1 /* Intel i7 core/Nehalem Memory Controller kernel module 2 * 3 * This driver supports the memory controllers found on the Intel 4 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx, 5 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield 6 * and Westmere-EP. 7 * 8 * This file may be distributed under the terms of the 9 * GNU General Public License version 2 only. 10 * 11 * Copyright (c) 2009-2010 by: 12 * Mauro Carvalho Chehab 13 * 14 * Red Hat Inc. http://www.redhat.com 15 * 16 * Forked and adapted from the i5400_edac driver 17 * 18 * Based on the following public Intel datasheets: 19 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor 20 * Datasheet, Volume 2: 21 * http://download.intel.com/design/processor/datashts/320835.pdf 22 * Intel Xeon Processor 5500 Series Datasheet Volume 2 23 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf 24 * also available at: 25 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf 26 */ 27 28 #include <linux/module.h> 29 #include <linux/init.h> 30 #include <linux/pci.h> 31 #include <linux/pci_ids.h> 32 #include <linux/slab.h> 33 #include <linux/delay.h> 34 #include <linux/dmi.h> 35 #include <linux/edac.h> 36 #include <linux/mmzone.h> 37 #include <linux/smp.h> 38 #include <asm/mce.h> 39 #include <asm/processor.h> 40 #include <asm/div64.h> 41 42 #include "edac_module.h" 43 44 /* Static vars */ 45 static LIST_HEAD(i7core_edac_list); 46 static DEFINE_MUTEX(i7core_edac_lock); 47 static int probed; 48 49 static int use_pci_fixup; 50 module_param(use_pci_fixup, int, 0444); 51 MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices"); 52 /* 53 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core 54 * registers start at bus 255, and are not reported by BIOS. 55 * We currently find devices with only 2 sockets. In order to support more QPI 56 * Quick Path Interconnect, just increment this number. 57 */ 58 #define MAX_SOCKET_BUSES 2 59 60 61 /* 62 * Alter this version for the module when modifications are made 63 */ 64 #define I7CORE_REVISION " Ver: 1.0.0" 65 #define EDAC_MOD_STR "i7core_edac" 66 67 /* 68 * Debug macros 69 */ 70 #define i7core_printk(level, fmt, arg...) \ 71 edac_printk(level, "i7core", fmt, ##arg) 72 73 #define i7core_mc_printk(mci, level, fmt, arg...) \ 74 edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg) 75 76 /* 77 * i7core Memory Controller Registers 78 */ 79 80 /* OFFSETS for Device 0 Function 0 */ 81 82 #define MC_CFG_CONTROL 0x90 83 #define MC_CFG_UNLOCK 0x02 84 #define MC_CFG_LOCK 0x00 85 86 /* OFFSETS for Device 3 Function 0 */ 87 88 #define MC_CONTROL 0x48 89 #define MC_STATUS 0x4c 90 #define MC_MAX_DOD 0x64 91 92 /* 93 * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet: 94 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf 95 */ 96 97 #define MC_TEST_ERR_RCV1 0x60 98 #define DIMM2_COR_ERR(r) ((r) & 0x7fff) 99 100 #define MC_TEST_ERR_RCV0 0x64 101 #define DIMM1_COR_ERR(r) (((r) >> 16) & 0x7fff) 102 #define DIMM0_COR_ERR(r) ((r) & 0x7fff) 103 104 /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */ 105 #define MC_SSRCONTROL 0x48 106 #define SSR_MODE_DISABLE 0x00 107 #define SSR_MODE_ENABLE 0x01 108 #define SSR_MODE_MASK 0x03 109 110 #define MC_SCRUB_CONTROL 0x4c 111 #define STARTSCRUB (1 << 24) 112 #define SCRUBINTERVAL_MASK 0xffffff 113 114 #define MC_COR_ECC_CNT_0 0x80 115 #define MC_COR_ECC_CNT_1 0x84 116 #define MC_COR_ECC_CNT_2 0x88 117 #define MC_COR_ECC_CNT_3 0x8c 118 #define MC_COR_ECC_CNT_4 0x90 119 #define MC_COR_ECC_CNT_5 0x94 120 121 #define DIMM_TOP_COR_ERR(r) (((r) >> 16) & 0x7fff) 122 #define DIMM_BOT_COR_ERR(r) ((r) & 0x7fff) 123 124 125 /* OFFSETS for Devices 4,5 and 6 Function 0 */ 126 127 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58 128 #define THREE_DIMMS_PRESENT (1 << 24) 129 #define SINGLE_QUAD_RANK_PRESENT (1 << 23) 130 #define QUAD_RANK_PRESENT (1 << 22) 131 #define REGISTERED_DIMM (1 << 15) 132 133 #define MC_CHANNEL_MAPPER 0x60 134 #define RDLCH(r, ch) ((((r) >> (3 + (ch * 6))) & 0x07) - 1) 135 #define WRLCH(r, ch) ((((r) >> (ch * 6)) & 0x07) - 1) 136 137 #define MC_CHANNEL_RANK_PRESENT 0x7c 138 #define RANK_PRESENT_MASK 0xffff 139 140 #define MC_CHANNEL_ADDR_MATCH 0xf0 141 #define MC_CHANNEL_ERROR_MASK 0xf8 142 #define MC_CHANNEL_ERROR_INJECT 0xfc 143 #define INJECT_ADDR_PARITY 0x10 144 #define INJECT_ECC 0x08 145 #define MASK_CACHELINE 0x06 146 #define MASK_FULL_CACHELINE 0x06 147 #define MASK_MSB32_CACHELINE 0x04 148 #define MASK_LSB32_CACHELINE 0x02 149 #define NO_MASK_CACHELINE 0x00 150 #define REPEAT_EN 0x01 151 152 /* OFFSETS for Devices 4,5 and 6 Function 1 */ 153 154 #define MC_DOD_CH_DIMM0 0x48 155 #define MC_DOD_CH_DIMM1 0x4c 156 #define MC_DOD_CH_DIMM2 0x50 157 #define RANKOFFSET_MASK ((1 << 12) | (1 << 11) | (1 << 10)) 158 #define RANKOFFSET(x) ((x & RANKOFFSET_MASK) >> 10) 159 #define DIMM_PRESENT_MASK (1 << 9) 160 #define DIMM_PRESENT(x) (((x) & DIMM_PRESENT_MASK) >> 9) 161 #define MC_DOD_NUMBANK_MASK ((1 << 8) | (1 << 7)) 162 #define MC_DOD_NUMBANK(x) (((x) & MC_DOD_NUMBANK_MASK) >> 7) 163 #define MC_DOD_NUMRANK_MASK ((1 << 6) | (1 << 5)) 164 #define MC_DOD_NUMRANK(x) (((x) & MC_DOD_NUMRANK_MASK) >> 5) 165 #define MC_DOD_NUMROW_MASK ((1 << 4) | (1 << 3) | (1 << 2)) 166 #define MC_DOD_NUMROW(x) (((x) & MC_DOD_NUMROW_MASK) >> 2) 167 #define MC_DOD_NUMCOL_MASK 3 168 #define MC_DOD_NUMCOL(x) ((x) & MC_DOD_NUMCOL_MASK) 169 170 #define MC_RANK_PRESENT 0x7c 171 172 #define MC_SAG_CH_0 0x80 173 #define MC_SAG_CH_1 0x84 174 #define MC_SAG_CH_2 0x88 175 #define MC_SAG_CH_3 0x8c 176 #define MC_SAG_CH_4 0x90 177 #define MC_SAG_CH_5 0x94 178 #define MC_SAG_CH_6 0x98 179 #define MC_SAG_CH_7 0x9c 180 181 #define MC_RIR_LIMIT_CH_0 0x40 182 #define MC_RIR_LIMIT_CH_1 0x44 183 #define MC_RIR_LIMIT_CH_2 0x48 184 #define MC_RIR_LIMIT_CH_3 0x4C 185 #define MC_RIR_LIMIT_CH_4 0x50 186 #define MC_RIR_LIMIT_CH_5 0x54 187 #define MC_RIR_LIMIT_CH_6 0x58 188 #define MC_RIR_LIMIT_CH_7 0x5C 189 #define MC_RIR_LIMIT_MASK ((1 << 10) - 1) 190 191 #define MC_RIR_WAY_CH 0x80 192 #define MC_RIR_WAY_OFFSET_MASK (((1 << 14) - 1) & ~0x7) 193 #define MC_RIR_WAY_RANK_MASK 0x7 194 195 /* 196 * i7core structs 197 */ 198 199 #define NUM_CHANS 3 200 #define MAX_DIMMS 3 /* Max DIMMS per channel */ 201 #define MAX_MCR_FUNC 4 202 #define MAX_CHAN_FUNC 3 203 204 struct i7core_info { 205 u32 mc_control; 206 u32 mc_status; 207 u32 max_dod; 208 u32 ch_map; 209 }; 210 211 212 struct i7core_inject { 213 int enable; 214 215 u32 section; 216 u32 type; 217 u32 eccmask; 218 219 /* Error address mask */ 220 int channel, dimm, rank, bank, page, col; 221 }; 222 223 struct i7core_channel { 224 bool is_3dimms_present; 225 bool is_single_4rank; 226 bool has_4rank; 227 u32 dimms; 228 }; 229 230 struct pci_id_descr { 231 int dev; 232 int func; 233 int dev_id; 234 int optional; 235 }; 236 237 struct pci_id_table { 238 const struct pci_id_descr *descr; 239 int n_devs; 240 }; 241 242 struct i7core_dev { 243 struct list_head list; 244 u8 socket; 245 struct pci_dev **pdev; 246 int n_devs; 247 struct mem_ctl_info *mci; 248 }; 249 250 struct i7core_pvt { 251 struct device *addrmatch_dev, *chancounts_dev; 252 253 struct pci_dev *pci_noncore; 254 struct pci_dev *pci_mcr[MAX_MCR_FUNC + 1]; 255 struct pci_dev *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1]; 256 257 struct i7core_dev *i7core_dev; 258 259 struct i7core_info info; 260 struct i7core_inject inject; 261 struct i7core_channel channel[NUM_CHANS]; 262 263 int ce_count_available; 264 265 /* ECC corrected errors counts per udimm */ 266 unsigned long udimm_ce_count[MAX_DIMMS]; 267 int udimm_last_ce_count[MAX_DIMMS]; 268 /* ECC corrected errors counts per rdimm */ 269 unsigned long rdimm_ce_count[NUM_CHANS][MAX_DIMMS]; 270 int rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS]; 271 272 bool is_registered, enable_scrub; 273 274 /* DCLK Frequency used for computing scrub rate */ 275 int dclk_freq; 276 277 /* Struct to control EDAC polling */ 278 struct edac_pci_ctl_info *i7core_pci; 279 }; 280 281 #define PCI_DESCR(device, function, device_id) \ 282 .dev = (device), \ 283 .func = (function), \ 284 .dev_id = (device_id) 285 286 static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = { 287 /* Memory controller */ 288 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR) }, 289 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD) }, 290 /* Exists only for RDIMM */ 291 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1 }, 292 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) }, 293 294 /* Channel 0 */ 295 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) }, 296 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) }, 297 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) }, 298 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC) }, 299 300 /* Channel 1 */ 301 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) }, 302 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) }, 303 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) }, 304 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC) }, 305 306 /* Channel 2 */ 307 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) }, 308 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) }, 309 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) }, 310 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC) }, 311 312 /* Generic Non-core registers */ 313 /* 314 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41) 315 * On Xeon 55xx, however, it has a different id (8086:2c40). So, 316 * the probing code needs to test for the other address in case of 317 * failure of this one 318 */ 319 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE) }, 320 321 }; 322 323 static const struct pci_id_descr pci_dev_descr_lynnfield[] = { 324 { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR) }, 325 { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD) }, 326 { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST) }, 327 328 { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) }, 329 { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) }, 330 { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) }, 331 { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC) }, 332 333 { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) }, 334 { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) }, 335 { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) }, 336 { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC) }, 337 338 /* 339 * This is the PCI device has an alternate address on some 340 * processors like Core i7 860 341 */ 342 { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE) }, 343 }; 344 345 static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = { 346 /* Memory controller */ 347 { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2) }, 348 { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2) }, 349 /* Exists only for RDIMM */ 350 { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1 }, 351 { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) }, 352 353 /* Channel 0 */ 354 { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) }, 355 { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) }, 356 { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) }, 357 { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2) }, 358 359 /* Channel 1 */ 360 { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) }, 361 { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) }, 362 { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) }, 363 { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2) }, 364 365 /* Channel 2 */ 366 { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) }, 367 { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) }, 368 { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) }, 369 { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2) }, 370 371 /* Generic Non-core registers */ 372 { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2) }, 373 374 }; 375 376 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } 377 static const struct pci_id_table pci_dev_table[] = { 378 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem), 379 PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield), 380 PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere), 381 {0,} /* 0 terminated list. */ 382 }; 383 384 /* 385 * pci_device_id table for which devices we are looking for 386 */ 387 static const struct pci_device_id i7core_pci_tbl[] = { 388 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)}, 389 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)}, 390 {0,} /* 0 terminated list. */ 391 }; 392 393 /**************************************************************************** 394 Ancillary status routines 395 ****************************************************************************/ 396 397 /* MC_CONTROL bits */ 398 #define CH_ACTIVE(pvt, ch) ((pvt)->info.mc_control & (1 << (8 + ch))) 399 #define ECCx8(pvt) ((pvt)->info.mc_control & (1 << 1)) 400 401 /* MC_STATUS bits */ 402 #define ECC_ENABLED(pvt) ((pvt)->info.mc_status & (1 << 4)) 403 #define CH_DISABLED(pvt, ch) ((pvt)->info.mc_status & (1 << ch)) 404 405 /* MC_MAX_DOD read functions */ 406 static inline int numdimms(u32 dimms) 407 { 408 return (dimms & 0x3) + 1; 409 } 410 411 static inline int numrank(u32 rank) 412 { 413 static const int ranks[] = { 1, 2, 4, -EINVAL }; 414 415 return ranks[rank & 0x3]; 416 } 417 418 static inline int numbank(u32 bank) 419 { 420 static const int banks[] = { 4, 8, 16, -EINVAL }; 421 422 return banks[bank & 0x3]; 423 } 424 425 static inline int numrow(u32 row) 426 { 427 static const int rows[] = { 428 1 << 12, 1 << 13, 1 << 14, 1 << 15, 429 1 << 16, -EINVAL, -EINVAL, -EINVAL, 430 }; 431 432 return rows[row & 0x7]; 433 } 434 435 static inline int numcol(u32 col) 436 { 437 static const int cols[] = { 438 1 << 10, 1 << 11, 1 << 12, -EINVAL, 439 }; 440 return cols[col & 0x3]; 441 } 442 443 static struct i7core_dev *get_i7core_dev(u8 socket) 444 { 445 struct i7core_dev *i7core_dev; 446 447 list_for_each_entry(i7core_dev, &i7core_edac_list, list) { 448 if (i7core_dev->socket == socket) 449 return i7core_dev; 450 } 451 452 return NULL; 453 } 454 455 static struct i7core_dev *alloc_i7core_dev(u8 socket, 456 const struct pci_id_table *table) 457 { 458 struct i7core_dev *i7core_dev; 459 460 i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL); 461 if (!i7core_dev) 462 return NULL; 463 464 i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs, 465 GFP_KERNEL); 466 if (!i7core_dev->pdev) { 467 kfree(i7core_dev); 468 return NULL; 469 } 470 471 i7core_dev->socket = socket; 472 i7core_dev->n_devs = table->n_devs; 473 list_add_tail(&i7core_dev->list, &i7core_edac_list); 474 475 return i7core_dev; 476 } 477 478 static void free_i7core_dev(struct i7core_dev *i7core_dev) 479 { 480 