xref: /openbmc/linux/drivers/edac/i7core_edac.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /* Intel i7 core/Nehalem Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5  * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6  * and Westmere-EP.
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License version 2 only.
10  *
11  * Copyright (c) 2009-2010 by:
12  *	 Mauro Carvalho Chehab
13  *
14  * Red Hat Inc. http://www.redhat.com
15  *
16  * Forked and adapted from the i5400_edac driver
17  *
18  * Based on the following public Intel datasheets:
19  * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20  * Datasheet, Volume 2:
21  *	http://download.intel.com/design/processor/datashts/320835.pdf
22  * Intel Xeon Processor 5500 Series Datasheet Volume 2
23  *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24  * also available at:
25  * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26  */
27 
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/pci_ids.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/dmi.h>
35 #include <linux/edac.h>
36 #include <linux/mmzone.h>
37 #include <linux/smp.h>
38 #include <asm/mce.h>
39 #include <asm/processor.h>
40 #include <asm/div64.h>
41 
42 #include "edac_core.h"
43 
44 /* Static vars */
45 static LIST_HEAD(i7core_edac_list);
46 static DEFINE_MUTEX(i7core_edac_lock);
47 static int probed;
48 
49 static int use_pci_fixup;
50 module_param(use_pci_fixup, int, 0444);
51 MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 /*
53  * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
54  * registers start at bus 255, and are not reported by BIOS.
55  * We currently find devices with only 2 sockets. In order to support more QPI
56  * Quick Path Interconnect, just increment this number.
57  */
58 #define MAX_SOCKET_BUSES	2
59 
60 
61 /*
62  * Alter this version for the module when modifications are made
63  */
64 #define I7CORE_REVISION    " Ver: 1.0.0"
65 #define EDAC_MOD_STR      "i7core_edac"
66 
67 /*
68  * Debug macros
69  */
70 #define i7core_printk(level, fmt, arg...)			\
71 	edac_printk(level, "i7core", fmt, ##arg)
72 
73 #define i7core_mc_printk(mci, level, fmt, arg...)		\
74 	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
75 
76 /*
77  * i7core Memory Controller Registers
78  */
79 
80 	/* OFFSETS for Device 0 Function 0 */
81 
82 #define MC_CFG_CONTROL	0x90
83   #define MC_CFG_UNLOCK		0x02
84   #define MC_CFG_LOCK		0x00
85 
86 	/* OFFSETS for Device 3 Function 0 */
87 
88 #define MC_CONTROL	0x48
89 #define MC_STATUS	0x4c
90 #define MC_MAX_DOD	0x64
91 
92 /*
93  * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
94  * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
95  */
96 
97 #define MC_TEST_ERR_RCV1	0x60
98   #define DIMM2_COR_ERR(r)			((r) & 0x7fff)
99 
100 #define MC_TEST_ERR_RCV0	0x64
101   #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
102   #define DIMM0_COR_ERR(r)			((r) & 0x7fff)
103 
104 /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
105 #define MC_SSRCONTROL		0x48
106   #define SSR_MODE_DISABLE	0x00
107   #define SSR_MODE_ENABLE	0x01
108   #define SSR_MODE_MASK		0x03
109 
110 #define MC_SCRUB_CONTROL	0x4c
111   #define STARTSCRUB		(1 << 24)
112   #define SCRUBINTERVAL_MASK    0xffffff
113 
114 #define MC_COR_ECC_CNT_0	0x80
115 #define MC_COR_ECC_CNT_1	0x84
116 #define MC_COR_ECC_CNT_2	0x88
117 #define MC_COR_ECC_CNT_3	0x8c
118 #define MC_COR_ECC_CNT_4	0x90
119 #define MC_COR_ECC_CNT_5	0x94
120 
121 #define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
122 #define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)
123 
124 
125 	/* OFFSETS for Devices 4,5 and 6 Function 0 */
126 
127 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
128   #define THREE_DIMMS_PRESENT		(1 << 24)
129   #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
130   #define QUAD_RANK_PRESENT		(1 << 22)
131   #define REGISTERED_DIMM		(1 << 15)
132 
133 #define MC_CHANNEL_MAPPER	0x60
134   #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
135   #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)
136 
137 #define MC_CHANNEL_RANK_PRESENT 0x7c
138   #define RANK_PRESENT_MASK		0xffff
139 
140 #define MC_CHANNEL_ADDR_MATCH	0xf0
141 #define MC_CHANNEL_ERROR_MASK	0xf8
142 #define MC_CHANNEL_ERROR_INJECT	0xfc
143   #define INJECT_ADDR_PARITY	0x10
144   #define INJECT_ECC		0x08
145   #define MASK_CACHELINE	0x06
146   #define MASK_FULL_CACHELINE	0x06
147   #define MASK_MSB32_CACHELINE	0x04
148   #define MASK_LSB32_CACHELINE	0x02
149   #define NO_MASK_CACHELINE	0x00
150   #define REPEAT_EN		0x01
151 
152 	/* OFFSETS for Devices 4,5 and 6 Function 1 */
153 
154 #define MC_DOD_CH_DIMM0		0x48
155 #define MC_DOD_CH_DIMM1		0x4c
156 #define MC_DOD_CH_DIMM2		0x50
157   #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
158   #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
159   #define DIMM_PRESENT_MASK	(1 << 9)
160   #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
161   #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
162   #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
163   #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
164   #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
165   #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
166   #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
167   #define MC_DOD_NUMCOL_MASK		3
168   #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
169 
170 #define MC_RANK_PRESENT		0x7c
171 
172 #define MC_SAG_CH_0	0x80
173 #define MC_SAG_CH_1	0x84
174 #define MC_SAG_CH_2	0x88
175 #define MC_SAG_CH_3	0x8c
176 #define MC_SAG_CH_4	0x90
177 #define MC_SAG_CH_5	0x94
178 #define MC_SAG_CH_6	0x98
179 #define MC_SAG_CH_7	0x9c
180 
181 #define MC_RIR_LIMIT_CH_0	0x40
182 #define MC_RIR_LIMIT_CH_1	0x44
183 #define MC_RIR_LIMIT_CH_2	0x48
184 #define MC_RIR_LIMIT_CH_3	0x4C
185 #define MC_RIR_LIMIT_CH_4	0x50
186 #define MC_RIR_LIMIT_CH_5	0x54
187 #define MC_RIR_LIMIT_CH_6	0x58
188 #define MC_RIR_LIMIT_CH_7	0x5C
189 #define MC_RIR_LIMIT_MASK	((1 << 10) - 1)
190 
191 #define MC_RIR_WAY_CH		0x80
192   #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
193   #define MC_RIR_WAY_RANK_MASK		0x7
194 
195 /*
196  * i7core structs
197  */
198 
199 #define NUM_CHANS 3
200 #define MAX_DIMMS 3		/* Max DIMMS per channel */
201 #define MAX_MCR_FUNC  4
202 #define MAX_CHAN_FUNC 3
203 
204 struct i7core_info {
205 	u32	mc_control;
206 	u32	mc_status;
207 	u32	max_dod;
208 	u32	ch_map;
209 };
210 
211 
212 struct i7core_inject {
213 	int	enable;
214 
215 	u32	section;
216 	u32	type;
217 	u32	eccmask;
218 
219 	/* Error address mask */
220 	int channel, dimm, rank, bank, page, col;
221 };
222 
223 struct i7core_channel {
224 	bool		is_3dimms_present;
225 	bool		is_single_4rank;
226 	bool		has_4rank;
227 	u32		dimms;
228 };
229 
230 struct pci_id_descr {
231 	int			dev;
232 	int			func;
233 	int 			dev_id;
234 	int			optional;
235 };
236 
237 struct pci_id_table {
238 	const struct pci_id_descr	*descr;
239 	int				n_devs;
240 };
241 
242 struct i7core_dev {
243 	struct list_head	list;
244 	u8			socket;
245 	struct pci_dev		**pdev;
246 	int			n_devs;
247 	struct mem_ctl_info	*mci;
248 };
249 
250 struct i7core_pvt {
251 	struct device *addrmatch_dev, *chancounts_dev;
252 
253 	struct pci_dev	*pci_noncore;
254 	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
255 	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
256 
257 	struct i7core_dev *i7core_dev;
258 
259 	struct i7core_info	info;
260 	struct i7core_inject	inject;
261 	struct i7core_channel	channel[NUM_CHANS];
262 
263 	int		ce_count_available;
264 
265 			/* ECC corrected errors counts per udimm */
266 	unsigned long	udimm_ce_count[MAX_DIMMS];
267 	int		udimm_last_ce_count[MAX_DIMMS];
268 			/* ECC corrected errors counts per rdimm */
269 	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
270 	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
271 
272 	bool		is_registered, enable_scrub;
273 
274 	/* Fifo double buffers */
275 	struct mce		mce_entry[MCE_LOG_LEN];
276 	struct mce		mce_outentry[MCE_LOG_LEN];
277 
278 	/* Fifo in/out counters */
279 	unsigned		mce_in, mce_out;
280 
281 	/* Count indicator to show errors not got */
282 	unsigned		mce_overrun;
283 
284 	/* DCLK Frequency used for computing scrub rate */
285 	int			dclk_freq;
286 
287 	/* Struct to control EDAC polling */
288 	struct edac_pci_ctl_info *i7core_pci;
289 };
290 
291 #define PCI_DESCR(device, function, device_id)	\
292 	.dev = (device),			\
293 	.func = (function),			\
294 	.dev_id = (device_id)
295 
296 static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
297 		/* Memory controller */
298 	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
299 	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
300 			/* Exists only for RDIMM */
301 	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
302 	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
303 
304 		/* Channel 0 */
305 	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
306 	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
307 	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
308 	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },
309 
310 		/* Channel 1 */
311 	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
312 	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
313 	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
314 	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },
315 
316 		/* Channel 2 */
317 	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
318 	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
319 	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
320 	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
321 
322 		/* Generic Non-core registers */
323 	/*
324 	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
325 	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
326 	 * the probing code needs to test for the other address in case of
327 	 * failure of this one
328 	 */
329 	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
330 
331 };
332 
333 static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
334 	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
335 	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
336 	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },
337 
338 	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
339 	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
340 	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
341 	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },
342 
