xref: /openbmc/linux/drivers/edac/igen6_edac.c (revision 2a598d0b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for Intel client SoC with integrated memory controller using IBECC
4  *
5  * Copyright (C) 2020 Intel Corporation
6  *
7  * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
8  * regions of the physical memory space. It's used for memory controllers
9  * that don't support the out-of-band ECC which often needs an additional
10  * storage device to each channel for storing ECC data.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/irq_work.h>
18 #include <linux/llist.h>
19 #include <linux/genalloc.h>
20 #include <linux/edac.h>
21 #include <linux/bits.h>
22 #include <linux/io.h>
23 #include <asm/mach_traps.h>
24 #include <asm/nmi.h>
25 #include <asm/mce.h>
26 
27 #include "edac_mc.h"
28 #include "edac_module.h"
29 
30 #define IGEN6_REVISION	"v2.5"
31 
32 #define EDAC_MOD_STR	"igen6_edac"
33 #define IGEN6_NMI_NAME	"igen6_ibecc"
34 
35 /* Debug macros */
36 #define igen6_printk(level, fmt, arg...)		\
37 	edac_printk(level, "igen6", fmt, ##arg)
38 
39 #define igen6_mc_printk(mci, level, fmt, arg...)	\
40 	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
41 
42 #define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
43 
44 #define NUM_IMC				2 /* Max memory controllers */
45 #define NUM_CHANNELS			2 /* Max channels */
46 #define NUM_DIMMS			2 /* Max DIMMs per channel */
47 
48 #define _4GB				BIT_ULL(32)
49 
50 /* Size of physical memory */
51 #define TOM_OFFSET			0xa0
52 /* Top of low usable DRAM */
53 #define TOLUD_OFFSET			0xbc
54 /* Capability register C */
55 #define CAPID_C_OFFSET			0xec
56 #define CAPID_C_IBECC			BIT(15)
57 
58 /* Capability register E */
59 #define CAPID_E_OFFSET			0xf0
60 #define CAPID_E_IBECC			BIT(12)
61 
62 /* Error Status */
63 #define ERRSTS_OFFSET			0xc8
64 #define ERRSTS_CE			BIT_ULL(6)
65 #define ERRSTS_UE			BIT_ULL(7)
66 
67 /* Error Command */
68 #define ERRCMD_OFFSET			0xca
69 #define ERRCMD_CE			BIT_ULL(6)
70 #define ERRCMD_UE			BIT_ULL(7)
71 
72 /* IBECC MMIO base address */
73 #define IBECC_BASE			(res_cfg->ibecc_base)
74 #define IBECC_ACTIVATE_OFFSET		IBECC_BASE
75 #define IBECC_ACTIVATE_EN		BIT(0)
76 
77 /* IBECC error log */
78 #define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
79 #define ECC_ERROR_LOG_CE		BIT_ULL(62)
80 #define ECC_ERROR_LOG_UE		BIT_ULL(63)
81 #define ECC_ERROR_LOG_ADDR_SHIFT	5
82 #define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
83 #define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
84 
85 /* Host MMIO base address */
86 #define MCHBAR_OFFSET			0x48
87 #define MCHBAR_EN			BIT_ULL(0)
88 #define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
89 #define MCHBAR_SIZE			0x10000
90 
91 /* Parameters for the channel decode stage */
92 #define IMC_BASE			(res_cfg->imc_base)
93 #define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
94 #define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
95 #define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
96 #define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
97 #define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
98 
99 /* Parameters for DRAM decode stage */
100 #define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
101 #define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
102 
103 /* DIMM characteristics */
104 #define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
105 #define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
106 #define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
107 #define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
108 #define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
109 
110 /* Hash for memory controller selection */
111 #define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
112 #define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
113 
114 /* Hash for channel selection */
115 #define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
116 /* Hash for enhanced channel selection */
117 #define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
118 #define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
119 #define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
120 #define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
121 
122 /* Parameters for memory slice decode stage */
123 #define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
124 #define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
125 
126 static struct res_config {
127 	bool machine_check;
128 	int num_imc;
129 	u32 imc_base;
130 	u32 cmf_base;
131 	u32 cmf_size;
132 	u32 ms_hash_offset;
133 	u32 ibecc_base;
134 	u32 ibecc_error_log_offset;
135 	bool (*ibecc_available)(struct pci_dev *pdev);
136 	/* Convert error address logged in IBECC to system physical address */
137 	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
138 	/* Convert error address logged in IBECC to integrated memory controller address */
139 	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
140 } *res_cfg;
141 
142 struct igen6_imc {
143 	int mc;
144 	struct mem_ctl_info *mci;
145 	struct pci_dev *pdev;
146 	struct device dev;
147 	void __iomem *window;
148 	u64 size;
149 	u64 ch_s_size;
150 	int ch_l_map;
151 	u64 dimm_s_size[NUM_CHANNELS];
152 	u64 dimm_l_size[NUM_CHANNELS];
153 	int dimm_l_map[NUM_CHANNELS];
154 };
155 
156 static struct igen6_pvt {
157 	struct igen6_imc imc[NUM_IMC];
158 	u64 ms_hash;
159 	u64 ms_s_size;
160 	int ms_l_map;
161 } *igen6_pvt;
162 
163 /* The top of low usable DRAM */
164 static u32 igen6_tolud;
165 /* The size of physical memory */
166 static u64 igen6_tom;
167 
168 struct decoded_addr {
169 	int mc;
170 	u64 imc_addr;
171 	u64 sys_addr;
172 	int channel_idx;
173 	u64 channel_addr;
174 	int sub_channel_idx;
175 	u64 sub_channel_addr;
176 };
177 
178 struct ecclog_node {
179 	struct llist_node llnode;
180 	int mc;
181 	u64 ecclog;
182 };
183 
184 /*
185  * In the NMI handler, the driver uses the lock-less memory allocator
186  * to allocate memory to store the IBECC error logs and links the logs
187  * to the lock-less list. Delay printk() and the work of error reporting
188  * to EDAC core in a worker.