list_del(&i7core_dev->list); 481 kfree(i7core_dev->pdev); 482 kfree(i7core_dev); 483 } 484 485 /**************************************************************************** 486 Memory check routines 487 ****************************************************************************/ 488 489 static int get_dimm_config(struct mem_ctl_info *mci) 490 { 491 struct i7core_pvt *pvt = mci->pvt_info; 492 struct pci_dev *pdev; 493 int i, j; 494 enum edac_type mode; 495 enum mem_type mtype; 496 struct dimm_info *dimm; 497 498 /* Get data from the MC register, function 0 */ 499 pdev = pvt->pci_mcr[0]; 500 if (!pdev) 501 return -ENODEV; 502 503 /* Device 3 function 0 reads */ 504 pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control); 505 pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status); 506 pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod); 507 pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map); 508 509 edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n", 510 pvt->i7core_dev->socket, pvt->info.mc_control, 511 pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map); 512 513 if (ECC_ENABLED(pvt)) { 514 edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4); 515 if (ECCx8(pvt)) 516 mode = EDAC_S8ECD8ED; 517 else 518 mode = EDAC_S4ECD4ED; 519 } else { 520 edac_dbg(0, "ECC disabled\n"); 521 mode = EDAC_NONE; 522 } 523 524 /* FIXME: need to handle the error codes */ 525 edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n", 526 numdimms(pvt->info.max_dod), 527 numrank(pvt->info.max_dod >> 2), 528 numbank(pvt->info.max_dod >> 4), 529 numrow(pvt->info.max_dod >> 6), 530 numcol(pvt->info.max_dod >> 9)); 531 532 for (i = 0; i < NUM_CHANS; i++) { 533 u32 data, dimm_dod[3], value[8]; 534 535 if (!pvt->pci_ch[i][0]) 536 continue; 537 538 if (!CH_ACTIVE(pvt, i)) { 539 edac_dbg(0, "Channel %i is not active\n", i); 540 continue; 541 } 542 if (CH_DISABLED(pvt, i)) { 543 edac_dbg(0, "Channel %i is disabled\n", i); 544 continue; 545 } 546 547 /* Devices 4-6 function 0 */ 548 pci_read_config_dword(pvt->pci_ch[i][0], 549 MC_CHANNEL_DIMM_INIT_PARAMS, &data); 550 551 552 if (data & THREE_DIMMS_PRESENT) 553 pvt->channel[i].is_3dimms_present = true; 554 555 if (data & SINGLE_QUAD_RANK_PRESENT) 556 pvt->channel[i].is_single_4rank = true; 557 558 if (data & QUAD_RANK_PRESENT) 559 pvt->channel[i].has_4rank = true; 560 561 if (data & REGISTERED_DIMM) 562 mtype = MEM_RDDR3; 563 else 564 mtype = MEM_DDR3; 565 566 /* Devices 4-6 function 1 */ 567 pci_read_config_dword(pvt->pci_ch[i][1], 568 MC_DOD_CH_DIMM0, &dimm_dod[0]); 569 pci_read_config_dword(pvt->pci_ch[i][1], 570 MC_DOD_CH_DIMM1, &dimm_dod[1]); 571 pci_read_config_dword(pvt->pci_ch[i][1], 572 MC_DOD_CH_DIMM2, &dimm_dod[2]); 573 574 edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n", 575 i, 576 RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i), 577 data, 578 pvt->channel[i].is_3dimms_present ? "3DIMMS " : "", 579 pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "", 580 pvt->channel[i].has_4rank ? "HAS_4R " : "", 581 (data & REGISTERED_DIMM) ? 'R' : 'U'); 582 583 for (j = 0; j < 3; j++) { 584 u32 banks, ranks, rows, cols; 585 u32 size, npages; 586 587 if (!DIMM_PRESENT(dimm_dod[j])) 588 continue; 589 590 dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, 591 i, j, 0); 592 banks = numbank(MC_DOD_NUMBANK(dimm_dod[j])); 593 ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j])); 594 rows = numrow(MC_DOD_NUMROW(dimm_dod[j])); 595 cols = numcol(MC_DOD_NUMCOL(dimm_dod[j])); 596 597 /* DDR3 has 8 I/O banks */ 598 size = (rows * cols * banks * ranks) >> (20 - 3); 599 600 edac_dbg(0, "\tdimm %d %d Mb offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n", 601 j, size, 602 RANKOFFSET(dimm_dod[j]), 603 banks, ranks, rows, cols); 604 605 npages = MiB_TO_PAGES(size); 606 607 dimm->nr_pages = npages; 608 609 switch (banks) { 610 case 4: 611 dimm->dtype = DEV_X4; 612 break; 613 case 8: 614 dimm->dtype = DEV_X8; 615 break; 616 case 16: 617 dimm->dtype = DEV_X16; 618 break; 619 default: 620 dimm->dtype = DEV_UNKNOWN; 621 } 622 623 snprintf(dimm->label, sizeof(dimm->label), 624 "CPU#%uChannel#%u_DIMM#%u", 625 pvt->i7core_dev->socket, i, j); 626 dimm->grain = 8; 627 dimm->edac_mode = mode; 628 dimm->mtype = mtype; 629 } 630 631 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]); 632 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]); 633 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]); 634 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]); 635 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]); 636 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]); 637 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]); 638 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]); 639 edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i); 640 for (j = 0; j < 8; j++) 641 edac_dbg(1, "\t\t%#x\t%#x\t%#x\n", 642 (value[j] >> 27) & 0x1, 643 (value[j] >> 24) & 0x7, 644 (value[j] & ((1 << 24) - 1))); 645 } 646 647 return 0; 648 } 649 650 /**************************************************************************** 651 Error insertion routines 652 ****************************************************************************/ 653 654 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 655 656 /* The i7core has independent error injection features per channel. 