343 	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
344 	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
345 	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
346 	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
347 
348 	/*
349 	 * This is the PCI device has an alternate address on some
350 	 * processors like Core i7 860
351 	 */
352 	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
353 };
354 
355 static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
356 		/* Memory controller */
357 	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
358 	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
359 			/* Exists only for RDIMM */
360 	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
361 	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
362 
363 		/* Channel 0 */
364 	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
365 	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
366 	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
367 	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },
368 
369 		/* Channel 1 */
370 	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
371 	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
372 	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
373 	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },
374 
375 		/* Channel 2 */
376 	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
377 	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
378 	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
379 	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
380 
381 		/* Generic Non-core registers */
382 	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },
383 
384 };
385 
386 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
387 static const struct pci_id_table pci_dev_table[] = {
388 	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
389 	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
390 	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
391 	{0,}			/* 0 terminated list. */
392 };
393 
394 /*
395  *	pci_device_id	table for which devices we are looking for
396  */
397 static const struct pci_device_id i7core_pci_tbl[] = {
398 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
399 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
400 	{0,}			/* 0 terminated list. */
401 };
402 
403 /****************************************************************************
404 			Ancillary status routines
405  ****************************************************************************/
406 
407 	/* MC_CONTROL bits */
408 #define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
409 #define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
410 
411 	/* MC_STATUS bits */
412 #define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
413 #define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
414 
415 	/* MC_MAX_DOD read functions */
416 static inline int numdimms(u32 dimms)
417 {
418 	return (dimms & 0x3) + 1;
419 }
420 
421 static inline int numrank(u32 rank)
422 {
423 	static const int ranks[] = { 1, 2, 4, -EINVAL };
424 
425 	return ranks[rank & 0x3];
426 }
427 
428 static inline int numbank(u32 bank)
429 {
430 	static const int banks[] = { 4, 8, 16, -EINVAL };
431 
432 	return banks[bank & 0x3];
433 }
434 
435 static inline int numrow(u32 row)
436 {
437 	static const int rows[] = {
438 		1 << 12, 1 << 13, 1 << 14, 1 << 15,
439 		1 << 16, -EINVAL, -EINVAL, -EINVAL,
440 	};
441 
442 	return rows[row & 0x7];
443 }
444 
445 static inline int numcol(u32 col)
446 {
447 	static const int cols[] = {
448 		1 << 10, 1 << 11, 1 << 12, -EINVAL,
449 	};
450 	return cols[col & 0x3];
451 }
452 
453 static struct i7core_dev *get_i7core_dev(u8 socket)
454 {
455 	struct i7core_dev *i7core_dev;
456 
457 	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
458 		if (i7core_dev->socket == socket)
459 			return i7core_dev;
460 	}
461 
462 	return NULL;
463 }
464 
465 static struct i7core_dev *alloc_i7core_dev(u8 socket,
466 					   const struct pci_id_table *table)
467 {
468 	struct i7core_dev *i7core_dev;
469 
470 	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
471 	if (!i7core_dev)
472 		return NULL;
473 
474 	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
475 				   GFP_KERNEL);
476 	if (!i7core_dev->pdev) {
477 		kfree(i7core_dev);
478 		return NULL;
479 	}
480 
481 	i7core_dev->socket = socket;
482 	i7core_dev->n_devs = table->n_devs;
483 	list_add_tail(&i7core_dev->list, &i7core_edac_list);
484 
485 	return i7core_dev;
486 }
487 
488 static void free_i7core_dev(struct i7core_dev *i7core_dev)
489 {
490 	list_del(&i7core_dev->list);
491 	kfree(i7core_dev->pdev);
492 	kfree(i7core_dev);
493 }
494 
495 /****************************************************************************
496 			Memory check routines
497  ****************************************************************************/
498 
499 static int get_dimm_config(struct mem_ctl_info *mci)
500 {
501 	struct i7core_pvt *pvt = mci->pvt_info;
502 	struct pci_dev *pdev;
503 	int i, j;
504 	enum edac_type mode;
505 	enum mem_type mtype;
506 	struct dimm_info *dimm;
507 
508 	/* Get data from the MC register, function 0 */
509 	pdev = pvt->pci_mcr[0];
510 	if (!pdev)
511 		return -ENODEV;
512 
513 	/* Device 3 function 0 reads */
514 	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
515 	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
516 	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
517 	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
518 
519 	edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
520 		 pvt->i7core_dev->socket, pvt->info.mc_control,
521 		 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
522 
523 	if (ECC_ENABLED(pvt)) {
524 		edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
525 		if (ECCx8(pvt))
526 			mode = EDAC_S8ECD8ED;
527 		else
528 			mode = EDAC_S4ECD4ED;
529 	} else {
530 		edac_dbg(0, "ECC disabled\n");
531 		mode = EDAC_NONE;
532 	}
533 
534 	/* FIXME: need to handle the error codes */
535 	edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
536 		 numdimms(pvt->info.max_dod),
537 		 numrank(pvt->info.max_dod >> 2),
538 		 numbank(pvt->info.max_dod >> 4),
539 		 numrow(pvt->info.max_dod >> 6),
540 		 numcol(pvt->info.max_dod >> 9));
541 
542 	for (i = 0; i < NUM_CHANS; i++) {
543 		u32 data, dimm_dod[3], value[8];
544 
545 		if (!pvt->pci_ch[i][0])
546 			continue;
547 
548 		if (!CH_ACTIVE(pvt, i)) {
549 			edac_dbg(0, "Channel %i is not active\n", i);
550 			continue;
551 		}
552 		if (CH_DISABLED(pvt, i)) {
553 			edac_dbg(0, "Channel %i is disabled\n", i);
554 			continue;
555 		}
556 
557 		/* Devices 4-6 function 0 */
558 		pci_read_config_dword(pvt->pci_ch[i][0],
559 				MC_CHANNEL_DIMM_INIT_PARAMS, &data);
560 
561 
562 		if (data & THREE_DIMMS_PRESENT)
563 			pvt->channel[i].is_3dimms_present = true;
564 
565 		if (data & SINGLE_QUAD_RANK_PRESENT)
566 			pvt->channel[i].is_single_4rank = true;
567 
568 		if (data & QUAD_RANK_PRESENT)
569 			pvt->channel[i].has_4rank = true;
570 
571 		if (data & REGISTERED_DIMM)
572 			mtype = MEM_RDDR3;
573 		else
574 			mtype = MEM_DDR3;
575 
576 		/* Devices 4-6 function 1 */
577 		pci_read_config_dword(pvt->pci_ch[i][1],
578 				MC_DOD_CH_DIMM0, &dimm_dod[0]);
579 		pci_read_config_dword(pvt->pci_ch[i][1],
580 				MC_DOD_CH_DIMM1, &dimm_dod[1]);
581 		pci_read_config_dword(pvt->pci_ch[i][1],
582 				MC_DOD_CH_DIMM2, &dimm_dod[2]);
583 
584 		edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
585 			 i,
586 			 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
587 			 data,
588 			 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
589 			 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
590 			 pvt->channel[i].has_4rank ? "HAS_4R " : "",
591 			 (data & REGISTERED_DIMM) ? 'R' : 'U');
592 
593 		for (j = 0; j < 3; j++) {
594 			u32 banks, ranks, rows, cols;
595 			u32 size, npages;
596 
597 			if (!DIMM_PRESENT(dimm_dod[j]))
598 				continue;
599 
600 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
601 				       i, j, 0);
602 			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
603 			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
604 			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
605 			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
606 
607 			/* DDR3 has 8 I/O banks */
608 			size = (rows * cols * banks * ranks) >> (20 - 3);
609 
610 			edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
611 				 j, size,
612 				 RANKOFFSET(dimm_dod[j]),
613 				 banks, ranks, rows, cols);
614 
615 			npages = MiB_TO_PAGES(size);
616 
617 			dimm->nr_pages = npages;
618 
619 			switch (banks) {
620 			case 4:
621 				dimm->dtype = DEV_X4;
622 				break;
623 			case 8:
624 				dimm->dtype = DEV_X8;
625 				break;
626 			case 16:
627 				dimm->dtype = DEV_X16;
628 				break;
629 			default:
630 				dimm->dtype = DEV_UNKNOWN;
631 			}
632 
633 			snprintf(dimm->label, sizeof(dimm->label),
634 				 "CPU#%uChannel#%u_DIMM#%u",
635 				 pvt->i7core_dev->socket, i, j);
636 			dimm->grain = 8;
637 			dimm->edac_mode = mode;
638 			dimm->mtype = mtype;
639 		}
640 
641 		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
642 		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
643 		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
644 		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
645 		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
646 		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
647 		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
648 		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
649 		edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
650 		for (j = 0; j < 8; j++)
651 			edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
652 				 (value[j] >> 27) & 0x1,
653 				 (value[j] >> 24) & 0x7,
654 				 (value[j] & ((1 << 24) - 1)));
655 	}
656 
657 	return 0;
658 }
659 
660 /****************************************************************************
661 			Error insertion routines
662  ****************************************************************************/
663 
664 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
665 
666 /* The i7core has independent error injection features per channel.
667    However, to have a simpler code, we don't allow enabling error injection
668    on more than one channel.
669    Also, since a change at an inject parameter will be applied only at enable,
670    we're disabling error injection on all write calls to the sysfs nodes that
671    controls the error code injection.
