1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Intel i7 core/Nehalem Memory Controller kernel module 3 * 4 * This driver supports the memory controllers found on the Intel 5 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx, 6 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield 7 * and Westmere-EP. 8 * 9 * Copyright (c) 2009-2010 by: 10 * Mauro Carvalho Chehab 11 * 12 * Red Hat Inc. http://www.redhat.com 13 * 14 * Forked and adapted from the i5400_edac driver 15 * 16 * Based on the following public Intel datasheets: 17 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor 18 * Datasheet, Volume 2: 19 * http://download.intel.com/design/processor/datashts/320835.pdf 20 * Intel Xeon Processor 5500 Series Datasheet Volume 2 21 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf 22 * also available at: 23 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf 24 */ 25 26 #include <linux/module.h> 27 #include <linux/init.h> 28 #include <linux/pci.h> 29 #include <linux/pci_ids.h> 30 #include <linux/slab.h> 31 #include <linux/delay.h> 32 #include <linux/dmi.h> 33 #include <linux/edac.h> 34 #include <linux/mmzone.h> 35 #include <linux/smp.h> 36 #include <asm/mce.h> 37 #include <asm/processor.h> 38 #include <asm/div64.h> 39 40 #include "edac_module.h" 41 42 /* Static vars */ 43 static LIST_HEAD(i7core_edac_list); 44 static DEFINE_MUTEX(i7core_edac_lock); 45 static int probed; 46 47 static int use_pci_fixup; 48 module_param(use_pci_fixup, int, 0444); 49 MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices"); 50 /* 51 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core 52 * registers start at bus 255, and are not reported by BIOS. 53 * We currently find devices with only 2 sockets. In order to support more QPI 54 * Quick Path Interconnect, just increment this number. 55 */ 56 #define MAX_SOCKET_BUSES 2 57 58 59 /* 60 * Alter this version for the module when modifications are made 61 */ 62 #define I7CORE_REVISION " Ver: 1.0.0" 63 #define EDAC_MOD_STR "i7core_edac" 64 65 /* 66 * Debug macros 67 */ 68 #define i7core_printk(level, fmt, arg...) \ 69 edac_printk(level, "i7core", fmt, ##arg) 70 71 #define i7core_mc_printk(mci, level, fmt, arg...) \ 72 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg) 73 74 /* 75 * i7core Memory Controller Registers 76 */ 77 78 /* OFFSETS for Device 0 Function 0 */ 79 80 #define MC_CFG_CONTROL 0x90 81 #define MC_CFG_UNLOCK 0x02 82 #define MC_CFG_LOCK 0x00 83 84 /* OFFSETS for Device 3 Function 0 */ 85 86 #define MC_CONTROL 0x48 87 #define MC_STATUS 0x4c 88 #define MC_MAX_DOD 0x64 89 90 /* 91 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet: 92 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf 93 */ 94 95 #define MC_TEST_ERR_RCV1 0x60 96 #define DIMM2_COR_ERR(r) ((r) & 0x7fff) 97 98 #define MC_TEST_ERR_RCV0 0x64 99 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff) 100 #define DIMM0_COR_ERR(r) ((r) & 0x7fff) 101 102 /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */ 103 #define MC_SSRCONTROL 0x48 104 #define SSR_MODE_DISABLE 0x00 105 #define SSR_MODE_ENABLE 0x01 106 #define SSR_MODE_MASK 0x03 107 108 #define MC_SCRUB_CONTROL 0x4c 109 #define STARTSCRUB (1 << 24) 110 #define SCRUBINTERVAL_MASK 0xffffff 111 112 #define MC_COR_ECC_CNT_0 0x80 113 #define MC_COR_ECC_CNT_1 0x84 114 #define MC_COR_ECC_CNT_2 0x88 115 #define MC_COR_ECC_CNT_3 0x8c 116 #define MC_COR_ECC_CNT_4 0x90 117 #define MC_COR_ECC_CNT_5 0x94 118 119 #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff) 120 #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff) 121 122 123 /* OFFSETS for Devices 4,5 and 6 Function 0 */ 124 125 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58 126 #define THREE_DIMMS_PRESENT (1 << 24) 127 #define SINGLE_QUAD_RANK_PRESENT (1 << 23) 128 #define QUAD_RANK_PRESENT (1 << 22) 129 #define REGISTERED_DIMM (1 << 15) 130 131 #define MC_CHANNEL_MAPPER 0x60 132 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1) 133 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1) 134 135 #define MC_CHANNEL_RANK_PRESENT 0x7c 136 #define RANK_PRESENT_MASK 0xffff 137 138 #define MC_CHANNEL_ADDR_MATCH 0xf0 139 #define MC_CHANNEL_ERROR_MASK 0xf8 140 #define MC_CHANNEL_ERROR_INJECT 0xfc 141 #define INJECT_ADDR_PARITY 0x10 142 #define INJECT_ECC 0x08 143 #define MASK_CACHELINE 0x06 144 #define MASK_FULL_CACHELINE 0x06 145 #define MASK_MSB32_CACHELINE 0x04 146 #define MASK_LSB32_CACHELINE 0x02 147 #define NO_MASK_CACHELINE 0x00 148 #define REPEAT_EN 0x01 149 150 /* OFFSETS for Devices 4,5 and 6 Function 1 */ 151 152 #define MC_DOD_CH_DIMM0 0x48 153 #define MC_DOD_CH_DIMM1 0x4c 154 #define MC_DOD_CH_DIMM2 0x50 155 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10)) 156 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10) 157 #define DIMM_PRESENT_MASK (1 << 9) 158 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9) 159 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7)) 160 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7) 161 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5)) 162 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5) 163 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2)) 164 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2) 165 #define MC_DOD_NUMCOL_MASK 3 166 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK) 167 168 #define MC_RANK_PRESENT 0x7c 169 170 #define MC_SAG_CH_0 0x80 171 #define MC_SAG_CH_1 0x84 172 #define MC_SAG_CH_2 0x88 173 #define MC_SAG_CH_3 0x8c 174 #define MC_SAG_CH_4 0x90 175 #define MC_SAG_CH_5 0x94 176 #define MC_SAG_CH_6 0x98 177 #define MC_SAG_CH_7 0x9c 178 179 #define MC_RIR_LIMIT_CH_0 0x40 180 #define MC_RIR_LIMIT_CH_1 0x44 181 #define MC_RIR_LIMIT_CH_2 0x48 182 #define MC_RIR_LIMIT_CH_3 0x4C 183 #define MC_RIR_LIMIT_CH_4 0x50 184 #define MC_RIR_LIMIT_CH_5 0x54 185 #define MC_RIR_LIMIT_CH_6 0x58 186 #define MC_RIR_LIMIT_CH_7 0x5C 187 #define MC_RIR_LIMIT_MASK ((1 << 10) - 1) 188 189 #define MC_RIR_WAY_CH 0x80 190 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7) 191 #define MC_RIR_WAY_RANK_MASK 0x7 192 193 /* 194 * i7core structs 195 */ 196 197 #define NUM_CHANS 3 198 #define MAX_DIMMS 3 /* Max DIMMS per channel */ 199 #define MAX_MCR_FUNC 4 200 #define MAX_CHAN_FUNC 3 201 202 struct i7core_info { 203 u32 mc_control; 204 u32 mc_status; 205 u32 max_dod; 206 u32 ch_map; 207 }; 208 209 210 struct i7core_inject { 211 int enable; 212 213 u32 section; 214 u32 type; 215 u32 eccmask; 216 217 /* Error address mask */ 218 int channel, dimm, rank, bank, page, col; 219 }; 220 221 struct i7core_channel { 222 bool is_3dimms_present; 223 bool is_single_4rank; 224 bool has_4rank; 225 u32 dimms; 226 }; 227 228 struct pci_id_descr { 229 int dev; 230 int func; 231 int dev_id; 232 int optional; 233 }; 234 235 struct pci_id_table { 236 const struct pci_id_descr *descr; 237 int n_devs; 238 }; 239 240 struct i7core_dev { 241 struct list_head list; 242 u8 socket; 243 struct pci_dev **pdev; 244 int n_devs; 245 struct mem_ctl_info *mci; 246 }; 247 248 struct i7core_pvt { 249 struct device *addrmatch_dev, *chancounts_dev; 250 251 struct pci_dev *pci_noncore; 252 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1]; 253 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1]; 254 255 struct i7core_dev *i7core_dev; 256 257 struct i7core_info info; 258 struct i7core_inject inject; 259 struct i7core_channel channel[NUM_CHANS]; 260 261 int ce_count_available; 262 263 /* ECC corrected errors counts per udimm */ 264 unsigned long udimm_ce_count[MAX_DIMMS]; 265 int udimm_last_ce_count[MAX_DIMMS]; 266 /* ECC corrected errors counts per rdimm */ 267 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS]; 268 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS]; 269 270 bool is_registered, enable_scrub; 271 272 /* DCLK Frequency used for computing scrub rate */ 273 int dclk_freq; 274 275 /* Struct to control EDAC polling */ 276 struct edac_pci_ctl_info *i7core_pci; 277 }; 278 279 #define PCI_DESCR(device, function, device_id) \ 280 .dev = (device), \ 281 .func = (function), \ 282 .dev_id = (device_id) 283 284 static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = { 285 /* Memory controller */ 286 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) }, 287 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) }, 288 /* Exists only for RDIMM */ 289 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 }, 290 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) }, 291 292 /* Channel 0 */ 293 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) }, 294 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) }, 295 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) }, 