1 /* Intel i7 core/Nehalem Memory Controller kernel module 2 * 3 * This driver supports the memory controllers found on the Intel 4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx, 5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield 6 * and Westmere-EP. 7 * 8 * This file may be distributed under the terms of the 9 * GNU General Public License version 2 only. 10 * 11 * Copyright (c) 2009-2010 by: 12 * Mauro Carvalho Chehab 13 * 14 * Red Hat Inc. http://www.redhat.com 15 * 16 * Forked and adapted from the i5400_edac driver 17 * 18 * Based on the following public Intel datasheets: 19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor 20 * Datasheet, Volume 2: 21 * http://download.intel.com/design/processor/datashts/320835.pdf 22 * Intel Xeon Processor 5500 Series Datasheet Volume 2 23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf 24 * also available at: 25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf 26 */ 27 28 #include <linux/module.h> 29 #include <linux/init.h> 30 #include <linux/pci.h> 31 #include <linux/pci_ids.h> 32 #include <linux/slab.h> 33 #include <linux/delay.h> 34 #include <linux/dmi.h> 35 #include <linux/edac.h> 36 #include <linux/mmzone.h> 37 #include <linux/smp.h> 38 #include <asm/mce.h> 39 #include <asm/processor.h> 40 #include <asm/div64.h> 41 42 #include "edac_module.h" 43 44 /* Static vars */ 45 static LIST_HEAD(i7core_edac_list); 46 static DEFINE_MUTEX(i7core_edac_lock); 47 static int probed; 48 49 static int use_pci_fixup; 50 module_param(use_pci_fixup, int, 0444); 51 MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices"); 52 /* 53 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core 54 * registers start at bus 255, and are not reported by BIOS. 55 * We currently find devices with only 2 sockets. In order to support more QPI 56 * Quick Path Interconnect, just increment this number. 57 */ 58 #define MAX_SOCKET_BUSES 2 59 60 61 /* 62 * Alter this version for the module when modifications are made 63 */ 64 #define I7CORE_REVISION " Ver: 1.0.0" 65 #define EDAC_MOD_STR "i7core_edac" 66 67 /* 68 * Debug macros 69 */ 70 #define i7core_printk(level, fmt, arg...) \ 71 edac_printk(level, "i7core", fmt, ##arg) 72 73 #define i7core_mc_printk(mci, level, fmt, arg...) \ 74 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg) 75 76 /* 77 * i7core Memory Controller Registers 78 */ 79 80 /* OFFSETS for Device 0 Function 0 */ 81 82 #define MC_CFG_CONTROL 0x90 83 #define MC_CFG_UNLOCK 0x02 84 #define MC_CFG_LOCK 0x00 85 86 /* OFFSETS for Device 3 Function 0 */ 87 88 #define MC_CONTROL 0x48 89 #define MC_STATUS 0x4c 90 #define MC_MAX_DOD 0x64 91 92 /* 93 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet: 94 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf 95 */ 96 97 #define MC_TEST_ERR_RCV1 0x60 98 #define DIMM2_COR_ERR(r) ((r) & 0x7fff) 99 100 #define MC_TEST_ERR_RCV0 0x64 101 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff) 102 #define DIMM0_COR_ERR(r) ((r) & 0x7fff) 103 104 /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */ 105 #define MC_SSRCONTROL 0x48 106 #define SSR_MODE_DISABLE 0x00 107 #define SSR_MODE_ENABLE 0x01 108 #define SSR_MODE_MASK 0x03 109 110 #define MC_SCRUB_CONTROL 0x4c 111 #define STARTSCRUB (1 << 24) 112 #define SCRUBINTERVAL_MASK 0xffffff 113 114 #define MC_COR_ECC_CNT_0 0x80 115 #define MC_COR_ECC_CNT_1 0x84 116 #define MC_COR_ECC_CNT_2 0x88 117 #define MC_COR_ECC_CNT_3 0x8c 118 #define MC_COR_ECC_CNT_4 0x90 119 #define MC_COR_ECC_CNT_5 0x94 120 121 #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff) 122 #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff) 123 124 125 /* OFFSETS for Devices 4,5 and 6 Function 0 */ 126 127 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58 128 #define THREE_DIMMS_PRESENT (1 << 24) 129 #define SINGLE_QUAD_RANK_PRESENT (1 << 23) 130 #define QUAD_RANK_PRESENT (1 << 22) 131 #define REGISTERED_DIMM (1 << 15) 132 133 #define MC_CHANNEL_MAPPER 0x60 134 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1) 135 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1) 136 137 #define MC_CHANNEL_RANK_PRESENT 0x7c 138 #define RANK_PRESENT_MASK 0xffff 139 140 #define MC_CHANNEL_ADDR_MATCH 0xf0 141 #define MC_CHANNEL_ERROR_MASK 0xf8 142 #define MC_CHANNEL_ERROR_INJECT 0xfc 143 #define INJECT_ADDR_PARITY 0x10 144 #define INJECT_ECC 0x08 145 #define MASK_CACHELINE 0x06 146 #define MASK_FULL_CACHELINE 0x06 147 #define MASK_MSB32_CACHELINE 0x04 148 #define MASK_LSB32_CACHELINE 0x02 149 #define NO_MASK_CACHELINE 0x00 150 #define REPEAT_EN 0x01 151 152 /* OFFSETS for Devices 4,5 and 6 Function 1 */ 153 154 #define MC_DOD_CH_DIMM0 0x48 155 #define MC_DOD_CH_DIMM1 0x4c 156 #define MC_DOD_CH_DIMM2 0x50 157 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10)) 158 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10) 159 #define DIMM_PRESENT_MASK (1 << 9) 160 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9) 161 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7)) 162 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7) 163 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5)) 164 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5) 165 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2)) 166 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2) 167 #define MC_DOD_NUMCOL_MASK 3 168 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK) 169 170 #define MC_RANK_PRESENT 0x7c 171 172 #define MC_SAG_CH_0 0x80 173 #define MC_SAG_CH_1 0x84 174 #define MC_SAG_CH_2 0x88 175 #define MC_SAG_CH_3 0x8c 176 #define MC_SAG_CH_4 0x90 177 #define MC_SAG_CH_5 0x94 178 #define MC_SAG_CH_6 0x98 179 #define MC_SAG_CH_7 0x9c 180 181 #define MC_RIR_LIMIT_CH_0 0x40 182 #define MC_RIR_LIMIT_CH_1 0x44 183 #define MC_RIR_LIMIT_CH_2 0x48 184 #define MC_RIR_LIMIT_CH_3 0x4C 185 #define MC_RIR_LIMIT_CH_4 0x50 186 #define MC_RIR_LIMIT_CH_5 0x54 187 #define MC_RIR_LIMIT_CH_6 0x58 188 #define MC_RIR_LIMIT_CH_7 0x5C 189 #define MC_RIR_LIMIT_MASK ((1 << 10) - 1) 190 191 #define MC_RIR_WAY_CH 0x80 192 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7) 193 #define MC_RIR_WAY_RANK_MASK 0x7 194 195 /* 196 * i7core structs 197 */ 198 199 #define NUM_CHANS 3 200 #define MAX_DIMMS 3 /* Max DIMMS per channel */ 201 #define MAX_MCR_FUNC 4 202 #define MAX_CHAN_FUNC 3 203 204 struct i7core_info { 205 u32 mc_control; 206 u32 mc_status; 207 u32 max_dod; 208 u32 ch_map; 209 }; 210 211 212 struct i7core_inject { 213 int enable; 214 215 u32 section; 216 u32 type; 217 u32 eccmask; 218 219 /* Error address mask */ 220 int channel, dimm, rank, bank, page, col; 221 }; 222 223 struct i7core_channel { 224 bool is_3dimms_present; 225 bool is_single_4rank; 226 bool has_4rank; 227 u32 dimms; 228 }; 229 230 struct pci_id_descr { 231 int dev; 232 int func; 233 int dev_id; 234 int optional; 235 }; 236 237 struct pci_id_table { 238 const struct pci_id_descr *descr; 239 int n_devs; 240 }; 241 242 struct i7core_dev { 243 struct list_head list; 244 u8 socket; 245 struct pci_dev **pdev; 246 int n_devs; 247 struct mem_ctl_info *mci; 248 }; 249 250 struct i7core_pvt { 251 struct device *addrmatch_dev, *chancounts_dev; 252 253 struct pci_dev *pci_noncore; 254 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1]; 255 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1]; 256 257 struct i7core_dev *i7core_dev; 258 259 struct i7core_info info; 260 struct i7core_inject inject; 261 struct i7core_channel channel[NUM_CHANS]; 262 263 int ce_count_available; 264 265 /* ECC corrected errors counts per udimm */ 266 unsigned long udimm_ce_count[MAX_DIMMS]; 267 int udimm_last_ce_count[MAX_DIMMS]; 268 /* ECC corrected errors counts per rdimm */ 269 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS]; 270 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS]; 271 272 bool is_registered, enable_scrub; 273 274 /* DCLK Frequency used for computing scrub rate */ 275 int dclk_freq; 276 277 /* Struct to control EDAC polling */ 278 struct edac_pci_ctl_info *i7core_pci; 279 }; 280 281 #define PCI_DESCR(device, function, device_id) \ 282 .dev = (device), \ 283 .func = (function), \ 284 .dev_id = (device_id) 285 286 static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = { 287 /* Memory controller */ 288 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) }, 289 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) }, 290 /* Exists only for RDIMM */ 291 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 }, 292 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) }, 293 294 /* Channel 0 */ 295 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) }, 296 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) }, 297 