fills",			/* xec = 0x4 */
83 	"Fill parity error on insn fills",
84 	"Prefetcher request FIFO parity error",
85 	"PRQ address parity error",
86 	"PRQ data parity error",
87 	"WCC Tag ECC error",
88 	"WCC Data ECC error",
89 	"WCB Data parity error",
90 	"VB Data ECC or parity error",
91 	"L2 Tag ECC error",				/* xec = 0x10 */
92 	"Hard L2 Tag ECC error",
93 	"Multiple hits on L2 tag",
94 	"XAB parity error",
95 	"PRB address parity error"
96 };
97 
98 static const char * const mc4_mce_desc[] = {
99 	"DRAM ECC error detected on the NB",
100 	"CRC error detected on HT link",
101 	"Link-defined sync error packets detected on HT link",
102 	"HT Master abort",
103 	"HT Target abort",
104 	"Invalid GART PTE entry during GART table walk",
105 	"Unsupported atomic RMW received from an IO link",
106 	"Watchdog timeout due to lack of progress",
107 	"DRAM ECC error detected on the NB",
108 	"SVM DMA Exclusion Vector error",
109 	"HT data error detected on link",
110 	"Protocol error (link, L3, probe filter)",
111 	"NB internal arrays parity error",
112 	"DRAM addr/ctl signals parity error",
113 	"IO link transmission error",
114 	"L3 data cache ECC error",			/* xec = 0x1c */
115 	"L3 cache tag error",
116 	"L3 LRU parity bits error",
117 	"ECC Error in the Probe Filter directory"
118 };
119 
120 static const char * const mc5_mce_desc[] = {
121 	"CPU Watchdog timer expire",
122 	"Wakeup array dest tag",
123 	"AG payload array",
124 	"EX payload array",
125 	"IDRF array",
126 	"Retire dispatch queue",
127 	"Mapper checkpoint array",
128 	"Physical register file EX0 port",
129 	"Physical register file EX1 port",
130 	"Physical register file AG0 port",
131 	"Physical register file AG1 port",
132 	"Flag register file",
133 	"DE error occurred",
134 	"Retire status queue"
135 };
136 
137 static const char * const mc6_mce_desc[] = {
138 	"Hardware Assertion",
139 	"Free List",
140 	"Physical Register File",
141 	"Retire Queue",
142 	"Scheduler table",
143 	"Status Register File",
144 };
145 
146 /* Scalable MCA error strings */
147 static const char * const smca_ls_mce_desc[] = {
148 	"Load queue parity error",
149 	"Store queue parity error",
150 	"Miss address buffer payload parity error",
151 	"Level 1 TLB parity error",
152 	"DC Tag error type 5",
153 	"DC Tag error type 6",
154 	"DC Tag error type 1",
155 	"Internal error type 1",
156 	"Internal error type 2",
157 	"System Read Data Error Thread 0",
158 	"System Read Data Error Thread 1",
159 	"DC Tag error type 2",
160 	"DC Data error type 1 and poison consumption",
161 	"DC Data error type 2",
162 	"DC Data error type 3",
163 	"DC Tag error type 4",
164 	"Level 2 TLB parity error",
165 	"PDC parity error",
166 	"DC Tag error type 3",
167 	"DC Tag error type 5",
168 	"L2 Fill Data error",
169 };
170 
171 static const char * const smca_ls2_mce_desc[] = {
172 	"An ECC error was detected on a data cache read by a probe or victimization",
173 	"An ECC error or L2 poison was detected on a data cache read by a load",
174 	"An ECC error was detected on a data cache read-modify-write by a store",
175 	"An ECC error or poison bit mismatch was detected on a tag read by a probe or victimization",
176 	"An ECC error or poison bit mismatch was detected on a tag read by a load",
177 	"An ECC error or poison bit mismatch was detected on a tag read by a store",
178 	"An ECC error was detected on an EMEM read by a load",
179 	"An ECC error was detected on an EMEM read-modify-write by a store",
180 	"A parity error was detected in an L1 TLB entry by any access",
181 	"A parity error was detected in an L2 TLB entry by any access",
182 	"A parity error was detected in a PWC entry by any access",
183 	"A parity error was detected in an STQ entry by any access",
184 	"A parity error was detected in an LDQ entry by any access",
185 	"A parity error was detected in a MAB entry by any access",
186 	"A parity error was detected in an SCB entry state field by any access",
187 	"A parity error was detected in an SCB entry address field by any access",
188 	"A parity error was detected in an SCB entry data field by any access",
189 	"A parity error was detected in a WCB entry by any access",
190 	"A poisoned line was detected in an SCB entry by any access",
191 	"A SystemReadDataError error was reported on read data returned from L2 for a load",
192 	"A SystemReadDataError error was reported on read data returned from L2 for an SCB store",