296 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) }, 297 298 /* Channel 1 */ 299 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) }, 300 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) }, 301 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) }, 302 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) }, 303 304 /* Channel 2 */ 305 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) }, 306 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) }, 307 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) }, 308 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) }, 309 310 /* Generic Non-core registers */ 311 /* 312 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41) 313 * On Xeon 55xx, however, it has a different id (8086:2c40). So, 314 * the probing code needs to test for the other address in case of 315 * failure of this one 316 */ 317 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) }, 318 319 }; 320 321 static const struct pci_id_descr pci_dev_descr_lynnfield[] = { 322 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) }, 323 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) }, 324 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) }, 325 326 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) }, 327 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) }, 328 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) }, 329 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) }, 330 331 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) }, 332 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) }, 333 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) }, 334 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) }, 335 336 /* 337 * This is the PCI device has an alternate address on some 338 * processors like Core i7 860 339 */ 340 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) }, 341 }; 342 343 static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = { 344 /* Memory controller */ 345 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) }, 346 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) }, 347 /* Exists only for RDIMM */ 348 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 }, 349 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) }, 350 351 /* Channel 0 */ 352 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) }, 353 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) }, 354 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) }, 355 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) }, 356 357 /* Channel 1 */ 358 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) }, 359 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) }, 360 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) }, 361 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) }, 362 363 /* Channel 2 */ 364 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) }, 365 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) }, 366 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) }, 367 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) }, 368 369 /* Generic Non-core registers */ 370 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) }, 371 372 }; 373 374 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } 375 static const struct pci_id_table pci_dev_table[] = { 376 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem), 377 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield), 378 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere), 379 {0,} /* 0 terminated list. */ 380 }; 381 382 /* 383 * pci_device_id table for which devices we are looking for 384 */ 385 static const struct pci_device_id i7core_pci_tbl[] = { 386 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)}, 387 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)}, 388 {0,} /* 0 terminated list. */ 389 }; 390 391 /**************************************************************************** 392 Ancillary status routines 393 ****************************************************************************/ 394 395 /* MC_CONTROL bits */ 396 #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch))) 397 #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1)) 398 399 /* MC_STATUS bits */ 400 #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4)) 401 #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch)) 402 403 /* MC_MAX_DOD read functions */ 404 static inline int numdimms(u32 dimms) 405 { 406 return (dimms & 0x3) + 1; 407 } 408 409 static inline int numrank(u32 rank) 410 { 411 static const int ranks[] = { 1, 2, 4, -EINVAL }; 412 413 return ranks[rank & 0x3]; 414 } 415 416 static inline int numbank(u32 bank) 417 { 418 static const int banks[] = { 4, 8, 16, -EINVAL }; 419 420 return banks[bank & 0x3]; 421 } 422 423 static inline int numrow(u32 row) 424 { 425 static const int rows[] = { 426 1 << 12, 1 << 13, 1 << 14, 1 << 15, 427 1 << 16, -EINVAL, -EINVAL, -EINVAL, 428 }; 429 430 return rows[row & 0x7]; 431 } 432 433 static inline int numcol(u32 col) 434 { 435 static const int cols[] = { 436 1 << 10, 1 << 11, 1 << 12, -EINVAL, 437 }; 438 return cols[col & 0x3]; 439 } 440 441 static struct i7core_dev *get_i7core_dev(u8 socket) 442 { 443 struct i7core_dev *i7core_dev; 444 445 list_for_each_entry(i7core_dev, &i7core_edac_list, list) { 446 if (i7core_dev->socket == socket) 447 return i7core_dev; 448 } 449 450 return NULL; 451 } 452 453 static struct i7core_dev *alloc_i7core_dev(u8 socket, 454 const struct pci_id_table *table) 455 { 456 struct i7core_dev *i7core_dev; 457 458 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL); 459 if (!i7core_dev) 460 return NULL; 461 462 i7core_dev->pdev = kcalloc(table->n_devs, sizeof(*i7core_dev->pdev), 463 GFP_KERNEL); 464 if (!i7core_dev->pdev) { 465 kfree(i7core_dev); 466 return NULL; 467 } 468 469 i7core_dev->socket = socket; 470 i7core_dev->n_devs = table->n_devs; 471 list_add_tail(&i7core_dev->list, &i7core_edac_list); 472 473 return i7core_dev; 474 } 475 476 static void free_i7core_dev(struct i7core_dev *i7core_dev) 477 { 478 list_del(&i7core_dev->list); 479 kfree(i7core_dev->pdev); 480 kfree(i7core_dev); 481 } 482 483 /**************************************************************************** 484 Memory check routines 485 ****************************************************************************/ 486 487 static int get_dimm_config(struct mem_ctl_info *mci) 488 { 489 struct i7core_pvt *pvt = mci->pvt_info; 490 struct pci_dev *pdev; 491 int i, j; 492 enum edac_type mode; 493 enum mem_type mtype; 494 struct dimm_info *dimm; 495 496 /* Get data from the MC register, function 0 */ 497 pdev = pvt->pci_mcr[0]; 498 if (!pdev) 499 return -ENODEV; 500 501 /* Device 3 function 0 reads */ 502 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control); 503 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status); 504 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod); 505 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map); 506 507 edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n", 508 pvt->i7core_dev->socket, pvt->info.mc_control, 509 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map); 510 511 if (ECC_ENABLED(pvt)) { 512 edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4); 513 if (ECCx8(pvt)) 514 mode = EDAC_S8ECD8ED; 515 else 516 mode = EDAC_S4ECD4ED; 517 } else { 518 edac_dbg(0, "ECC disabled\n"); 519 mode = EDAC_NONE; 520 } 521 522 /* FIXME: need to handle the error codes */ 523 edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n", 524 numdimms(pvt->info.max_dod), 525 numrank(pvt->info.max_dod >> 2), 526 numbank(pvt->info.max_dod >> 4), 527 numrow(pvt->info.max_dod >> 6), 528 numcol(pvt->info.max_dod >> 9)); 529 530 for (i = 0; i < NUM_CHANS; i++) { 531 u32 data, dimm_dod[3], value[8]; 532 533 if (!pvt->pci_ch[i][0]) 534 continue; 535 536 if (!CH_ACTIVE(pvt, i)) { 537 edac_dbg(0, "Channel %i is not active\n", i); 538 continue; 539 } 540 if (CH_DISABLED(pvt, i)) { 541 edac_dbg(0, "Channel %i is disabled\n", i); 542 continue; 543 } 544 545 /* Devices 4-6 function 0 */ 546 pci_read_config_dword(pvt->pci_ch[i][0], 547 MC_CHANNEL_DIMM_INIT_PARAMS, &data); 548 549 550 if (data & THREE_DIMMS_PRESENT) 551 pvt->channel[i].is_3dimms_present = true; 552 553 if (data & SINGLE_QUAD_RANK_PRESENT) 554 pvt->channel[i].is_single_4rank = true; 555 556 if (data & QUAD_RANK_PRESENT) 557 pvt->channel[i].has_4rank = true; 558 559 if (data & REGISTERED_DIMM) 560 mtype = MEM_RDDR3; 561 else 562 mtype = MEM_DDR3; 563 564 /* Devices 4-6 function 1 */ 565 pci_read_config_dword(pvt->pci_ch[i][1], 566 MC_DOD_CH_DIMM0, &dimm_dod[0]); 567 pci_read_config_dword(pvt->pci_ch[i][1], 568 MC_DOD_CH_DIMM1, &dimm_dod[1]); 569 pci_read_config_dword(pvt->pci_ch[i][1], 570 MC_DOD_CH_DIMM2, &dimm_dod[2]); 571 572 edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n", 573 i, 574 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i), 575 data, 576 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "", 577 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "", 578 pvt->channel[i].has_4rank ? "HAS_4R " : "", 579 (data & REGISTERED_DIMM) ? 