657 However, to have a simpler code, we don't allow enabling error injection 658 on more than one channel. 659 Also, since a change at an inject parameter will be applied only at enable, 660 we're disabling error injection on all write calls to the sysfs nodes that 661 controls the error code injection. 662 */ 663 static int disable_inject(const struct mem_ctl_info *mci) 664 { 665 struct i7core_pvt *pvt = mci->pvt_info; 666 667 pvt->inject.enable = 0; 668 669 if (!pvt->pci_ch[pvt->inject.channel][0]) 670 return -ENODEV; 671 672 pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0], 673 MC_CHANNEL_ERROR_INJECT, 0); 674 675 return 0; 676 } 677 678 /* 679 * i7core inject inject.section 680 * 681 * accept and store error injection inject.section value 682 * bit 0 - refers to the lower 32-byte half cacheline 683 * bit 1 - refers to the upper 32-byte half cacheline 684 */ 685 static ssize_t i7core_inject_section_store(struct device *dev, 686 struct device_attribute *mattr, 687 const char *data, size_t count) 688 { 689 struct mem_ctl_info *mci = to_mci(dev); 690 struct i7core_pvt *pvt = mci->pvt_info; 691 unsigned long value; 692 int rc; 693 694 if (pvt->inject.enable) 695 disable_inject(mci); 696 697 rc = kstrtoul(data, 10, &value); 698 if ((rc < 0) || (value > 3)) 699 return -EIO; 700 701 pvt->inject.section = (u32) value; 702 return count; 703 } 704 705 static ssize_t i7core_inject_section_show(struct device *dev, 706 struct device_attribute *mattr, 707 char *data) 708 { 709 struct mem_ctl_info *mci = to_mci(dev); 710 struct i7core_pvt *pvt = mci->pvt_info; 711 return sprintf(data, "0x%08x\n", pvt->inject.section); 712 } 713 714 /* 715 * i7core inject.type 716 * 717 * accept and store error injection inject.section value 718 * bit 0 - repeat enable - Enable error repetition 719 * bit 1 - inject ECC error 720 * bit 2 - inject parity error 721 */ 722 static ssize_t i7core_inject_type_store(struct device *dev, 723 struct device_attribute *mattr, 724 const char *data, size_t count) 725 { 726 struct mem_ctl_info *mci = to_mci(dev); 727 struct i7core_pvt *pvt = mci->pvt_info; 728 unsigned long value; 729 int rc; 730 731 if (pvt->inject.enable) 732 disable_inject(mci); 733 734 rc = kstrtoul(data, 10, &value); 735 if ((rc < 0) || (value > 7)) 736 return -EIO; 737 738 pvt->inject.type = (u32) value; 739 return count; 740 } 741 742 static ssize_t i7core_inject_type_show(struct device *dev, 743 struct device_attribute *mattr, 744 char *data) 745 { 746 struct mem_ctl_info *mci = to_mci(dev); 747 struct i7core_pvt *pvt = mci->pvt_info; 748 749 return sprintf(data, "0x%08x\n", pvt->inject.type); 750 } 751 752 /* 753 * i7core_inject_inject.eccmask_store 754 * 755 * The type of error (UE/CE) will depend on the inject.eccmask value: 756 * Any bits set to a 1 will flip the corresponding ECC bit 757 * Correctable errors can be injected by flipping 1 bit or the bits within 758 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or 759 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an 760 * uncorrectable error to be injected. 761 */ 762 static ssize_t i7core_inject_eccmask_store(struct device *dev, 763 struct device_attribute *mattr, 764 const char *data, size_t count) 765 { 766 struct mem_ctl_info *mci = to_mci(dev); 767 struct i7core_pvt *pvt = mci->pvt_info; 768 unsigned long value; 769 int rc; 770 771 if (pvt->inject.enable) 772 disable_inject(mci); 773 774 rc = kstrtoul(data, 10, &value); 775 if (rc < 0) 776 return -EIO; 777 778 pvt->inject.eccmask = (u32) value; 779 return count; 780 } 781 782 static ssize_t i7core_inject_eccmask_show(struct device *dev, 783 struct device_attribute *mattr, 784 char *data) 785 { 786 struct mem_ctl_info *mci = to_mci(dev); 787 struct i7core_pvt *pvt = mci->pvt_info; 788 789 return sprintf(data, "0x%08x\n", pvt->inject.eccmask); 790 } 791 792 /* 793 * i7core_addrmatch 794 * 795 * The type of error (UE/CE) will depend on the inject.eccmask value: 796 * Any bits set to a 1 will flip the corresponding ECC bit 797 * Correctable errors can be injected by flipping 1 bit or the bits within 798 * a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or 799 * 23:16 and 31:24). Flipping bits in two symbol pairs will cause an 800 * uncorrectable error to be injected. 