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) }, 298 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) }, 299 300 /* Channel 1 */ 301 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) }, 302 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) }, 303 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) }, 304 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) }, 305 306 /* Channel 2 */ 307 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) }, 308 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) }, 309 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) }, 310 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) }, 311 312 /* Generic Non-core registers */ 313 /* 314 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41) 315 * On Xeon 55xx, however, it has a different id (8086:2c40). So, 316 * the probing code needs to test for the other address in case of 317 * failure of this one 318 */ 319 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) }, 320 321 }; 322 323 static const struct pci_id_descr pci_dev_descr_lynnfield[] = { 324 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) }, 325 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) }, 326 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) }, 327 328 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) }, 329 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) }, 330 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) }, 331 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) }, 332 333 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) }, 334 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) }, 335 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) }, 336 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) }, 337 338 /* 339 * This is the PCI device has an alternate address on some 340 * processors like Core i7 860 341 */ 342 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) }, 343 }; 344 345 static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = { 346 /* Memory controller */ 347 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) }, 348 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) }, 349 /* Exists only for RDIMM */ 350 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 }, 351 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) }, 352 353 /* Channel 0 */ 354 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) }, 355 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) }, 356 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) }, 357 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) }, 358 359 /* Channel 1 */ 360 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) }, 361 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) }, 362 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) }, 363 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) }, 364 365 /* Channel 2 */ 366 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) }, 367 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) }, 368 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) }, 369 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) }, 370 371 /* Generic Non-core registers */ 372 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) }, 373 374 }; 375 376 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } 377 static const struct pci_id_table pci_dev_table[] = { 378 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem), 379 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield), 380 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere), 381 {0,} /* 0 terminated list. */ 382 }; 383 384 /* 385 * pci_device_id table for which devices we are looking for 386 */ 387 static const struct pci_device_id i7core_pci_tbl[] = { 388 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)}, 389 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)}, 390 {0,} /* 0 terminated list. */ 391 }; 392 393 /**************************************************************************** 394 Ancillary status routines 395 ****************************************************************************/ 396 397 /* MC_CONTROL bits */ 398 #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch))) 399 #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1)) 400 401 /* MC_STATUS bits */ 402 #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4)) 403 #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch)) 404 405 /* MC_MAX_DOD read functions */ 406 static inline int numdimms(u32 dimms) 407 { 408 return (dimms & 0x3) + 1; 409 } 410 411 static inline int numrank(u32 rank) 412 { 413 static const int ranks[] = { 1, 2, 4, -EINVAL }; 414 415 return ranks[rank & 0x3]; 416 } 417 418 static inline int numbank(u32 bank) 419 { 420 static const int banks[] = { 4, 8, 16, -EINVAL }; 421 422 return banks[bank & 0x3]; 423 } 424 425 static inline int numrow(u32 row) 426 { 427 static const int rows[] = { 428 1 << 12, 1 << 13, 1 << 14, 1 << 15, 429 1 << 16, -EINVAL, -EINVAL, -EINVAL, 430 }; 431 432 return rows[row & 0x7]; 433 } 434 435 static inline int numcol(u32 col) 436 { 437 static const int cols[] = { 438 1 << 10, 1 << 11, 1 << 12, -EINVAL, 439 }; 440 return cols[col & 0x3]; 441 } 442 443 static struct i7core_dev *get_i7core_dev(u8 socket) 444 { 445 struct i7core_dev *i7core_dev; 446 447 list_for_each_entry(i7core_dev, &i7core_edac_list, list) { 448 if (i7core_dev->socket == socket) 449 return i7core_dev; 450 } 451 452 return NULL; 453 } 454 455 static struct i7core_dev *alloc_i7core_dev(u8 socket, 456 const struct pci_id_table *table) 457 { 458 struct i7core_dev *i7core_dev; 459 460 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL); 461 if (!i7core_dev) 462 return NULL; 463 464 i7core_dev->pdev = kcalloc(table->n_devs, sizeof(*i7core_dev->pdev), 465 GFP_KERNEL); 466 if (!i7core_dev->pdev) { 467 kfree(i7core_dev); 468 return NULL; 469 } 470 471 i7core_dev->socket = socket; 472 i7core_dev->n_devs = table->n_devs; 473 list_add_tail(&i7core_dev->list, &i7core_edac_list); 474 475 return i7core_dev; 476 } 477 478 static void free_i7core_dev(struct i7core_dev *i7core_dev) 479 { 480 list_del(&i7core_dev->list); 481 kfree(i7core_dev->pdev); 482 kfree(i7core_dev); 483 } 484 485 /**************************************************************************** 486 Memory check routines 487 ****************************************************************************/ 488 489 static int get_dimm_config(struct mem_ctl_info *mci) 490 { 491 struct i7core_pvt *pvt = mci->pvt_info; 492 struct pci_dev *pdev; 493 int i, j; 494 enum edac_type mode; 495 enum mem_type mtype; 496 struct dimm_info *dimm; 497 498 /* Get data from the MC register, function 0 */ 499 pdev = pvt->pci_mcr[0]; 500 if (!pdev) 501 return -ENODEV; 502 503 /* Device 3 function 0 reads */ 504 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control); 505 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status); 506 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod); 507 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map); 508 509 edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n", 510 pvt->i7core_dev->socket, pvt->info.mc_control, 511 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map); 512 513 if (ECC_ENABLED(pvt)) { 514 edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4); 515 if (ECCx8(pvt)) 516 mode = EDAC_S8ECD8ED; 517 else 518 mode = EDAC_S4ECD4ED; 519 } else { 520 edac_dbg(0, "ECC disabled\n"); 521 mode = EDAC_NONE; 522 } 523 524 /* FIXME: need to handle the error codes */ 525 edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n", 526 numdimms(pvt->info.max_dod), 527 numrank(pvt->info.max_dod >> 2), 528 numbank(pvt->info.max_dod >> 4), 529 numrow(pvt->info.max_dod >> 6), 530 numcol(pvt->info.max_dod >> 9)); 531 532 for (i = 0; i < NUM_CHANS; i++) { 533 u32 data, dimm_dod[3], value[8]; 534 535 if (!pvt->pci_ch[i][0]) 536 continue; 537 538 if (!CH_ACTIVE(pvt, i)) { 539 edac_dbg(0, "Channel %i is not active\n", i); 540 continue; 541 } 542 if (CH_DISABLED(pvt, i)) { 543 edac_dbg(0, "Channel %i is disabled\n", i); 544 continue; 545 } 546 547 /* Devices 4-6 function 0 */ 548 pci_read_config_dword(pvt->pci_ch[i][0], 549 MC_CHANNEL_DIMM_INIT_PARAMS, &data); 550 551 552 if (data & THREE_DIMMS_PRESENT) 553 pvt->channel[i].is_3dimms_present = true; 554 555 if (data & SINGLE_QUAD_RANK_PRESENT) 556 pvt->channel[i].is_single_4rank = true; 557 558 if (data & QUAD_RANK_PRESENT) 559 pvt->channel[i].has_4rank = true; 560 561 if (data & REGISTERED_DIMM) 562 mtype = MEM_RDDR3; 563 else 564 mtype = MEM_DDR3; 565 566 /* Devices 4-6 function 1 */ 567 pci_read_config_dword(pvt->pci_ch[i][1], 568 MC_DOD_CH_DIMM0, &dimm_dod[0]); 569 pci_read_config_dword(pvt->pci_ch[i][1], 570 MC_DOD_CH_DIMM1, &dimm_dod[1]); 571 pci_read_config_dword(pvt->pci_ch[i][1], 572 MC_DOD_CH_DIMM2, &dimm_dod[2]); 573 574 edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n", 575 i, 576 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i), 577 data, 578 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "", 579 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "", 580 pvt->channel[i].has_4rank ? "HAS_4R " : "", 581 (data & REGISTERED_DIMM) ? 