193 	"A SystemReadDataError error was reported on read data returned from L2 for a WCB store",
194 	"A hardware assertion error was reported",
195 	"A parity error was detected in an STLF, SCB EMEM entry or SRB store data by any access",
196 };
197 
198 static const char * const smca_if_mce_desc[] = {
199 	"Op Cache Microtag Probe Port Parity Error",
200 	"IC Microtag or Full Tag Multi-hit Error",
201 	"IC Full Tag Parity Error",
202 	"IC Data Array Parity Error",
203 	"Decoupling Queue PhysAddr Parity Error",
204 	"L0 ITLB Parity Error",
205 	"L1 ITLB Parity Error",
206 	"L2 ITLB Parity Error",
207 	"BPQ Thread 0 Snoop Parity Error",
208 	"BPQ Thread 1 Snoop Parity Error",
209 	"L1 BTB Multi-Match Error",
210 	"L2 BTB Multi-Match Error",
211 	"L2 Cache Response Poison Error",
212 	"System Read Data Error",
213 	"Hardware Assertion Error",
214 	"L1-TLB Multi-Hit",
215 	"L2-TLB Multi-Hit",
216 	"BSR Parity Error",
217 	"CT MCE",
218 };
219 
220 static const char * const smca_l2_mce_desc[] = {
221 	"L2M Tag Multiple-Way-Hit error",
222 	"L2M Tag or State Array ECC Error",
223 	"L2M Data Array ECC Error",
224 	"Hardware Assert Error",
225 };
226 
227 static const char * const smca_de_mce_desc[] = {
228 	"Micro-op cache tag parity error",
229 	"Micro-op cache data parity error",
230 	"Instruction buffer parity error",
231 	"Micro-op queue parity error",
232 	"Instruction dispatch queue parity error",
233 	"Fetch address FIFO parity error",
234 	"Patch RAM data parity error",
235 	"Patch RAM sequencer parity error",
236 	"Micro-op buffer parity error",
237 	"Hardware Assertion MCA Error",
238 };
239 
240 static const char * const smca_ex_mce_desc[] = {
241 	"Watchdog Timeout error",
242 	"Physical register file parity error",
243 	"Flag register file parity error",
244 	"Immediate displacement register file parity error",
245 	"Address generator payload parity error",
246 	"EX payload parity error",
247 	"Checkpoint queue parity error",
248 	"Retire dispatch queue parity error",
249 	"Retire status queue parity error",
250 	"Scheduling queue parity error",
251 	"Branch buffer queue parity error",
252 	"Hardware Assertion error",
253 	"Spec Map parity error",
254 	"Retire Map parity error",
255 };
256 
257 static const char * const smca_fp_mce_desc[] = {
258 	"Physical register file (PRF) parity error",
259 	"Freelist (FL) parity error",
260 	"Schedule queue parity error",
261 	"NSQ parity error",
262 	"Retire queue (RQ) parity error",
263 	"Status register file (SRF) parity error",
264 	"Hardware assertion",
265 };
266 
267 static const char * const smca_l3_mce_desc[] = {
268 	"Shadow Tag Macro ECC Error",
269 	"Shadow Tag Macro Multi-way-hit Error",
270 	"L3M Tag ECC Error",
271 	"L3M Tag Multi-way-hit Error",
272 	"L3M Data ECC Error",
273 	"SDP Parity Error or SystemReadDataError from XI",
274 	"L3 Victim Queue Parity Error",
275 	"L3 Hardware Assertion",
276 };
277 
278 static const char * const smca_cs_mce_desc[] = {
279 	"Illegal Request",
280 	"Address Violation",
281 	"Security Violation",
282 	"Illegal Response",
283 	"Unexpected Response",
284 	"Request or Probe Parity Error",
285 	"Read Response Parity Error",
286 	"Atomic Request Parity Error",
287 	"Probe Filter ECC Error",
288 };
289 
290 static const char * const smca_cs2_mce_desc[] = {
291 	"Illegal Request",
292 	"Address Violation",
293 	"Security Violation",
294 	"Illegal Response",
295 	"Unexpected Response",
296 	"Request or Probe Parity Error",
297 	"Read Response Parity Error",
298 	"Atomic Request Parity Error",
299 	"SDP read response had no match in the CS queue",
300 	"Probe Filter Protocol Error",
301 	"Probe Filter ECC Error",
302 	"SDP read response had an unexpected RETRY error",
303 	"Counter overflow error",
304 	"Counter underflow error",
305 };
306 
307 static const char * const smca_pie_mce_desc[] = {
308 	"Hardware Assert",
309 	"Register security violation",
310 	"Link Error",
311 	"Poison data consumption",
312 	"A deferred error was detected in the DF"
313 };
314 
315 static const char * const smca_umc_mce_desc[] = {
316 	"DRAM ECC error",
317 	"Data poison error",
318 	"SDP parity error",
319 	"Advanced peripheral bus error",
320 	"Address/Command parity error",
321 	"Write data CRC error",
322 	"DCQ SRAM ECC error",
323 	"AES SRAM ECC error",
324 };
325 
326 static const char * const smca_umc2_mce_desc[] = {
327 	"DRAM ECC error",
328 	"Data poison error",
329 	"SDP parity error",