801 */ 802 803 #define DECLARE_ADDR_MATCH(param, limit) \ 804 static ssize_t i7core_inject_store_##param( \ 805 struct device *dev, \ 806 struct device_attribute *mattr, \ 807 const char *data, size_t count) \ 808 { \ 809 struct mem_ctl_info *mci = dev_get_drvdata(dev); \ 810 struct i7core_pvt *pvt; \ 811 long value; \ 812 int rc; \ 813 \ 814 edac_dbg(1, "\n"); \ 815 pvt = mci->pvt_info; \ 816 \ 817 if (pvt->inject.enable) \ 818 disable_inject(mci); \ 819 \ 820 if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\ 821 value = -1; \ 822 else { \ 823 rc = kstrtoul(data, 10, &value); \ 824 if ((rc < 0) || (value >= limit)) \ 825 return -EIO; \ 826 } \ 827 \ 828 pvt->inject.param = value; \ 829 \ 830 return count; \ 831 } \ 832 \ 833 static ssize_t i7core_inject_show_##param( \ 834 struct device *dev, \ 835 struct device_attribute *mattr, \ 836 char *data) \ 837 { \ 838 struct mem_ctl_info *mci = dev_get_drvdata(dev); \ 839 struct i7core_pvt *pvt; \ 840 \ 841 pvt = mci->pvt_info; \ 842 edac_dbg(1, "pvt=%p\n", pvt); \ 843 if (pvt->inject.param < 0) \ 844 return sprintf(data, "any\n"); \ 845 else \ 846 return sprintf(data, "%d\n", pvt->inject.param);\ 847 } 848 849 #define ATTR_ADDR_MATCH(param) \ 850 static DEVICE_ATTR(param, S_IRUGO | S_IWUSR, \ 851 i7core_inject_show_##param, \ 852 i7core_inject_store_##param) 853 854 DECLARE_ADDR_MATCH(channel, 3); 855 DECLARE_ADDR_MATCH(dimm, 3); 856 DECLARE_ADDR_MATCH(rank, 4); 857 DECLARE_ADDR_MATCH(bank, 32); 858 DECLARE_ADDR_MATCH(page, 0x10000); 859 DECLARE_ADDR_MATCH(col, 0x4000); 860 861 ATTR_ADDR_MATCH(channel); 862 ATTR_ADDR_MATCH(dimm); 863 ATTR_ADDR_MATCH(rank); 864 ATTR_ADDR_MATCH(bank); 865 ATTR_ADDR_MATCH(page); 866 ATTR_ADDR_MATCH(col); 867 868 static int write_and_test(struct pci_dev *dev, const int where, const u32 val) 869 { 870 u32 read; 871 int count; 872 873 edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n", 874 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), 875 where, val); 876 877 for (count = 0; count < 10; count++) { 878 if (count) 879 msleep(100); 880 pci_write_config_dword(dev, where, val); 881 pci_read_config_dword(dev, where, &read); 882 883 if (read == val) 884 return 0; 885 } 886 887 i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x " 888 "write=%08x. Read=%08x\n", 889 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn), 890 where, val, read); 891 892 return -EINVAL; 893 } 894 895 /* 896 * This routine prepares the Memory Controller for error injection. 897 * The error will be injected when some process tries to write to the 898 * memory that matches the given criteria. 899 * The criteria can be set in terms of a mask where dimm, rank, bank, page 900 * and col can be specified. 901 * A -1 value for any of the mask items will make the MCU to ignore 902 * that matching criteria for error injection. 903 * 904 * It should be noticed that the error will only happen after a write operation 905 * on a memory that matches the condition. if REPEAT_EN is not enabled at 906 * inject mask, then it will produce just one error. Otherwise, it will repeat 907 * until the injectmask would be cleaned. 908 * 909 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD 910 * is reliable enough to check if the MC is using the 911 * three channels. However, this is not clear at the datasheet. 912 */ 913 static ssize_t i7core_inject_enable_store(struct device *dev, 914 struct device_attribute *mattr, 915 const char *data, size_t count) 916 { 917 struct mem_ctl_info *mci = to_mci(dev); 918 struct i7core_pvt *pvt = mci->pvt_info; 919 u32 injectmask; 920 u64 mask = 0; 921 int rc; 922 long enable; 923 924 if (!pvt->pci_ch[pvt->inject.channel][0]) 925 return 0; 926 927 rc = kstrtoul(data, 10, &enable); 928 if ((rc < 0)) 929 return 0; 930 931 if (enable) { 932 pvt->inject.enable = 1; 933 } else { 934 disable_inject(mci); 935 return count; 936 } 937 938 /* Sets pvt->inject.dimm mask */ 939 if (pvt->inject.dimm < 0) 940 mask |= 1LL << 41; 941 else { 942 if (pvt->channel[pvt->inject.channel].dimms > 2) 943 mask |= (pvt->inject.dimm & 0x3LL) << 35; 944 else 945 mask |= (pvt->inject.dimm & 0x1LL) << 36; 946 } 947 948 /* Sets pvt->inject.rank mask */ 949 if (pvt->inject.rank < 0) 950 mask |= 1LL << 40; 951 else { 952 if (pvt->channel[pvt->inject.channel].dimms > 2) 953 mask |= (pvt->inject.rank & 0x1LL) << 34; 954 else 955 mask |= (pvt->inject.rank & 0x3LL) << 34; 956 } 957 958 /* Sets pvt->inject.bank mask */ 959 if (pvt->inject.bank < 0) 960 mask |= 1LL << 39; 961 else 962 mask |= (pvt->inject.bank & 0x15LL) << 30; 963 964 /* Sets pvt->inject.page mask */ 965 if (pvt->inject.page < 0) 966 mask |= 1LL << 38; 967 else 968 mask |= (pvt->inject.page & 0xffff) << 14; 969 970 /* Sets pvt->inject.column mask */ 971 if (pvt->inject.col < 0) 972 mask |= 1LL << 37; 973 else 974 mask |= (pvt->inject.col & 0x3fff); 975 976 /* 977 * bit 0: REPEAT_EN 978 * bits 1-2: MASK_HALF_CACHELINE 979 * bit 3: INJECT_ECC 980 * bit 4: INJECT_ADDR_PARITY 981 */ 982 983 injectmask = (pvt->inject.type & 1) | 984 (pvt->inject.section & 0x3) << 1 | 985 (pvt->inject.type & 0x6) << (3 - 1); 986 987 /* Unlock writes to registers - this register is write only */ 988 pci_write_config_dword(pvt->pci_noncore, 989 MC_CFG_CONTROL, 