'R' : 'U'); 580 581 for (j = 0; j < 3; j++) { 582 u32 banks, ranks, rows, cols; 583 u32 size, npages; 584 585 if (!DIMM_PRESENT(dimm_dod[j])) 586 continue; 587 588 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, 589 i, j, 0); 590 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j])); 591 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j])); 592 rows = numrow(MC_DOD_NUMROW(dimm_dod[j])); 593 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j])); 594 595 /* DDR3 has 8 I/O banks */ 596 size = (rows * cols * banks * ranks) >> (20 - 3); 597 598 edac_dbg(0, "\tdimm %d %d MiB offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n", 599 j, size, 600 RANKOFFSET(dimm_dod[j]), 601 banks, ranks, rows, cols); 602 603 npages = MiB_TO_PAGES(size); 604 605 dimm->nr_pages = npages; 606 607 switch (banks) { 608 case 4: 609 dimm->dtype = DEV_X4; 610 break; 611 case 8: 612 dimm->dtype = DEV_X8; 613 break; 614 case 16: 615 dimm->dtype = DEV_X16; 616 break; 617 default: 618 dimm->dtype = DEV_UNKNOWN; 619 } 620 621 snprintf(dimm->label, sizeof(dimm->label), 622 "CPU#%uChannel#%u_DIMM#%u", 623 pvt->i7core_dev->socket, i, j); 624 dimm->grain = 8; 625 dimm->edac_mode = mode; 626 dimm->mtype = mtype; 627 } 628 629 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]); 630 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]); 631 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]); 632 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]); 633 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]); 634 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]); 635 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]); 636 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]); 637 edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i); 638 for (j = 0; j < 8; j++) 639 edac_dbg(1, "\t\t%#x\t%#x\t%#x\n", 640 (value[j] >> 27) & 0x1, 641 (value[j] >> 24) & 0x7, 642 (value[j] & ((1 << 24) - 1))); 643 } 644 645 return 0; 646 } 647 648 /**************************************************************************** 649 Error insertion routines 650 ****************************************************************************/ 651 652 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 653 654 /* The i7core has independent error injection features per channel. 655 However, to have a simpler code, we don't allow enabling error injection 656 on more than one channel. 657 Also, since a change at an inject parameter will be applied only at enable, 658 we're disabling error injection on all write calls to the sysfs nodes that 659 controls the error code injection. 660 */ 661 static int disable_inject(const struct mem_ctl_info *mci) 662 { 663 struct i7core_pvt *pvt = mci->pvt_info; 664 665 pvt->inject.enable = 0; 666 667 if (!pvt->pci_ch[pvt->inject.channel][0]) 668 return -ENODEV; 669 670 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0], 671 MC_CHANNEL_ERROR_INJECT, 0); 672 673 return 0; 674 } 675 676 /* 677 * i7core inject inject.section 678 * 679 * accept and store error injection inject.section value 680 * bit 0 - refers to the lower 32-byte half cacheline 681 * bit 1 - refers to the upper 32-byte half cacheline 682 */ 683 static ssize_t i7core_inject_section_store(struct device *dev, 684 struct device_attribute *mattr, 685 const char *data, size_t count) 686 { 687 struct mem_ctl_info *mci = to_mci(dev); 688 struct i7core_pvt *pvt = mci->pvt_info; 689 unsigned long value; 690 int rc; 691 692 if (pvt->inject.enable) 693 disable_inject(mci); 694 695 rc = kstrtoul(data, 10, &value); 696 if ((rc < 0) || (value > 3)) 697 return -EIO; 698 699 pvt->inject.section = (u32) value; 700 return count; 701 } 702 703 static ssize_t i7core_inject_section_show(struct device *dev, 704 struct device_attribute *mattr, 705 char *data) 706 { 707 struct mem_ctl_info *mci = to_mci(dev); 708 struct i7core_pvt *pvt = mci->pvt_info; 709 return sprintf(data, "0x%08x\n", pvt->inject.section); 710 } 711 712 /* 713 * i7core inject.type 714 * 715 * accept and store error injection inject.section value 716 * bit 0 - repeat enable - Enable error repetition 717 * bit 1 - inject ECC error 718 * bit 2 - inject parity error 719 */ 720 static ssize_t i7core_inject_type_store(struct device *dev, 721 struct device_attribute *mattr, 722 const char *data, size_t count) 723 { 724 struct mem_ctl_info *mci = to_mci(dev); 725 struct i7core_pvt *pvt = mci->pvt_info; 726 unsigned long value; 727 int rc; 728 729 if (pvt->inject.enable) 730 disable_inject(mci); 731 732 rc = kstrtoul(data, 10, &value); 733 if ((rc < 0) || (value > 7)) 734 return -EIO; 735 736 pvt->inject.type = (u32) value; 737 return count; 738 } 739 740 static ssize_t i7core_inject_type_show(struct device *dev, 741 struct device_attribute *mattr, 742 char *data) 743 { 744 struct mem_ctl_info *mci = to_mci(dev); 745 struct i7core_pvt *pvt = mci->pvt_info; 746 747 return sprintf(data, "0x%08x\n", pvt->inject.type); 748 } 749 750 /* 751 * i7core_inject_inject.eccmask_store 752 * 753 * The type of error (UE/CE) will depend on the inject.eccmask value: 754 * Any bits set to a 1 will flip the corresponding ECC bit 755 * Correctable errors can be injected by flipping 1 bit or the bits within 756 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or 757 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an 758 * uncorrectable error to be injected. 759 */ 760 static ssize_t i7core_inject_eccmask_store(struct device *dev, 761 struct device_attribute *mattr, 762 const char *data, size_t count) 763 { 764 struct mem_ctl_info *mci = to_mci(dev); 765 struct i7core_pvt *pvt = mci->pvt_info; 766 unsigned long value; 767 int rc; 768 769 if (pvt->inject.enable) 770 disable_inject(mci); 771 772 rc = kstrtoul(data, 10, &value); 773 if (rc < 0) 774 return -EIO; 775 776 pvt->inject.eccmask = (u32) value; 777 return count; 778 } 779 780 static ssize_t i7core_inject_eccmask_show(struct device *dev, 781 struct device_attribute *mattr, 782 char *data) 783 { 784 struct mem_ctl_info *mci = to_mci(dev); 785 struct i7core_pvt *pvt = mci->pvt_info; 786 787 return sprintf(data, "0x%08x\n", pvt->inject.eccmask); 788 } 789 790 /* 791 * i7core_addrmatch 792 * 793 * The type of error (UE/CE) will depend on the inject.eccmask value: 794 * Any bits set to a 1 will flip the corresponding ECC bit 795 * Correctable errors can be injected by flipping 1 bit or the bits within 796 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or 797 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an 798 * uncorrectable error to be injected. 799 */ 800 801 #define DECLARE_ADDR_MATCH(param, limit) \ 802 static ssize_t i7core_inject_store_##param( \ 803 struct device *dev, \ 804 struct device_attribute *mattr, \ 805 const char *data, size_t count) \ 806 { \ 807 struct mem_ctl_info *mci = dev_get_drvdata(dev); \ 808 struct i7core_pvt *pvt; \ 809 long value; \ 810 int rc; \ 811 \ 812 edac_dbg(1, "\n"); \ 813 pvt = mci->pvt_info; \ 814 \ 815 if (pvt->inject.enable) \ 816 disable_inject(mci); \ 817 \ 818 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\ 819 value = -1; \ 820 else { \ 821 rc = kstrtoul(data, 10, &value); \ 822 if ((rc < 0) || (value >= limit)) \ 823 return -EIO; \ 824 } \ 825 \ 826 pvt->inject.param = value; \ 827 \ 828 return count; \ 829 } \ 830 \ 831 static ssize_t i7core_inject_show_##param( \ 832 struct device *dev, \ 833 struct device_attribute *mattr, \ 834 char *data) \ 835 { \ 836 struct mem_ctl_info *mci = dev_get_drvdata(dev); \ 837 struct i7core_pvt *pvt; \ 838 \ 839 pvt = mci->pvt_info; \ 840 edac_dbg(1, "pvt=%p\n", pvt); \ 841 if (pvt->inject.param < 0) \ 842 return sprintf(data, "any\n"); \ 843 else \ 844 return sprintf(data, "%d\n", pvt->inject.param);\ 845 } 846 847 #define ATTR_ADDR_MATCH(param) \ 848 static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \ 849 i7core_inject_show_##param, \ 850 i7core_inject_store_##param) 851 852 DECLARE_ADDR_MATCH(channel, 3); 853 DECLARE_ADDR_MATCH(dimm, 3); 854 DECLARE_ADDR_MATCH(rank, 4); 855 DECLARE_ADDR_MATCH(bank, 32); 856 DECLARE_ADDR_MATCH(page, 0x10000); 857 DECLARE_ADDR_MATCH(col, 0x4000); 858 859 ATTR_ADDR_MATCH(channel); 860 ATTR_ADDR_MATCH(dimm); 861 ATTR_ADDR_MATCH(rank); 862 ATTR_ADDR_MATCH(bank); 863 ATTR_ADDR_MATCH(page); 864 ATTR_ADDR_MATCH(col); 865 866 static int write_and_test(struct pci_dev *dev, const int where, const u32 val) 867 { 868 u32 read; 869 int count; 870 871 edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n", 872 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), 873 where, val); 874 875 for (count = 0; count < 10; count++) { 876 if (count) 877 msleep(100); 878 pci_write_config_dword(dev, where, val); 879 pci_read_config_dword(dev, where, &read); 880 881 if (read == val) 882 return 0; 883 } 884 885 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x " 886 "write=%08x. Read=%08x\n", 887 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), 888 where, val, read); 889 890 return -EINVAL; 891 } 892 893 /* 894 * This routine prepares the Memory Controller for error injection. 