330 	"Reserved",
331 	"Address/Command parity error",
332 	"Write data parity error",
333 	"DCQ SRAM ECC error",
334 	"Reserved",
335 	"Read data parity error",
336 	"Rdb SRAM ECC error",
337 	"RdRsp SRAM ECC error",
338 	"LM32 MP errors",
339 };
340 
341 static const char * const smca_pb_mce_desc[] = {
342 	"An ECC error in the Parameter Block RAM array",
343 };
344 
345 static const char * const smca_psp_mce_desc[] = {
346 	"An ECC or parity error in a PSP RAM instance",
347 };
348 
349 static const char * const smca_psp2_mce_desc[] = {
350 	"High SRAM ECC or parity error",
351 	"Low SRAM ECC or parity error",
352 	"Instruction Cache Bank 0 ECC or parity error",
353 	"Instruction Cache Bank 1 ECC or parity error",
354 	"Instruction Tag Ram 0 parity error",
355 	"Instruction Tag Ram 1 parity error",
356 	"Data Cache Bank 0 ECC or parity error",
357 	"Data Cache Bank 1 ECC or parity error",
358 	"Data Cache Bank 2 ECC or parity error",
359 	"Data Cache Bank 3 ECC or parity error",
360 	"Data Tag Bank 0 parity error",
361 	"Data Tag Bank 1 parity error",
362 	"Data Tag Bank 2 parity error",
363 	"Data Tag Bank 3 parity error",
364 	"Dirty Data Ram parity error",
365 	"TLB Bank 0 parity error",
366 	"TLB Bank 1 parity error",
367 	"System Hub Read Buffer ECC or parity error",
368 };
369 
370 static const char * const smca_smu_mce_desc[] = {
371 	"An ECC or parity error in an SMU RAM instance",
372 };
373 
374 static const char * const smca_smu2_mce_desc[] = {
375 	"High SRAM ECC or parity error",
376 	"Low SRAM ECC or parity error",
377 	"Data Cache Bank A ECC or parity error",
378 	"Data Cache Bank B ECC or parity error",
379 	"Data Tag Cache Bank A ECC or parity error",
380 	"Data Tag Cache Bank B ECC or parity error",
381 	"Instruction Cache Bank A ECC or parity error",
382 	"Instruction Cache Bank B ECC or parity error",
383 	"Instruction Tag Cache Bank A ECC or parity error",
384 	"Instruction Tag Cache Bank B ECC or parity error",
385 	"System Hub Read Buffer ECC or parity error",
386 	"PHY RAM ECC error",
387 };
388 
389 static const char * const smca_mp5_mce_desc[] = {
390 	"High SRAM ECC or parity error",
391 	"Low SRAM ECC or parity error",
392 	"Data Cache Bank A ECC or parity error",
393 	"Data Cache Bank B ECC or parity error",
394 	"Data Tag Cache Bank A ECC or parity error",
395 	"Data Tag Cache Bank B ECC or parity error",
396 	"Instruction Cache Bank A ECC or parity error",
397 	"Instruction Cache Bank B ECC or parity error",
398 	"Instruction Tag Cache Bank A ECC or parity error",
399 	"Instruction Tag Cache Bank B ECC or parity error",
400 };
401 
402 static const char * const smca_nbio_mce_desc[] = {
403 	"ECC or Parity error",
404 	"PCIE error",
405 	"SDP ErrEvent error",
406 	"SDP Egress Poison Error",
407 	"IOHC Internal Poison Error",
408 };
409 
410 static const char * const smca_pcie_mce_desc[] = {
411 	"CCIX PER Message logging",
412 	"CCIX Read Response with Status: Non-Data Error",
413 	"CCIX Write Response with Status: Non-Data Error",
414 	"CCIX Read Response with Status: Data Error",
415 	"CCIX Non-okay write response with data error",
416 };
417 
418 static const char * const smca_pcie2_mce_desc[] = {
419 	"SDP Parity Error logging",
420 };
421 
422 static const char * const smca_xgmipcs_mce_desc[] = {
423 	"Data Loss Error",
424 	"Training Error",
425 	"Flow Control Acknowledge Error",
426 	"Rx Fifo Underflow Error",
427 	"Rx Fifo Overflow Error",
428 	"CRC Error",
429 	"BER Exceeded Error",
430 	"Tx Vcid Data Error",
431 	"Replay Buffer Parity Error",
432 	"Data Parity Error",
433 	"Replay Fifo Overflow Error",
434 	"Replay Fifo Underflow Error",
435 	"Elastic Fifo Overflow Error",
436 	"Deskew Error",
437 	"Flow Control CRC Error",
438 	"Data Startup Limit Error",
439 	"FC Init Timeout Error",
440 	"Recovery Timeout Error",
441 	"Ready Serial Timeout Error",
442 	"Ready Serial Attempt Error",
443 	"Recovery Attempt Error",
444 	"Recovery Relock Attempt Error",
445 	"Replay Attempt Error",
446 	"Sync Header Error",
447 	"Tx Replay Timeout Error",
448 	"Rx Replay Timeout Error",
449 	"LinkSub Tx Timeout Error",
450 	"LinkSub Rx Timeout Error",
451 	"Rx CMD Pocket Error",
452 };
453 
454 static const char * const smca_xgmiphy_mce_desc[] = {
455 	"RAM ECC Error",
456 	"ARC instruction buffer parity error",
457 	"ARC data buffer parity error",
458 	"PHY APB error",
459 };
460 
461 static const char * const smca_waflphy_mce_desc[] = {