189  */
190 #define ECCLOG_POOL_SIZE	PAGE_SIZE
191 static LLIST_HEAD(ecclog_llist);
192 static struct gen_pool *ecclog_pool;
193 static char ecclog_buf[ECCLOG_POOL_SIZE];
194 static struct irq_work ecclog_irq_work;
195 static struct work_struct ecclog_work;
196 
197 /* Compute die IDs for Elkhart Lake with IBECC */
198 #define DID_EHL_SKU5	0x4514
199 #define DID_EHL_SKU6	0x4528
200 #define DID_EHL_SKU7	0x452a
201 #define DID_EHL_SKU8	0x4516
202 #define DID_EHL_SKU9	0x452c
203 #define DID_EHL_SKU10	0x452e
204 #define DID_EHL_SKU11	0x4532
205 #define DID_EHL_SKU12	0x4518
206 #define DID_EHL_SKU13	0x451a
207 #define DID_EHL_SKU14	0x4534
208 #define DID_EHL_SKU15	0x4536
209 
210 /* Compute die IDs for ICL-NNPI with IBECC */
211 #define DID_ICL_SKU8	0x4581
212 #define DID_ICL_SKU10	0x4585
213 #define DID_ICL_SKU11	0x4589
214 #define DID_ICL_SKU12	0x458d
215 
216 /* Compute die IDs for Tiger Lake with IBECC */
217 #define DID_TGL_SKU	0x9a14
218 
219 /* Compute die IDs for Alder Lake with IBECC */
220 #define DID_ADL_SKU1	0x4601
221 #define DID_ADL_SKU2	0x4602
222 #define DID_ADL_SKU3	0x4621
223 #define DID_ADL_SKU4	0x4641
224 
225 static bool ehl_ibecc_available(struct pci_dev *pdev)
226 {
227 	u32 v;
228 
229 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
230 		return false;
231 
232 	return !!(CAPID_C_IBECC & v);
233 }
234 
235 static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
236 {
237 	return eaddr;
238 }
239 
240 static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
241 {
242 	if (eaddr < igen6_tolud)
243 		return eaddr;
244 
245 	if (igen6_tom <= _4GB)
246 		return eaddr + igen6_tolud - _4GB;
247 
248 	if (eaddr < _4GB)
249 		return eaddr + igen6_tolud - igen6_tom;
250 
251 	return eaddr;
252 }
253 
254 static bool icl_ibecc_available(struct pci_dev *pdev)
255 {
256 	u32 v;
257 
258 	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
259 		return false;
260 
261 	return !(CAPID_C_IBECC & v) &&
262 		(boot_cpu_data.x86_stepping >= 1);
263 }
264 
265 static bool tgl_ibecc_available(struct pci_dev *pdev)
266 {
267 	u32 v;
268 
269 	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
270 		return false;
271 
272 	return !(CAPID_E_IBECC & v);
273 }
274 
275 static u64 mem_addr_to_sys_addr(u64 maddr)
276 {
277 	if (maddr < igen6_tolud)
278 		return maddr;
279 
280 	if (igen6_tom <= _4GB)
281 		return maddr - igen6_tolud + _4GB;
282 
283 	if (maddr < _4GB)
284 		return maddr - igen6_tolud + igen6_tom;
285 
286 	return maddr;
287 }
288 
289 static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
290 {
291 	u64 hash_addr = addr & mask, hash = hash_init;
292 	u64 intlv = (addr >> intlv_bit) & 1;
293 	int i;
294 
295 	for (i = 6; i < 20; i++)
296 		hash ^= (hash_addr >> i) & 1;
297 
298 	return hash ^ intlv;
299 }
300 
301 static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
302 {
303 	u64 maddr, hash, mask, ms_s_size;
304 	int intlv_bit;
305 	u32 ms_hash;
306 
307 	ms_s_size = igen6_pvt->ms_s_size;
308 	if (eaddr >= ms_s_size)
309 		return eaddr + ms_s_size;
310 
311 	ms_hash = igen6_pvt->ms_hash;
312 
313 	mask = MEM_SLICE_HASH_MASK(ms_hash);
314 	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
315 
316 	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
317 		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
318 
319 	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
320 
321 	return maddr | (hash << intlv_bit);
322 }
323 
324 static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
325 {
326 	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
327 
328 	return mem_addr_to_sys_addr(maddr);
329 }
330 
331 static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
332 {
333 	return eaddr;
334 }
335 
336 static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
337 {
338 	return mem_addr_to_sys_addr(eaddr);
339 }