672  */
673 static int disable_inject(const struct mem_ctl_info *mci)
674 {
675 	struct i7core_pvt *pvt = mci->pvt_info;
676 
677 	pvt->inject.enable = 0;
678 
679 	if (!pvt->pci_ch[pvt->inject.channel][0])
680 		return -ENODEV;
681 
682 	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
683 				MC_CHANNEL_ERROR_INJECT, 0);
684 
685 	return 0;
686 }
687 
688 /*
689  * i7core inject inject.section
690  *
691  *	accept and store error injection inject.section value
692  *	bit 0 - refers to the lower 32-byte half cacheline
693  *	bit 1 - refers to the upper 32-byte half cacheline
694  */
695 static ssize_t i7core_inject_section_store(struct device *dev,
696 					   struct device_attribute *mattr,
697 					   const char *data, size_t count)
698 {
699 	struct mem_ctl_info *mci = to_mci(dev);
700 	struct i7core_pvt *pvt = mci->pvt_info;
701 	unsigned long value;
702 	int rc;
703 
704 	if (pvt->inject.enable)
705 		disable_inject(mci);
706 
707 	rc = kstrtoul(data, 10, &value);
708 	if ((rc < 0) || (value > 3))
709 		return -EIO;
710 
711 	pvt->inject.section = (u32) value;
712 	return count;
713 }
714 
715 static ssize_t i7core_inject_section_show(struct device *dev,
716 					  struct device_attribute *mattr,
717 					  char *data)
718 {
719 	struct mem_ctl_info *mci = to_mci(dev);
720 	struct i7core_pvt *pvt = mci->pvt_info;
721 	return sprintf(data, "0x%08x\n", pvt->inject.section);
722 }
723 
724 /*
725  * i7core inject.type
726  *
727  *	accept and store error injection inject.section value
728  *	bit 0 - repeat enable - Enable error repetition
729  *	bit 1 - inject ECC error
730  *	bit 2 - inject parity error
731  */
732 static ssize_t i7core_inject_type_store(struct device *dev,
733 					struct device_attribute *mattr,
734 					const char *data, size_t count)
735 {
736 	struct mem_ctl_info *mci = to_mci(dev);
737 struct i7core_pvt *pvt = mci->pvt_info;
738 	unsigned long value;
739 	int rc;
740 
741 	if (pvt->inject.enable)
742 		disable_inject(mci);
743 
744 	rc = kstrtoul(data, 10, &value);
745 	if ((rc < 0) || (value > 7))
746 		return -EIO;
747 
748 	pvt->inject.type = (u32) value;
749 	return count;
750 }
751 
752 static ssize_t i7core_inject_type_show(struct device *dev,
753 				       struct device_attribute *mattr,
754 				       char *data)
755 {
756 	struct mem_ctl_info *mci = to_mci(dev);
757 	struct i7core_pvt *pvt = mci->pvt_info;
758 
759 	return sprintf(data, "0x%08x\n", pvt->inject.type);
760 }
761 
762 /*
763  * i7core_inject_inject.eccmask_store
764  *
765  * The type of error (UE/CE) will depend on the inject.eccmask value:
766  *   Any bits set to a 1 will flip the corresponding ECC bit
767  *   Correctable errors can be injected by flipping 1 bit or the bits within
768  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
769  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
770  *   uncorrectable error to be injected.
771  */
772 static ssize_t i7core_inject_eccmask_store(struct device *dev,
773 					   struct device_attribute *mattr,
774 					   const char *data, size_t count)
775 {
776 	struct mem_ctl_info *mci = to_mci(dev);
777 	struct i7core_pvt *pvt = mci->pvt_info;
778 	unsigned long value;
779 	int rc;
780 
781 	if (pvt->inject.enable)
782 		disable_inject(mci);
783 
784 	rc = kstrtoul(data, 10, &value);
785 	if (rc < 0)
786 		return -EIO;
787 
788 	pvt->inject.eccmask = (u32) value;
789 	return count;
790 }
791 
792 static ssize_t i7core_inject_eccmask_show(struct device *dev,
793 					  struct device_attribute *mattr,
794 					  char *data)
795 {
796 	struct mem_ctl_info *mci = to_mci(dev);
797 	struct i7core_pvt *pvt = mci->pvt_info;
798 
799 	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
800 }
801 
802 /*
803  * i7core_addrmatch
804  *
805  * The type of error (UE/CE) will depend on the inject.eccmask value:
806  *   Any bits set to a 1 will flip the corresponding ECC bit
807  *   Correctable errors can be injected by flipping 1 bit or the bits within
808  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
809  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
810  *   uncorrectable error to be injected.
811  */
812 
813 #define DECLARE_ADDR_MATCH(param, limit)			\
814 static ssize_t i7core_inject_store_##param(			\
815 	struct device *dev,					\
816 	struct device_attribute *mattr,				\
817 	const char *data, size_t count)				\
818 {								\
819 	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
820 	struct i7core_pvt *pvt;					\
821 	long value;						\
822 	int rc;							\
823 								\
824 	edac_dbg(1, "\n");					\
825 	pvt = mci->pvt_info;					\
826 								\
827 	if (pvt->inject.enable)					\
828 		disable_inject(mci);				\
829 								\
830 	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
831 		value = -1;					\
832 	else {							\
833 		rc = kstrtoul(data, 10, &value);		\
834 		if ((rc < 0) || (value >= limit))		\
835 			return -EIO;				\
836 	}							\
837 								\
838 	pvt->inject.param = value;				\
839 								\
840 	return count;						\
841 }								\
842 								\
843 static ssize_t i7core_inject_show_##param(			\
844 	struct device *dev,					\
845 	struct device_attribute *mattr,				\
846 	char *data)						\
847 {								\
848 	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
849 	struct i7core_pvt *pvt;					\
850 								\
851 	pvt = mci->pvt_info;					\
852 	edac_dbg(1, "pvt=%p\n", pvt);				\
853 	if (pvt->inject.param < 0)				\
854 		return sprintf(data, "any\n");			\
855 	else							\
856 		return sprintf(data, "%d\n", pvt->inject.param);\
857 }
858 
859 #define ATTR_ADDR_MATCH(param)					\
860 	static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,		\
861 		    i7core_inject_show_##param,			\
862 		    i7core_inject_store_##param)
863 
864 DECLARE_ADDR_MATCH(channel, 3);
865 DECLARE_ADDR_MATCH(dimm, 3);
866 DECLARE_ADDR_MATCH(rank, 4);
867 DECLARE_ADDR_MATCH(bank, 32);
868 DECLARE_ADDR_MATCH(page, 0x10000);
869 DECLARE_ADDR_MATCH(col, 0x4000);
870 
871 ATTR_ADDR_MATCH(channel);
872 ATTR_ADDR_MATCH(dimm);
873 ATTR_ADDR_MATCH(rank);
874 ATTR_ADDR_MATCH(bank);
875 ATTR_ADDR_MATCH(page);
876 ATTR_ADDR_MATCH(col);
877 
878 static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
879 {
880 	u32 read;
881 	int count;
882 
883 	edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
884 		 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
885 		 where, val);
886 
887 	for (count = 0; count < 10; count++) {
888 		if (count)
889 			msleep(100);
890 		pci_write_config_dword(dev, where, val);
891 		pci_read_config_dword(dev, where, &read);
892 
893 		if (read == val)
894 			return 0;
895 	}
896 
897 	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
898 		"write=%08x. Read=%08x\n",
899 		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
900 		where, val, read);
901 
902 	return -EINVAL;
903 }
904 
905 /*
906  * This routine prepares the Memory Controller for error injection.
907  * The error will be injected when some process tries to write to the
908  * memory that matches the given criteria.
909  * The criteria can be set in terms of a mask where dimm, rank, bank, page
910  * and col can be specified.
911  * A -1 value for any of the mask items will make the MCU to ignore
912  * that matching criteria for error injection.
913  *
914  * It should be noticed that the error will only happen after a write operation
915  * on a memory that matches the condition. if REPEAT_EN is not enabled at
916  * inject mask, then it will produce just one error. Otherwise, it will repeat
917  * until the injectmask would be cleaned.
918  *
919  * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
920  *    is reliable enough to check if the MC is using the
921  *    three channels. However, this is not clear at the datasheet.