0x2); 990 991 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 992 MC_CHANNEL_ADDR_MATCH, mask); 993 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 994 MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L); 995 996 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 997 MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask); 998 999 write_and_test(pvt->pci_ch[pvt->inject.channel][0], 1000 MC_CHANNEL_ERROR_INJECT, injectmask); 1001 1002 /* 1003 * This is something undocumented, based on my tests 1004 * Without writing 8 to this register, errors aren't injected. Not sure 1005 * why. 1006 */ 1007 pci_write_config_dword(pvt->pci_noncore, 1008 MC_CFG_CONTROL, 8); 1009 1010 edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n", 1011 mask, pvt->inject.eccmask, injectmask); 1012 1013 1014 return count; 1015 } 1016 1017 static ssize_t i7core_inject_enable_show(struct device *dev, 1018 struct device_attribute *mattr, 1019 char *data) 1020 { 1021 struct mem_ctl_info *mci = to_mci(dev); 1022 struct i7core_pvt *pvt = mci->pvt_info; 1023 u32 injectmask; 1024 1025 if (!pvt->pci_ch[pvt->inject.channel][0]) 1026 return 0; 1027 1028 pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0], 1029 MC_CHANNEL_ERROR_INJECT, &injectmask); 1030 1031 edac_dbg(0, "Inject error read: 0x%018x\n", injectmask); 1032 1033 if (injectmask & 0x0c) 1034 pvt->inject.enable = 1; 1035 1036 return sprintf(data, "%d\n", pvt->inject.enable); 1037 } 1038 1039 #define DECLARE_COUNTER(param) \ 1040 static ssize_t i7core_show_counter_##param( \ 1041 struct device *dev, \ 1042 struct device_attribute *mattr, \ 1043 char *data) \ 1044 { \ 1045 struct mem_ctl_info *mci = dev_get_drvdata(dev); \ 1046 struct i7core_pvt *pvt = mci->pvt_info; \ 1047 \ 1048 edac_dbg(1, "\n"); \ 1049 if (!pvt->ce_count_available || (pvt->is_registered)) \ 1050 return sprintf(data, "data unavailable\n"); \ 1051 return sprintf(data, "%lu\n", \ 1052 pvt->udimm_ce_count[param]); \ 1053 } 1054 1055 #define ATTR_COUNTER(param) \ 1056 static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR, \ 1057 i7core_show_counter_##param, \ 1058 NULL) 1059 1060 DECLARE_COUNTER(0); 1061 DECLARE_COUNTER(1); 1062 DECLARE_COUNTER(2); 1063 1064 ATTR_COUNTER(0); 1065 ATTR_COUNTER(1); 1066 ATTR_COUNTER(2); 1067 1068 /* 1069 * inject_addrmatch device sysfs struct 1070 */ 1071 1072 static struct attribute *i7core_addrmatch_attrs[] = { 1073 &dev_attr_channel.attr, 1074 &dev_attr_dimm.attr, 1075 &dev_attr_rank.attr, 1076 &dev_attr_bank.attr, 1077 &dev_attr_page.attr, 1078 &dev_attr_col.attr, 1079 NULL 1080 }; 1081 1082 static const struct attribute_group addrmatch_grp = { 1083 .attrs = i7core_addrmatch_attrs, 1084 }; 1085 1086 static const struct attribute_group *addrmatch_groups[] = { 1087 &addrmatch_grp, 1088 NULL 1089 }; 1090 1091 static void addrmatch_release(struct device *device) 1092 { 1093 edac_dbg(1, "Releasing device %s\n", dev_name(device)); 1094 kfree(device); 1095 } 1096 1097 static struct device_type addrmatch_type = { 1098 .groups = addrmatch_groups, 1099 .release = addrmatch_release, 1100 }; 1101 1102 /* 1103 * all_channel_counts sysfs struct 1104 */ 1105 1106 static struct attribute *i7core_udimm_counters_attrs[] = { 1107 &dev_attr_udimm0.attr, 1108 &dev_attr_udimm1.attr, 1109 &dev_attr_udimm2.attr, 1110 NULL 1111 }; 1112 1113 static const struct attribute_group all_channel_counts_grp = { 1114 .attrs = i7core_udimm_counters_attrs, 1115 }; 1116 1117 static const struct attribute_group *all_channel_counts_groups[] = { 1118 &all_channel_counts_grp, 1119 NULL 1120 }; 1121 1122 static void all_channel_counts_release(struct device *device) 1123 { 1124 edac_dbg(1, "Releasing device %s\n", dev_name(device)); 1125 kfree(device); 1126 } 1127 1128 static struct device_type all_channel_counts_type = { 1129 .groups = all_channel_counts_groups, 1130 .release = all_channel_counts_release, 1131 }; 1132 1133 /* 1134 * inject sysfs attributes 1135 */ 1136 1137 static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR, 1138 i7core_inject_section_show, i7core_inject_section_store); 1139 1140 static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR, 1141 i7core_inject_type_show, i7core_inject_type_store); 1142 1143 1144 static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR, 1145 i7core_inject_eccmask_show, i7core_inject_eccmask_store); 1146 1147 static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR, 1148 i7core_inject_enable_show, i7core_inject_enable_store); 1149 1150 static struct attribute *i7core_dev_attrs[] = { 1151 &dev_attr_inject_section.attr, 1152 &dev_attr_inject_type.attr, 1153 &dev_attr_inject_eccmask.attr, 1154 &dev_attr_inject_enable.attr, 1155 NULL 1156 }; 1157 1158 ATTRIBUTE_GROUPS(i7core_dev); 1159 1160 static int i7core_create_sysfs_devices(struct mem_ctl_info *mci) 1161 { 1162 struct i7core_pvt *pvt = mci->pvt_info; 1163 int rc; 1164 1165 pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL); 