340 
341 static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
342 {
343 	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
344 	struct igen6_imc *imc = &igen6_pvt->imc[mc];
345 	int intlv_bit;
346 	u32 mc_hash;
347 
348 	if (eaddr >= 2 * ms_s_size)
349 		return eaddr - ms_s_size;
350 
351 	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
352 
353 	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
354 
355 	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
356 		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
357 
358 	return imc_addr;
359 }
360 
361 static struct res_config ehl_cfg = {
362 	.num_imc		= 1,
363 	.imc_base		= 0x5000,
364 	.ibecc_base		= 0xdc00,
365 	.ibecc_available	= ehl_ibecc_available,
366 	.ibecc_error_log_offset	= 0x170,
367 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
368 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
369 };
370 
371 static struct res_config icl_cfg = {
372 	.num_imc		= 1,
373 	.imc_base		= 0x5000,
374 	.ibecc_base		= 0xd800,
375 	.ibecc_error_log_offset	= 0x170,
376 	.ibecc_available	= icl_ibecc_available,
377 	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
378 	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
379 };
380 
381 static struct res_config tgl_cfg = {
382 	.machine_check		= true,
383 	.num_imc		= 2,
384 	.imc_base		= 0x5000,
385 	.cmf_base		= 0x11000,
386 	.cmf_size		= 0x800,
387 	.ms_hash_offset		= 0xac,
388 	.ibecc_base		= 0xd400,
389 	.ibecc_error_log_offset	= 0x170,
390 	.ibecc_available	= tgl_ibecc_available,
391 	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
392 	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
393 };
394 
395 static struct res_config adl_cfg = {
396 	.machine_check		= true,
397 	.num_imc		= 2,
398 	.imc_base		= 0xd800,
399 	.ibecc_base		= 0xd400,
400 	.ibecc_error_log_offset	= 0x68,
401 	.ibecc_available	= tgl_ibecc_available,
402 	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
403 	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
404 };
405 
406 static const struct pci_device_id igen6_pci_tbl[] = {
407 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
408 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
409 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
410 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
411 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
412 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
413 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
414 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
415 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
416 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
417 	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
418 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
419 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
420 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
421 	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
422 	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
423 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
424 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
425 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
426 	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
427 	{ },
428 };
429 MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
430 
431 static enum dev_type get_width(int dimm_l, u32 mad_dimm)
432 {
433 	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
434 			 MAD_DIMM_CH_DSW(mad_dimm);
435 
436 	switch (w) {
437 	case 0:
438 		return DEV_X8;
439 	case 1:
440 		return DEV_X16;
441 	case 2:
442 		return DEV_X32;
443 	default:
444 		return DEV_UNKNOWN;
445 	}
446 }
447 
448 static enum mem_type get_memory_type(u32 mad_inter)
449 {
450 	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
451 
452 	switch (t) {
453 	case 0:
454 		return MEM_DDR4;
455 	case 1:
456 		return MEM_DDR3;
457 	case 2:
458 		return MEM_LPDDR3;
459 	case 3:
460 		return MEM_LPDDR4;
461 	case 4:
462 		return MEM_WIO2;
463 	default:
464 		return MEM_UNKNOWN;
465 	}
466 }
467 
468 static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
469 {
470 	u64 hash_addr = addr & mask, hash = 0;
471 	u64 intlv = (addr >> intlv_bit) & 1;
472 	int i;
473 
474 	for (i = 6; i < 20; i++)
475 		hash ^= (hash_addr >> i) & 1;
476 
477 	return (int)hash ^ intlv;
478 }
479 
480 static u64 decode_channel_addr(u64 addr, int intlv_bit)
481 {
482 	u64 channel_addr;
483 
484 	/* Remove the interleave bit and shift upper part down to fill gap */
485 	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
486 	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
487 
488 	return channel_addr;
489 }
490 
491 static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
492 			int *idx, u64 *sub_addr)
493 {
494 	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
495 
496 	if (addr > 2 * s_size) {
497 		*sub_addr = addr - s_size;
498 		*idx = l_map;
499 		return;
500 	}
501 
502 	if (CHANNEL_HASH_MODE(hash)) {
503 		*sub_addr = decode_channel_addr(addr, intlv_bit);
504 		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
505 	} else {
506 		*sub_addr = decode_channel_addr(addr, 6);
507 		*idx = GET_BITFIELD(addr, 6, 6);
508 	}
509 }
510 
511 static int igen6_decode(struct decoded_addr *res)
512 {
513 	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
514 	u64 addr = res->imc_addr, sub_addr, s_size;
515 	int idx, l_map;
516 	u32 hash;
517 
518 	if (addr >= igen6_tom) {
519 		edac_dbg(0, "Address 0x%llx out of range\n", addr);
520 		return -EINVAL;
521 	}
522 
523 	/* Decode channel */
524 	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
525 	s_size = imc->ch_s_size;
526 	l_map  = imc->ch_l_map;
527 	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
528 	res->channel_idx  = idx;
529 	res->channel_addr = sub_addr;
530 
531 	/* Decode sub-channel/DIMM */
532 	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
533 	s_size = imc->dimm_s_size[idx];
534 	l_map  = imc->dimm_l_map[idx];
535 	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
536 	res->sub_channel_idx  = idx;
537 	res->sub_channel_addr = sub_addr;
538 
539 	return 0;
540 }
541 
542 static void igen6_output_error(struct decoded_addr *res,
543 			       struct mem_ctl_info *mci, u64 ecclog)
544 {
545 	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
546 					 HW_EVENT_ERR_UNCORRECTED :
547 					 HW_EVENT_ERR_CORRECTED;
548 
549 	edac_mc_handle_error(type, mci, 1,
550 			     res->sys_addr >> PAGE_SHIFT,
551 			     res->sys_addr & ~PAGE_MASK,
552 			     ECC_ERROR_LOG_SYND(ecclog),
553 			     res->channel_idx, res->sub_channel_idx,
554 			     -1, "", "");
555 }
556 
557 static struct gen_pool *ecclog_gen_pool_create(void)
558 {
559 	struct gen_pool *pool;
560 
561 	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
562 	if (!pool)
563 		return NULL;
564 
565 	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
566 		gen_pool_destroy(pool);
567 		return NULL;
568 	}
569 
570 	return pool;
571 }
572 
573 static int ecclog_gen_pool_add(int mc, u64 ecclog)
574 {
575 	struct ecclog_node *node;
576 
577 	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
578 	if (!node)
579 		return -ENOMEM;
580 
581 	node->mc = mc;
582 	node->ecclog = ecclog;
583 	llist_add(&node->llnode, &ecclog_llist);
584 
585 	return 0;
586 }
587 
588 /*
589  * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
590  * configuration space status register ERRSTS can indicate whether a
591  * correctable error or an uncorrectable error occurred. We only use the
592  * ECC_ERROR_LOG register to check error type, but need to clear both
593  * registers to enable future error events.