462 	"RAM ECC Error",
463 	"ARC instruction buffer parity error",
464 	"ARC data buffer parity error",
465 	"PHY APB error",
466 };
467 
468 struct smca_mce_desc {
469 	const char * const *descs;
470 	unsigned int num_descs;
471 };
472 
473 static struct smca_mce_desc smca_mce_descs[] = {
474 	[SMCA_LS]	= { smca_ls_mce_desc,	ARRAY_SIZE(smca_ls_mce_desc)	},
475 	[SMCA_LS_V2]	= { smca_ls2_mce_desc,	ARRAY_SIZE(smca_ls2_mce_desc)	},
476 	[SMCA_IF]	= { smca_if_mce_desc,	ARRAY_SIZE(smca_if_mce_desc)	},
477 	[SMCA_L2_CACHE]	= { smca_l2_mce_desc,	ARRAY_SIZE(smca_l2_mce_desc)	},
478 	[SMCA_DE]	= { smca_de_mce_desc,	ARRAY_SIZE(smca_de_mce_desc)	},
479 	[SMCA_EX]	= { smca_ex_mce_desc,	ARRAY_SIZE(smca_ex_mce_desc)	},
480 	[SMCA_FP]	= { smca_fp_mce_desc,	ARRAY_SIZE(smca_fp_mce_desc)	},
481 	[SMCA_L3_CACHE]	= { smca_l3_mce_desc,	ARRAY_SIZE(smca_l3_mce_desc)	},
482 	[SMCA_CS]	= { smca_cs_mce_desc,	ARRAY_SIZE(smca_cs_mce_desc)	},
483 	[SMCA_CS_V2]	= { smca_cs2_mce_desc,	ARRAY_SIZE(smca_cs2_mce_desc)	},
484 	[SMCA_PIE]	= { smca_pie_mce_desc,	ARRAY_SIZE(smca_pie_mce_desc)	},
485 	[SMCA_UMC]	= { smca_umc_mce_desc,	ARRAY_SIZE(smca_umc_mce_desc)	},
486 	[SMCA_UMC_V2]	= { smca_umc2_mce_desc,	ARRAY_SIZE(smca_umc2_mce_desc)	},
487 	[SMCA_PB]	= { smca_pb_mce_desc,	ARRAY_SIZE(smca_pb_mce_desc)	},
488 	[SMCA_PSP]	= { smca_psp_mce_desc,	ARRAY_SIZE(smca_psp_mce_desc)	},
489 	[SMCA_PSP_V2]	= { smca_psp2_mce_desc,	ARRAY_SIZE(smca_psp2_mce_desc)	},
490 	[SMCA_SMU]	= { smca_smu_mce_desc,	ARRAY_SIZE(smca_smu_mce_desc)	},
491 	[SMCA_SMU_V2]	= { smca_smu2_mce_desc,	ARRAY_SIZE(smca_smu2_mce_desc)	},
492 	[SMCA_MP5]	= { smca_mp5_mce_desc,	ARRAY_SIZE(smca_mp5_mce_desc)	},
493 	[SMCA_NBIO]	= { smca_nbio_mce_desc,	ARRAY_SIZE(smca_nbio_mce_desc)	},
494 	[SMCA_PCIE]	= { smca_pcie_mce_desc,	ARRAY_SIZE(smca_pcie_mce_desc)	},
495 	[SMCA_PCIE_V2]	= { smca_pcie2_mce_desc,   ARRAY_SIZE(smca_pcie2_mce_desc)	},
496 	[SMCA_XGMI_PCS]	= { smca_xgmipcs_mce_desc, ARRAY_SIZE(smca_xgmipcs_mce_desc)	},
497 	[SMCA_XGMI_PHY]	= { smca_xgmiphy_mce_desc, ARRAY_SIZE(smca_xgmiphy_mce_desc)	},
498 	[SMCA_WAFL_PHY]	= { smca_waflphy_mce_desc, ARRAY_SIZE(smca_waflphy_mce_desc)	},
499 };
500 
501 static bool f12h_mc0_mce(u16 ec, u8 xec)
502 {
503 	bool ret = false;
504 
505 	if (MEM_ERROR(ec)) {
506 		u8 ll = LL(ec);
507 		ret = true;
508 
509 		if (ll == LL_L2)
510 			pr_cont("during L1 linefill from L2.\n");
511 		else if (ll == LL_L1)
512 			pr_cont("Data/Tag %s error.\n", R4_MSG(ec));
513 		else
514 			ret = false;
515 	}
516 	return ret;
517 }
518 
519 static bool f10h_mc0_mce(u16 ec, u8 xec)
520 {
521 	if (R4(ec) == R4_GEN && LL(ec) == LL_L1) {
522 		pr_cont("during data scrub.\n");
523 		return true;
524 	}
525 	return f12h_mc0_mce(ec, xec);
526 }
527 
528 static bool k8_mc0_mce(u16 ec, u8 xec)
529 {
530 	if (BUS_ERROR(ec)) {
531 		pr_cont("during system linefill.\n");
532 		return true;
533 	}
534 
535 	return f10h_mc0_mce(ec, xec);
536 }
537 
538 static bool cat_mc0_mce(u16 ec, u8 xec)
539 {
540 	u8 r4	 = R4(ec);
541 	bool ret = true;
542 
543 	if (MEM_ERROR(ec)) {
544 
545 		if (TT(ec) != TT_DATA || LL(ec) != LL_L1)
546 			return false;
547 
548 		switch (r4) {
549 		case R4_DRD:
550 		case R4_DWR:
551 			pr_cont("Data/Tag parity error due to %s.\n",
552 				(r4 == R4_DRD ? "load/hw prf" : "store"));
553 			break;
554 		case R4_EVICT:
555 			pr_cont("Copyback parity error on a tag miss.\n");
556 			break;
557 		case R4_SNOOP:
558 			pr_cont("Tag parity error during snoop.\n");
559 			break;
560 		default:
561 			ret = false;
562 		}
563 	} else if (BUS_ERROR(ec)) {
564 
565 		if ((II(ec) != II_MEM && II(ec) != II_IO) || LL(ec) != LL_LG)
566 			return false;
567 
568 		pr_cont("System read data error on a ");
569 
570 		switch (r4) {
571 		case R4_RD:
572 			pr_cont("TLB reload.\n");
573 			break;
574 		case R4_DWR:
575 			pr_cont("store.\n");
576 			break;
577 		case R4_DRD:
578 			pr_cont("load.\n");
579 			break;
580 		default:
581 			ret = false;
582 		}
583 	} else {
584 		ret = false;
585 	}
586 
587 	return ret;
588 }
589 
590 static bool f15h_mc0_mce(u16 ec, u8 xec)
591 {
592 	bool ret = true;
593 
594 	if (MEM_ERROR(ec)) {
595 
596 		switch (xec) {
597 		case 0x0:
598 			pr_cont("Data Array access error.\n");
599 			break;
600 
601 		case 0x1:
602 			pr_cont("UC error during a linefill from L2/NB.\n");
603 			break;
604 
605 		case 0x2:
606 		case 0x11:
607 			pr_cont("STQ access error.\n");