895 * The error will be injected when some process tries to write to the 896 * memory that matches the given criteria. 897 * The criteria can be set in terms of a mask where dimm, rank, bank, page 898 * and col can be specified. 899 * A -1 value for any of the mask items will make the MCU to ignore 900 * that matching criteria for error injection. 901 * 902 * It should be noticed that the error will only happen after a write operation 903 * on a memory that matches the condition. if REPEAT_EN is not enabled at 904 * inject mask, then it will produce just one error. Otherwise, it will repeat 905 * until the injectmask would be cleaned. 906 * 907 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD 908 * is reliable enough to check if the MC is using the 909 * three channels. However, this is not clear at the datasheet. 910 */ 911 static ssize_t i7core_inject_enable_store(struct device *dev, 912 struct device_attribute *mattr, 913 const char *data, size_t count) 914 { 915 struct mem_ctl_info *mci = to_mci(dev); 916 struct i7core_pvt *pvt = mci->pvt_info; 917 u32 injectmask; 918 u64 mask = 0; 919 int rc; 920 long enable; 921 922 if (!pvt->pci_ch[pvt->inject.channel][0]) 923 return 0; 924 925 rc = kstrtoul(data, 10, &enable); 926 if ((rc < 0)) 927 return 0; 928 929 if (enable) { 930 pvt->inject.enable = 1; 931 } else { 932 disable_inject(mci); 933 return count; 934 } 935 936 /* Sets pvt->inject.dimm mask */ 937 if (pvt->inject.dimm < 0) 938 mask |= 1LL << 41; 939 else { 940 if (pvt->channel[pvt->inject.channel].dimms > 2) 941 mask |= (pvt->inject.dimm & 0x3LL) << 35; 942 else 943 mask |= (pvt->inject.dimm & 0x1LL) << 36; 944 } 945 946 /* Sets pvt->inject.rank mask */ 947 if (pvt->inject.rank < 0) 948 mask |= 1LL << 40; 949 else { 950 if (pvt->channel[pvt->inject.channel].dimms > 2) 951 mask |= (pvt->inject.rank & 0x1LL) << 34; 952 else 953 mask |= (pvt->inject.rank & 0x3LL) << 34; 954 } 955 956 /* Sets pvt->inject.bank mask */ 957 if (pvt->inject.bank < 0) 958 mask |= 1LL << 39; 959 else 960 mask |= (pvt->inject.bank & 0x15LL) << 30; 961 962 /* Sets pvt->inject.page mask */ 963 if (pvt->inject.page < 0) 964 mask |= 1LL << 38; 965 else 966 mask |= (pvt->inject.page & 0xffff) << 14; 967 968 /* Sets pvt->inject.column mask */ 969 if (pvt->inject.col < 0) 970 mask |= 1LL << 37; 971 else 972 mask |= (pvt->inject.col & 0x3fff); 973 974 /* 975 * bit 0: REPEAT_EN 976 * bits 1-2: MASK_HALF_CACHELINE 977 * bit 3: INJECT_ECC 978 * bit 4: INJECT_ADDR_PARITY 979 */ 980 981 injectmask = (pvt->inject.type & 1) | 982 (pvt->inject.section & 0x3) << 1 | 983 (pvt->inject.type & 0x6) << (3 - 1); 984 985 /* Unlock writes to registers - this register is write only */ 986 pci_write_config_dword(pvt->pci_noncore, 987 MC_CFG_CONTROL, 0x2); 988 989 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 990 MC_CHANNEL_ADDR_MATCH, mask); 991 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 992 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L); 993 994 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 995 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask); 996 997 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 998 MC_CHANNEL_ERROR_INJECT, injectmask); 999 1000 /* 1001 * This is something undocumented, based on my tests 1002 * Without writing 8 to this register, errors aren't injected. Not sure 1003 * why. 1004 */ 1005 pci_write_config_dword(pvt->pci_noncore, 1006 MC_CFG_CONTROL, 8); 1007 1008 edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n", 1009 mask, pvt->inject.eccmask, injectmask); 1010 1011 1012 return count; 1013 } 1014 1015 static ssize_t i7core_inject_enable_show(struct device *dev, 1016 struct device_attribute *mattr, 1017 char *data) 1018 { 1019 struct mem_ctl_info *mci = to_mci(dev); 1020 struct i7core_pvt *pvt = mci->pvt_info; 1021 u32 injectmask; 1022 1023 if (!pvt->pci_ch[pvt->inject.channel][0]) 1024 return 0; 1025 1026 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0], 1027 MC_CHANNEL_ERROR_INJECT, &injectmask); 1028 1029 edac_dbg(0, "Inject error read: 0x%018x\n", injectmask); 1030 1031 if (injectmask & 0x0c) 1032 pvt->inject.enable = 1; 1033 1034 return sprintf(data, "%d\n", pvt->inject.enable); 1035 } 1036 1037 #define DECLARE_COUNTER(param) \ 1038 static ssize_t i7core_show_counter_##param( \ 1039 struct device *dev, \ 1040 struct device_attribute *mattr, \ 1041 char *data) \ 1042 { \ 1043 struct mem_ctl_info *mci = dev_get_drvdata(dev); \ 1044 struct i7core_pvt *pvt = mci->pvt_info; \ 1045 \ 1046 edac_dbg(1, "\n"); \ 1047 if (!pvt->ce_count_available || (pvt->is_registered)) \ 1048 return sprintf(data, "data unavailable\n"); \ 1049 return sprintf(data, "%lu\n", \ 1050 pvt->udimm_ce_count[param]); \ 1051 } 1052 1053 #define ATTR_COUNTER(param) \ 1054 static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \ 1055 i7core_show_counter_##param, \ 1056 NULL) 1057 1058 DECLARE_COUNTER(0); 1059 DECLARE_COUNTER(1); 1060 DECLARE_COUNTER(2); 1061 1062 ATTR_COUNTER(0); 1063 ATTR_COUNTER(1); 1064 ATTR_COUNTER(2); 1065 1066 /* 1067 * inject_addrmatch device sysfs struct 1068 */ 1069 1070 static struct attribute *i7core_addrmatch_attrs[] = { 1071 &dev_attr_channel.attr, 1072 &dev_attr_dimm.attr, 1073 &dev_attr_rank.attr, 1074 &dev_attr_bank.attr, 1075 &dev_attr_page.attr, 1076 &dev_attr_col.attr, 1077 NULL 1078 }; 1079 1080 static const struct attribute_group addrmatch_grp = { 1081 .attrs = i7core_addrmatch_attrs, 1082 }; 1083 1084 static const struct attribute_group *addrmatch_groups[] = { 1085 &addrmatch_grp, 1086 NULL 1087 }; 1088 1089 static void addrmatch_release(struct device *device) 1090 { 1091 edac_dbg(1, "Releasing device %s\n", dev_name(device)); 1092 kfree(device); 1093 } 1094 1095 static const struct device_type addrmatch_type = { 1096 .groups = addrmatch_groups, 1097 .release = addrmatch_release, 1098 }; 1099 1100 /* 1101 * all_channel_counts sysfs struct 1102 */ 1103 1104 static struct attribute *i7core_udimm_counters_attrs[] = { 1105 &dev_attr_udimm0.attr, 1106 &dev_attr_udimm1.attr, 1107 &dev_attr_udimm2.attr, 1108 NULL 1109 }; 1110 1111 static const struct attribute_group all_channel_counts_grp = { 1112 .attrs = i7core_udimm_counters_attrs, 1113 }; 1114 1115 static const struct attribute_group *all_channel_counts_groups[] = { 1116 &all_channel_counts_grp, 1117 NULL 1118 }; 1119 1120 static void all_channel_counts_release(struct device *device) 1121 { 1122 edac_dbg(1, "Releasing device %s\n", dev_name(device)); 1123 kfree(device); 1124 } 1125 1126 static const struct device_type all_channel_counts_type = { 1127 .groups = all_channel_counts_groups, 1128 .release = all_channel_counts_release, 1129 }; 1130 1131 /* 1132 * inject sysfs attributes 1133 */ 1134 1135 static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR, 1136 i7core_inject_section_show, i7core_inject_section_store); 1137 1138 static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR, 1139 i7core_inject_type_show, i7core_inject_type_store); 1140 1141 1142 static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR, 1143 i7core_inject_eccmask_show, i7core_inject_eccmask_store); 1144 1145 static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR, 1146 i7core_inject_enable_show, i7core_inject_enable_store); 1147 1148 static struct attribute *i7core_dev_attrs[] = { 1149 &dev_attr_inject_section.attr, 1150 &dev_attr_inject_type.attr, 1151 &dev_attr_inject_eccmask.attr, 1152 &dev_attr_inject_enable.attr, 1153 NULL 1154 }; 1155 1156 ATTRIBUTE_GROUPS(i7core_dev); 1157 1158 static int i7core_create_sysfs_devices(struct mem_ctl_info *mci) 1159 { 1160 struct i7core_pvt *pvt = mci->pvt_info; 1161 int rc; 1162 1163 pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL); 1164 if (!pvt->addrmatch_dev) 1165 return -ENOMEM; 1166 1167 pvt->addrmatch_dev->type = &addrmatch_type; 1168 pvt->addrmatch_dev->bus = mci->dev.bus; 1169 device_initialize(pvt->addrmatch_dev); 1170 pvt->addrmatch_dev->parent = &mci->dev; 1171 dev_set_name(pvt->addrmatch_dev, "inject_addrmatch"); 1172 dev_set_drvdata(pvt->addrmatch_dev, mci); 1173 1174 edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev)); 1175 1176 rc = device_add(pvt->addrmatch_dev); 1177 if (rc < 0) 1178 goto err_put_addrmatch; 1179 1180 if (!pvt->is_registered) { 1181 pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev), 1182 GFP_KERNEL); 1183 if (!pvt->chancounts_dev) { 1184 rc = -ENOMEM; 1185 goto err_del_addrmatch; 1186 } 1187 1188 pvt->chancounts_dev->type = &all_channel_counts_type; 1189 pvt->chancounts_dev->bus = mci->dev.bus; 1190 device_initialize(pvt->chancounts_dev); 1191 pvt->chancounts_dev->parent = &mci->dev; 1192 dev_set_name(pvt->chancounts_dev, "all_channel_counts"); 1193 dev_set_drvdata(pvt->chancounts_dev, mci); 1194 1195 edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev)); 1196 1197 rc = device_add(pvt->chancounts_dev); 1198 if (rc < 0) 1199 goto err_put_chancounts; 1200 } 1201 return 0; 1202 1203 err_put_chancounts: 1204 put_device(pvt->chancounts_dev); 1205 err_del_addrmatch: 1206 device_del(pvt->addrmatch_dev); 1207 err_put_addrmatch: 1208 put_device(pvt->addrmatch_dev); 1209 1210 return rc; 1211 } 1212 1213 static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci) 1214 { 1215 struct i7core_pvt *pvt = mci->pvt_info; 1216 1217 edac_dbg(1, "\n"); 1218 1219 if (!pvt->is_registered) { 1220 device_del(pvt->chancounts_dev); 1221 put_device(pvt->chancounts_dev); 1222 } 1223 device_del(pvt->addrmatch_dev); 1224 put_device(pvt->addrmatch_dev); 1225 } 1226 1227 /**************************************************************************** 1228 Device initialization routines: put/get, init/exit 1229 ****************************************************************************/ 1230 1231 /* 1232 * i7core_put_all_devices 'put' all the devices that we have 1233 * reserved via 'get' 1234 */ 1235 static void i7core_put_devices(struct i7core_dev *i7core_dev) 1236 { 1237 int i; 1238 1239 edac_dbg(0, "\n"); 1240 for (i = 0; i < i7core_dev->n_devs; i++) { 1241 struct pci_dev *pdev = i7core_dev->pdev[i]; 1242 if (!pdev) 1243 continue; 1244 edac_dbg(0, "Removing dev %02x:%02x.%d\n", 1245 pdev->bus->number, 1246 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 1247 pci_dev_put(pdev); 1248 } 1249 } 1250 1251 static void i7core_put_all_devices(void) 1252 { 1253 struct i7core_dev *i7core_dev, *tmp; 1254 1255 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) { 1256 i7core_put_devices(i7core_dev); 1257 free_i7core_dev(i7core_dev); 1258 } 1259 } 1260 1261 static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table) 1262 { 1263 struct pci_dev *pdev = NULL; 1264 int i; 1265 1266 /* 1267 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses 1268 * aren't announced by acpi. So, we need to use a legacy scan probing 1269 * to detect them 1270 */ 1271 while (table && table->descr) { 1272 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL); 1273 if (unlikely(!pdev)) { 1274 for (i = 0; i < MAX_SOCKET_BUSES; i++) 1275 pcibios_scan_specific_bus(255-i); 1276 } 1277 pci_dev_put(pdev); 1278 table++; 1279 } 1280 } 1281 1282 static unsigned i7core_pci_lastbus(void) 1283 { 1284 int last_bus = 0, bus; 1285 struct pci_bus *b = NULL; 1286 1287 while ((b = pci_find_next_bus(b)) != NULL) { 1288 bus = b->number; 1289 edac_dbg(0, "Found bus %d\n", bus); 1290 if (bus > last_bus) 1291 last_bus = bus; 1292 } 1293 1294 edac_dbg(0, "Last bus %d\n", last_bus); 1295 1296 return last_bus; 1297 } 1298 1299 /* 1300 * i7core_get_all_devices Find and perform 'get' operation on the MCH's 1301 * device/functions we want to reference for this driver 1302 * 1303 * Need to 'get' device 16 func 1 and func 2 1304 */ 1305 static int i7core_get_onedevice(struct pci_dev **prev, 1306 const struct pci_id_table *table, 1307 const unsigned devno, 1308 const unsigned last_bus) 1309 { 1310 struct i7core_dev *i7core_dev; 1311 const struct pci_id_descr *dev_descr = &table->descr[devno]; 1312 1313 struct pci_dev *pdev = NULL; 1314 u8 bus = 0; 1315 u8 socket = 0; 1316 1317 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1318 dev_descr->dev_id, *prev); 1319 1320 /* 1321 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs 1322 * is at addr 8086:2c40, instead of 8086:2c41. So, we need 1323 * to probe for the alternate address in case of failure 1324 */ 1325 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) { 1326 pci_dev_get(*prev); /* pci_get_device will put it */ 1327 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1328 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev); 1329 } 1330 1331 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && 1332 !pdev) { 1333 pci_dev_get(*prev); /* pci_get_device will put it */ 1334 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1335 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT, 1336 *prev); 1337 } 1338 1339 if (!pdev) { 1340 if (*prev) { 1341 *prev = pdev; 1342 return 0; 1343 } 1344 1345 if (dev_descr->optional) 1346 return 0; 1347 1348 if (devno == 0) 1349 return -ENODEV; 1350 1351 i7core_printk(KERN_INFO, 1352 "Device not found: dev %02x.%d PCI ID %04x:%04x\n", 1353 dev_descr->dev, dev_descr->func, 1354 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1355 1356 /* End of list, leave */ 1357 return -ENODEV; 1358 } 1359 bus = pdev->bus->number; 1360 1361 socket = last_bus - bus; 1362 1363 i7core_dev = get_i7core_dev(socket); 1364 if (!i7core_dev) { 1365 i7core_dev = alloc_i7core_dev(socket, table); 1366 if (!i7core_dev) { 1367 pci_dev_put(pdev); 1368 return -ENOMEM; 1369 } 1370 } 1371 1372 if (i7core_dev->pdev[devno]) { 1373 i7core_printk(KERN_ERR, 1374 "Duplicated device for " 1375 "dev %02x:%02x.%d PCI ID %04x:%04x\n", 1376 bus, dev_descr->dev, dev_descr->func, 1377 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1378 pci_dev_put(pdev); 1379 return -ENODEV; 1380 } 1381 1382 i7core_dev->pdev[devno] = pdev; 1383 1384 /* Sanity check */ 1385 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || 1386 PCI_FUNC(pdev->devfn) != dev_descr->func)) { 1387 i7core_printk(KERN_ERR, 1388 "Device PCI ID %04x:%04x " 1389 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n", 1390 PCI_VENDOR_ID_INTEL, dev_descr->dev_id, 1391 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 1392 bus, dev_descr->dev, dev_descr->func); 1393 return -ENODEV; 1394 } 1395 1396 /* Be sure that the device is enabled */ 1397 if (unlikely(pci_enable_device(pdev) < 0)) { 1398 i7core_printk(KERN_ERR, 1399 "Couldn't enable " 1400 "dev %02x:%02x.%d PCI ID %04x:%04x\n", 1401 bus, dev_descr->dev, dev_descr->func, 1402 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1403 return -ENODEV; 1404 } 1405 1406 edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n", 1407 socket, bus, dev_descr->dev, 1408 dev_descr->func, 1409 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1410 1411 /* 1412 * As stated on drivers/pci/search.c, the reference count for 1413 * @from is always decremented if it is not %NULL. So, as we need 1414 * to get all devices up to null, we need to do a get for the device 1415 */ 1416 pci_dev_get(pdev); 1417 1418 *prev = pdev; 1419 1420 return 0; 1421 } 1422 1423 static int i7core_get_all_devices(void) 1424 { 1425 int i, rc, last_bus; 1426 struct pci_dev *pdev = NULL; 1427 const struct pci_id_table *table = pci_dev_table; 1428 1429 last_bus = i7core_pci_lastbus(); 1430 1431 while (table && table->descr) { 1432 for (i = 0; i < table->n_devs; i++) { 1433 pdev = NULL; 1434 do { 1435 rc = i7core_get_onedevice(&pdev, table, i, 1436 last_bus); 1437 if (rc < 0) { 1438 if (i == 0) { 1439 i = table->n_devs; 1440 break; 1441 } 1442 i7core_put_all_devices(); 1443 return -ENODEV; 1444 } 1445 } while (pdev); 1446 } 1447 table++; 1448 } 1449 1450 return 0; 1451 } 1452 1453 static int mci_bind_devs(struct mem_ctl_info *mci, 1454 struct i7core_dev *i7core_dev) 1455 { 1456 struct i7core_pvt *pvt = mci->pvt_info; 1457 struct pci_dev *pdev; 1458 int i, func, slot; 1459 char *family; 1460 1461 pvt->is_registered = false; 1462 pvt->enable_scrub = false; 1463 for (i = 0; i < i7core_dev->n_devs; i++) { 1464 pdev = i7core_dev->pdev[i]; 1465 if (!pdev) 1466 continue; 1467 1468 func = PCI_FUNC(pdev->devfn); 1469 slot = PCI_SLOT(pdev->devfn); 1470 if (slot == 3) { 1471 if (unlikely(func > MAX_MCR_FUNC)) 1472 goto error; 1473 pvt->pci_mcr[func] = pdev; 1474 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) { 1475 if (unlikely(func > MAX_CHAN_FUNC)) 1476 goto error; 1477 pvt->pci_ch[slot - 4][func] = pdev; 1478 } else if (!slot && !func) { 1479 pvt->pci_noncore = pdev; 1480 1481 /* Detect the processor family */ 1482 switch (pdev->device) { 1483 case PCI_DEVICE_ID_INTEL_I7_NONCORE: 1484 family = "Xeon 35xx/ i7core"; 1485 pvt->enable_scrub = false; 1486 break; 1487 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT: 1488 family = "i7-800/i5-700"; 1489 pvt->enable_scrub = false; 1490 break; 1491 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE: 1492 family = "Xeon 34xx"; 1493 pvt->enable_scrub = false; 1494 break; 1495 case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT: 1496 family = "Xeon 55xx"; 1497 pvt->enable_scrub = true; 1498 break; 1499 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2: 1500 family = "Xeon 56xx / i7-900"; 1501 pvt->enable_scrub = true; 1502 break; 1503 default: 1504 family = "unknown"; 1505 pvt->enable_scrub = false; 1506 } 1507 edac_dbg(0, "Detected a processor type %s\n", family); 1508 } else 1509 goto error; 1510 1511 edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n", 1512 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 1513 pdev, i7core_dev->socket); 1514 1515 if (PCI_SLOT(pdev->devfn) == 3 && 1516 PCI_FUNC(pdev->devfn) == 2) 1517 pvt->is_registered = true; 1518 } 1519 1520 return 0; 1521 1522 error: 1523 i7core_printk(KERN_ERR, "Device %d, function %d " 1524 "is out of the expected range\n", 1525 slot, func); 1526 return -EINVAL; 1527 } 1528 1529 /**************************************************************************** 1530 Error check routines 1531 ****************************************************************************/ 1532 1533 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci, 1534 const int chan, 1535 const int new0, 1536 const int new1, 1537 const int new2) 1538 { 1539 struct i7core_pvt *pvt = mci->pvt_info; 1540 int add0 = 0, add1 = 0, add2 = 0; 1541 /* Updates CE counters if it is not the first time here */ 1542 if (pvt->ce_count_available) { 1543 /* Updates CE counters */ 1544 1545 add2 = new2 - pvt->rdimm_last_ce_count[chan][2]; 1546 add1 = new1 - pvt->rdimm_last_ce_count[chan][1]; 1547 add0 = new0 - pvt->rdimm_last_ce_count[chan][0]; 1548 1549 if (add2 < 0) 1550 add2 += 0x7fff; 1551 pvt->rdimm_ce_count[chan][2] += add2; 1552 1553 if (add1 < 0) 1554 add1 += 0x7fff; 1555 pvt->rdimm_ce_count[chan][1] += add1; 1556 1557 if (add0 < 0) 1558 add0 += 0x7fff; 1559 pvt->rdimm_ce_count[chan][0] += add0; 1560 } else 1561 pvt->ce_count_available = 1; 1562 1563 /* Store the new values */ 1564 pvt->rdimm_last_ce_count[chan][2] = new2; 1565 pvt->rdimm_last_ce_count[chan][1] = new1; 1566 pvt->rdimm_last_ce_count[chan][0] = new0; 1567 1568 /*updated the edac core */ 1569 if (add0 != 0) 1570 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0, 1571 0, 0, 0, 1572 chan, 0, -1, "error", ""); 1573 if (add1 != 0) 1574 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1, 1575 0, 0, 0, 1576 chan, 1, -1, "error", ""); 1577 if (add2 != 0) 1578 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2, 1579 0, 0, 0, 1580 chan, 2, -1, "error", ""); 1581 } 1582 1583 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci) 1584 { 1585 struct i7core_pvt *pvt = mci->pvt_info; 1586 u32 rcv[3][2]; 1587 int i, new0, new1, new2; 1588 1589 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/ 1590 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0, 1591 &rcv[0][0]); 1592 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1, 1593 &rcv[0][1]); 1594 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2, 1595 &rcv[1][0]); 1596 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3, 1597 &rcv[1][1]); 1598 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4, 1599 &rcv[2][0]); 1600 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5, 1601 &rcv[2][1]); 1602 for (i = 0 ; i < 3; i++) { 1603 edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n", 1604 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]); 1605 /*if the channel has 3 dimms*/ 1606 if (pvt->channel[i].dimms > 2) { 1607 new0 = DIMM_BOT_COR_ERR(rcv[i][0]); 1608 new1 = DIMM_TOP_COR_ERR(rcv[i][0]); 1609 new2 = DIMM_BOT_COR_ERR(rcv[i][1]); 1610 } else { 1611 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) + 1612 DIMM_BOT_COR_ERR(rcv[i][0]); 1613 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) + 1614 DIMM_BOT_COR_ERR(rcv[i][1]); 1615 new2 = 0; 1616 } 1617 1618 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2); 1619 } 1620 } 1621 1622 /* This function is based on the device 3 function 4 registers as described on: 1623 * Intel Xeon Processor 5500 Series Datasheet Volume 2 1624 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf 1625 * also available at: 1626 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf 1627 */ 1628 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci) 1629 { 1630 struct i7core_pvt *pvt = mci->pvt_info; 1631 u32 rcv1, rcv0; 1632 int new0, new1, new2; 1633 1634 if (!pvt->pci_mcr[4]) { 1635 edac_dbg(0, "MCR registers not found\n"); 1636 return; 1637 } 1638 1639 /* Corrected test errors */ 1640 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1); 1641 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0); 1642 1643 /* Store the new values */ 1644 new2 = DIMM2_COR_ERR(rcv1); 1645 new1 = DIMM1_COR_ERR(rcv0); 1646 new0 = DIMM0_COR_ERR(rcv0); 1647 1648 /* Updates CE counters if it is not the first time here */ 1649 if (pvt->ce_count_available) { 1650 /* Updates CE counters */ 1651 int add0, add1, add2; 1652 1653 add2 = new2 - pvt->udimm_last_ce_count[2]; 1654 add1 = new1 - pvt->udimm_last_ce_count[1]; 1655 add0 = new0 - pvt->udimm_last_ce_count[0]; 1656 1657 if (add2 < 0) 1658 add2 += 0x7fff; 1659 pvt->udimm_ce_count[2] += add2; 1660 1661 if (add1 < 0) 1662 add1 += 0x7fff; 1663 pvt->udimm_ce_count[1] += add1; 1664 1665 if (add0 < 0) 1666 add0 += 0x7fff; 1667 pvt->udimm_ce_count[0] += add0; 1668 1669 if (add0 | add1 | add2) 1670 i7core_printk(KERN_ERR, "New Corrected error(s): " 1671 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n", 1672 add0, add1, add2); 1673 } else 1674 pvt->ce_count_available = 1; 1675 1676 /* Store the new values */ 1677 pvt->udimm_last_ce_count[2] = new2; 1678 pvt->udimm_last_ce_count[1] = new1; 1679 pvt->udimm_last_ce_count[0] = new0; 1680 } 1681 1682 /* 1683 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32 1684 * Architectures Software Developer’s Manual Volume 3B. 1685 * Nehalem are defined as family 0x06, model 0x1a 1686 * 1687 * The MCA registers used here are the following ones: 1688 * struct mce field MCA Register 1689 * m->status MSR_IA32_MC8_STATUS 1690 * m->addr MSR_IA32_MC8_ADDR 1691 * m->misc MSR_IA32_MC8_MISC 1692 * In the case of Nehalem, the error information is masked at .status and .misc 1693 * fields 1694 */ 1695 static void i7core_mce_output_error(struct mem_ctl_info *mci, 1696 const struct mce *m) 1697 { 1698 struct i7core_pvt *pvt = mci->pvt_info; 1699 char *optype, *err; 1700 enum hw_event_mc_err_type tp_event; 1701 unsigned long error = m->status & 0x1ff0000l; 1702 bool uncorrected_error = m->mcgstatus & 1ll << 61; 1703 bool ripv = m->mcgstatus & 1; 1704 u32 optypenum = (m->status >> 4) & 0x07; 1705 u32 core_err_cnt = (m->status >> 38) & 0x7fff; 1706 u32 dimm = (m->misc >> 16) & 0x3; 1707 u32 channel = (m->misc >> 18) & 0x3; 1708 u32 syndrome = m->misc >> 32; 1709 u32 errnum = find_first_bit(&error, 32); 1710 1711 if (uncorrected_error) { 1712 core_err_cnt = 1; 1713 if (ripv) 1714 tp_event = HW_EVENT_ERR_FATAL; 1715 else 1716 tp_event = HW_EVENT_ERR_UNCORRECTED; 1717 } else { 1718 tp_event = HW_EVENT_ERR_CORRECTED; 1719 } 1720 1721 switch (optypenum) { 1722 case 0: 1723 optype = "generic undef request"; 1724 break; 1725 case 1: 1726 optype = "read error"; 1727 break; 1728 case 2: 1729 optype = "write error"; 1730 break; 1731 case 3: 1732 optype = "addr/cmd error"; 1733 break; 1734 case 4: 1735 optype = "scrubbing error"; 1736 break; 1737 default: 1738 optype = "reserved"; 1739 break; 1740 } 1741 1742 switch (errnum) { 1743 case 16: 1744 err = "read ECC error"; 1745 break; 1746 case 17: 1747 err = "RAS ECC error"; 1748 break; 1749 case 18: 1750 err = "write parity error"; 1751 break; 1752 case 19: 1753 err = "redundancy loss"; 1754 break; 1755 case 20: 1756 err = "reserved"; 1757 break; 1758 case 21: 1759 err = "memory range error"; 1760 break; 1761 case 22: 1762 err = "RTID out of range"; 1763 break; 1764 case 23: 1765 err = "address parity error"; 1766 break; 1767 case 24: 1768 err = "byte enable parity error"; 1769 break; 1770 default: 1771 err = "unknown"; 1772 } 1773 1774 /* 1775 * Call the helper to output message 1776 * FIXME: what to do if core_err_cnt > 1? Currently, it generates 1777 * only one event 1778 */ 1779 if (uncorrected_error || !pvt->is_registered) 1780 edac_mc_handle_error(tp_event, mci, core_err_cnt, 1781 m->addr >> PAGE_SHIFT, 1782 m->addr & ~PAGE_MASK, 1783 syndrome, 1784 channel, dimm, -1, 1785 err, optype); 1786 } 1787 1788 /* 1789 * i7core_check_error Retrieve and process errors reported by the 1790 * hardware. Called by the Core module. 