'R' : 'U'); 582 583 for (j = 0; j < 3; j++) { 584 u32 banks, ranks, rows, cols; 585 u32 size, npages; 586 587 if (!DIMM_PRESENT(dimm_dod[j])) 588 continue; 589 590 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, 591 i, j, 0); 592 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j])); 593 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j])); 594 rows = numrow(MC_DOD_NUMROW(dimm_dod[j])); 595 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j])); 596 597 /* DDR3 has 8 I/O banks */ 598 size = (rows * cols * banks * ranks) >> (20 - 3); 599 600 edac_dbg(0, "\tdimm %d %d MiB offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n", 601 j, size, 602 RANKOFFSET(dimm_dod[j]), 603 banks, ranks, rows, cols); 604 605 npages = MiB_TO_PAGES(size); 606 607 dimm->nr_pages = npages; 608 609 switch (banks) { 610 case 4: 611 dimm->dtype = DEV_X4; 612 break; 613 case 8: 614 dimm->dtype = DEV_X8; 615 break; 616 case 16: 617 dimm->dtype = DEV_X16; 618 break; 619 default: 620 dimm->dtype = DEV_UNKNOWN; 621 } 622 623 snprintf(dimm->label, sizeof(dimm->label), 624 "CPU#%uChannel#%u_DIMM#%u", 625 pvt->i7core_dev->socket, i, j); 626 dimm->grain = 8; 627 dimm->edac_mode = mode; 628 dimm->mtype = mtype; 629 } 630 631 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]); 632 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]); 633 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]); 634 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]); 635 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]); 636 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]); 637 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]); 638 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]); 639 edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i); 640 for (j = 0; j < 8; j++) 641 edac_dbg(1, "\t\t%#x\t%#x\t%#x\n", 642 (value[j] >> 27) & 0x1, 643 (value[j] >> 24) & 0x7, 644 (value[j] & ((1 << 24) - 1))); 645 } 646 647 return 0; 648 } 649 650 /**************************************************************************** 651 Error insertion routines 652 ****************************************************************************/ 653 654 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 655 656 /* The i7core has independent error injection features per channel. 657 However, to have a simpler code, we don't allow enabling error injection 658 on more than one channel. 659 Also, since a change at an inject parameter will be applied only at enable, 660 we're disabling error injection on all write calls to the sysfs nodes that 661 controls the error code injection. 662 */ 663 static int disable_inject(const struct mem_ctl_info *mci) 664 { 665 struct i7core_pvt *pvt = mci->pvt_info; 666 667 pvt->inject.enable = 0; 668 669 if (!pvt->pci_ch[pvt->inject.channel][0]) 670 return -ENODEV; 671 672 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0], 673 MC_CHANNEL_ERROR_INJECT, 0); 674 675 return 0; 676 } 677 678 /* 679 * i7core inject inject.section 680 * 681 * accept and store error injection inject.section value 682 * bit 0 - refers to the lower 32-byte half cacheline 683 * bit 1 - refers to the upper 32-byte half cacheline 684 */ 685 static ssize_t i7core_inject_section_store(struct device *dev, 686 struct device_attribute *mattr, 687 const char *data, size_t count) 688 { 689 struct mem_ctl_info *mci = to_mci(dev); 690 struct i7core_pvt *pvt = mci->pvt_info; 691 unsigned long value; 692 int rc; 693 694 if (pvt->inject.enable) 695 disable_inject(mci); 696 697 rc = kstrtoul(data, 10, &value); 698 if ((rc < 0) || (value > 3)) 699 return -EIO; 700 701 pvt->inject.section = (u32) value; 702 return count; 703 } 704 705 static ssize_t i7core_inject_section_show(struct device *dev, 706 struct device_attribute *mattr, 707 char *data) 708 { 709 struct mem_ctl_info *mci = to_mci(dev); 710 struct i7core_pvt *pvt = mci->pvt_info; 711 return sprintf(data, "0x%08x\n", pvt->inject.section); 712 } 713 714 /* 715 * i7core inject.type 716 * 717 * accept and store error injection inject.section value 718 * bit 0 - repeat enable - Enable error repetition 719 * bit 1 - inject ECC error 720 * bit 2 - inject parity error 721 */ 722 static ssize_t i7core_inject_type_store(struct device *dev, 723 struct device_attribute *mattr, 724 const char *data, size_t count) 725 { 726 struct mem_ctl_info *mci = to_mci(dev); 727 struct i7core_pvt *pvt = mci->pvt_info; 728 unsigned long value; 729 int rc; 730 731 if (pvt->inject.enable) 732 disable_inject(mci); 733 734 rc = kstrtoul(data, 10, &value); 735 if ((rc < 0) || (value > 7)) 736 return -EIO; 737 738 pvt->inject.type = (u32) value; 739 return count; 740 } 741 742 static ssize_t i7core_inject_type_show(struct device *dev, 743 struct device_attribute *mattr, 744 char *data) 745 { 746 struct mem_ctl_info *mci = to_mci(dev); 747 struct i7core_pvt *pvt = mci->pvt_info; 748 749 return sprintf(data, "0x%08x\n", pvt->inject.type); 750 } 751 752 /* 753 * i7core_inject_inject.eccmask_store 754 * 755 * The type of error (UE/CE) will depend on the inject.eccmask value: 756 * Any bits set to a 1 will flip the corresponding ECC bit 757 * Correctable errors can be injected by flipping 1 bit or the bits within 758 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or 759 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an 760 * uncorrectable error to be injected. 761 */ 762 static ssize_t i7core_inject_eccmask_store(struct device *dev, 763 struct device_attribute *mattr, 764 const char *data, size_t count) 765 { 766 struct mem_ctl_info *mci = to_mci(dev); 767 struct i7core_pvt *pvt = mci->pvt_info; 768 unsigned long value; 769 int rc; 770 771 if (pvt->inject.enable) 772 disable_inject(mci); 773 774 rc = kstrtoul(data, 10, &value); 775 if (rc < 0) 776 return -EIO; 777 778 pvt->inject.eccmask = (u32) value; 779 return count; 780 } 781 782 static ssize_t i7core_inject_eccmask_show(struct device *dev, 783 struct device_attribute *mattr, 784 char *data) 785 { 786 struct mem_ctl_info *mci = to_mci(dev); 787 struct i7core_pvt *pvt = mci->pvt_info; 788 789 return sprintf(data, "0x%08x\n", pvt->inject.eccmask); 790 } 791 792 /* 793 * i7core_addrmatch 794 * 795 * The type of error (UE/CE) will depend on the inject.eccmask value: 796 * Any bits set to a 1 will flip the corresponding ECC bit 797 * Correctable errors can be injected by flipping 1 bit or the bits within 798 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or 799 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an 800 * uncorrectable error to be injected. 801 */ 802 803 #define DECLARE_ADDR_MATCH(param, limit) \ 804 static ssize_t i7core_inject_store_##param( \ 805 struct device *dev, \ 806 struct device_attribute *mattr, \ 807 const char *data, size_t count) \ 808 { \ 809 struct mem_ctl_info *mci = dev_get_drvdata(dev); \ 810 struct i7core_pvt *pvt; \ 811 long value; \ 812 int rc; \ 813 \ 814 edac_dbg(1, "\n"); \ 815 pvt = mci->pvt_info; \ 816 \ 817 if (pvt->inject.enable) \ 818 disable_inject(mci); \ 819 \ 820 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\ 821 value = -1; \ 822 else { \ 823 rc = kstrtoul(data, 10, &value); \ 824 if ((rc < 0) || (value >= limit)) \ 825 return -EIO; \ 826 } \ 827 \ 828 pvt->inject.param = value; \ 829 \ 830 return count; \ 831 } \ 832 \ 833 static ssize_t i7core_inject_show_##param( \ 834 struct device *dev, \ 835 struct device_attribute *mattr, \ 836 char *data) \ 837 { \ 838 struct mem_ctl_info *mci = dev_get_drvdata(dev); \ 839 struct i7core_pvt *pvt; \ 840 \ 841 pvt = mci->pvt_info; \ 842 edac_dbg(1, "pvt=%p\n", pvt); \ 843 if (pvt->inject.param < 0) \ 844 return sprintf(data, "any\n"); \ 845 else \ 846 return sprintf(data, "%d\n", pvt->inject.param);\ 847 } 848 849 #define ATTR_ADDR_MATCH(param) \ 850 static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \ 851 i7core_inject_show_##param, \ 852 i7core_inject_store_##param) 853 854 DECLARE_ADDR_MATCH(channel, 3); 855 DECLARE_ADDR_MATCH(dimm, 3); 856 DECLARE_ADDR_MATCH(rank, 4); 857 DECLARE_ADDR_MATCH(bank, 32); 858 DECLARE_ADDR_MATCH(page, 0x10000); 859 DECLARE_ADDR_MATCH(col, 0x4000); 860 861 ATTR_ADDR_MATCH(channel); 862 ATTR_ADDR_MATCH(dimm); 863 ATTR_ADDR_MATCH(rank); 864 ATTR_ADDR_MATCH(bank); 865 ATTR_ADDR_MATCH(page); 866 ATTR_ADDR_MATCH(col); 867 868 static int write_and_test(struct pci_dev *dev, const int where, const u32 val) 869 { 870 u32 read; 871 int count; 872 873 edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n", 874 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), 875 where, val); 876 877 for (count = 0; count < 10; count++) { 878 if (count) 879 msleep(100); 880 pci_write_config_dword(dev, where, val); 881 pci_read_config_dword(dev, where, &read); 882 883 if (read == val) 884 return 0; 885 } 886 887 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x " 888 "write=%08x. Read=%08x\n", 889 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), 890 where, val, read); 891 892 return -EINVAL; 893 } 894 895 /* 896 * This routine prepares the Memory Controller for error injection. 