922  */
923 static ssize_t i7core_inject_enable_store(struct device *dev,
924 					  struct device_attribute *mattr,
925 					  const char *data, size_t count)
926 {
927 	struct mem_ctl_info *mci = to_mci(dev);
928 	struct i7core_pvt *pvt = mci->pvt_info;
929 	u32 injectmask;
930 	u64 mask = 0;
931 	int  rc;
932 	long enable;
933 
934 	if (!pvt->pci_ch[pvt->inject.channel][0])
935 		return 0;
936 
937 	rc = kstrtoul(data, 10, &enable);
938 	if ((rc < 0))
939 		return 0;
940 
941 	if (enable) {
942 		pvt->inject.enable = 1;
943 	} else {
944 		disable_inject(mci);
945 		return count;
946 	}
947 
948 	/* Sets pvt->inject.dimm mask */
949 	if (pvt->inject.dimm < 0)
950 		mask |= 1LL << 41;
951 	else {
952 		if (pvt->channel[pvt->inject.channel].dimms > 2)
953 			mask |= (pvt->inject.dimm & 0x3LL) << 35;
954 		else
955 			mask |= (pvt->inject.dimm & 0x1LL) << 36;
956 	}
957 
958 	/* Sets pvt->inject.rank mask */
959 	if (pvt->inject.rank < 0)
960 		mask |= 1LL << 40;
961 	else {
962 		if (pvt->channel[pvt->inject.channel].dimms > 2)
963 			mask |= (pvt->inject.rank & 0x1LL) << 34;
964 		else
965 			mask |= (pvt->inject.rank & 0x3LL) << 34;
966 	}
967 
968 	/* Sets pvt->inject.bank mask */
969 	if (pvt->inject.bank < 0)
970 		mask |= 1LL << 39;
971 	else
972 		mask |= (pvt->inject.bank & 0x15LL) << 30;
973 
974 	/* Sets pvt->inject.page mask */
975 	if (pvt->inject.page < 0)
976 		mask |= 1LL << 38;
977 	else
978 		mask |= (pvt->inject.page & 0xffff) << 14;
979 
980 	/* Sets pvt->inject.column mask */
981 	if (pvt->inject.col < 0)
982 		mask |= 1LL << 37;
983 	else
984 		mask |= (pvt->inject.col & 0x3fff);
985 
986 	/*
987 	 * bit    0: REPEAT_EN
988 	 * bits 1-2: MASK_HALF_CACHELINE
989 	 * bit    3: INJECT_ECC
990 	 * bit    4: INJECT_ADDR_PARITY
991 	 */
992 
993 	injectmask = (pvt->inject.type & 1) |
994 		     (pvt->inject.section & 0x3) << 1 |
995 		     (pvt->inject.type & 0x6) << (3 - 1);
996 
997 	/* Unlock writes to registers - this register is write only */
998 	pci_write_config_dword(pvt->pci_noncore,
999 			       MC_CFG_CONTROL, 0x2);
1000 
1001 	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1002 			       MC_CHANNEL_ADDR_MATCH, mask);
1003 	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1004 			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
1005 
1006 	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1007 			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
1008 
1009 	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1010 			       MC_CHANNEL_ERROR_INJECT, injectmask);
1011 
1012 	/*
1013 	 * This is something undocumented, based on my tests
1014 	 * Without writing 8 to this register, errors aren't injected. Not sure
1015 	 * why.
1016 	 */
1017 	pci_write_config_dword(pvt->pci_noncore,
1018 			       MC_CFG_CONTROL, 8);
1019 
1020 	edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
1021 		 mask, pvt->inject.eccmask, injectmask);
1022 
1023 
1024 	return count;
1025 }
1026 
1027 static ssize_t i7core_inject_enable_show(struct device *dev,
1028 					 struct device_attribute *mattr,
1029 					 char *data)
1030 {
1031 	struct mem_ctl_info *mci = to_mci(dev);
1032 	struct i7core_pvt *pvt = mci->pvt_info;
1033 	u32 injectmask;
1034 
1035 	if (!pvt->pci_ch[pvt->inject.channel][0])
1036 		return 0;
1037 
1038 	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1039 			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1040 
1041 	edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
1042 
1043 	if (injectmask & 0x0c)
1044 		pvt->inject.enable = 1;
1045 
1046 	return sprintf(data, "%d\n", pvt->inject.enable);
1047 }
1048 
1049 #define DECLARE_COUNTER(param)					\
1050 static ssize_t i7core_show_counter_##param(			\
1051 	struct device *dev,					\
1052 	struct device_attribute *mattr,				\
1053 	char *data)						\
1054 {								\
1055 	struct mem_ctl_info *mci = dev_get_drvdata(dev);	\
1056 	struct i7core_pvt *pvt = mci->pvt_info;			\
1057 								\
1058 	edac_dbg(1, "\n");					\
1059 	if (!pvt->ce_count_available || (pvt->is_registered))	\
1060 		return sprintf(data, "data unavailable\n");	\
1061 	return sprintf(data, "%lu\n",				\
1062 			pvt->udimm_ce_count[param]);		\
1063 }
1064 
1065 #define ATTR_COUNTER(param)					\
1066 	static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,	\
1067 		    i7core_show_counter_##param,		\
1068 		    NULL)
1069 
1070 DECLARE_COUNTER(0);
1071 DECLARE_COUNTER(1);
1072 DECLARE_COUNTER(2);
1073 
1074 ATTR_COUNTER(0);
1075 ATTR_COUNTER(1);
1076 ATTR_COUNTER(2);
1077 
1078 /*
1079  * inject_addrmatch device sysfs struct
1080  */
1081 
1082 static struct attribute *i7core_addrmatch_attrs[] = {
1083 	&dev_attr_channel.attr,
1084 	&dev_attr_dimm.attr,
1085 	&dev_attr_rank.attr,
1086 	&dev_attr_bank.attr,
1087 	&dev_attr_page.attr,
1088 	&dev_attr_col.attr,
1089 	NULL
1090 };
1091 
1092 static struct attribute_group addrmatch_grp = {
1093 	.attrs	= i7core_addrmatch_attrs,
1094 };
1095 
1096 static const struct attribute_group *addrmatch_groups[] = {
1097 	&addrmatch_grp,
1098 	NULL
1099 };
1100 
1101 static void addrmatch_release(struct device *device)
1102 {
1103 	edac_dbg(1, "Releasing device %s\n", dev_name(device));
1104 	kfree(device);
1105 }
1106 
1107 static struct device_type addrmatch_type = {
1108 	.groups		= addrmatch_groups,
1109 	.release	= addrmatch_release,
1110 };
1111 
1112 /*
1113  * all_channel_counts sysfs struct
1114  */
1115 
1116 static struct attribute *i7core_udimm_counters_attrs[] = {
1117 	&dev_attr_udimm0.attr,
1118 	&dev_attr_udimm1.attr,
1119 	&dev_attr_udimm2.attr,
1120 	NULL
1121 };
1122 
1123 static struct attribute_group all_channel_counts_grp = {
1124 	.attrs	= i7core_udimm_counters_attrs,
1125 };
1126 
1127 static const struct attribute_group *all_channel_counts_groups[] = {
1128 	&all_channel_counts_grp,
1129 	NULL
1130 };
1131 
1132 static void all_channel_counts_release(struct device *device)
1133 {
1134 	edac_dbg(1, "Releasing device %s\n", dev_name(device));
1135 	kfree(device);
1136 }
1137 
1138 static struct device_type all_channel_counts_type = {
1139 	.groups		= all_channel_counts_groups,
1140 	.release	= all_channel_counts_release,
1141 };
1142 
1143 /*
1144  * inject sysfs attributes
1145  */
1146 
1147 static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
1148 		   i7core_inject_section_show, i7core_inject_section_store);
1149 
1150 static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
1151 		   i7core_inject_type_show, i7core_inject_type_store);
1152 
1153 
1154 static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
1155 		   i7core_inject_eccmask_show, i7core_inject_eccmask_store);
1156 
1157 static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
1158 		   i7core_inject_enable_show, i7core_inject_enable_store);
1159 
1160 static struct attribute *i7core_dev_attrs[] = {
1161 	&dev_attr_inject_section.attr,
1162 	&dev_attr_inject_type.attr,
1163 	&dev_attr_inject_eccmask.attr,
1164 	&dev_attr_inject_enable.attr,
1165 	NULL
1166 };
1167 
1168 ATTRIBUTE_GROUPS(i7core_dev);
1169 
1170 static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
1171 {
1172 	struct i7core_pvt *pvt = mci->pvt_info;
1173 	int rc;
1174 
1175 	pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
1176 	if (!pvt->addrmatch_dev)
1177 		return -ENOMEM;
1178 
1179 	pvt->addrmatch_dev->type = &addrmatch_type;
1180 	pvt->addrmatch_dev->bus = mci->dev.bus;
1181 	device_initialize(pvt->addrmatch_dev);
1182 	pvt->addrmatch_dev->parent = &mci->dev;
1183 	dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
1184 	dev_set_drvdata(pvt->addrmatch_dev, mci);
1185 
1186 	edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
1187 
1188 	rc = device_add(pvt->addrmatch_dev);
1189 	if (rc < 0)
1190 		return rc;
1191 
1192 	if (!pvt->is_registered) {
1193 		pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
1194 					      GFP_KERNEL);
1195 		if (!pvt->chancounts_dev) {
1196 			put_device(pvt->addrmatch_dev);
1197 			device_del(pvt->addrmatch_dev);
1198 			return -ENOMEM;
1199 		}
1200 
1201 		pvt->chancounts_dev->type = &all_channel_counts_type;
1202 		pvt->chancounts_dev->bus = mci->dev.bus;
1203 		device_initialize(pvt->chancounts_dev);
1204 		pvt->chancounts_dev->parent = &mci->dev;
1205 		dev_set_name(pvt->chancounts_dev, "all_channel_counts");
1206 		dev_set_drvdata(pvt->chancounts_dev, mci);
1207 
1208 		edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
1209 
1210 		rc = device_add(pvt->chancounts_dev);
1211 		if (rc < 0)
1212 			return rc;
1213 	}
1214 	return 0;
1215 }
1216 
1217 static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
1218 {
1219 	struct i7core_pvt *pvt = mci->pvt_info;
1220 
1221 	edac_dbg(1, "\n");
1222 
1223 	if (!pvt->is_registered) {
1224 		put_device(pvt->chancounts_dev);
1225 		device_del(pvt->chancounts_dev);
1226 	}
1227 	put_device(pvt->addrmatch_dev);
1228 	device_del(pvt->addrmatch_dev);
1229 }
1230 
1231 /****************************************************************************
1232 	Device initialization routines: put/get, init/exit
1233  ****************************************************************************/
1234 
1235 /*
1236  *	i7core_put_all_devices	'put' all the devices that we have
1237  *				reserved via 'get'
1238  */
1239 static void i7core_put_devices(struct i7core_dev *i7core_dev)