594  */
595 static u64 ecclog_read_and_clear(struct igen6_imc *imc)
596 {
597 	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
598 
599 	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
600 		/* Clear CE/UE bits by writing 1s */
601 		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
602 		return ecclog;
603 	}
604 
605 	return 0;
606 }
607 
608 static void errsts_clear(struct igen6_imc *imc)
609 {
610 	u16 errsts;
611 
612 	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
613 		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
614 		return;
615 	}
616 
617 	/* Clear CE/UE bits by writing 1s */
618 	if (errsts & (ERRSTS_CE | ERRSTS_UE))
619 		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
620 }
621 
622 static int errcmd_enable_error_reporting(bool enable)
623 {
624 	struct igen6_imc *imc = &igen6_pvt->imc[0];
625 	u16 errcmd;
626 	int rc;
627 
628 	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
629 	if (rc)
630 		return rc;
631 
632 	if (enable)
633 		errcmd |= ERRCMD_CE | ERRSTS_UE;
634 	else
635 		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
636 
637 	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
638 	if (rc)
639 		return rc;
640 
641 	return 0;
642 }
643 
644 static int ecclog_handler(void)
645 {
646 	struct igen6_imc *imc;
647 	int i, n = 0;
648 	u64 ecclog;
649 
650 	for (i = 0; i < res_cfg->num_imc; i++) {
651 		imc = &igen6_pvt->imc[i];
652 
653 		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
654 
655 		ecclog = ecclog_read_and_clear(imc);
656 		if (!ecclog)
657 			continue;
658 
659 		if (!ecclog_gen_pool_add(i, ecclog))
660 			irq_work_queue(&ecclog_irq_work);
661 
662 		n++;
663 	}
664 
665 	return n;
666 }
667 
668 static void ecclog_work_cb(struct work_struct *work)
669 {
670 	struct ecclog_node *node, *tmp;
671 	struct mem_ctl_info *mci;
672 	struct llist_node *head;
673 	struct decoded_addr res;
674 	u64 eaddr;
675 
676 	head = llist_del_all(&ecclog_llist);
677 	if (!head)
678 		return;
679 
680 	llist_for_each_entry_safe(node, tmp, head, llnode) {
681 		memset(&res, 0, sizeof(res));
682 		eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
683 			ECC_ERROR_LOG_ADDR_SHIFT;
684 		res.mc	     = node->mc;
685 		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
686 		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
687 
688 		mci = igen6_pvt->imc[res.mc].mci;
689 
690 		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
691 		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
692 		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
693 
694 		if (!igen6_decode(&res))
695 			igen6_output_error(&res, mci, node->ecclog);
696 
697 		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
698 	}
699 }
700 
701 static void ecclog_irq_work_cb(struct irq_work *irq_work)
702 {
703 	int i;
704 
705 	for (i = 0; i < res_cfg->num_imc; i++)
706 		errsts_clear(&igen6_pvt->imc[i]);
707 
708 	if (!llist_empty(&ecclog_llist))
709 		schedule_work(&ecclog_work);
710 }
711 
712 static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
713 {
714 	unsigned char reason;
715 
716 	if (!ecclog_handler())
717 		return NMI_DONE;
718 
719 	/*
720 	 * Both In-Band ECC correctable error and uncorrectable error are
721 	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
722 	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
723 	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
724 	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
725 	 */
726 	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
727 	reason |= NMI_REASON_CLEAR_SERR;
728 	outb(reason, NMI_REASON_PORT);
729 	reason &= ~NMI_REASON_CLEAR_SERR;
730 	outb(reason, NMI_REASON_PORT);
731 
732 	return NMI_HANDLED;
733 }
734 
735 static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
736 			      void *data)
737 {
738 	struct mce *mce = (struct mce *)data;
739 	char *type;
740 
741 	if (mce->kflags & MCE_HANDLED_CEC)
742 		return NOTIFY_DONE;
743 
744 	/*
745 	 * Ignore unless this is a memory related error.
746 	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
747 	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
748 	 */
749 	if ((mce->status & 0xefff) >> 7 != 1)
750 		return NOTIFY_DONE;
751 
752 	if (mce->mcgstatus & MCG_STATUS_MCIP)
753 		type = "Exception";
754 	else
755 		type = "Event";
756 
757 	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
758 		 mce->extcpu, type, mce->mcgstatus,
759 		 mce->bank, mce->status);
760 	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
761 	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
762 	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
763 	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
764 		 mce->cpuvendor, mce->cpuid, mce->time,
765 		 mce->socketid, mce->apicid);
766 	/*
767 	 * We just use the Machine Check for the memory error notification.
768 	 * Each memory controller is associated with an IBECC instance.
769 	 * Directly read and clear the error information(error address and
770 	 * error type) on all the IBECC instances so that we know on which
771 	 * memory controller the memory error(s) occurred.