1791 */ 1792 static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m) 1793 { 1794 struct i7core_pvt *pvt = mci->pvt_info; 1795 1796 i7core_mce_output_error(mci, m); 1797 1798 /* 1799 * Now, let's increment CE error counts 1800 */ 1801 if (!pvt->is_registered) 1802 i7core_udimm_check_mc_ecc_err(mci); 1803 else 1804 i7core_rdimm_check_mc_ecc_err(mci); 1805 } 1806 1807 /* 1808 * Check that logging is enabled and that this is the right type 1809 * of error for us to handle. 1810 */ 1811 static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val, 1812 void *data) 1813 { 1814 struct mce *mce = (struct mce *)data; 1815 struct i7core_dev *i7_dev; 1816 struct mem_ctl_info *mci; 1817 1818 i7_dev = get_i7core_dev(mce->socketid); 1819 if (!i7_dev) 1820 return NOTIFY_DONE; 1821 1822 mci = i7_dev->mci; 1823 1824 /* 1825 * Just let mcelog handle it if the error is 1826 * outside the memory controller 1827 */ 1828 if (((mce->status & 0xffff) >> 7) != 1) 1829 return NOTIFY_DONE; 1830 1831 /* Bank 8 registers are the only ones that we know how to handle */ 1832 if (mce->bank != 8) 1833 return NOTIFY_DONE; 1834 1835 i7core_check_error(mci, mce); 1836 1837 /* Advise mcelog that the errors were handled */ 1838 return NOTIFY_STOP; 1839 } 1840 1841 static struct notifier_block i7_mce_dec = { 1842 .notifier_call = i7core_mce_check_error, 1843 .priority = MCE_PRIO_EDAC, 1844 }; 1845 1846 struct memdev_dmi_entry { 1847 u8 type; 1848 u8 length; 1849 u16 handle; 1850 u16 phys_mem_array_handle; 1851 u16 mem_err_info_handle; 1852 u16 total_width; 1853 u16 data_width; 1854 u16 size; 1855 u8 form; 1856 u8 device_set; 1857 u8 device_locator; 1858 u8 bank_locator; 1859 u8 memory_type; 1860 u16 type_detail; 1861 u16 speed; 1862 u8 manufacturer; 1863 u8 serial_number; 1864 u8 asset_tag; 1865 u8 part_number; 1866 u8 attributes; 1867 u32 extended_size; 1868 u16 conf_mem_clk_speed; 1869 } __attribute__((__packed__)); 1870 1871 1872 /* 1873 * Decode the DRAM Clock Frequency, be paranoid, make sure that all 1874 * memory devices show the same speed, and if they don't then consider 1875 * all speeds to be invalid. 1876 */ 1877 static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq) 1878 { 1879 int *dclk_freq = _dclk_freq; 1880 u16 dmi_mem_clk_speed; 1881 1882 if (*dclk_freq == -1) 1883 return; 1884 1885 if (dh->type == DMI_ENTRY_MEM_DEVICE) { 1886 struct memdev_dmi_entry *memdev_dmi_entry = 1887 (struct memdev_dmi_entry *)dh; 1888 unsigned long conf_mem_clk_speed_offset = 1889 (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed - 1890 (unsigned long)&memdev_dmi_entry->type; 1891 unsigned long speed_offset = 1892 (unsigned long)&memdev_dmi_entry->speed - 1893 (unsigned long)&memdev_dmi_entry->type; 1894 1895 /* Check that a DIMM is present */ 1896 if (memdev_dmi_entry->size == 0) 1897 return; 1898 1899 /* 1900 * Pick the configured speed if it's available, otherwise 1901 * pick the DIMM speed, or we don't have a speed. 1902 */ 1903 if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) { 1904 dmi_mem_clk_speed = 1905 memdev_dmi_entry->conf_mem_clk_speed; 1906 } else if (memdev_dmi_entry->length > speed_offset) { 1907 dmi_mem_clk_speed = memdev_dmi_entry->speed; 1908 } else { 1909 *dclk_freq = -1; 1910 return; 1911 } 1912 1913 if (*dclk_freq == 0) { 1914 /* First pass, speed was 0 */ 1915 if (dmi_mem_clk_speed > 0) { 1916 /* Set speed if a valid speed is read */ 1917 *dclk_freq = dmi_mem_clk_speed; 1918 } else { 1919 /* Otherwise we don't have a valid speed */ 1920 *dclk_freq = -1; 1921 } 1922 } else if (*dclk_freq > 0 && 1923 *dclk_freq != dmi_mem_clk_speed) { 1924 /* 1925 * If we have a speed, check that all DIMMS are the same 1926 * speed, otherwise set the speed as invalid. 1927 */ 1928 *dclk_freq = -1; 1929 } 1930 } 1931 } 1932 1933 /* 1934 * The default DCLK frequency is used as a fallback if we 1935 * fail to find anything reliable in the DMI. The value 1936 * is taken straight from the datasheet. 1937 */ 1938 #define DEFAULT_DCLK_FREQ 800 1939 1940 static int get_dclk_freq(void) 1941 { 1942 int dclk_freq = 0; 1943 1944 dmi_walk(decode_dclk, (void *)&dclk_freq); 1945 1946 if (dclk_freq < 1) 1947 return DEFAULT_DCLK_FREQ; 1948 1949 return dclk_freq; 1950 } 1951 1952 /* 1953 * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate 1954 * to hardware according to SCRUBINTERVAL formula 1955 * found in datasheet. 1956 */ 1957 static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw) 1958 { 1959 struct i7core_pvt *pvt = mci->pvt_info; 1960 struct pci_dev *pdev; 1961 u32 dw_scrub; 1962 u32 dw_ssr; 1963 1964 /* Get data from the MC register, function 2 */ 1965 pdev = pvt->pci_mcr[2]; 1966 if (!pdev) 1967 return -ENODEV; 1968 1969 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub); 1970 1971 if (new_bw == 0) { 1972 /* Prepare to disable petrol scrub */ 1973 dw_scrub &= ~STARTSCRUB; 1974 /* Stop the patrol scrub engine */ 1975 write_and_test(pdev, MC_SCRUB_CONTROL, 1976 dw_scrub & ~SCRUBINTERVAL_MASK); 1977 1978 /* Get current status of scrub rate and set bit to disable */ 1979 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); 1980 dw_ssr &= ~SSR_MODE_MASK; 1981 dw_ssr |= SSR_MODE_DISABLE; 1982 } else { 1983 const int cache_line_size = 64; 1984 const u32 freq_dclk_mhz = pvt->dclk_freq; 1985 unsigned long long scrub_interval; 1986 /* 1987 * Translate the desired scrub rate to a register value and 1988 * program the corresponding register value. 1989 */ 1990 scrub_interval = (unsigned long long)freq_dclk_mhz * 1991 cache_line_size * 1000000; 1992 do_div(scrub_interval, new_bw); 1993 1994 if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK) 1995 return -EINVAL; 1996 1997 dw_scrub = SCRUBINTERVAL_MASK & scrub_interval; 1998 1999 /* Start the patrol scrub engine */ 2000 pci_write_config_dword(pdev, MC_SCRUB_CONTROL, 2001 STARTSCRUB | dw_scrub); 2002 2003 /* Get current status of scrub rate and set bit to enable */ 2004 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); 2005 dw_ssr &= ~SSR_MODE_MASK; 2006 dw_ssr |= SSR_MODE_ENABLE; 2007 } 2008 /* Disable or enable scrubbing */ 2009 pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr); 2010 2011 return new_bw; 2012 } 2013 2014 /* 2015 * get_sdram_scrub_rate This routine convert current scrub rate value 2016 * into byte/sec bandwidth according to 2017 * SCRUBINTERVAL formula found in datasheet. 2018 */ 2019 static int get_sdram_scrub_rate(struct mem_ctl_info *mci) 2020 { 2021 struct i7core_pvt *pvt = mci->pvt_info; 2022 struct pci_dev *pdev; 2023 const u32 cache_line_size = 64; 2024 const u32 freq_dclk_mhz = pvt->dclk_freq; 2025 unsigned long long scrub_rate; 2026 u32 scrubval; 2027 2028 /* Get data from the MC register, function 2 */ 2029 pdev = pvt->pci_mcr[2]; 2030 if (!pdev) 2031 return -ENODEV; 2032 2033 /* Get current scrub control data */ 2034 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval); 2035 2036 /* Mask highest 8-bits to 0 */ 2037 scrubval &= SCRUBINTERVAL_MASK; 2038 if (!scrubval) 2039 return 0; 2040 2041 /* Calculate scrub rate value into byte/sec bandwidth */ 2042 scrub_rate = (unsigned long long)freq_dclk_mhz * 2043 1000000 * cache_line_size; 2044 do_div(scrub_rate, scrubval); 2045 return (int)scrub_rate; 2046 } 2047 2048 static void enable_sdram_scrub_setting(struct mem_ctl_info *mci) 2049 { 2050 struct i7core_pvt *pvt = mci->pvt_info; 2051 u32 pci_lock; 2052 2053 /* Unlock writes to pci registers */ 2054 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); 2055 pci_lock &= ~0x3; 2056 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, 2057 pci_lock | MC_CFG_UNLOCK); 2058 2059 mci->set_sdram_scrub_rate = set_sdram_scrub_rate; 2060 mci->get_sdram_scrub_rate = get_sdram_scrub_rate; 2061 } 2062 2063 static void disable_sdram_scrub_setting(struct mem_ctl_info *mci) 2064 { 2065 struct i7core_pvt *pvt = mci->pvt_info; 2066 u32 pci_lock; 2067 2068 /* Lock writes to pci registers */ 2069 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); 2070 pci_lock &= ~0x3; 2071 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, 2072 pci_lock | MC_CFG_LOCK); 2073 } 2074 2075 static void i7core_pci_ctl_create(struct i7core_pvt *pvt) 2076 { 2077 pvt->i7core_pci = edac_pci_create_generic_ctl( 2078 &pvt->i7core_dev->pdev[0]->dev, 