1240 {
1241 	int i;
1242 
1243 	edac_dbg(0, "\n");
1244 	for (i = 0; i < i7core_dev->n_devs; i++) {
1245 		struct pci_dev *pdev = i7core_dev->pdev[i];
1246 		if (!pdev)
1247 			continue;
1248 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1249 			 pdev->bus->number,
1250 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1251 		pci_dev_put(pdev);
1252 	}
1253 }
1254 
1255 static void i7core_put_all_devices(void)
1256 {
1257 	struct i7core_dev *i7core_dev, *tmp;
1258 
1259 	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1260 		i7core_put_devices(i7core_dev);
1261 		free_i7core_dev(i7core_dev);
1262 	}
1263 }
1264 
1265 static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1266 {
1267 	struct pci_dev *pdev = NULL;
1268 	int i;
1269 
1270 	/*
1271 	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1272 	 * aren't announced by acpi. So, we need to use a legacy scan probing
1273 	 * to detect them
1274 	 */
1275 	while (table && table->descr) {
1276 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1277 		if (unlikely(!pdev)) {
1278 			for (i = 0; i < MAX_SOCKET_BUSES; i++)
1279 				pcibios_scan_specific_bus(255-i);
1280 		}
1281 		pci_dev_put(pdev);
1282 		table++;
1283 	}
1284 }
1285 
1286 static unsigned i7core_pci_lastbus(void)
1287 {
1288 	int last_bus = 0, bus;
1289 	struct pci_bus *b = NULL;
1290 
1291 	while ((b = pci_find_next_bus(b)) != NULL) {
1292 		bus = b->number;
1293 		edac_dbg(0, "Found bus %d\n", bus);
1294 		if (bus > last_bus)
1295 			last_bus = bus;
1296 	}
1297 
1298 	edac_dbg(0, "Last bus %d\n", last_bus);
1299 
1300 	return last_bus;
1301 }
1302 
1303 /*
1304  *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1305  *			device/functions we want to reference for this driver
1306  *
1307  *			Need to 'get' device 16 func 1 and func 2
1308  */
1309 static int i7core_get_onedevice(struct pci_dev **prev,
1310 				const struct pci_id_table *table,
1311 				const unsigned devno,
1312 				const unsigned last_bus)
1313 {
1314 	struct i7core_dev *i7core_dev;
1315 	const struct pci_id_descr *dev_descr = &table->descr[devno];
1316 
1317 	struct pci_dev *pdev = NULL;
1318 	u8 bus = 0;
1319 	u8 socket = 0;
1320 
1321 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1322 			      dev_descr->dev_id, *prev);
1323 
1324 	/*
1325 	 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
1326 	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1327 	 * to probe for the alternate address in case of failure
1328 	 */
1329 	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
1330 		pci_dev_get(*prev);	/* pci_get_device will put it */
1331 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1332 				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1333 	}
1334 
1335 	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
1336 	    !pdev) {
1337 		pci_dev_get(*prev);	/* pci_get_device will put it */
1338 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1339 				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1340 				      *prev);
1341 	}
1342 
1343 	if (!pdev) {
1344 		if (*prev) {
1345 			*prev = pdev;
1346 			return 0;
1347 		}
1348 
1349 		if (dev_descr->optional)
1350 			return 0;
1351 
1352 		if (devno == 0)
1353 			return -ENODEV;
1354 
1355 		i7core_printk(KERN_INFO,
1356 			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1357 			dev_descr->dev, dev_descr->func,
1358 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1359 
1360 		/* End of list, leave */
1361 		return -ENODEV;
1362 	}
1363 	bus = pdev->bus->number;
1364 
1365 	socket = last_bus - bus;
1366 
1367 	i7core_dev = get_i7core_dev(socket);
1368 	if (!i7core_dev) {
1369 		i7core_dev = alloc_i7core_dev(socket, table);
1370 		if (!i7core_dev) {
1371 			pci_dev_put(pdev);
1372 			return -ENOMEM;
1373 		}
1374 	}
1375 
1376 	if (i7core_dev->pdev[devno]) {
1377 		i7core_printk(KERN_ERR,
1378 			"Duplicated device for "
1379 			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1380 			bus, dev_descr->dev, dev_descr->func,
1381 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1382 		pci_dev_put(pdev);
1383 		return -ENODEV;
1384 	}
1385 
1386 	i7core_dev->pdev[devno] = pdev;
1387 
1388 	/* Sanity check */
1389 	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1390 			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1391 		i7core_printk(KERN_ERR,
1392 			"Device PCI ID %04x:%04x "
1393 			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1394 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1395 			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1396 			bus, dev_descr->dev, dev_descr->func);
1397 		return -ENODEV;
1398 	}
1399 
1400 	/* Be sure that the device is enabled */
1401 	if (unlikely(pci_enable_device(pdev) < 0)) {
1402 		i7core_printk(KERN_ERR,
1403 			"Couldn't enable "
1404 			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1405 			bus, dev_descr->dev, dev_descr->func,
1406 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1407 		return -ENODEV;
1408 	}
1409 
1410 	edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1411 		 socket, bus, dev_descr->dev,
1412 		 dev_descr->func,
1413 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1414 
1415 	/*
1416 	 * As stated on drivers/pci/search.c, the reference count for
1417 	 * @from is always decremented if it is not %NULL. So, as we need
1418 	 * to get all devices up to null, we need to do a get for the device
1419 	 */
1420 	pci_dev_get(pdev);
1421 
1422 	*prev = pdev;
1423 
1424 	return 0;
1425 }
1426 
1427 static int i7core_get_all_devices(void)
1428 {
1429 	int i, rc, last_bus;
1430 	struct pci_dev *pdev = NULL;
1431 	const struct pci_id_table *table = pci_dev_table;
1432 
1433 	last_bus = i7core_pci_lastbus();
1434 
1435 	while (table && table->descr) {
1436 		for (i = 0; i < table->n_devs; i++) {
1437 			pdev = NULL;
1438 			do {
1439 				rc = i7core_get_onedevice(&pdev, table, i,
1440 							  last_bus);
1441 				if (rc < 0) {
1442 					if (i == 0) {
1443 						i = table->n_devs;
1444 						break;
1445 					}
1446 					i7core_put_all_devices();
1447 					return -ENODEV;
1448 				}
1449 			} while (pdev);
1450 		}
1451 		table++;
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 static int mci_bind_devs(struct mem_ctl_info *mci,
1458 			 struct i7core_dev *i7core_dev)
1459 {
1460 	struct i7core_pvt *pvt = mci->pvt_info;
1461 	struct pci_dev *pdev;
1462 	int i, func, slot;
1463 	char *family;
1464 
1465 	pvt->is_registered = false;
1466 	pvt->enable_scrub  = false;
1467 	for (i = 0; i < i7core_dev->n_devs; i++) {
1468 		pdev = i7core_dev->pdev[i];
1469 		if (!pdev)
1470 			continue;
1471 
1472 		func = PCI_FUNC(pdev->devfn);
1473 		slot = PCI_SLOT(pdev->devfn);
1474 		if (slot == 3) {
1475 			if (unlikely(func > MAX_MCR_FUNC))
1476 				goto error;
1477 			pvt->pci_mcr[func] = pdev;
1478 		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1479 			if (unlikely(func > MAX_CHAN_FUNC))
1480 				goto error;
1481 			pvt->pci_ch[slot - 4][func] = pdev;
1482 		} else if (!slot && !func) {
1483 			pvt->pci_noncore = pdev;
1484 
1485 			/* Detect the processor family */
1486 			switch (pdev->device) {
1487 			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
1488 				family = "Xeon 35xx/ i7core";
1489 				pvt->enable_scrub = false;
1490 				break;
1491 			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
1492 				family = "i7-800/i5-700";
1493 				pvt->enable_scrub = false;
1494 				break;
1495 			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
1496 				family = "Xeon 34xx";
1497 				pvt->enable_scrub = false;
1498 				break;
1499 			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
1500 				family = "Xeon 55xx";
1501 				pvt->enable_scrub = true;
1502 				break;
1503 			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
1504 				family = "Xeon 56xx / i7-900";
1505 				pvt->enable_scrub = true;
1506 				break;
1507 			default:
1508 				family = "unknown";
1509 				pvt->enable_scrub = false;
1510 			}
1511 			edac_dbg(0, "Detected a processor type %s\n", family);
1512 		} else
1513 			goto error;
1514 
1515 		edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
1516 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1517 			 pdev, i7core_dev->socket);
1518 
1519 		if (PCI_SLOT(pdev->devfn) == 3 &&
1520 			PCI_FUNC(pdev->devfn) == 2)
1521 			pvt->is_registered = true;
1522 	}
1523 
1524 	return 0;
1525 
1526 error:
1527 	i7core_printk(KERN_ERR, "Device %d, function %d "
1528 		      "is out of the expected range\n",
1529 		      slot, func);
1530 	return -EINVAL;
1531 }
1532 
1533 /****************************************************************************
1534 			Error check routines
1535  ****************************************************************************/
1536 
1537 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1538 					 const int chan,
1539 					 const int new0,
1540 					 const int new1,
1541 					 const int new2)
1542 {
1543 	struct i7core_pvt *pvt = mci->pvt_info;
1544 	int add0 = 0, add1 = 0, add2 = 0;
1545 	/* Updates CE counters if it is not the first time here */
1546 	if (pvt->ce_count_available) {
1547 		/* Updates CE counters */
1548 
1549 		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1550 		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1551 		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1552 