897 * The error will be injected when some process tries to write to the 898 * memory that matches the given criteria. 899 * The criteria can be set in terms of a mask where dimm, rank, bank, page 900 * and col can be specified. 901 * A -1 value for any of the mask items will make the MCU to ignore 902 * that matching criteria for error injection. 903 * 904 * It should be noticed that the error will only happen after a write operation 905 * on a memory that matches the condition. if REPEAT_EN is not enabled at 906 * inject mask, then it will produce just one error. Otherwise, it will repeat 907 * until the injectmask would be cleaned. 908 * 909 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD 910 * is reliable enough to check if the MC is using the 911 * three channels. However, this is not clear at the datasheet. 912 */ 913 static ssize_t i7core_inject_enable_store(struct device *dev, 914 struct device_attribute *mattr, 915 const char *data, size_t count) 916 { 917 struct mem_ctl_info *mci = to_mci(dev); 918 struct i7core_pvt *pvt = mci->pvt_info; 919 u32 injectmask; 920 u64 mask = 0; 921 int rc; 922 long enable; 923 924 if (!pvt->pci_ch[pvt->inject.channel][0]) 925 return 0; 926 927 rc = kstrtoul(data, 10, &enable); 928 if ((rc < 0)) 929 return 0; 930 931 if (enable) { 932 pvt->inject.enable = 1; 933 } else { 934 disable_inject(mci); 935 return count; 936 } 937 938 /* Sets pvt->inject.dimm mask */ 939 if (pvt->inject.dimm < 0) 940 mask |= 1LL << 41; 941 else { 942 if (pvt->channel[pvt->inject.channel].dimms > 2) 943 mask |= (pvt->inject.dimm & 0x3LL) << 35; 944 else 945 mask |= (pvt->inject.dimm & 0x1LL) << 36; 946 } 947 948 /* Sets pvt->inject.rank mask */ 949 if (pvt->inject.rank < 0) 950 mask |= 1LL << 40; 951 else { 952 if (pvt->channel[pvt->inject.channel].dimms > 2) 953 mask |= (pvt->inject.rank & 0x1LL) << 34; 954 else 955 mask |= (pvt->inject.rank & 0x3LL) << 34; 956 } 957 958 /* Sets pvt->inject.bank mask */ 959 if (pvt->inject.bank < 0) 960 mask |= 1LL << 39; 961 else 962 mask |= (pvt->inject.bank & 0x15LL) << 30; 963 964 /* Sets pvt->inject.page mask */ 965 if (pvt->inject.page < 0) 966 mask |= 1LL << 38; 967 else 968 mask |= (pvt->inject.page & 0xffff) << 14; 969 970 /* Sets pvt->inject.column mask */ 971 if (pvt->inject.col < 0) 972 mask |= 1LL << 37; 973 else 974 mask |= (pvt->inject.col & 0x3fff); 975 976 /* 977 * bit 0: REPEAT_EN 978 * bits 1-2: MASK_HALF_CACHELINE 979 * bit 3: INJECT_ECC 980 * bit 4: INJECT_ADDR_PARITY 981 */ 982 983 injectmask = (pvt->inject.type & 1) | 984 (pvt->inject.section & 0x3) << 1 | 985 (pvt->inject.type & 0x6) << (3 - 1); 986 987 /* Unlock writes to registers - this register is write only */ 988 pci_write_config_dword(pvt->pci_noncore, 989 MC_CFG_CONTROL, 0x2); 990 991 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 992 MC_CHANNEL_ADDR_MATCH, mask); 993 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 994 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L); 995 996 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 997 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask); 998 999 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 1000 MC_CHANNEL_ERROR_INJECT, injectmask); 1001 1002 /* 1003 * This is something undocumented, based on my tests 1004 * Without writing 8 to this register, errors aren't injected. Not sure 1005 * why. 1006 */ 1007 pci_write_config_dword(pvt->pci_noncore, 1008 MC_CFG_CONTROL, 8); 1009 1010 edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n", 1011 mask, pvt->inject.eccmask, injectmask); 1012 1013 1014 return count; 1015 } 1016 1017 static ssize_t i7core_inject_enable_show(struct device *dev, 1018 struct device_attribute *mattr, 1019 char *data) 1020 { 1021 struct mem_ctl_info *mci = to_mci(dev); 1022 struct i7core_pvt *pvt = mci->pvt_info; 1023 u32 injectmask; 1024 1025 if (!pvt->pci_ch[pvt->inject.channel][0]) 1026 return 0; 1027 1028 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0], 1029 MC_CHANNEL_ERROR_INJECT, &injectmask); 1030 1031 edac_dbg(0, "Inject error read: 0x%018x\n", injectmask); 1032 1033 if (injectmask & 0x0c) 1034 pvt->inject.enable = 1; 1035 1036 return sprintf(data, "%d\n", pvt->inject.enable); 1037 } 1038 1039 #define DECLARE_COUNTER(param) \ 1040 static ssize_t i7core_show_counter_##param( \ 1041 struct device *dev, \ 1042 struct device_attribute *mattr, \ 1043 char *data) \ 1044 { \ 1045 struct mem_ctl_info *mci = dev_get_drvdata(dev); \ 1046 struct i7core_pvt *pvt = mci->pvt_info; \ 1047 \ 1048 edac_dbg(1, "\n"); \ 1049 if (!pvt->ce_count_available || (pvt->is_registered)) \ 1050 return sprintf(data, "data unavailable\n"); \ 1051 return sprintf(data, "%lu\n", \ 1052 pvt->udimm_ce_count[param]); \ 1053 } 1054 1055 #define ATTR_COUNTER(param) \ 1056 static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \ 1057 i7core_show_counter_##param, \ 1058 NULL) 1059 1060 DECLARE_COUNTER(0); 1061 DECLARE_COUNTER(1); 1062 DECLARE_COUNTER(2); 1063 1064 ATTR_COUNTER(0); 1065 ATTR_COUNTER(1); 1066 ATTR_COUNTER(2); 1067 1068 /* 1069 * inject_addrmatch device sysfs struct 1070 */ 1071 1072 static struct attribute *i7core_addrmatch_attrs[] = { 1073 &dev_attr_channel.attr, 1074 &dev_attr_dimm.attr, 1075 &dev_attr_rank.attr, 1076 &dev_attr_bank.attr, 1077 &dev_attr_page.attr, 1078 &dev_attr_col.attr, 1079 NULL 1080 }; 1081 1082 static const struct attribute_group addrmatch_grp = { 1083 .attrs = i7core_addrmatch_attrs, 1084 }; 1085 1086 static const struct attribute_group *addrmatch_groups[] = { 1087 &addrmatch_grp, 1088 NULL 1089 }; 1090 1091 static void addrmatch_release(struct device *device) 1092 { 1093 edac_dbg(1, "Releasing device %s\n", dev_name(device)); 1094 kfree(device); 1095 } 1096 1097 static const struct device_type addrmatch_type = { 1098 .groups = addrmatch_groups, 1099 .release = addrmatch_release, 1100 }; 1101 1102 /* 1103 * all_channel_counts sysfs struct 1104 */ 1105 1106 static struct attribute *i7core_udimm_counters_attrs[] = { 1107 &dev_attr_udimm0.attr, 1108 &dev_attr_udimm1.attr, 1109 &dev_attr_udimm2.attr, 1110 NULL 1111 }; 1112 1113 static const struct attribute_group all_channel_counts_grp = { 1114 .attrs = i7core_udimm_counters_attrs, 1115 }; 1116 1117 static const struct attribute_group *all_channel_counts_groups[] = { 1118 &all_channel_counts_grp, 1119 NULL 1120 }; 1121 1122 static void all_channel_counts_release(struct device *device) 1123 { 1124 edac_dbg(1, "Releasing device %s\n", dev_name(device)); 1125 kfree(device); 1126 } 1127 1128 static const struct device_type all_channel_counts_type = { 1129 .groups = all_channel_counts_groups, 1130 .release = all_channel_counts_release, 1131 }; 1132 1133 /* 1134 * inject sysfs attributes 1135 */ 1136 1137 static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR, 1138 i7core_inject_section_show, i7core_inject_section_store); 1139 1140 static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR, 1141 i7core_inject_type_show, i7core_inject_type_store); 1142 1143 1144 static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR, 1145 i7core_inject_eccmask_show, i7core_inject_eccmask_store); 1146 1147 static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR, 1148 i7core_inject_enable_show, i7core_inject_enable_store); 1149 1150 static struct attribute *i7core_dev_attrs[] = { 1151 &dev_attr_inject_section.attr, 1152 &dev_attr_inject_type.attr, 1153 &dev_attr_inject_eccmask.attr, 1154 &dev_attr_inject_enable.attr, 1155 NULL 1156 }; 1157 1158 ATTRIBUTE_GROUPS(i7core_dev); 1159 1160 static int i7core_create_sysfs_devices(struct mem_ctl_info *mci) 1161 { 1162 struct i7core_pvt *pvt = mci->pvt_info; 1163 int rc; 1164 1165 pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL); 1166 if (!pvt->addrmatch_dev) 1167 return -ENOMEM; 1168 