608 			break;
609 
610 		case 0x3:
611 			pr_cont("SCB access error.\n");
612 			break;
613 
614 		case 0x10:
615 			pr_cont("Tag error.\n");
616 			break;
617 
618 		case 0x12:
619 			pr_cont("LDQ access error.\n");
620 			break;
621 
622 		default:
623 			ret = false;
624 		}
625 	} else if (BUS_ERROR(ec)) {
626 
627 		if (!xec)
628 			pr_cont("System Read Data Error.\n");
629 		else
630 			pr_cont(" Internal error condition type %d.\n", xec);
631 	} else if (INT_ERROR(ec)) {
632 		if (xec <= 0x1f)
633 			pr_cont("Hardware Assert.\n");
634 		else
635 			ret = false;
636 
637 	} else
638 		ret = false;
639 
640 	return ret;
641 }
642 
643 static void decode_mc0_mce(struct mce *m)
644 {
645 	u16 ec = EC(m->status);
646 	u8 xec = XEC(m->status, xec_mask);
647 
648 	pr_emerg(HW_ERR "MC0 Error: ");
649 
650 	/* TLB error signatures are the same across families */
651 	if (TLB_ERROR(ec)) {
652 		if (TT(ec) == TT_DATA) {
653 			pr_cont("%s TLB %s.\n", LL_MSG(ec),
654 				((xec == 2) ? "locked miss"
655 					    : (xec ? "multimatch" : "parity")));
656 			return;
657 		}
658 	} else if (fam_ops.mc0_mce(ec, xec))
659 		;
660 	else
661 		pr_emerg(HW_ERR "Corrupted MC0 MCE info?\n");
662 }
663 
664 static bool k8_mc1_mce(u16 ec, u8 xec)
665 {
666 	u8 ll	 = LL(ec);
667 	bool ret = true;
668 
669 	if (!MEM_ERROR(ec))
670 		return false;
671 
672 	if (ll == 0x2)
673 		pr_cont("during a linefill from L2.\n");
674 	else if (ll == 0x1) {
675 		switch (R4(ec)) {
676 		case R4_IRD:
677 			pr_cont("Parity error during data load.\n");
678 			break;
679 
680 		case R4_EVICT:
681 			pr_cont("Copyback Parity/Victim error.\n");
682 			break;
683 
684 		case R4_SNOOP:
685 			pr_cont("Tag Snoop error.\n");
686 			break;
687 
688 		default:
689 			ret = false;
690 			break;
691 		}
692 	} else
693 		ret = false;
694 
695 	return ret;
696 }
697 
698 static bool cat_mc1_mce(u16 ec, u8 xec)
699 {
700 	u8 r4    = R4(ec);
701 	bool ret = true;
702 
703 	if (!MEM_ERROR(ec))
704 		return false;
705 
706 	if (TT(ec) != TT_INSTR)
707 		return false;
708 
709 	if (r4 == R4_IRD)
710 		pr_cont("Data/tag array parity error for a tag hit.\n");
711 	else if (r4 == R4_SNOOP)
712 		pr_cont("Tag error during snoop/victimization.\n");
713 	else if (xec == 0x0)
714 		pr_cont("Tag parity error from victim castout.\n");
715 	else if (xec == 0x2)
716 		pr_cont("Microcode patch RAM parity error.\n");
717 	else
718 		ret = false;
719 
720 	return ret;
721 }
722 
723 static bool f15h_mc1_mce(u16 ec, u8 xec)
724 {
725 	bool ret = true;
726 
727 	if (!MEM_ERROR(ec))
728 		return false;
729 
730 	switch (xec) {
731 	case 0x0 ... 0xa:
732 		pr_cont("%s.\n", f15h_mc1_mce_desc[xec]);
733 		break;
734 
735 	case 0xd:
736 		pr_cont("%s.\n", f15h_mc1_mce_desc[xec-2]);
737 		break;
738 
739 	case 0x10:
740 		pr_cont("%s.\n", f15h_mc1_mce_desc[xec-4]);
741 		break;
742 
743 	case 0x11 ... 0x15:
744 		pr_cont("Decoder %s parity error.\n", f15h_mc1_mce_desc[xec-4]);
745 		break;
746 
747 	default:
748 		ret = false;
749 	}
750 	return ret;
751 }
752 
753 static void decode_mc1_mce(struct mce *m)
754 {
755 	u16 ec = EC(m->status);
756 	u8 xec = XEC(m->status, xec_mask);
757 
758 	pr_emerg(HW_ERR "MC1 Error: ");
759 
760 	if (TLB_ERROR(ec))
761 		pr_cont("%s TLB %s.\n", LL_MSG(ec),
762 			(xec ? "multimatch" : "parity error"));
763 	else if (BUS_ERROR(ec)) {
764 		bool k8 = (boot_cpu_data.x86 == 0xf && (m->status & BIT_64(58)));
765 
766 		pr_cont("during %s.\n", (k8 ? "system linefill" : "NB data read"));
767 	} else if (INT_ERROR(ec)) {
768 		if (xec <= 0x3f)
769 			pr_cont("Hardware Assert.\n");
770 		else
771 			goto wrong_mc1_mce;
772 	} else if (fam_ops.mc1_mce(ec, xec))
773 		;
774 	else
775 		goto wrong_mc1_mce;
776 
777 	return;
778 
779 wrong_mc1_mce:
780 	pr_emerg(HW_ERR "Corrupted MC1 MCE info?\n");
781 }
782 
783 static bool k8_mc2_mce(u16 ec, u8 xec)
784 {
785 	bool ret = true;
786 
787 	if (xec == 0x1)
788 		pr_cont(" in the write data buffers.\n");
789 	else if (xec == 0x3)
790 		pr_cont(" in the victim data buffers.\n");
791 	else if (xec == 0x2 && MEM_ERROR(ec))
792 		pr_cont(": %s error in the L2 cache tags.\n", R4_MSG(ec));
793 	else if (xec == 0x0) {
794 		if (TLB_ERROR(ec))
795 			pr_cont("%s error in a Page Descriptor Cache or Guest TLB.\n",
796 				TT_MSG(ec));
797 		else if (BUS_ERROR(ec))
798 			pr_cont(": %s/ECC error in data read from NB: %s.\n",
799 				R4_MSG(ec), PP_MSG(ec));