772 	 */
773 	if (!ecclog_handler())
774 		return NOTIFY_DONE;
775 
776 	mce->kflags |= MCE_HANDLED_EDAC;
777 
778 	return NOTIFY_DONE;
779 }
780 
781 static struct notifier_block ecclog_mce_dec = {
782 	.notifier_call	= ecclog_mce_handler,
783 	.priority	= MCE_PRIO_EDAC,
784 };
785 
786 static bool igen6_check_ecc(struct igen6_imc *imc)
787 {
788 	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
789 
790 	return !!(activate & IBECC_ACTIVATE_EN);
791 }
792 
793 static int igen6_get_dimm_config(struct mem_ctl_info *mci)
794 {
795 	struct igen6_imc *imc = mci->pvt_info;
796 	u32 mad_inter, mad_intra, mad_dimm;
797 	int i, j, ndimms, mc = imc->mc;
798 	struct dimm_info *dimm;
799 	enum mem_type mtype;
800 	enum dev_type dtype;
801 	u64 dsize;
802 	bool ecc;
803 
804 	edac_dbg(2, "\n");
805 
806 	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
807 	mtype = get_memory_type(mad_inter);
808 	ecc = igen6_check_ecc(imc);
809 	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
810 	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
811 
812 	for (i = 0; i < NUM_CHANNELS; i++) {
813 		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
814 		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
815 
816 		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
817 		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
818 		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
819 		imc->size += imc->dimm_s_size[i];
820 		imc->size += imc->dimm_l_size[i];
821 		ndimms = 0;
822 
823 		for (j = 0; j < NUM_DIMMS; j++) {
824 			dimm = edac_get_dimm(mci, i, j, 0);
825 
826 			if (j ^ imc->dimm_l_map[i]) {
827 				dtype = get_width(0, mad_dimm);
828 				dsize = imc->dimm_s_size[i];
829 			} else {
830 				dtype = get_width(1, mad_dimm);
831 				dsize = imc->dimm_l_size[i];
832 			}
833 
834 			if (!dsize)
835 				continue;
836 
837 			dimm->grain = 64;
838 			dimm->mtype = mtype;
839 			dimm->dtype = dtype;
840 			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
841 			dimm->edac_mode = EDAC_SECDED;
842 			snprintf(dimm->label, sizeof(dimm->label),
843 				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
844 			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
845 				 mc, i, j, dsize >> 20, dimm->nr_pages);
846 
847 			ndimms++;
848 		}
849 
850 		if (ndimms && !ecc) {
851 			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
852 			return -ENODEV;
853 		}
854 	}
855 
856 	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
857 
858 	return 0;
859 }
860 
861 #ifdef CONFIG_EDAC_DEBUG
862 /* Top of upper usable DRAM */
863 static u64 igen6_touud;
864 #define TOUUD_OFFSET	0xa8
865 
866 static void igen6_reg_dump(struct igen6_imc *imc)
867 {
868 	int i;
869 
870 	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
871 		 readl(imc->window + CHANNEL_HASH_OFFSET));
872 	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
873 		 readl(imc->window + CHANNEL_EHASH_OFFSET));
874 	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
875 		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
876 	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
877 		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
878 
879 	for (i = 0; i < NUM_CHANNELS; i++) {
880 		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
881 			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
882 		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
883 			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
884 	}
885 	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
886 	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
887 	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
888 }
889 
890 static struct dentry *igen6_test;
891 
892 static int debugfs_u64_set(void *data, u64 val)
893 {
894 	u64 ecclog;
895 
896 	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
897 		edac_dbg(0, "Address 0x%llx out of range\n", val);
898 		return 0;
899 	}
900 
901 	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
902 
903 	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
904 	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
905 
906 	if (!ecclog_gen_pool_add(0, ecclog))
907 		irq_work_queue(&ecclog_irq_work);
908 
909 	return 0;
910 }
911 DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
912 
913 static void igen6_debug_setup(void)
914 {
915 	igen6_test = edac_debugfs_create_dir("igen6_test");
916 	if (!igen6_test)
917 		return;
918 
919 	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
920 				      NULL, &fops_u64_wo)) {
921 		debugfs_remove(igen6_test);
922 		igen6_test = NULL;
923 	}
924 }
925 
926 static void igen6_debug_teardown(void)
927 {
928 	debugfs_remove_recursive(igen6_test);