2079 EDAC_MOD_STR); 2080 if (unlikely(!pvt->i7core_pci)) 2081 i7core_printk(KERN_WARNING, 2082 "Unable to setup PCI error report via EDAC\n"); 2083 } 2084 2085 static void i7core_pci_ctl_release(struct i7core_pvt *pvt) 2086 { 2087 if (likely(pvt->i7core_pci)) 2088 edac_pci_release_generic_ctl(pvt->i7core_pci); 2089 else 2090 i7core_printk(KERN_ERR, 2091 "Couldn't find mem_ctl_info for socket %d\n", 2092 pvt->i7core_dev->socket); 2093 pvt->i7core_pci = NULL; 2094 } 2095 2096 static void i7core_unregister_mci(struct i7core_dev *i7core_dev) 2097 { 2098 struct mem_ctl_info *mci = i7core_dev->mci; 2099 struct i7core_pvt *pvt; 2100 2101 if (unlikely(!mci || !mci->pvt_info)) { 2102 edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev); 2103 2104 i7core_printk(KERN_ERR, "Couldn't find mci handler\n"); 2105 return; 2106 } 2107 2108 pvt = mci->pvt_info; 2109 2110 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); 2111 2112 /* Disable scrubrate setting */ 2113 if (pvt->enable_scrub) 2114 disable_sdram_scrub_setting(mci); 2115 2116 /* Disable EDAC polling */ 2117 i7core_pci_ctl_release(pvt); 2118 2119 /* Remove MC sysfs nodes */ 2120 i7core_delete_sysfs_devices(mci); 2121 edac_mc_del_mc(mci->pdev); 2122 2123 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 2124 kfree(mci->ctl_name); 2125 edac_mc_free(mci); 2126 i7core_dev->mci = NULL; 2127 } 2128 2129 static int i7core_register_mci(struct i7core_dev *i7core_dev) 2130 { 2131 struct mem_ctl_info *mci; 2132 struct i7core_pvt *pvt; 2133 int rc; 2134 struct edac_mc_layer layers[2]; 2135 2136 /* allocate a new MC control structure */ 2137 2138 layers[0].type = EDAC_MC_LAYER_CHANNEL; 2139 layers[0].size = NUM_CHANS; 2140 layers[0].is_virt_csrow = false; 2141 layers[1].type = EDAC_MC_LAYER_SLOT; 2142 layers[1].size = MAX_DIMMS; 2143 layers[1].is_virt_csrow = true; 2144 mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers, 2145 sizeof(*pvt)); 2146 if (unlikely(!mci)) 2147 return -ENOMEM; 2148 2149 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); 2150 2151 pvt = mci->pvt_info; 2152 memset(pvt, 0, sizeof(*pvt)); 2153 2154 /* Associates i7core_dev and mci for future usage */ 2155 pvt->i7core_dev = i7core_dev; 2156 i7core_dev->mci = mci; 2157 2158 /* 2159 * FIXME: how to handle RDDR3 at MCI level? It is possible to have 2160 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different 2161 * memory channels 2162 */ 2163 mci->mtype_cap = MEM_FLAG_DDR3; 2164 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2165 mci->edac_cap = EDAC_FLAG_NONE; 2166 mci->mod_name = "i7core_edac.c"; 2167 2168 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", i7core_dev->socket); 2169 if (!mci->ctl_name) { 2170 rc = -ENOMEM; 2171 goto fail1; 2172 } 2173 2174 mci->dev_name = pci_name(i7core_dev->pdev[0]); 2175 mci->ctl_page_to_phys = NULL; 2176 2177 /* Store pci devices at mci for faster access */ 2178 rc = mci_bind_devs(mci, i7core_dev); 2179 if (unlikely(rc < 0)) 2180 goto fail0; 2181 2182 2183 /* Get dimm basic config */ 2184 get_dimm_config(mci); 2185 /* record ptr to the generic device */ 2186 mci->pdev = &i7core_dev->pdev[0]->dev; 2187 2188 /* Enable scrubrate setting */ 2189 if (pvt->enable_scrub) 2190 enable_sdram_scrub_setting(mci); 2191 2192 /* add this new MC control structure to EDAC's list of MCs */ 2193 if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) { 2194 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 2195 /* FIXME: perhaps some code should go here that disables error 2196 * reporting if we just enabled it 2197 */ 2198 2199 rc = -EINVAL; 2200 goto fail0; 2201 } 2202 if (i7core_create_sysfs_devices(mci)) { 2203 edac_dbg(0, "MC: failed to create sysfs nodes\n"); 2204 edac_mc_del_mc(mci->pdev); 2205 rc = -EINVAL; 2206 goto fail0; 2207 } 2208 2209 /* Default error mask is any memory */ 2210 pvt->inject.channel = 0; 2211 pvt->inject.dimm = -1; 2212 pvt->inject.rank = -1; 2213 pvt->inject.bank = -1; 2214 pvt->inject.page = -1; 2215 pvt->inject.col = -1; 2216 2217 /* allocating generic PCI control info */ 2218 i7core_pci_ctl_create(pvt); 2219 2220 /* DCLK for scrub rate setting */ 2221 pvt->dclk_freq = get_dclk_freq(); 2222 2223 return 0; 2224 2225 fail0: 2226 kfree(mci->ctl_name); 2227 2228 fail1: 2229 edac_mc_free(mci); 2230 i7core_dev->mci = NULL; 2231 return rc; 2232 } 2233 2234 /* 2235 * i7core_probe Probe for ONE instance of device to see if it is 2236 * present. 2237 * return: 2238 * 0 for FOUND a device 2239 * < 0 for error code 2240 */ 2241 2242 static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2243 { 2244 int rc, count = 0; 2245 struct i7core_dev *i7core_dev; 2246 2247 /* get the pci devices we want to reserve for our use */ 2248 mutex_lock(&i7core_edac_lock); 2249 2250 /* 2251 * All memory controllers are allocated at the first pass. 2252 */ 2253 if (unlikely(probed >= 1)) { 2254 mutex_unlock(&i7core_edac_lock); 2255 return -ENODEV; 2256 } 2257 probed++; 2258 2259 rc = i7core_get_all_devices(); 2260 if (unlikely(rc < 0)) 2261 goto fail0; 2262 2263 list_for_each_entry(i7core_dev, &i7core_edac_list, list) { 2264 count++; 2265 rc = i7core_register_mci(i7core_dev); 2266 if (unlikely(rc < 0)) 2267 goto fail1; 2268 } 2269 2270 /* 2271 * Nehalem-EX uses a different memory controller. However, as the 2272 * memory controller is not visible on some Nehalem/Nehalem-EP, we 2273 * need to indirectly probe via a X58 PCI device. The same devices 2274 * are found on (some) Nehalem-EX. So, on those machines, the 2275 * probe routine needs to return -ENODEV, as the actual Memory 2276 * Controller registers won't be detected. 2277 */ 2278 if (!count) { 2279 rc = -ENODEV; 2280 goto fail1; 2281 } 2282 2283 i7core_printk(KERN_INFO, 2284 "Driver loaded, %d memory controller(s) found.\n", 2285 count); 2286 2287 mutex_unlock(&i7core_edac_lock); 2288 return 0; 2289 2290 fail1: 2291 list_for_each_entry(i7core_dev, &i7core_edac_list, list) 2292 i7core_unregister_mci(i7core_dev); 2293 2294 i7core_put_all_devices(); 2295 fail0: 2296 mutex_unlock(&i7core_edac_lock); 2297 return rc; 2298 } 2299 2300 /* 2301 * i7core_remove destructor for one instance of device 2302 * 2303 */ 2304 static void i7core_remove(struct pci_dev *pdev) 2305 { 2306 struct i7core_dev *i7core_dev; 2307 2308 edac_dbg(0, "\n"); 2309 2310 /* 2311 * we have a trouble here: pdev value for removal will be wrong, since 2312 * it will point to the X58 register used to detect that the machine 2313 * is a Nehalem or upper design. However, due to the way several PCI 2314 * devices are grouped together to provide MC functionality, we need 2315 * to use a different method for releasing the devices 2316 */ 2317 2318 mutex_lock(&i7core_edac_lock); 2319 2320 if (unlikely(!probed)) { 2321 mutex_unlock(&i7core_edac_lock); 2322 return; 2323 } 2324 2325 list_for_each_entry(i7core_dev, &i7core_edac_list, list) 2326 i7core_unregister_mci(i7core_dev); 2327 2328 /* Release PCI resources */ 2329 i7core_put_all_devices(); 2330 2331 probed--; 2332 2333 mutex_unlock(&i7core_edac_lock); 2334 } 2335 2336 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl); 2337 2338 /* 2339 * i7core_driver pci_driver structure for this module 2340 * 2341 */ 2342 static struct pci_driver i7core_driver = { 2343 .name = "i7core_edac", 2344 .probe = i7core_probe, 2345 .remove = i7core_remove, 2346 .id_table = i7core_pci_tbl, 2347 }; 2348 2349 /* 2350 * i7core_init Module entry function 2351 * Try to initialize this module for its devices 2352 */ 2353 static int __init i7core_init(void) 2354 { 2355 int pci_rc; 2356 2357 edac_dbg(2, "\n"); 2358 2359 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 2360 opstate_init(); 2361 2362 if (use_pci_fixup) 2363 i7core_xeon_pci_fixup(pci_dev_table); 2364 2365 pci_rc = pci_register_driver(&i7core_driver); 2366 2367 if (pci_rc >= 0) { 2368 mce_register_decode_chain(&i7_mce_dec); 2369 return 0; 2370 } 2371 2372 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n", 2373 pci_rc); 2374 2375 return pci_rc; 2376 } 2377 2378 /* 2379 * i7core_exit() Module exit function 2380 * Unregister the driver 2381 */ 2382 static void __exit i7core_exit(void) 2383 { 2384 edac_dbg(2, "\n"); 2385 pci_unregister_driver(&i7core_driver); 2386 mce_unregister_decode_chain(&i7_mce_dec); 2387 } 2388 2389 module_init(i7core_init); 2390 module_exit(i7core_exit); 2391 2392 MODULE_LICENSE("GPL"); 2393 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2394 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); 2395 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - " 2396 I7CORE_REVISION); 2397 2398 module_param(edac_op_state, int, 0444); 2399 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2400