800 		else if (MEM_ERROR(ec)) {
801 			u8 r4 = R4(ec);
802 
803 			if (r4 >= 0x7)
804 				pr_cont(": %s error during data copyback.\n",
805 					R4_MSG(ec));
806 			else if (r4 <= 0x1)
807 				pr_cont(": %s parity/ECC error during data "
808 					"access from L2.\n", R4_MSG(ec));
809 			else
810 				ret = false;
811 		} else
812 			ret = false;
813 	} else
814 		ret = false;
815 
816 	return ret;
817 }
818 
819 static bool f15h_mc2_mce(u16 ec, u8 xec)
820 {
821 	bool ret = true;
822 
823 	if (TLB_ERROR(ec)) {
824 		if (xec == 0x0)
825 			pr_cont("Data parity TLB read error.\n");
826 		else if (xec == 0x1)
827 			pr_cont("Poison data provided for TLB fill.\n");
828 		else
829 			ret = false;
830 	} else if (BUS_ERROR(ec)) {
831 		if (xec > 2)
832 			ret = false;
833 
834 		pr_cont("Error during attempted NB data read.\n");
835 	} else if (MEM_ERROR(ec)) {
836 		switch (xec) {
837 		case 0x4 ... 0xc:
838 			pr_cont("%s.\n", f15h_mc2_mce_desc[xec - 0x4]);
839 			break;
840 
841 		case 0x10 ... 0x14:
842 			pr_cont("%s.\n", f15h_mc2_mce_desc[xec - 0x7]);
843 			break;
844 
845 		default:
846 			ret = false;
847 		}
848 	} else if (INT_ERROR(ec)) {
849 		if (xec <= 0x3f)
850 			pr_cont("Hardware Assert.\n");
851 		else
852 			ret = false;
853 	}
854 
855 	return ret;
856 }
857 
858 static bool f16h_mc2_mce(u16 ec, u8 xec)
859 {
860 	u8 r4 = R4(ec);
861 
862 	if (!MEM_ERROR(ec))
863 		return false;
864 
865 	switch (xec) {
866 	case 0x04 ... 0x05:
867 		pr_cont("%cBUFF parity error.\n", (r4 == R4_RD) ? 'I' : 'O');
868 		break;
869 
870 	case 0x09 ... 0x0b:
871 	case 0x0d ... 0x0f:
872 		pr_cont("ECC error in L2 tag (%s).\n",
873 			((r4 == R4_GEN)   ? "BankReq" :
874 			((r4 == R4_SNOOP) ? "Prb"     : "Fill")));
875 		break;
876 
877 	case 0x10 ... 0x19:
878 	case 0x1b:
879 		pr_cont("ECC error in L2 data array (%s).\n",
880 			(((r4 == R4_RD) && !(xec & 0x3)) ? "Hit"  :
881 			((r4 == R4_GEN)   ? "Attr" :
882 			((r4 == R4_EVICT) ? "Vict" : "Fill"))));
883 		break;
884 
885 	case 0x1c ... 0x1d:
886 	case 0x1f:
887 		pr_cont("Parity error in L2 attribute bits (%s).\n",
888 			((r4 == R4_RD)  ? "Hit"  :
889 			((r4 == R4_GEN) ? "Attr" : "Fill")));
890 		break;
891 
892 	default:
893 		return false;
894 	}
895 
896 	return true;
897 }
898 
899 static void decode_mc2_mce(struct mce *m)
900 {
901 	u16 ec = EC(m->status);
902 	u8 xec = XEC(m->status, xec_mask);
903 
904 	pr_emerg(HW_ERR "MC2 Error: ");
905 
906 	if (!fam_ops.mc2_mce(ec, xec))
907 		pr_cont(HW_ERR "Corrupted MC2 MCE info?\n");
908 }
909 
910 static void decode_mc3_mce(struct mce *m)
911 {
912 	u16 ec = EC(m->status);
913 	u8 xec = XEC(m->status, xec_mask);
914 
915 	if (boot_cpu_data.x86 >= 0x14) {
916 		pr_emerg("You shouldn't be seeing MC3 MCE on this cpu family,"
917 			 " please report on LKML.\n");
918 		return;
919 	}
920 
921 	pr_emerg(HW_ERR "MC3 Error");
922 
923 	if (xec == 0x0) {
924 		u8 r4 = R4(ec);
925 
926 		if (!BUS_ERROR(ec) || (r4 != R4_DRD && r4 != R4_DWR))
927 			goto wrong_mc3_mce;
928 
929 		pr_cont(" during %s.\n", R4_MSG(ec));
930 	} else
931 		goto wrong_mc3_mce;
932 
933 	return;
934 
935  wrong_mc3_mce:
936 	pr_emerg(HW_ERR "Corrupted MC3 MCE info?\n");
937 }
938 
939 static void decode_mc4_mce(struct mce *m)
940 {
941 	unsigned int fam = x86_family(m->cpuid);
942 	int node_id = topology_die_id(m->extcpu);
943 	u16 ec = EC(m->status);
944 	u8 xec = XEC(m->status, 0x1f);
945 	u8 offset = 0;
946 
947 	pr_emerg(HW_ERR "MC4 Error (node %d): ", node_id);
948 
949 	switch (xec) {
950 	case 0x0 ... 0xe:
951 
952 		/* special handling for DRAM ECCs */
953 		if (xec == 0x0 || xec == 0x8) {
954 			/* no ECCs on F11h */
955 			if (fam == 0x11)
956 				goto wrong_mc4_mce;
957 
958 			pr_cont("%s.\n", mc4_mce_desc[xec]);
959 
960 			if (decode_dram_ecc)
961 				decode_dram_ecc(node_id, m);
962 			return;
963 		}
964 		break;
965 
966 	case 0xf:
967 		if (TLB_ERROR(ec))
968 			pr_cont("GART Table Walk data error.\n");
969 		else if (BUS_ERROR(ec))
970 			pr_cont("DMA Exclusion Vector Table Walk error.\n");
971 		else
972 			goto wrong_mc4_mce;
973 		return;
974 
975 	case 0x19:
976 		if (fam == 0x15 || fam == 0x16)
977 			pr_cont("Compute Unit Data Error.\n");
978 		else
979 			goto wrong_mc4_mce;
980 		return;
981 
982 	case 0x1c ... 0x1f:
983 		offset = 13;
984 		break;
985 
986 	default:
987 		goto wrong_mc4_mce;
988 	}
989 
990 	pr_cont("%s.\n", mc4_mce_desc[xec - offset]);
991 	return;
992 