1169 pvt->addrmatch_dev->type = &addrmatch_type; 1170 pvt->addrmatch_dev->bus = mci->dev.bus; 1171 device_initialize(pvt->addrmatch_dev); 1172 pvt->addrmatch_dev->parent = &mci->dev; 1173 dev_set_name(pvt->addrmatch_dev, "inject_addrmatch"); 1174 dev_set_drvdata(pvt->addrmatch_dev, mci); 1175 1176 edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev)); 1177 1178 rc = device_add(pvt->addrmatch_dev); 1179 if (rc < 0) 1180 goto err_put_addrmatch; 1181 1182 if (!pvt->is_registered) { 1183 pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev), 1184 GFP_KERNEL); 1185 if (!pvt->chancounts_dev) { 1186 rc = -ENOMEM; 1187 goto err_del_addrmatch; 1188 } 1189 1190 pvt->chancounts_dev->type = &all_channel_counts_type; 1191 pvt->chancounts_dev->bus = mci->dev.bus; 1192 device_initialize(pvt->chancounts_dev); 1193 pvt->chancounts_dev->parent = &mci->dev; 1194 dev_set_name(pvt->chancounts_dev, "all_channel_counts"); 1195 dev_set_drvdata(pvt->chancounts_dev, mci); 1196 1197 edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev)); 1198 1199 rc = device_add(pvt->chancounts_dev); 1200 if (rc < 0) 1201 goto err_put_chancounts; 1202 } 1203 return 0; 1204 1205 err_put_chancounts: 1206 put_device(pvt->chancounts_dev); 1207 err_del_addrmatch: 1208 device_del(pvt->addrmatch_dev); 1209 err_put_addrmatch: 1210 put_device(pvt->addrmatch_dev); 1211 1212 return rc; 1213 } 1214 1215 static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci) 1216 { 1217 struct i7core_pvt *pvt = mci->pvt_info; 1218 1219 edac_dbg(1, "\n"); 1220 1221 if (!pvt->is_registered) { 1222 device_del(pvt->chancounts_dev); 1223 put_device(pvt->chancounts_dev); 1224 } 1225 device_del(pvt->addrmatch_dev); 1226 put_device(pvt->addrmatch_dev); 1227 } 1228 1229 /**************************************************************************** 1230 Device initialization routines: put/get, init/exit 1231 ****************************************************************************/ 1232 1233 /* 1234 * i7core_put_all_devices 'put' all the devices that we have 1235 * reserved via 'get' 1236 */ 1237 static void i7core_put_devices(struct i7core_dev *i7core_dev) 1238 { 1239 int i; 1240 1241 edac_dbg(0, "\n"); 1242 for (i = 0; i < i7core_dev->n_devs; i++) { 1243 struct pci_dev *pdev = i7core_dev->pdev[i]; 1244 if (!pdev) 1245 continue; 1246 edac_dbg(0, "Removing dev %02x:%02x.%d\n", 1247 pdev->bus->number, 1248 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 1249 pci_dev_put(pdev); 1250 } 1251 } 1252 1253 static void i7core_put_all_devices(void) 1254 { 1255 struct i7core_dev *i7core_dev, *tmp; 1256 1257 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) { 1258 i7core_put_devices(i7core_dev); 1259 free_i7core_dev(i7core_dev); 1260 } 1261 } 1262 1263 static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table) 1264 { 1265 struct pci_dev *pdev = NULL; 1266 int i; 1267 1268 /* 1269 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses 1270 * aren't announced by acpi. So, we need to use a legacy scan probing 1271 * to detect them 1272 */ 1273 while (table && table->descr) { 1274 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL); 1275 if (unlikely(!pdev)) { 1276 for (i = 0; i < MAX_SOCKET_BUSES; i++) 1277 pcibios_scan_specific_bus(255-i); 1278 } 1279 pci_dev_put(pdev); 1280 table++; 1281 } 1282 } 1283 1284 static unsigned i7core_pci_lastbus(void) 1285 { 1286 int last_bus = 0, bus; 1287 struct pci_bus *b = NULL; 1288 1289 while ((b = pci_find_next_bus(b)) != NULL) { 1290 bus = b->number; 1291 edac_dbg(0, "Found bus %d\n", bus); 1292 if (bus > last_bus) 1293 last_bus = bus; 1294 } 1295 1296 edac_dbg(0, "Last bus %d\n", last_bus); 1297 1298 return last_bus; 1299 } 1300 1301 /* 1302 * i7core_get_all_devices Find and perform 'get' operation on the MCH's 1303 * device/functions we want to reference for this driver 1304 * 1305 * Need to 'get' device 16 func 1 and func 2 1306 */ 1307 static int i7core_get_onedevice(struct pci_dev **prev, 1308 const struct pci_id_table *table, 1309 const unsigned devno, 1310 const unsigned last_bus) 1311 { 1312 struct i7core_dev *i7core_dev; 1313 const struct pci_id_descr *dev_descr = &table->descr[devno]; 1314 1315 struct pci_dev *pdev = NULL; 1316 u8 bus = 0; 1317 u8 socket = 0; 1318 1319 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1320 dev_descr->dev_id, *prev); 1321 1322 /* 1323 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs 1324 * is at addr 8086:2c40, instead of 8086:2c41. So, we need 1325 * to probe for the alternate address in case of failure 1326 */ 1327 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) { 1328 pci_dev_get(*prev); /* pci_get_device will put it */ 1329 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1330 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev); 1331 } 1332 1333 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && 1334 !pdev) { 1335 pci_dev_get(*prev); /* pci_get_device will put it */ 1336 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1337 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT, 1338 *prev); 1339 } 1340 1341 if (!pdev) { 1342 if (*prev) { 1343 *prev = pdev; 1344 return 0; 1345 } 1346 1347 if (dev_descr->optional) 1348 return 0; 1349 1350 if (devno == 0) 1351 return -ENODEV; 1352 1353 i7core_printk(KERN_INFO, 1354 "Device not found: dev %02x.%d PCI ID %04x:%04x\n", 1355 dev_descr->dev, dev_descr->func, 1356 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1357 1358 /* End of list, leave */ 1359 return -ENODEV; 1360 } 1361 bus = pdev->bus->number; 1362 1363 socket = last_bus - bus; 1364 1365 i7core_dev = get_i7core_dev(socket); 1366 if (!i7core_dev) { 1367 i7core_dev = alloc_i7core_dev(socket, table); 1368 if (!i7core_dev) { 1369 pci_dev_put(pdev); 1370 return -ENOMEM; 1371 } 1372 } 1373 1374 if (i7core_dev->pdev[devno]) { 1375 i7core_printk(KERN_ERR, 1376 "Duplicated device for " 1377 "dev %02x:%02x.%d PCI ID %04x:%04x\n", 1378 bus, dev_descr->dev, dev_descr->func, 1379 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1380 pci_dev_put(pdev); 1381 return -ENODEV; 1382 } 1383 1384 i7core_dev->pdev[devno] = pdev; 1385 1386 /* Sanity check */ 1387 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || 1388 PCI_FUNC(pdev->devfn) != dev_descr->func)) { 1389 i7core_printk(KERN_ERR, 1390 "Device PCI ID %04x:%04x " 1391 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n", 1392 PCI_VENDOR_ID_INTEL, dev_descr->dev_id, 1393 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 1394 bus, dev_descr->dev, dev_descr->func); 1395 return -ENODEV; 1396 } 1397 1398 /* Be sure that the device is enabled */ 1399 if (unlikely(pci_enable_device(pdev) < 0)) { 1400 i7core_printk(KERN_ERR, 1401 "Couldn't enable " 1402 "dev %02x:%02x.%d PCI ID %04x:%04x\n", 1403 bus, dev_descr->dev, dev_descr->func, 1404 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1405 return -ENODEV; 1406 } 1407 1408 edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n", 1409 socket, bus, dev_descr->dev, 1410 dev_descr->func, 1411 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1412 1413 /* 1414 * As stated on drivers/pci/search.c, the reference count for 1415 * @from is always decremented if it is not %NULL. So, as we need 1416 * to get all devices up to null, we need to do a get for the device 1417 */ 1418 pci_dev_get(pdev); 1419 1420 *prev = pdev; 1421 1422 return 0; 1423 } 1424 1425 static int i7core_get_all_devices(void) 1426 { 1427 int i, rc, last_bus; 1428 struct pci_dev *pdev = NULL; 1429 const struct pci_id_table *table = pci_dev_table; 1430 1431 last_bus = i7core_pci_lastbus(); 1432 1433 while (table && table->descr) { 1434 for (i = 0; i < table->n_devs; i++) { 1435 pdev = NULL; 1436 do { 1437 rc = i7core_get_onedevice(&pdev, table, i, 1438 last_bus); 1439 if (rc < 0) { 1440 if (i == 0) { 1441 i = table->n_devs; 1442 break; 1443 } 1444 i7core_put_all_devices(); 1445 return -ENODEV; 1446 } 1447 } while (pdev); 1448 } 1449 table++; 1450 } 1451 1452 return 0; 1453 } 1454 1455 static int mci_bind_devs(struct mem_ctl_info *mci, 1456 struct i7core_dev *i7core_dev) 1457 { 1458 struct i7core_pvt *pvt = mci->pvt_info; 1459 struct pci_dev *pdev; 1460 int i, func, slot; 1461 char *family; 1462 1463 pvt->is_registered = false; 1464 pvt->enable_scrub = false; 1465 for (i = 0; i < i7core_dev->n_devs; i++) { 1466 pdev = i7core_dev->pdev[i]; 1467 if (!pdev) 1468 continue; 1469 1470 func = PCI_FUNC(pdev->devfn); 1471 slot = PCI_SLOT(pdev->devfn); 1472 if (slot == 3) { 1473 if (unlikely(func > MAX_MCR_FUNC)) 1474 goto error; 1475 pvt->pci_mcr[func] = pdev; 1476 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) { 1477 if (unlikely(func > MAX_CHAN_FUNC)) 1478 goto error; 