1553 		if (add2 < 0)
1554 			add2 += 0x7fff;
1555 		pvt->rdimm_ce_count[chan][2] += add2;
1556 
1557 		if (add1 < 0)
1558 			add1 += 0x7fff;
1559 		pvt->rdimm_ce_count[chan][1] += add1;
1560 
1561 		if (add0 < 0)
1562 			add0 += 0x7fff;
1563 		pvt->rdimm_ce_count[chan][0] += add0;
1564 	} else
1565 		pvt->ce_count_available = 1;
1566 
1567 	/* Store the new values */
1568 	pvt->rdimm_last_ce_count[chan][2] = new2;
1569 	pvt->rdimm_last_ce_count[chan][1] = new1;
1570 	pvt->rdimm_last_ce_count[chan][0] = new0;
1571 
1572 	/*updated the edac core */
1573 	if (add0 != 0)
1574 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
1575 				     0, 0, 0,
1576 				     chan, 0, -1, "error", "");
1577 	if (add1 != 0)
1578 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
1579 				     0, 0, 0,
1580 				     chan, 1, -1, "error", "");
1581 	if (add2 != 0)
1582 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
1583 				     0, 0, 0,
1584 				     chan, 2, -1, "error", "");
1585 }
1586 
1587 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1588 {
1589 	struct i7core_pvt *pvt = mci->pvt_info;
1590 	u32 rcv[3][2];
1591 	int i, new0, new1, new2;
1592 
1593 	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1594 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1595 								&rcv[0][0]);
1596 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1597 								&rcv[0][1]);
1598 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1599 								&rcv[1][0]);
1600 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1601 								&rcv[1][1]);
1602 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1603 								&rcv[2][0]);
1604 	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1605 								&rcv[2][1]);
1606 	for (i = 0 ; i < 3; i++) {
1607 		edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1608 			 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1609 		/*if the channel has 3 dimms*/
1610 		if (pvt->channel[i].dimms > 2) {
1611 			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1612 			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1613 			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1614 		} else {
1615 			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1616 					DIMM_BOT_COR_ERR(rcv[i][0]);
1617 			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1618 					DIMM_BOT_COR_ERR(rcv[i][1]);
1619 			new2 = 0;
1620 		}
1621 
1622 		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1623 	}
1624 }
1625 
1626 /* This function is based on the device 3 function 4 registers as described on:
1627  * Intel Xeon Processor 5500 Series Datasheet Volume 2
1628  *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1629  * also available at:
1630  * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1631  */
1632 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1633 {
1634 	struct i7core_pvt *pvt = mci->pvt_info;
1635 	u32 rcv1, rcv0;
1636 	int new0, new1, new2;
1637 
1638 	if (!pvt->pci_mcr[4]) {
1639 		edac_dbg(0, "MCR registers not found\n");
1640 		return;
1641 	}
1642 
1643 	/* Corrected test errors */
1644 	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1645 	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1646 
1647 	/* Store the new values */
1648 	new2 = DIMM2_COR_ERR(rcv1);
1649 	new1 = DIMM1_COR_ERR(rcv0);
1650 	new0 = DIMM0_COR_ERR(rcv0);
1651 
1652 	/* Updates CE counters if it is not the first time here */
1653 	if (pvt->ce_count_available) {
1654 		/* Updates CE counters */
1655 		int add0, add1, add2;
1656 
1657 		add2 = new2 - pvt->udimm_last_ce_count[2];
1658 		add1 = new1 - pvt->udimm_last_ce_count[1];
1659 		add0 = new0 - pvt->udimm_last_ce_count[0];
1660 
1661 		if (add2 < 0)
1662 			add2 += 0x7fff;
1663 		pvt->udimm_ce_count[2] += add2;
1664 
1665 		if (add1 < 0)
1666 			add1 += 0x7fff;
1667 		pvt->udimm_ce_count[1] += add1;
1668 
1669 		if (add0 < 0)
1670 			add0 += 0x7fff;
1671 		pvt->udimm_ce_count[0] += add0;
1672 
1673 		if (add0 | add1 | add2)
1674 			i7core_printk(KERN_ERR, "New Corrected error(s): "
1675 				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1676 				      add0, add1, add2);
1677 	} else
1678 		pvt->ce_count_available = 1;
1679 
1680 	/* Store the new values */
1681 	pvt->udimm_last_ce_count[2] = new2;
1682 	pvt->udimm_last_ce_count[1] = new1;
1683 	pvt->udimm_last_ce_count[0] = new0;
1684 }
1685 
1686 /*
1687  * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1688  * Architectures Software Developer’s Manual Volume 3B.
1689  * Nehalem are defined as family 0x06, model 0x1a
1690  *
1691  * The MCA registers used here are the following ones:
1692  *     struct mce field	MCA Register
1693  *     m->status	MSR_IA32_MC8_STATUS
1694  *     m->addr		MSR_IA32_MC8_ADDR
1695  *     m->misc		MSR_IA32_MC8_MISC
1696  * In the case of Nehalem, the error information is masked at .status and .misc
1697  * fields
1698  */
1699 static void i7core_mce_output_error(struct mem_ctl_info *mci,
1700 				    const struct mce *m)
1701 {
1702 	struct i7core_pvt *pvt = mci->pvt_info;
1703 	char *optype, *err;
1704 	enum hw_event_mc_err_type tp_event;
1705 	unsigned long error = m->status & 0x1ff0000l;
1706 	bool uncorrected_error = m->mcgstatus & 1ll << 61;
1707 	bool ripv = m->mcgstatus & 1;
1708 	u32 optypenum = (m->status >> 4) & 0x07;
1709 	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1710 	u32 dimm = (m->misc >> 16) & 0x3;
1711 	u32 channel = (m->misc >> 18) & 0x3;
1712 	u32 syndrome = m->misc >> 32;
1713 	u32 errnum = find_first_bit(&error, 32);
1714 
1715 	if (uncorrected_error) {
1716 		if (ripv)
1717 			tp_event = HW_EVENT_ERR_FATAL;
1718 		else
1719 			tp_event = HW_EVENT_ERR_UNCORRECTED;
1720 	} else {
1721 		tp_event = HW_EVENT_ERR_CORRECTED;
1722 	}
1723 
1724 	switch (optypenum) {
1725 	case 0:
1726 		optype = "generic undef request";
1727 		break;
1728 	case 1:
1729 		optype = "read error";
1730 		break;
1731 	case 2:
1732 		optype = "write error";
1733 		break;
1734 	case 3:
1735 		optype = "addr/cmd error";
1736 		break;
1737 	case 4:
1738 		optype = "scrubbing error";
1739 		break;
1740 	default:
1741 		optype = "reserved";
1742 		break;
1743 	}
1744 
1745 	switch (errnum) {
1746 	case 16:
1747 		err = "read ECC error";
1748 		break;
1749 	case 17:
1750 		err = "RAS ECC error";
1751 		break;
1752 	case 18:
1753 		err = "write parity error";
1754 		break;
1755 	case 19:
1756 		err = "redundacy loss";
1757 		break;
1758 	case 20:
1759 		err = "reserved";
1760 		break;
1761 	case 21:
1762 		err = "memory range error";
1763 		break;
1764 	case 22:
1765 		err = "RTID out of range";
1766 		break;
1767 	case 23:
1768 		err = "address parity error";
1769 		break;
1770 	case 24:
1771 		err = "byte enable parity error";
1772 		break;
1773 	default:
1774 		err = "unknown";
1775 	}
1776 
1777 	/*
1778 	 * Call the helper to output message
1779 	 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
1780 	 * only one event
1781 	 */
1782 	if (uncorrected_error || !pvt->is_registered)
1783 		edac_mc_handle_error(tp_event, mci, core_err_cnt,
1784 				     m->addr >> PAGE_SHIFT,
1785 				     m->addr & ~PAGE_MASK,
1786 				     syndrome,
1787 				     channel, dimm, -1,
1788 				     err, optype);
1789 }
1790 
1791 /*
1792  *	i7core_check_error	Retrieve and process errors reported by the
1793  *				hardware. Called by the Core module.
1794  */
1795 static void i7core_check_error(struct mem_ctl_info *mci)
1796 {
1797 	struct i7core_pvt *pvt = mci->pvt_info;
1798 	int i;
1799 	unsigned count = 0;
1800 	struct mce *m;
1801 
1802 	/*
1803 	 * MCE first step: Copy all mce errors into a temporary buffer
1804 	 * We use a double buffering here, to reduce the risk of
1805 	 * losing an error.
1806 	 */
1807 	smp_rmb();
1808 	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
1809 		% MCE_LOG_LEN;
1810 	if (!count)
1811 		goto check_ce_error;
1812 
1813 	m = pvt->mce_outentry;
1814 	if (pvt->mce_in + count > MCE_LOG_LEN) {
1815 		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1816 
1817 		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
1818 		smp_wmb();
1819 		pvt->mce_in = 0;
1820 		count -= l;
1821 		m += l;
1822 	}
1823 	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
1824 	smp_wmb();
1825 	pvt->mce_in += count;
1826 
1827 	smp_rmb();
1828 	if (pvt->mce_overrun) {
1829 		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
1830 			      pvt->mce_overrun);
1831 		smp_wmb();
1832 		pvt->mce_overrun = 0;
1833 	}
1834 
1835 	/*
1836 	 * MCE second step: parse errors and display
1837 	 */
1838 	for (i = 0; i < count; i++)
1839 		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1840 
1841 	/*
1842 	 * Now, let's increment CE error counts
1843 	 */
1844 check_ce_error:
1845 	if (!pvt->is_registered)
1846 		i7core_udimm_check_mc_ecc_err(mci);
1847 	else
1848 		i7core_rdimm_check_mc_ecc_err(mci);
1849 }
1850 
1851 /*
1852  * i7core_mce_check_error	Replicates mcelog routine to get errors
1853  *				This routine simply queues mcelog errors, and
1854  *				return. The error itself should be handled later
1855  *				by i7core_check_error.
1856  * WARNING: As this routine should be called at NMI time, extra care should
1857  * be taken to avoid deadlocks, and to be as fast as possible.