929 }
930 #else
931 static void igen6_reg_dump(struct igen6_imc *imc) {}
932 static void igen6_debug_setup(void) {}
933 static void igen6_debug_teardown(void) {}
934 #endif
935 
936 static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
937 {
938 	union  {
939 		u64 v;
940 		struct {
941 			u32 v_lo;
942 			u32 v_hi;
943 		};
944 	} u;
945 
946 	edac_dbg(2, "\n");
947 
948 	if (!res_cfg->ibecc_available(pdev)) {
949 		edac_dbg(2, "No In-Band ECC IP\n");
950 		goto fail;
951 	}
952 
953 	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
954 		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
955 		goto fail;
956 	}
957 
958 	igen6_tolud &= GENMASK(31, 20);
959 
960 	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
961 		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
962 		goto fail;
963 	}
964 
965 	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
966 		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
967 		goto fail;
968 	}
969 
970 	igen6_tom = u.v & GENMASK_ULL(38, 20);
971 
972 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
973 		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
974 		goto fail;
975 	}
976 
977 	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
978 		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
979 		goto fail;
980 	}
981 
982 	if (!(u.v & MCHBAR_EN)) {
983 		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
984 		goto fail;
985 	}
986 
987 	*mchbar = MCHBAR_BASE(u.v);
988 
989 #ifdef CONFIG_EDAC_DEBUG
990 	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
991 		edac_dbg(2, "Failed to read lower TOUUD\n");
992 	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
993 		edac_dbg(2, "Failed to read upper TOUUD\n");
994 	else
995 		igen6_touud = u.v & GENMASK_ULL(38, 20);
996 #endif
997 
998 	return 0;
999 fail:
1000 	return -ENODEV;
1001 }
1002 
1003 static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1004 {
1005 	struct edac_mc_layer layers[2];
1006 	struct mem_ctl_info *mci;
1007 	struct igen6_imc *imc;
1008 	void __iomem *window;
1009 	int rc;
1010 
1011 	edac_dbg(2, "\n");
1012 
1013 	mchbar += mc * MCHBAR_SIZE;
1014 	window = ioremap(mchbar, MCHBAR_SIZE);
1015 	if (!window) {
1016 		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1017 		return -ENODEV;
1018 	}
1019 
1020 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1021 	layers[0].size = NUM_CHANNELS;
1022 	layers[0].is_virt_csrow = false;
1023 	layers[1].type = EDAC_MC_LAYER_SLOT;
1024 	layers[1].size = NUM_DIMMS;
1025 	layers[1].is_virt_csrow = true;
1026 
1027 	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1028 	if (!mci) {
1029 		rc = -ENOMEM;
1030 		goto fail;
1031 	}
1032 
1033 	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1034 	if (!mci->ctl_name) {
1035 		rc = -ENOMEM;
1036 		goto fail2;
1037 	}
1038 
1039 	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1040 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1041 	mci->edac_cap = EDAC_FLAG_SECDED;
1042 	mci->mod_name = EDAC_MOD_STR;
1043 	mci->dev_name = pci_name(pdev);
1044 	mci->pvt_info = &igen6_pvt->imc[mc];
1045 
1046 	imc = mci->pvt_info;
1047 	device_initialize(&imc->dev);
1048 	/*
1049 	 * EDAC core uses mci->pdev(pointer of structure device) as
1050 	 * memory controller ID. The client SoCs attach one or more
1051 	 * memory controllers to single pci_dev (single pci_dev->dev
1052 	 * can be for multiple memory controllers).
1053 	 *
1054 	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1055 	 * for the first memory controller and assign a unique imc->dev
1056 	 * to mci->pdev for each non-first memory controller.
1057 	 */
1058 	mci->pdev = mc ? &imc->dev : &pdev->dev;
1059 	imc->mc	= mc;
1060 	imc->pdev = pdev;
1061 	imc->window = window;
1062 
1063 	igen6_reg_dump(imc);
1064 
1065 	rc = igen6_get_dimm_config(mci);
1066 	if (rc)
1067 		goto fail3;
1068 
1069 	rc = edac_mc_add_mc(mci);
1070 	if (rc) {
1071 		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1072 		goto fail3;
1073 	}
1074 
1075 	imc->mci = mci;
1076 	return 0;
1077 fail3:
1078 	kfree(mci->ctl_name);
1079 fail2:
1080 	edac_mc_free(mci);
1081 fail:
1082 	iounmap(window);
1083 	return rc;
1084 }
1085 
1086 static void igen6_unregister_mcis(void)
1087 {
1088 	struct mem_ctl_info *mci;
1089 	struct igen6_imc *imc;
1090 	int i;
1091 
1092 	edac_dbg(2, "\n");
1093 
1094 	for (i = 0; i < res_cfg->num_imc; i++) {
1095 		imc = &igen6_pvt->imc[i];
1096 		mci = imc->mci;
1097 		if (!mci)
1098 			continue;
1099 
1100 		edac_mc_del_mc(mci->pdev);
1101 		kfree(mci->ctl_name);
1102 		edac_mc_free(mci);
1103 		iounmap(imc->window);
1104 	}
1105 }
1106 
1107 static int igen6_mem_slice_setup(u64 mchbar)