993  wrong_mc4_mce:
994 	pr_emerg(HW_ERR "Corrupted MC4 MCE info?\n");
995 }
996 
997 static void decode_mc5_mce(struct mce *m)
998 {
999 	unsigned int fam = x86_family(m->cpuid);
1000 	u16 ec = EC(m->status);
1001 	u8 xec = XEC(m->status, xec_mask);
1002 
1003 	if (fam == 0xf || fam == 0x11)
1004 		goto wrong_mc5_mce;
1005 
1006 	pr_emerg(HW_ERR "MC5 Error: ");
1007 
1008 	if (INT_ERROR(ec)) {
1009 		if (xec <= 0x1f) {
1010 			pr_cont("Hardware Assert.\n");
1011 			return;
1012 		} else
1013 			goto wrong_mc5_mce;
1014 	}
1015 
1016 	if (xec == 0x0 || xec == 0xc)
1017 		pr_cont("%s.\n", mc5_mce_desc[xec]);
1018 	else if (xec <= 0xd)
1019 		pr_cont("%s parity error.\n", mc5_mce_desc[xec]);
1020 	else
1021 		goto wrong_mc5_mce;
1022 
1023 	return;
1024 
1025  wrong_mc5_mce:
1026 	pr_emerg(HW_ERR "Corrupted MC5 MCE info?\n");
1027 }
1028 
1029 static void decode_mc6_mce(struct mce *m)
1030 {
1031 	u8 xec = XEC(m->status, xec_mask);
1032 
1033 	pr_emerg(HW_ERR "MC6 Error: ");
1034 
1035 	if (xec > 0x5)
1036 		goto wrong_mc6_mce;
1037 
1038 	pr_cont("%s parity error.\n", mc6_mce_desc[xec]);
1039 	return;
1040 
1041  wrong_mc6_mce:
1042 	pr_emerg(HW_ERR "Corrupted MC6 MCE info?\n");
1043 }
1044 
1045 /* Decode errors according to Scalable MCA specification */
1046 static void decode_smca_error(struct mce *m)
1047 {
1048 	struct smca_hwid *hwid;
1049 	enum smca_bank_types bank_type;
1050 	const char *ip_name;
1051 	u8 xec = XEC(m->status, xec_mask);
1052 
1053 	if (m->bank >= ARRAY_SIZE(smca_banks))
1054 		return;
1055 
1056 	hwid = smca_banks[m->bank].hwid;
1057 	if (!hwid)
1058 		return;
1059 
1060 	bank_type = hwid->bank_type;
1061 
1062 	if (bank_type == SMCA_RESERVED) {
1063 		pr_emerg(HW_ERR "Bank %d is reserved.\n", m->bank);
1064 		return;
1065 	}
1066 
1067 	ip_name = smca_get_long_name(bank_type);
1068 
1069 	pr_emerg(HW_ERR "%s Ext. Error Code: %d", ip_name, xec);
1070 
1071 	/* Only print the decode of valid error codes */
1072 	if (xec < smca_mce_descs[bank_type].num_descs)
1073 		pr_cont(", %s.\n", smca_mce_descs[bank_type].descs[xec]);
1074 
1075 	if (bank_type == SMCA_UMC && xec == 0 && decode_dram_ecc)
1076 		decode_dram_ecc(topology_die_id(m->extcpu), m);
1077 }
1078 
1079 static inline void amd_decode_err_code(u16 ec)
1080 {
1081 	if (INT_ERROR(ec)) {
1082 		pr_emerg(HW_ERR "internal: %s\n", UU_MSG(ec));
1083 		return;
1084 	}
1085 
1086 	pr_emerg(HW_ERR "cache level: %s", LL_MSG(ec));
1087 
1088 	if (BUS_ERROR(ec))
1089 		pr_cont(", mem/io: %s", II_MSG(ec));
1090 	else
1091 		pr_cont(", tx: %s", TT_MSG(ec));
1092 
1093 	if (MEM_ERROR(ec) || BUS_ERROR(ec)) {
1094 		pr_cont(", mem-tx: %s", R4_MSG(ec));
1095 
1096 		if (BUS_ERROR(ec))
1097 			pr_cont(", part-proc: %s (%s)", PP_MSG(ec), TO_MSG(ec));
1098 	}
1099 
1100 	pr_cont("\n");
1101 }
1102 
1103 static const char *decode_error_status(struct mce *m)
1104 {
1105 	if (m->status & MCI_STATUS_UC) {
1106 		if (m->status & MCI_STATUS_PCC)
1107 			return "System Fatal error.";
1108 		if (m->mcgstatus & MCG_STATUS_RIPV)
1109 			return "Uncorrected, software restartable error.";
1110 		return "Uncorrected, software containable error.";
1111 	}
1112 
1113 	if (m->status & MCI_STATUS_DEFERRED)
1114 		return "Deferred error, no action required.";
1115 
1116 	return "Corrected error, no action required.";
1117 }
1118 
1119 static int
1120 amd_decode_mce(struct notifier_block *nb, unsigned long val, void *data)
1121 {
1122 	struct mce *m = (struct mce *)data;
1123 	unsigned int fam = x86_family(m->cpuid);
1124 	int ecc;
1125 
1126 	if (m->kflags & MCE_HANDLED_CEC)
1127 		return NOTIFY_DONE;
1128 
1129 	pr_emerg(HW_ERR "%s\n", decode_error_status(m));
1130 
1131 	pr_emerg(HW_ERR "CPU:%d (%x:%x:%x) MC%d_STATUS[%s|%s|%s|%s|%s",
1132 		m->extcpu,
1133 		fam, x86_model(m->cpuid), x86_stepping(m->cpuid),
1134 		m->bank,
1135 		((m->status & MCI_STATUS_OVER)	? "Over"  : "-"),
1136 		((m->status & MCI_STATUS_UC)	? "UE"	  :
1137 		 (m->status & MCI_STATUS_DEFERRED) ? "-"  : "CE"),
1138 		((m->status & MCI_STATUS_MISCV)	? "MiscV" : "-"),
1139 		((m->status & MCI_STATUS_ADDRV)	? "AddrV" : "-"),
1140 		((m->status & MCI_STATUS_PCC)	? "PCC"	  : "-"));
1141 
1142 	if (boot_cpu_has(X86_FEATURE_SMCA)) {
1143 		u32 low, high;
1144 		u32 addr = MSR_AMD64_SMCA_MCx_CONFIG(m->bank);
1145 
1146 		if (!rdmsr_safe(addr, &low, &high) &&
1147 		    (low & MCI_CONFIG_MCAX))
1148 			pr_cont("|%s", ((m->status & MCI_STATUS_TCC) ? "TCC" : "-"));