1479 pvt->pci_ch[slot - 4][func] = pdev; 1480 } else if (!slot && !func) { 1481 pvt->pci_noncore = pdev; 1482 1483 /* Detect the processor family */ 1484 switch (pdev->device) { 1485 case PCI_DEVICE_ID_INTEL_I7_NONCORE: 1486 family = "Xeon 35xx/ i7core"; 1487 pvt->enable_scrub = false; 1488 break; 1489 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT: 1490 family = "i7-800/i5-700"; 1491 pvt->enable_scrub = false; 1492 break; 1493 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE: 1494 family = "Xeon 34xx"; 1495 pvt->enable_scrub = false; 1496 break; 1497 case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT: 1498 family = "Xeon 55xx"; 1499 pvt->enable_scrub = true; 1500 break; 1501 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2: 1502 family = "Xeon 56xx / i7-900"; 1503 pvt->enable_scrub = true; 1504 break; 1505 default: 1506 family = "unknown"; 1507 pvt->enable_scrub = false; 1508 } 1509 edac_dbg(0, "Detected a processor type %s\n", family); 1510 } else 1511 goto error; 1512 1513 edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n", 1514 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 1515 pdev, i7core_dev->socket); 1516 1517 if (PCI_SLOT(pdev->devfn) == 3 && 1518 PCI_FUNC(pdev->devfn) == 2) 1519 pvt->is_registered = true; 1520 } 1521 1522 return 0; 1523 1524 error: 1525 i7core_printk(KERN_ERR, "Device %d, function %d " 1526 "is out of the expected range\n", 1527 slot, func); 1528 return -EINVAL; 1529 } 1530 1531 /**************************************************************************** 1532 Error check routines 1533 ****************************************************************************/ 1534 1535 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci, 1536 const int chan, 1537 const int new0, 1538 const int new1, 1539 const int new2) 1540 { 1541 struct i7core_pvt *pvt = mci->pvt_info; 1542 int add0 = 0, add1 = 0, add2 = 0; 1543 /* Updates CE counters if it is not the first time here */ 1544 if (pvt->ce_count_available) { 1545 /* Updates CE counters */ 1546 1547 add2 = new2 - pvt->rdimm_last_ce_count[chan][2]; 1548 add1 = new1 - pvt->rdimm_last_ce_count[chan][1]; 1549 add0 = new0 - pvt->rdimm_last_ce_count[chan][0]; 1550 1551 if (add2 < 0) 1552 add2 += 0x7fff; 1553 pvt->rdimm_ce_count[chan][2] += add2; 1554 1555 if (add1 < 0) 1556 add1 += 0x7fff; 1557 pvt->rdimm_ce_count[chan][1] += add1; 1558 1559 if (add0 < 0) 1560 add0 += 0x7fff; 1561 pvt->rdimm_ce_count[chan][0] += add0; 1562 } else 1563 pvt->ce_count_available = 1; 1564 1565 /* Store the new values */ 1566 pvt->rdimm_last_ce_count[chan][2] = new2; 1567 pvt->rdimm_last_ce_count[chan][1] = new1; 1568 pvt->rdimm_last_ce_count[chan][0] = new0; 1569 1570 /*updated the edac core */ 1571 if (add0 != 0) 1572 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0, 1573 0, 0, 0, 1574 chan, 0, -1, "error", ""); 1575 if (add1 != 0) 1576 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1, 1577 0, 0, 0, 1578 chan, 1, -1, "error", ""); 1579 if (add2 != 0) 1580 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2, 1581 0, 0, 0, 1582 chan, 2, -1, "error", ""); 1583 } 1584 1585 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci) 1586 { 1587 struct i7core_pvt *pvt = mci->pvt_info; 1588 u32 rcv[3][2]; 1589 int i, new0, new1, new2; 1590 1591 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/ 1592 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0, 1593 &rcv[0][0]); 1594 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1, 1595 &rcv[0][1]); 1596 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2, 1597 &rcv[1][0]); 1598 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3, 1599 &rcv[1][1]); 1600 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4, 1601 &rcv[2][0]); 1602 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5, 1603 &rcv[2][1]); 1604 for (i = 0 ; i < 3; i++) { 1605 edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n", 1606 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]); 1607 /*if the channel has 3 dimms*/ 1608 if (pvt->channel[i].dimms > 2) { 1609 new0 = DIMM_BOT_COR_ERR(rcv[i][0]); 1610 new1 = DIMM_TOP_COR_ERR(rcv[i][0]); 1611 new2 = DIMM_BOT_COR_ERR(rcv[i][1]); 1612 } else { 1613 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) + 1614 DIMM_BOT_COR_ERR(rcv[i][0]); 1615 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) + 1616 DIMM_BOT_COR_ERR(rcv[i][1]); 1617 new2 = 0; 1618 } 1619 1620 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2); 1621 } 1622 } 1623 1624 /* This function is based on the device 3 function 4 registers as described on: 1625 * Intel Xeon Processor 5500 Series Datasheet Volume 2 1626 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf 1627 * also available at: 1628 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf 1629 */ 1630 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci) 1631 { 1632 struct i7core_pvt *pvt = mci->pvt_info; 1633 u32 rcv1, rcv0; 1634 int new0, new1, new2; 1635 1636 if (!pvt->pci_mcr[4]) { 1637 edac_dbg(0, "MCR registers not found\n"); 1638 return; 1639 } 1640 1641 /* Corrected test errors */ 1642 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1); 1643 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0); 1644 1645 /* Store the new values */ 1646 new2 = DIMM2_COR_ERR(rcv1); 1647 new1 = DIMM1_COR_ERR(rcv0); 1648 new0 = DIMM0_COR_ERR(rcv0); 1649 1650 /* Updates CE counters if it is not the first time here */ 1651 if (pvt->ce_count_available) { 1652 /* Updates CE counters */ 1653 int add0, add1, add2; 1654 1655 add2 = new2 - pvt->udimm_last_ce_count[2]; 1656 add1 = new1 - pvt->udimm_last_ce_count[1]; 1657 add0 = new0 - pvt->udimm_last_ce_count[0]; 1658 1659 if (add2 < 0) 1660 add2 += 0x7fff; 1661 pvt->udimm_ce_count[2] += add2; 1662 1663 if (add1 < 0) 1664 add1 += 0x7fff; 1665 pvt->udimm_ce_count[1] += add1; 1666 1667 if (add0 < 0) 1668 add0 += 0x7fff; 1669 pvt->udimm_ce_count[0] += add0; 1670 1671 if (add0 | add1 | add2) 1672 i7core_printk(KERN_ERR, "New Corrected error(s): " 1673 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n", 1674 add0, add1, add2); 1675 } else 1676 pvt->ce_count_available = 1; 1677 1678 /* Store the new values */ 1679 pvt->udimm_last_ce_count[2] = new2; 1680 pvt->udimm_last_ce_count[1] = new1; 1681 pvt->udimm_last_ce_count[0] = new0; 1682 } 1683 1684 /* 1685 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32 1686 * Architectures Software Developer’s Manual Volume 3B. 1687 * Nehalem are defined as family 0x06, model 0x1a 1688 * 1689 * The MCA registers used here are the following ones: 1690 * struct mce field MCA Register 1691 * m->status MSR_IA32_MC8_STATUS 1692 * m->addr MSR_IA32_MC8_ADDR 1693 * m->misc MSR_IA32_MC8_MISC 1694 * In the case of Nehalem, the error information is masked at .status and .misc 1695 * fields 1696 */ 1697 static void i7core_mce_output_error(struct mem_ctl_info *mci, 1698 const struct mce *m) 1699 { 1700 struct i7core_pvt *pvt = mci->pvt_info; 1701 char *optype, *err; 1702 enum hw_event_mc_err_type tp_event; 1703 unsigned long error = m->status & 0x1ff0000l; 1704 bool uncorrected_error = m->mcgstatus & 1ll << 61; 1705 bool ripv = m->mcgstatus & 1; 1706 u32 optypenum = (m->status >> 4) & 0x07; 1707 u32 core_err_cnt = (m->status >> 38) & 0x7fff; 1708 u32 dimm = (m->misc >> 16) & 0x3; 1709 u32 channel = (m->misc >> 18) & 0x3; 1710 u32 syndrome = m->misc >> 32; 1711 u32 errnum = find_first_bit(&error, 32); 1712 1713 if (uncorrected_error) { 1714 core_err_cnt = 1; 1715 if (ripv) 1716 tp_event = HW_EVENT_ERR_FATAL; 1717 else 1718 tp_event = HW_EVENT_ERR_UNCORRECTED; 1719 } else { 1720 tp_event = HW_EVENT_ERR_CORRECTED; 1721 } 1722 1723 switch (optypenum) { 1724 case 0: 1725 optype = "generic undef request"; 1726 break; 1727 case 1: 1728 optype = "read error"; 1729 break; 1730 case 2: 1731 optype = "write error"; 1732 break; 1733 case 3: 1734 optype = "addr/cmd error"; 1735 break; 1736 case 4: 1737 optype = "scrubbing error"; 1738 break; 1739 default: 1740 optype = "reserved"; 1741 break; 1742 } 1743 1744 switch (errnum) { 1745 case 16: 1746 err = "read ECC error"; 1747 break; 1748 case 17: 1749 err = "RAS ECC error"; 1750 break; 1751 case 18: 1752 err = "write parity error"; 1753 break; 1754 case 19: 1755 err = "redundancy loss"; 1756 break; 1757 case 20: 1758 err = "reserved"; 1759 break; 1760 case 21: 1761 err = "memory range error"; 1762 break; 1763 case 22: 1764 err = "RTID out of range"; 1765 break; 1766 case 23: 1767 err = "address parity error"; 1768 break; 1769 case 24: 1770 err = "byte enable parity error"; 1771 break; 1772 default: 1773 err = "unknown"; 1774 } 1775 1776 /* 1777 * Call the helper to output message 1778 * FIXME: what to do if core_err_cnt > 1? Currently, it generates 1779 * only one event 1780 */ 1781 if (uncorrected_error || !pvt->is_registered) 1782 edac_mc_handle_error(tp_event, mci, core_err_cnt, 1783 m->addr >> PAGE_SHIFT, 1784 m->addr & ~PAGE_MASK, 1785 syndrome, 1786 channel, dimm, -1, 1787 err, optype); 1788 } 1789 1790 /* 1791 * i7core_check_error Retrieve and process errors reported by the 1792 * hardware. Called by the Core module. 