1858  */
1859 static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
1860 				  void *data)
1861 {
1862 	struct mce *mce = (struct mce *)data;
1863 	struct i7core_dev *i7_dev;
1864 	struct mem_ctl_info *mci;
1865 	struct i7core_pvt *pvt;
1866 
1867 	i7_dev = get_i7core_dev(mce->socketid);
1868 	if (!i7_dev)
1869 		return NOTIFY_BAD;
1870 
1871 	mci = i7_dev->mci;
1872 	pvt = mci->pvt_info;
1873 
1874 	/*
1875 	 * Just let mcelog handle it if the error is
1876 	 * outside the memory controller
1877 	 */
1878 	if (((mce->status & 0xffff) >> 7) != 1)
1879 		return NOTIFY_DONE;
1880 
1881 	/* Bank 8 registers are the only ones that we know how to handle */
1882 	if (mce->bank != 8)
1883 		return NOTIFY_DONE;
1884 
1885 	smp_rmb();
1886 	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1887 		smp_wmb();
1888 		pvt->mce_overrun++;
1889 		return NOTIFY_DONE;
1890 	}
1891 
1892 	/* Copy memory error at the ringbuffer */
1893 	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1894 	smp_wmb();
1895 	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1896 
1897 	/* Handle fatal errors immediately */
1898 	if (mce->mcgstatus & 1)
1899 		i7core_check_error(mci);
1900 
1901 	/* Advise mcelog that the errors were handled */
1902 	return NOTIFY_STOP;
1903 }
1904 
1905 static struct notifier_block i7_mce_dec = {
1906 	.notifier_call	= i7core_mce_check_error,
1907 };
1908 
1909 struct memdev_dmi_entry {
1910 	u8 type;
1911 	u8 length;
1912 	u16 handle;
1913 	u16 phys_mem_array_handle;
1914 	u16 mem_err_info_handle;
1915 	u16 total_width;
1916 	u16 data_width;
1917 	u16 size;
1918 	u8 form;
1919 	u8 device_set;
1920 	u8 device_locator;
1921 	u8 bank_locator;
1922 	u8 memory_type;
1923 	u16 type_detail;
1924 	u16 speed;
1925 	u8 manufacturer;
1926 	u8 serial_number;
1927 	u8 asset_tag;
1928 	u8 part_number;
1929 	u8 attributes;
1930 	u32 extended_size;
1931 	u16 conf_mem_clk_speed;
1932 } __attribute__((__packed__));
1933 
1934 
1935 /*
1936  * Decode the DRAM Clock Frequency, be paranoid, make sure that all
1937  * memory devices show the same speed, and if they don't then consider
1938  * all speeds to be invalid.
1939  */
1940 static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
1941 {
1942 	int *dclk_freq = _dclk_freq;
1943 	u16 dmi_mem_clk_speed;
1944 
1945 	if (*dclk_freq == -1)
1946 		return;
1947 
1948 	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
1949 		struct memdev_dmi_entry *memdev_dmi_entry =
1950 			(struct memdev_dmi_entry *)dh;
1951 		unsigned long conf_mem_clk_speed_offset =
1952 			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
1953 			(unsigned long)&memdev_dmi_entry->type;
1954 		unsigned long speed_offset =
1955 			(unsigned long)&memdev_dmi_entry->speed -
1956 			(unsigned long)&memdev_dmi_entry->type;
1957 
1958 		/* Check that a DIMM is present */
1959 		if (memdev_dmi_entry->size == 0)
1960 			return;
1961 
1962 		/*
1963 		 * Pick the configured speed if it's available, otherwise
1964 		 * pick the DIMM speed, or we don't have a speed.
1965 		 */
1966 		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
1967 			dmi_mem_clk_speed =
1968 				memdev_dmi_entry->conf_mem_clk_speed;
1969 		} else if (memdev_dmi_entry->length > speed_offset) {
1970 			dmi_mem_clk_speed = memdev_dmi_entry->speed;
1971 		} else {
1972 			*dclk_freq = -1;
1973 			return;
1974 		}
1975 
1976 		if (*dclk_freq == 0) {
1977 			/* First pass, speed was 0 */
1978 			if (dmi_mem_clk_speed > 0) {
1979 				/* Set speed if a valid speed is read */
1980 				*dclk_freq = dmi_mem_clk_speed;
1981 			} else {
1982 				/* Otherwise we don't have a valid speed */
1983 				*dclk_freq = -1;
1984 			}
1985 		} else if (*dclk_freq > 0 &&
1986 			   *dclk_freq != dmi_mem_clk_speed) {
1987 			/*
1988 			 * If we have a speed, check that all DIMMS are the same
1989 			 * speed, otherwise set the speed as invalid.
1990 			 */
1991 			*dclk_freq = -1;
1992 		}
1993 	}
1994 }
1995 
1996 /*
1997  * The default DCLK frequency is used as a fallback if we
1998  * fail to find anything reliable in the DMI. The value
1999  * is taken straight from the datasheet.
2000  */
2001 #define DEFAULT_DCLK_FREQ 800
2002 
2003 static int get_dclk_freq(void)
2004 {
2005 	int dclk_freq = 0;
2006 
2007 	dmi_walk(decode_dclk, (void *)&dclk_freq);
2008 
2009 	if (dclk_freq < 1)
2010 		return DEFAULT_DCLK_FREQ;
2011 
2012 	return dclk_freq;
2013 }
2014 
2015 /*
2016  * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
2017  *				to hardware according to SCRUBINTERVAL formula
2018  *				found in datasheet.
2019  */
2020 static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
2021 {
2022 	struct i7core_pvt *pvt = mci->pvt_info;
2023 	struct pci_dev *pdev;
2024 	u32 dw_scrub;
2025 	u32 dw_ssr;
2026 
2027 	/* Get data from the MC register, function 2 */
2028 	pdev = pvt->pci_mcr[2];
2029 	if (!pdev)
2030 		return -ENODEV;
2031 
2032 	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);
2033 
2034 	if (new_bw == 0) {
2035 		/* Prepare to disable petrol scrub */
2036 		dw_scrub &= ~STARTSCRUB;
2037 		/* Stop the patrol scrub engine */
2038 		write_and_test(pdev, MC_SCRUB_CONTROL,
2039 			       dw_scrub & ~SCRUBINTERVAL_MASK);
2040 
2041 		/* Get current status of scrub rate and set bit to disable */
2042 		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2043 		dw_ssr &= ~SSR_MODE_MASK;
2044 		dw_ssr |= SSR_MODE_DISABLE;
2045 	} else {
2046 		const int cache_line_size = 64;
2047 		const u32 freq_dclk_mhz = pvt->dclk_freq;
2048 		unsigned long long scrub_interval;
2049 		/*
2050 		 * Translate the desired scrub rate to a register value and
2051 		 * program the corresponding register value.
2052 		 */
2053 		scrub_interval = (unsigned long long)freq_dclk_mhz *
2054 			cache_line_size * 1000000;
2055 		do_div(scrub_interval, new_bw);
2056 
2057 		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
2058 			return -EINVAL;
2059 
2060 		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2061 
2062 		/* Start the patrol scrub engine */
2063 		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
2064 				       STARTSCRUB | dw_scrub);
2065 
2066 		/* Get current status of scrub rate and set bit to enable */
2067 		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2068 		dw_ssr &= ~SSR_MODE_MASK;
2069 		dw_ssr |= SSR_MODE_ENABLE;
2070 	}
2071 	/* Disable or enable scrubbing */
2072 	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);
2073 
2074 	return new_bw;
2075 }
2076 
2077 /*
2078  * get_sdram_scrub_rate		This routine convert current scrub rate value
2079  *				into byte/sec bandwidth according to
2080  *				SCRUBINTERVAL formula found in datasheet.