1108 {
1109 	struct igen6_imc *imc = &igen6_pvt->imc[0];
1110 	u64 base = mchbar + res_cfg->cmf_base;
1111 	u32 offset = res_cfg->ms_hash_offset;
1112 	u32 size = res_cfg->cmf_size;
1113 	u64 ms_s_size, ms_hash;
1114 	void __iomem *cmf;
1115 	int ms_l_map;
1116 
1117 	edac_dbg(2, "\n");
1118 
1119 	if (imc[0].size < imc[1].size) {
1120 		ms_s_size = imc[0].size;
1121 		ms_l_map  = 1;
1122 	} else {
1123 		ms_s_size = imc[1].size;
1124 		ms_l_map  = 0;
1125 	}
1126 
1127 	igen6_pvt->ms_s_size = ms_s_size;
1128 	igen6_pvt->ms_l_map  = ms_l_map;
1129 
1130 	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1131 		 ms_s_size >> 20, ms_l_map);
1132 
1133 	if (!size)
1134 		return 0;
1135 
1136 	cmf = ioremap(base, size);
1137 	if (!cmf) {
1138 		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1139 		return -ENODEV;
1140 	}
1141 
1142 	ms_hash = readq(cmf + offset);
1143 	igen6_pvt->ms_hash = ms_hash;
1144 
1145 	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1146 
1147 	iounmap(cmf);
1148 
1149 	return 0;
1150 }
1151 
1152 static int register_err_handler(void)
1153 {
1154 	int rc;
1155 
1156 	if (res_cfg->machine_check) {
1157 		mce_register_decode_chain(&ecclog_mce_dec);
1158 		return 0;
1159 	}
1160 
1161 	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1162 				  0, IGEN6_NMI_NAME);
1163 	if (rc) {
1164 		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1165 		return rc;
1166 	}
1167 
1168 	return 0;
1169 }
1170 
1171 static void unregister_err_handler(void)
1172 {
1173 	if (res_cfg->machine_check) {
1174 		mce_unregister_decode_chain(&ecclog_mce_dec);
1175 		return;
1176 	}
1177 
1178 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1179 }
1180 
1181 static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1182 {
1183 	u64 mchbar;
1184 	int i, rc;
1185 
1186 	edac_dbg(2, "\n");
1187 
1188 	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1189 	if (!igen6_pvt)
1190 		return -ENOMEM;
1191 
1192 	res_cfg = (struct res_config *)ent->driver_data;
1193 
1194 	rc = igen6_pci_setup(pdev, &mchbar);
1195 	if (rc)
1196 		goto fail;
1197 
1198 	for (i = 0; i < res_cfg->num_imc; i++) {
1199 		rc = igen6_register_mci(i, mchbar, pdev);
1200 		if (rc)
1201 			goto fail2;
1202 	}
1203 
1204 	if (res_cfg->num_imc > 1) {
1205 		rc = igen6_mem_slice_setup(mchbar);
1206 		if (rc)
1207 			goto fail2;
1208 	}
1209 
1210 	ecclog_pool = ecclog_gen_pool_create();
1211 	if (!ecclog_pool) {
1212 		rc = -ENOMEM;
1213 		goto fail2;
1214 	}
1215 
1216 	INIT_WORK(&ecclog_work, ecclog_work_cb);
1217 	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1218 
1219 	/* Check if any pending errors before registering the NMI handler */
1220 	ecclog_handler();
1221 
1222 	rc = register_err_handler();
1223 	if (rc)
1224 		goto fail3;
1225 
1226 	/* Enable error reporting */
1227 	rc = errcmd_enable_error_reporting(true);
1228 	if (rc) {
1229 		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1230 		goto fail4;
1231 	}
1232 
1233 	igen6_debug_setup();
1234 	return 0;
1235 fail4:
1236 	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1237 fail3:
1238 	gen_pool_destroy(ecclog_pool);
1239 fail2:
1240 	igen6_unregister_mcis();
1241 fail:
1242 	kfree(igen6_pvt);
1243 	return rc;
1244 }
1245 
1246 static void igen6_remove(struct pci_dev *pdev)
1247 {
1248 	edac_dbg(2, "\n");
1249 
1250 	igen6_debug_teardown();
1251 	errcmd_enable_error_reporting(false);
1252 	unregister_err_handler();
1253 	irq_work_sync(&ecclog_irq_work);
1254 	flush_work(&ecclog_work);
1255 	gen_pool_destroy(ecclog_pool);
1256 	igen6_unregister_mcis();
1257 	kfree(igen6_pvt);
1258 }
1259 
1260 static struct pci_driver igen6_driver = {
1261 	.name     = EDAC_MOD_STR,
1262 	.probe    = igen6_probe,
1263 	.remove   = igen6_remove,
1264 	.id_table = igen6_pci_tbl,
1265 };
1266 
1267 static int __init igen6_init(void)
1268 {
1269 	const char *owner;
1270 	int rc;
1271 
1272 	edac_dbg(2, "\n");
1273 
1274 	if (ghes_get_devices())
1275 		return -EBUSY;
1276 
1277 	owner = edac_get_owner();
1278 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1279 		return -EBUSY;
1280 
1281 	edac_op_state = EDAC_OPSTATE_NMI;
1282 
1283 	rc = pci_register_driver(&igen6_driver);
1284 	if (rc)
1285 		return rc;
1286 
1287 	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1288 
1289 	return 0;
1290 }
1291 
1292 static void __exit igen6_exit(void)
1293 {
1294 	edac_dbg(2, "\n");
1295 
1296 	pci_unregister_driver(&igen6_driver);
1297 }
1298 
1299 module_init(igen6_init);
1300 module_exit(igen6_exit);
1301 
1302 MODULE_LICENSE("GPL v2");
1303 MODULE_AUTHOR("Qiuxu Zhuo");
1304 MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");
1305