1149 
1150 		pr_cont("|%s", ((m->status & MCI_STATUS_SYNDV) ? "SyndV" : "-"));
1151 	}
1152 
1153 	/* do the two bits[14:13] together */
1154 	ecc = (m->status >> 45) & 0x3;
1155 	if (ecc)
1156 		pr_cont("|%sECC", ((ecc == 2) ? "C" : "U"));
1157 
1158 	if (fam >= 0x15) {
1159 		pr_cont("|%s", (m->status & MCI_STATUS_DEFERRED ? "Deferred" : "-"));
1160 
1161 		/* F15h, bank4, bit 43 is part of McaStatSubCache. */
1162 		if (fam != 0x15 || m->bank != 4)
1163 			pr_cont("|%s", (m->status & MCI_STATUS_POISON ? "Poison" : "-"));
1164 	}
1165 
1166 	if (fam >= 0x17)
1167 		pr_cont("|%s", (m->status & MCI_STATUS_SCRUB ? "Scrub" : "-"));
1168 
1169 	pr_cont("]: 0x%016llx\n", m->status);
1170 
1171 	if (m->status & MCI_STATUS_ADDRV)
1172 		pr_emerg(HW_ERR "Error Addr: 0x%016llx\n", m->addr);
1173 
1174 	if (m->ppin)
1175 		pr_emerg(HW_ERR "PPIN: 0x%016llx\n", m->ppin);
1176 
1177 	if (boot_cpu_has(X86_FEATURE_SMCA)) {
1178 		pr_emerg(HW_ERR "IPID: 0x%016llx", m->ipid);
1179 
1180 		if (m->status & MCI_STATUS_SYNDV)
1181 			pr_cont(", Syndrome: 0x%016llx", m->synd);
1182 
1183 		pr_cont("\n");
1184 
1185 		decode_smca_error(m);
1186 		goto err_code;
1187 	}
1188 
1189 	if (m->tsc)
1190 		pr_emerg(HW_ERR "TSC: %llu\n", m->tsc);
1191 
1192 	/* Doesn't matter which member to test. */
1193 	if (!fam_ops.mc0_mce)
1194 		goto err_code;
1195 
1196 	switch (m->bank) {
1197 	case 0:
1198 		decode_mc0_mce(m);
1199 		break;
1200 
1201 	case 1:
1202 		decode_mc1_mce(m);
1203 		break;
1204 
1205 	case 2:
1206 		decode_mc2_mce(m);
1207 		break;
1208 
1209 	case 3:
1210 		decode_mc3_mce(m);
1211 		break;
1212 
1213 	case 4:
1214 		decode_mc4_mce(m);
1215 		break;
1216 
1217 	case 5:
1218 		decode_mc5_mce(m);
1219 		break;
1220 
1221 	case 6:
1222 		decode_mc6_mce(m);
1223 		break;
1224 
1225 	default:
1226 		break;
1227 	}
1228 
1229  err_code:
1230 	amd_decode_err_code(m->status & 0xffff);
1231 
1232 	m->kflags |= MCE_HANDLED_EDAC;
1233 	return NOTIFY_OK;
1234 }
1235 
1236 static struct notifier_block amd_mce_dec_nb = {
1237 	.notifier_call	= amd_decode_mce,
1238 	.priority	= MCE_PRIO_EDAC,
1239 };
1240 
1241 static int __init mce_amd_init(void)
1242 {
1243 	struct cpuinfo_x86 *c = &boot_cpu_data;
1244 
1245 	if (c->x86_vendor != X86_VENDOR_AMD &&
1246 	    c->x86_vendor != X86_VENDOR_HYGON)
1247 		return -ENODEV;
1248 
1249 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
1250 		return -ENODEV;
1251 
1252 	if (boot_cpu_has(X86_FEATURE_SMCA)) {
1253 		xec_mask = 0x3f;
1254 		goto out;
1255 	}
1256 
1257 	switch (c->x86) {
1258 	case 0xf:
1259 		fam_ops.mc0_mce = k8_mc0_mce;
1260 		fam_ops.mc1_mce = k8_mc1_mce;
1261 		fam_ops.mc2_mce = k8_mc2_mce;
1262 		break;
1263 
1264 	case 0x10:
1265 		fam_ops.mc0_mce = f10h_mc0_mce;
1266 		fam_ops.mc1_mce = k8_mc1_mce;
1267 		fam_ops.mc2_mce = k8_mc2_mce;
1268 		break;
1269 
1270 	case 0x11:
1271 		fam_ops.mc0_mce = k8_mc0_mce;
1272 		fam_ops.mc1_mce = k8_mc1_mce;
1273 		fam_ops.mc2_mce = k8_mc2_mce;
1274 		break;
1275 
1276 	case 0x12:
1277 		fam_ops.mc0_mce = f12h_mc0_mce;
1278 		fam_ops.mc1_mce = k8_mc1_mce;
1279 		fam_ops.mc2_mce = k8_mc2_mce;
1280 		break;
1281 
1282 	case 0x14:
1283 		fam_ops.mc0_mce = cat_mc0_mce;
1284 		fam_ops.mc1_mce = cat_mc1_mce;
1285 		fam_ops.mc2_mce = k8_mc2_mce;
1286 		break;
1287 
1288 	case 0x15:
1289 		xec_mask = c->x86_model == 0x60 ? 0x3f : 0x1f;
1290 
1291 		fam_ops.mc0_mce = f15h_mc0_mce;
1292 		fam_ops.mc1_mce = f15h_mc1_mce;
1293 		fam_ops.mc2_mce = f15h_mc2_mce;
1294 		break;
1295 
1296 	case 0x16:
1297 		xec_mask = 0x1f;
1298 		fam_ops.mc0_mce = cat_mc0_mce;
1299 		fam_ops.mc1_mce = cat_mc1_mce;
1300 		fam_ops.mc2_mce = f16h_mc2_mce;
1301 		break;
1302 
1303 	case 0x17:
1304 	case 0x18:
1305 		pr_warn_once("Decoding supported only on Scalable MCA processors.\n");
1306 		return -EINVAL;
1307 
1308 	default:
1309 		printk(KERN_WARNING "Huh? What family is it: 0x%x?!\n", c->x86);
1310 		return -EINVAL;
1311 	}
1312 
1313 out:
1314 	pr_info("MCE: In-kernel MCE decoding enabled.\n");
1315 
1316 	mce_register_decode_chain(&amd_mce_dec_nb);
1317 
1318 	return 0;
1319 }
1320 early_initcall(mce_amd_init);
1321 
1322 #ifdef MODULE
1323 static void __exit mce_amd_exit(void)
1324 {
1325 	mce_unregister_decode_chain(&amd_mce_dec_nb);
1326 }
1327 
1328 MODULE_DESCRIPTION("AMD MCE decoder");
1329 MODULE_ALIAS("edac-mce-amd");
1330 MODULE_LICENSE("GPL");
1331 module_exit(mce_amd_exit);
1332 #endif
1333