1793 */ 1794 static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m) 1795 { 1796 struct i7core_pvt *pvt = mci->pvt_info; 1797 1798 i7core_mce_output_error(mci, m); 1799 1800 /* 1801 * Now, let's increment CE error counts 1802 */ 1803 if (!pvt->is_registered) 1804 i7core_udimm_check_mc_ecc_err(mci); 1805 else 1806 i7core_rdimm_check_mc_ecc_err(mci); 1807 } 1808 1809 /* 1810 * Check that logging is enabled and that this is the right type 1811 * of error for us to handle. 1812 */ 1813 static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val, 1814 void *data) 1815 { 1816 struct mce *mce = (struct mce *)data; 1817 struct i7core_dev *i7_dev; 1818 struct mem_ctl_info *mci; 1819 1820 i7_dev = get_i7core_dev(mce->socketid); 1821 if (!i7_dev) 1822 return NOTIFY_DONE; 1823 1824 mci = i7_dev->mci; 1825 1826 /* 1827 * Just let mcelog handle it if the error is 1828 * outside the memory controller 1829 */ 1830 if (((mce->status & 0xffff) >> 7) != 1) 1831 return NOTIFY_DONE; 1832 1833 /* Bank 8 registers are the only ones that we know how to handle */ 1834 if (mce->bank != 8) 1835 return NOTIFY_DONE; 1836 1837 i7core_check_error(mci, mce); 1838 1839 /* Advise mcelog that the errors were handled */ 1840 return NOTIFY_STOP; 1841 } 1842 1843 static struct notifier_block i7_mce_dec = { 1844 .notifier_call = i7core_mce_check_error, 1845 .priority = MCE_PRIO_EDAC, 1846 }; 1847 1848 struct memdev_dmi_entry { 1849 u8 type; 1850 u8 length; 1851 u16 handle; 1852 u16 phys_mem_array_handle; 1853 u16 mem_err_info_handle; 1854 u16 total_width; 1855 u16 data_width; 1856 u16 size; 1857 u8 form; 1858 u8 device_set; 1859 u8 device_locator; 1860 u8 bank_locator; 1861 u8 memory_type; 1862 u16 type_detail; 1863 u16 speed; 1864 u8 manufacturer; 1865 u8 serial_number; 1866 u8 asset_tag; 1867 u8 part_number; 1868 u8 attributes; 1869 u32 extended_size; 1870 u16 conf_mem_clk_speed; 1871 } __attribute__((__packed__)); 1872 1873 1874 /* 1875 * Decode the DRAM Clock Frequency, be paranoid, make sure that all 1876 * memory devices show the same speed, and if they don't then consider 1877 * all speeds to be invalid. 1878 */ 1879 static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq) 1880 { 1881 int *dclk_freq = _dclk_freq; 1882 u16 dmi_mem_clk_speed; 1883 1884 if (*dclk_freq == -1) 1885 return; 1886 1887 if (dh->type == DMI_ENTRY_MEM_DEVICE) { 1888 struct memdev_dmi_entry *memdev_dmi_entry = 1889 (struct memdev_dmi_entry *)dh; 1890 unsigned long conf_mem_clk_speed_offset = 1891 (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed - 1892 (unsigned long)&memdev_dmi_entry->type; 1893 unsigned long speed_offset = 1894 (unsigned long)&memdev_dmi_entry->speed - 1895 (unsigned long)&memdev_dmi_entry->type; 1896 1897 /* Check that a DIMM is present */ 1898 if (memdev_dmi_entry->size == 0) 1899 return; 1900 1901 /* 1902 * Pick the configured speed if it's available, otherwise 1903 * pick the DIMM speed, or we don't have a speed. 1904 */ 1905 if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) { 1906 dmi_mem_clk_speed = 1907 memdev_dmi_entry->conf_mem_clk_speed; 1908 } else if (memdev_dmi_entry->length > speed_offset) { 1909 dmi_mem_clk_speed = memdev_dmi_entry->speed; 1910 } else { 1911 *dclk_freq = -1; 1912 return; 1913 } 1914 1915 if (*dclk_freq == 0) { 1916 /* First pass, speed was 0 */ 1917 if (dmi_mem_clk_speed > 0) { 1918 /* Set speed if a valid speed is read */ 1919 *dclk_freq = dmi_mem_clk_speed; 1920 } else { 1921 /* Otherwise we don't have a valid speed */ 1922 *dclk_freq = -1; 1923 } 1924 } else if (*dclk_freq > 0 && 1925 *dclk_freq != dmi_mem_clk_speed) { 1926 /* 1927 * If we have a speed, check that all DIMMS are the same 1928 * speed, otherwise set the speed as invalid. 1929 */ 1930 *dclk_freq = -1; 1931 } 1932 } 1933 } 1934 1935 /* 1936 * The default DCLK frequency is used as a fallback if we 1937 * fail to find anything reliable in the DMI. The value 1938 * is taken straight from the datasheet. 1939 */ 1940 #define DEFAULT_DCLK_FREQ 800 1941 1942 static int get_dclk_freq(void) 1943 { 1944 int dclk_freq = 0; 1945 1946 dmi_walk(decode_dclk, (void *)&dclk_freq); 1947 1948 if (dclk_freq < 1) 1949 return DEFAULT_DCLK_FREQ; 1950 1951 return dclk_freq; 1952 } 1953 1954 /* 1955 * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate 1956 * to hardware according to SCRUBINTERVAL formula 1957 * found in datasheet. 1958 */ 1959 static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw) 1960 { 1961 struct i7core_pvt *pvt = mci->pvt_info; 1962 struct pci_dev *pdev; 1963 u32 dw_scrub; 1964 u32 dw_ssr; 1965 1966 /* Get data from the MC register, function 2 */ 1967 pdev = pvt->pci_mcr[2]; 1968 if (!pdev) 1969 return -ENODEV; 1970 1971 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub); 1972 1973 if (new_bw == 0) { 1974 /* Prepare to disable petrol scrub */ 1975 dw_scrub &= ~STARTSCRUB; 1976 /* Stop the patrol scrub engine */ 1977 write_and_test(pdev, MC_SCRUB_CONTROL, 1978 dw_scrub & ~SCRUBINTERVAL_MASK); 1979 1980 /* Get current status of scrub rate and set bit to disable */ 1981 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); 1982 dw_ssr &= ~SSR_MODE_MASK; 1983 dw_ssr |= SSR_MODE_DISABLE; 1984 } else { 1985 const int cache_line_size = 64; 1986 const u32 freq_dclk_mhz = pvt->dclk_freq; 1987 unsigned long long scrub_interval; 1988 /* 1989 * Translate the desired scrub rate to a register value and 1990 * program the corresponding register value. 1991 */ 1992 scrub_interval = (unsigned long long)freq_dclk_mhz * 1993 cache_line_size * 1000000; 1994 do_div(scrub_interval, new_bw); 1995 1996 if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK) 1997 return -EINVAL; 1998 1999 dw_scrub = SCRUBINTERVAL_MASK & scrub_interval; 2000 2001 /* Start the patrol scrub engine */ 2002 pci_write_config_dword(pdev, MC_SCRUB_CONTROL, 2003 STARTSCRUB | dw_scrub); 2004 2005 /* Get current status of scrub rate and set bit to enable */ 2006 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); 2007 dw_ssr &= ~SSR_MODE_MASK; 2008 dw_ssr |= SSR_MODE_ENABLE; 2009 } 2010 /* Disable or enable scrubbing */ 2011 pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr); 2012 2013 return new_bw; 2014 } 2015 2016 /* 2017 * get_sdram_scrub_rate This routine convert current scrub rate value 2018 * into byte/sec bandwidth according to 2019 * SCRUBINTERVAL formula found in datasheet. 2020 */ 2021 static int get_sdram_scrub_rate(struct mem_ctl_info *mci) 2022 { 2023 struct i7core_pvt *pvt = mci->pvt_info; 2024 struct pci_dev *pdev; 2025 const u32 cache_line_size = 64; 2026 const u32 freq_dclk_mhz = pvt->dclk_freq; 2027 unsigned long long scrub_rate; 2028 u32 scrubval; 2029 2030 /* Get data from the MC register, function 2 */ 2031 pdev = pvt->pci_mcr[2]; 2032 if (!pdev) 2033 return -ENODEV; 2034 2035 /* Get current scrub control data */ 2036 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval); 2037 2038 /* Mask highest 8-bits to 0 */ 2039 scrubval &= SCRUBINTERVAL_MASK; 2040 if (!scrubval) 2041 return 0; 2042 2043 /* Calculate scrub rate value into byte/sec bandwidth */ 2044 scrub_rate = (unsigned long long)freq_dclk_mhz * 2045 1000000 * cache_line_size; 2046 do_div(scrub_rate, scrubval); 2047 return (int)scrub_rate; 2048 } 2049 2050 static void enable_sdram_scrub_setting(struct mem_ctl_info *mci) 2051 { 2052 struct i7core_pvt *pvt = mci->pvt_info; 2053 u32 pci_lock; 2054 2055 /* Unlock writes to pci registers */ 2056 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); 2057 pci_lock &= ~0x3; 2058 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, 2059 pci_lock | MC_CFG_UNLOCK); 2060 2061 mci->set_sdram_scrub_rate = set_sdram_scrub_rate; 2062 mci->get_sdram_scrub_rate = get_sdram_scrub_rate; 2063 } 2064 2065 static void disable_sdram_scrub_setting(struct mem_ctl_info *mci) 2066 { 2067 struct i7core_pvt *pvt = mci->pvt_info; 2068 u32 pci_lock; 2069 2070 /* Lock writes to pci registers */ 2071 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); 2072 pci_lock &= ~0x3; 2073 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, 2074 pci_lock | MC_CFG_LOCK); 2075 } 2076 2077 static void i7core_pci_ctl_create(struct i7core_pvt *pvt) 2078 { 2079 pvt->i7core_pci = edac_pci_create_generic_ctl( 2080 &pvt->i7core_dev->pdev[0]->dev, 