2081  */
2082 static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
2083 {
2084 	struct i7core_pvt *pvt = mci->pvt_info;
2085 	struct pci_dev *pdev;
2086 	const u32 cache_line_size = 64;
2087 	const u32 freq_dclk_mhz = pvt->dclk_freq;
2088 	unsigned long long scrub_rate;
2089 	u32 scrubval;
2090 
2091 	/* Get data from the MC register, function 2 */
2092 	pdev = pvt->pci_mcr[2];
2093 	if (!pdev)
2094 		return -ENODEV;
2095 
2096 	/* Get current scrub control data */
2097 	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);
2098 
2099 	/* Mask highest 8-bits to 0 */
2100 	scrubval &=  SCRUBINTERVAL_MASK;
2101 	if (!scrubval)
2102 		return 0;
2103 
2104 	/* Calculate scrub rate value into byte/sec bandwidth */
2105 	scrub_rate =  (unsigned long long)freq_dclk_mhz *
2106 		1000000 * cache_line_size;
2107 	do_div(scrub_rate, scrubval);
2108 	return (int)scrub_rate;
2109 }
2110 
2111 static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
2112 {
2113 	struct i7core_pvt *pvt = mci->pvt_info;
2114 	u32 pci_lock;
2115 
2116 	/* Unlock writes to pci registers */
2117 	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2118 	pci_lock &= ~0x3;
2119 	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2120 			       pci_lock | MC_CFG_UNLOCK);
2121 
2122 	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
2123 	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
2124 }
2125 
2126 static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
2127 {
2128 	struct i7core_pvt *pvt = mci->pvt_info;
2129 	u32 pci_lock;
2130 
2131 	/* Lock writes to pci registers */
2132 	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2133 	pci_lock &= ~0x3;
2134 	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2135 			       pci_lock | MC_CFG_LOCK);
2136 }
2137 
2138 static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
2139 {
2140 	pvt->i7core_pci = edac_pci_create_generic_ctl(
2141 						&pvt->i7core_dev->pdev[0]->dev,
2142 						EDAC_MOD_STR);
2143 	if (unlikely(!pvt->i7core_pci))
2144 		i7core_printk(KERN_WARNING,
2145 			      "Unable to setup PCI error report via EDAC\n");
2146 }
2147 
2148 static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
2149 {
2150 	if (likely(pvt->i7core_pci))
2151 		edac_pci_release_generic_ctl(pvt->i7core_pci);
2152 	else
2153 		i7core_printk(KERN_ERR,
2154 				"Couldn't find mem_ctl_info for socket %d\n",
2155 				pvt->i7core_dev->socket);
2156 	pvt->i7core_pci = NULL;
2157 }
2158 
2159 static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
2160 {
2161 	struct mem_ctl_info *mci = i7core_dev->mci;
2162 	struct i7core_pvt *pvt;
2163 
2164 	if (unlikely(!mci || !mci->pvt_info)) {
2165 		edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
2166 
2167 		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
2168 		return;
2169 	}
2170 
2171 	pvt = mci->pvt_info;
2172 
2173 	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2174 
2175 	/* Disable scrubrate setting */
2176 	if (pvt->enable_scrub)
2177 		disable_sdram_scrub_setting(mci);
2178 
2179 	/* Disable EDAC polling */
2180 	i7core_pci_ctl_release(pvt);
2181 
2182 	/* Remove MC sysfs nodes */
2183 	i7core_delete_sysfs_devices(mci);
2184 	edac_mc_del_mc(mci->pdev);
2185 
2186 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2187 	kfree(mci->ctl_name);
2188 	edac_mc_free(mci);
2189 	i7core_dev->mci = NULL;
2190 }
2191 
2192 static int i7core_register_mci(struct i7core_dev *i7core_dev)
2193 {
2194 	struct mem_ctl_info *mci;
2195 	struct i7core_pvt *pvt;
2196 	int rc;
2197 	struct edac_mc_layer layers[2];
2198 
2199 	/* allocate a new MC control structure */
2200 
2201 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
2202 	layers[0].size = NUM_CHANS;
2203 	layers[0].is_virt_csrow = false;
2204 	layers[1].type = EDAC_MC_LAYER_SLOT;
2205 	layers[1].size = MAX_DIMMS;
2206 	layers[1].is_virt_csrow = true;
2207 	mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2208 			    sizeof(*pvt));
2209 	if (unlikely(!mci))
2210 		return -ENOMEM;
2211 
2212 	edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2213 
2214 	pvt = mci->pvt_info;
2215 	memset(pvt, 0, sizeof(*pvt));
2216 
2217 	/* Associates i7core_dev and mci for future usage */
2218 	pvt->i7core_dev = i7core_dev;
2219 	i7core_dev->mci = mci;
2220 
2221 	/*
2222 	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
2223 	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
2224 	 * memory channels
2225 	 */
2226 	mci->mtype_cap = MEM_FLAG_DDR3;
2227 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
2228 	mci->edac_cap = EDAC_FLAG_NONE;
2229 	mci->mod_name = "i7core_edac.c";
2230 	mci->mod_ver = I7CORE_REVISION;
2231 	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
2232 				  i7core_dev->socket);
2233 	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2234 	mci->ctl_page_to_phys = NULL;
2235 
2236 	/* Store pci devices at mci for faster access */
2237 	rc = mci_bind_devs(mci, i7core_dev);
2238 	if (unlikely(rc < 0))
2239 		goto fail0;
2240 
2241 
2242 	/* Get dimm basic config */
2243 	get_dimm_config(mci);
2244 	/* record ptr to the generic device */
2245 	mci->pdev = &i7core_dev->pdev[0]->dev;
2246 	/* Set the function pointer to an actual operation function */
2247 	mci->edac_check = i7core_check_error;
2248 
2249 	/* Enable scrubrate setting */
2250 	if (pvt->enable_scrub)
2251 		enable_sdram_scrub_setting(mci);
2252 
2253 	/* add this new MC control structure to EDAC's list of MCs */
2254 	if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) {
2255 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2256 		/* FIXME: perhaps some code should go here that disables error
2257 		 * reporting if we just enabled it
2258 		 */
2259 
2260 		rc = -EINVAL;
2261 		goto fail0;
2262 	}
2263 	if (i7core_create_sysfs_devices(mci)) {
2264 		edac_dbg(0, "MC: failed to create sysfs nodes\n");
2265 		edac_mc_del_mc(mci->pdev);
2266 		rc = -EINVAL;
2267 		goto fail0;
2268 	}
2269 
2270 	/* Default error mask is any memory */
2271 	pvt->inject.channel = 0;
2272 	pvt->inject.dimm = -1;
2273 	pvt->inject.rank = -1;
2274 	pvt->inject.bank = -1;
2275 	pvt->inject.page = -1;
2276 	pvt->inject.col = -1;
2277 
2278 	/* allocating generic PCI control info */
2279 	i7core_pci_ctl_create(pvt);
2280 
2281 	/* DCLK for scrub rate setting */
2282 	pvt->dclk_freq = get_dclk_freq();
2283 
2284 	return 0;
2285 
2286 fail0:
2287 	kfree(mci->ctl_name);
2288 	edac_mc_free(mci);
2289 	i7core_dev->mci = NULL;
2290 	return rc;
2291 }
2292 
2293 /*
2294  *	i7core_probe	Probe for ONE instance of device to see if it is
2295  *			present.
2296  *	return:
2297  *		0 for FOUND a device
2298  *		< 0 for error code
2299  */
2300 
2301 static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2302 {
2303 	int rc, count = 0;
2304 	struct i7core_dev *i7core_dev;
2305 
2306 	/* get the pci devices we want to reserve for our use */
2307 	mutex_lock(&i7core_edac_lock);
2308 
2309 	/*
2310 	 * All memory controllers are allocated at the first pass.
2311 	 */
2312 	if (unlikely(probed >= 1)) {
2313 		mutex_unlock(&i7core_edac_lock);
2314 		return -ENODEV;
2315 	}
2316 	probed++;
2317 
2318 	rc = i7core_get_all_devices();
2319 	if (unlikely(rc < 0))
2320 		goto fail0;
2321 
2322 	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2323 		count++;
2324 		rc = i7core_register_mci(i7core_dev);
2325 		if (unlikely(rc < 0))
2326 			goto fail1;
2327 	}
2328 
2329 	/*
2330 	 * Nehalem-EX uses a different memory controller. However, as the
2331 	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
2332 	 * need to indirectly probe via a X58 PCI device. The same devices
2333 	 * are found on (some) Nehalem-EX. So, on those machines, the
2334 	 * probe routine needs to return -ENODEV, as the actual Memory
2335 	 * Controller registers won't be detected.
2336 	 */
2337 	if (!count) {
2338 		rc = -ENODEV;
2339 		goto fail1;
2340 	}
2341 
2342 	i7core_printk(KERN_INFO,
2343 		      "Driver loaded, %d memory controller(s) found.\n",
2344 		      count);
2345 
2346 	mutex_unlock(&i7core_edac_lock);
2347 	return 0;
2348 
2349 fail1:
2350 	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2351 		i7core_unregister_mci(i7core_dev);
2352 
2353 	i7core_put_all_devices();
2354 fail0:
2355 	mutex_unlock(&i7core_edac_lock);
2356 	return rc;
2357 }
2358 
2359 /*
2360  *	i7core_remove	destructor for one instance of device
2361  *
2362  */
2363 static void i7core_remove(struct pci_dev *pdev)
2364 {
2365 	struct i7core_dev *i7core_dev;
2366 
2367 	edac_dbg(0, "\n");
2368 
2369 	/*
2370 	 * we have a trouble here: pdev value for removal will be wrong, since
2371 	 * it will point to the X58 register used to detect that the machine
2372 	 * is a Nehalem or upper design. However, due to the way several PCI
2373 	 * devices are grouped together to provide MC functionality, we need
2374 	 * to use a different method for releasing the devices
2375 	 */
2376 
2377 	mutex_lock(&i7core_edac_lock);
2378 
2379 	if (unlikely(!probed)) {
2380 		mutex_unlock(&i7core_edac_lock);
2381 		return;
2382 	}
2383 
2384 	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2385 		i7core_unregister_mci(i7core_dev);
2386 
2387 	/* Release PCI resources */
2388 	i7core_put_all_devices();
2389 
2390 	probed--;
2391 
2392 	mutex_unlock(&i7core_edac_lock);
2393 }
2394 
2395 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2396 
2397 /*
2398  *	i7core_driver	pci_driver structure for this module
2399  *
2400  */
2401 static struct pci_driver i7core_driver = {
2402 	.name     = "i7core_edac",
2403 	.probe    = i7core_probe,
2404 	.remove   = i7core_remove,
2405 	.id_table = i7core_pci_tbl,
2406 };
2407 
2408 /*
2409  *	i7core_init		Module entry function
2410  *			Try to initialize this module for its devices
2411  */
2412 static int __init i7core_init(void)
2413 {
2414 	int pci_rc;
2415 
2416 	edac_dbg(2, "\n");
2417 
2418 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
2419 	opstate_init();
2420 
2421 	if (use_pci_fixup)
2422 		i7core_xeon_pci_fixup(pci_dev_table);
2423 
2424 	pci_rc = pci_register_driver(&i7core_driver);
2425 
2426 	if (pci_rc >= 0) {
2427 		mce_register_decode_chain(&i7_mce_dec);
2428 		return 0;
2429 	}
2430 
2431 	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2432 		      pci_rc);
2433 
2434 	return pci_rc;
2435 }
2436 
2437 /*
2438  *	i7core_exit()	Module exit function
2439  *			Unregister the driver
2440  */
2441 static void __exit i7core_exit(void)
2442 {
2443 	edac_dbg(2, "\n");
2444 	pci_unregister_driver(&i7core_driver);
2445 	mce_unregister_decode_chain(&i7_mce_dec);
2446 }
2447 
2448 module_init(i7core_init);
2449 module_exit(i7core_exit);
2450 
2451 MODULE_LICENSE("GPL");
2452 MODULE_AUTHOR("Mauro Carvalho Chehab");
2453 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2454 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2455 		   I7CORE_REVISION);
2456 
2457 module_param(edac_op_state, int, 0444);
2458 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
2459