2081 EDAC_MOD_STR); 2082 if (unlikely(!pvt->i7core_pci)) 2083 i7core_printk(KERN_WARNING, 2084 "Unable to setup PCI error report via EDAC\n"); 2085 } 2086 2087 static void i7core_pci_ctl_release(struct i7core_pvt *pvt) 2088 { 2089 if (likely(pvt->i7core_pci)) 2090 edac_pci_release_generic_ctl(pvt->i7core_pci); 2091 else 2092 i7core_printk(KERN_ERR, 2093 "Couldn't find mem_ctl_info for socket %d\n", 2094 pvt->i7core_dev->socket); 2095 pvt->i7core_pci = NULL; 2096 } 2097 2098 static void i7core_unregister_mci(struct i7core_dev *i7core_dev) 2099 { 2100 struct mem_ctl_info *mci = i7core_dev->mci; 2101 struct i7core_pvt *pvt; 2102 2103 if (unlikely(!mci || !mci->pvt_info)) { 2104 edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev); 2105 2106 i7core_printk(KERN_ERR, "Couldn't find mci handler\n"); 2107 return; 2108 } 2109 2110 pvt = mci->pvt_info; 2111 2112 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); 2113 2114 /* Disable scrubrate setting */ 2115 if (pvt->enable_scrub) 2116 disable_sdram_scrub_setting(mci); 2117 2118 /* Disable EDAC polling */ 2119 i7core_pci_ctl_release(pvt); 2120 2121 /* Remove MC sysfs nodes */ 2122 i7core_delete_sysfs_devices(mci); 2123 edac_mc_del_mc(mci->pdev); 2124 2125 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 2126 kfree(mci->ctl_name); 2127 edac_mc_free(mci); 2128 i7core_dev->mci = NULL; 2129 } 2130 2131 static int i7core_register_mci(struct i7core_dev *i7core_dev) 2132 { 2133 struct mem_ctl_info *mci; 2134 struct i7core_pvt *pvt; 2135 int rc; 2136 struct edac_mc_layer layers[2]; 2137 2138 /* allocate a new MC control structure */ 2139 2140 layers[0].type = EDAC_MC_LAYER_CHANNEL; 2141 layers[0].size = NUM_CHANS; 2142 layers[0].is_virt_csrow = false; 2143 layers[1].type = EDAC_MC_LAYER_SLOT; 2144 layers[1].size = MAX_DIMMS; 2145 layers[1].is_virt_csrow = true; 2146 mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers, 2147 sizeof(*pvt)); 2148 if (unlikely(!mci)) 2149 return -ENOMEM; 2150 2151 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); 2152 2153 pvt = mci->pvt_info; 2154 memset(pvt, 0, sizeof(*pvt)); 2155 2156 /* Associates i7core_dev and mci for future usage */ 2157 pvt->i7core_dev = i7core_dev; 2158 i7core_dev->mci = mci; 2159 2160 /* 2161 * FIXME: how to handle RDDR3 at MCI level? It is possible to have 2162 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different 2163 * memory channels 2164 */ 2165 mci->mtype_cap = MEM_FLAG_DDR3; 2166 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2167 mci->edac_cap = EDAC_FLAG_NONE; 2168 mci->mod_name = "i7core_edac.c"; 2169 2170 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", i7core_dev->socket); 2171 if (!mci->ctl_name) { 2172 rc = -ENOMEM; 2173 goto fail1; 2174 } 2175 2176 mci->dev_name = pci_name(i7core_dev->pdev[0]); 2177 mci->ctl_page_to_phys = NULL; 2178 2179 /* Store pci devices at mci for faster access */ 2180 rc = mci_bind_devs(mci, i7core_dev); 2181 if (unlikely(rc < 0)) 2182 goto fail0; 2183 2184 2185 /* Get dimm basic config */ 2186 get_dimm_config(mci); 2187 /* record ptr to the generic device */ 2188 mci->pdev = &i7core_dev->pdev[0]->dev; 2189 2190 /* Enable scrubrate setting */ 2191 if (pvt->enable_scrub) 2192 enable_sdram_scrub_setting(mci); 2193 2194 /* add this new MC control structure to EDAC's list of MCs */ 2195 if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) { 2196 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 2197 /* FIXME: perhaps some code should go here that disables error 2198 * reporting if we just enabled it 2199 */ 2200 2201 rc = -EINVAL; 2202 goto fail0; 2203 } 2204 if (i7core_create_sysfs_devices(mci)) { 2205 edac_dbg(0, "MC: failed to create sysfs nodes\n"); 2206 edac_mc_del_mc(mci->pdev); 2207 rc = -EINVAL; 2208 goto fail0; 2209 } 2210 2211 /* Default error mask is any memory */ 2212 pvt->inject.channel = 0; 2213 pvt->inject.dimm = -1; 2214 pvt->inject.rank = -1; 2215 pvt->inject.bank = -1; 2216 pvt->inject.page = -1; 2217 pvt->inject.col = -1; 2218 2219 /* allocating generic PCI control info */ 2220 i7core_pci_ctl_create(pvt); 2221 2222 /* DCLK for scrub rate setting */ 2223 pvt->dclk_freq = get_dclk_freq(); 2224 2225 return 0; 2226 2227 fail0: 2228 kfree(mci->ctl_name); 2229 2230 fail1: 2231 edac_mc_free(mci); 2232 i7core_dev->mci = NULL; 2233 return rc; 2234 } 2235 2236 /* 2237 * i7core_probe Probe for ONE instance of device to see if it is 2238 * present. 2239 * return: 2240 * 0 for FOUND a device 2241 * < 0 for error code 2242 */ 2243 2244 static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2245 { 2246 int rc, count = 0; 2247 struct i7core_dev *i7core_dev; 2248 2249 /* get the pci devices we want to reserve for our use */ 2250 mutex_lock(&i7core_edac_lock); 2251 2252 /* 2253 * All memory controllers are allocated at the first pass. 2254 */ 2255 if (unlikely(probed >= 1)) { 2256 mutex_unlock(&i7core_edac_lock); 2257 return -ENODEV; 2258 } 2259 probed++; 2260 2261 rc = i7core_get_all_devices(); 2262 if (unlikely(rc < 0)) 2263 goto fail0; 2264 2265 list_for_each_entry(i7core_dev, &i7core_edac_list, list) { 2266 count++; 2267 rc = i7core_register_mci(i7core_dev); 2268 if (unlikely(rc < 0)) 2269 goto fail1; 2270 } 2271 2272 /* 2273 * Nehalem-EX uses a different memory controller. However, as the 2274 * memory controller is not visible on some Nehalem/Nehalem-EP, we 2275 * need to indirectly probe via a X58 PCI device. The same devices 2276 * are found on (some) Nehalem-EX. So, on those machines, the 2277 * probe routine needs to return -ENODEV, as the actual Memory 2278 * Controller registers won't be detected. 2279 */ 2280 if (!count) { 2281 rc = -ENODEV; 2282 goto fail1; 2283 } 2284 2285 i7core_printk(KERN_INFO, 2286 "Driver loaded, %d memory controller(s) found.\n", 2287 count); 2288 2289 mutex_unlock(&i7core_edac_lock); 2290 return 0; 2291 2292 fail1: 2293 list_for_each_entry(i7core_dev, &i7core_edac_list, list) 2294 i7core_unregister_mci(i7core_dev); 2295 2296 i7core_put_all_devices(); 2297 fail0: 2298 mutex_unlock(&i7core_edac_lock); 2299 return rc; 2300 } 2301 2302 /* 2303 * i7core_remove destructor for one instance of device 2304 * 2305 */ 2306 static void i7core_remove(struct pci_dev *pdev) 2307 { 2308 struct i7core_dev *i7core_dev; 2309 2310 edac_dbg(0, "\n"); 2311 2312 /* 2313 * we have a trouble here: pdev value for removal will be wrong, since 2314 * it will point to the X58 register used to detect that the machine 2315 * is a Nehalem or upper design. However, due to the way several PCI 2316 * devices are grouped together to provide MC functionality, we need 2317 * to use a different method for releasing the devices 2318 */ 2319 2320 mutex_lock(&i7core_edac_lock); 2321 2322 if (unlikely(!probed)) { 2323 mutex_unlock(&i7core_edac_lock); 2324 return; 2325 } 2326 2327 list_for_each_entry(i7core_dev, &i7core_edac_list, list) 2328 i7core_unregister_mci(i7core_dev); 2329 2330 /* Release PCI resources */ 2331 i7core_put_all_devices(); 2332 2333 probed--; 2334 2335 mutex_unlock(&i7core_edac_lock); 2336 } 2337 2338 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl); 2339 2340 /* 2341 * i7core_driver pci_driver structure for this module 2342 * 2343 */ 2344 static struct pci_driver i7core_driver = { 2345 .name = "i7core_edac", 2346 .probe = i7core_probe, 2347 .remove = i7core_remove, 2348 .id_table = i7core_pci_tbl, 2349 }; 2350 2351 /* 2352 * i7core_init Module entry function 2353 * Try to initialize this module for its devices 2354 */ 2355 static int __init i7core_init(void) 2356 { 2357 int pci_rc; 2358 2359 edac_dbg(2, "\n"); 2360 2361 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 2362 opstate_init(); 2363 2364 if (use_pci_fixup) 2365 i7core_xeon_pci_fixup(pci_dev_table); 2366 2367 pci_rc = pci_register_driver(&i7core_driver); 2368 2369 if (pci_rc >= 0) { 2370 mce_register_decode_chain(&i7_mce_dec); 2371 return 0; 2372 } 2373 2374 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n", 2375 pci_rc); 2376 2377 return pci_rc; 2378 } 2379 2380 /* 2381 * i7core_exit() Module exit function 2382 * Unregister the driver 2383 */ 2384 static void __exit i7core_exit(void) 2385 { 2386 edac_dbg(2, "\n"); 2387 pci_unregister_driver(&i7core_driver); 2388 mce_unregister_decode_chain(&i7_mce_dec); 2389 } 2390 2391 module_init(i7core_init); 2392 module_exit(i7core_exit); 2393 2394 MODULE_LICENSE("GPL"); 2395 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2396 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); 2397 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - " 2398 I7CORE_REVISION); 2399 2400 module_param(edac_op_state, int, 0444); 2401 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2402