1166 if (!pvt->addrmatch_dev) 1167 return -ENOMEM; 1168 1169 pvt->addrmatch_dev->type = &addrmatch_type; 1170 pvt->addrmatch_dev->bus = mci->dev.bus; 1171 device_initialize(pvt->addrmatch_dev); 1172 pvt->addrmatch_dev->parent = &mci->dev; 1173 dev_set_name(pvt->addrmatch_dev, "inject_addrmatch"); 1174 dev_set_drvdata(pvt->addrmatch_dev, mci); 1175 1176 edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev)); 1177 1178 rc = device_add(pvt->addrmatch_dev); 1179 if (rc < 0) 1180 return rc; 1181 1182 if (!pvt->is_registered) { 1183 pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev), 1184 GFP_KERNEL); 1185 if (!pvt->chancounts_dev) { 1186 put_device(pvt->addrmatch_dev); 1187 device_del(pvt->addrmatch_dev); 1188 return -ENOMEM; 1189 } 1190 1191 pvt->chancounts_dev->type = &all_channel_counts_type; 1192 pvt->chancounts_dev->bus = mci->dev.bus; 1193 device_initialize(pvt->chancounts_dev); 1194 pvt->chancounts_dev->parent = &mci->dev; 1195 dev_set_name(pvt->chancounts_dev, "all_channel_counts"); 1196 dev_set_drvdata(pvt->chancounts_dev, mci); 1197 1198 edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev)); 1199 1200 rc = device_add(pvt->chancounts_dev); 1201 if (rc < 0) 1202 return rc; 1203 } 1204 return 0; 1205 } 1206 1207 static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci) 1208 { 1209 struct i7core_pvt *pvt = mci->pvt_info; 1210 1211 edac_dbg(1, "\n"); 1212 1213 if (!pvt->is_registered) { 1214 put_device(pvt->chancounts_dev); 1215 device_del(pvt->chancounts_dev); 1216 } 1217 put_device(pvt->addrmatch_dev); 1218 device_del(pvt->addrmatch_dev); 1219 } 1220 1221 /**************************************************************************** 1222 Device initialization routines: put/get, init/exit 1223 ****************************************************************************/ 1224 1225 /* 1226 * i7core_put_all_devices 'put' all the devices that we have 1227 * reserved via 'get' 1228 */ 1229 static void i7core_put_devices(struct i7core_dev *i7core_dev) 1230 { 1231 int i; 1232 1233 edac_dbg(0, "\n"); 1234 for (i = 0; i < i7core_dev->n_devs; i++) { 1235 struct pci_dev *pdev = i7core_dev->pdev[i]; 1236 if (!pdev) 1237 continue; 1238 edac_dbg(0, "Removing dev %02x:%02x.%d\n", 1239 pdev->bus->number, 1240 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 1241 pci_dev_put(pdev); 1242 } 1243 } 1244 1245 static void i7core_put_all_devices(void) 1246 { 1247 struct i7core_dev *i7core_dev, *tmp; 1248 1249 list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) { 1250 i7core_put_devices(i7core_dev); 1251 free_i7core_dev(i7core_dev); 1252 } 1253 } 1254 1255 static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table) 1256 { 1257 struct pci_dev *pdev = NULL; 1258 int i; 1259 1260 /* 1261 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses 1262 * aren't announced by acpi. So, we need to use a legacy scan probing 1263 * to detect them 1264 */ 1265 while (table && table->descr) { 1266 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL); 1267 if (unlikely(!pdev)) { 1268 for (i = 0; i < MAX_SOCKET_BUSES; i++) 1269 pcibios_scan_specific_bus(255-i); 1270 } 1271 pci_dev_put(pdev); 1272 table++; 1273 } 1274 } 1275 1276 static unsigned i7core_pci_lastbus(void) 1277 { 1278 int last_bus = 0, bus; 1279 struct pci_bus *b = NULL; 1280 1281 while ((b = pci_find_next_bus(b)) != NULL) { 1282 bus = b->number; 1283 edac_dbg(0, "Found bus %d\n", bus); 1284 if (bus > last_bus) 1285 last_bus = bus; 1286 } 1287 1288 edac_dbg(0, "Last bus %d\n", last_bus); 1289 1290 return last_bus; 1291 } 1292 1293 /* 1294 * i7core_get_all_devices Find and perform 'get' operation on the MCH's 1295 * device/functions we want to reference for this driver 1296 * 1297 * Need to 'get' device 16 func 1 and func 2 1298 */ 1299 static int i7core_get_onedevice(struct pci_dev **prev, 1300 const struct pci_id_table *table, 1301 const unsigned devno, 1302 const unsigned last_bus) 1303 { 1304 struct i7core_dev *i7core_dev; 1305 const struct pci_id_descr *dev_descr = &table->descr[devno]; 1306 1307 struct pci_dev *pdev = NULL; 1308 u8 bus = 0; 1309 u8 socket = 0; 1310 1311 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1312 dev_descr->dev_id, *prev); 1313 1314 /* 1315 * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs 1316 * is at addr 8086:2c40, instead of 8086:2c41. So, we need 1317 * to probe for the alternate address in case of failure 1318 */ 1319 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) { 1320 pci_dev_get(*prev); /* pci_get_device will put it */ 1321 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1322 PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev); 1323 } 1324 1325 if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && 1326 !pdev) { 1327 pci_dev_get(*prev); /* pci_get_device will put it */ 1328 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 1329 PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT, 1330 *prev); 1331 } 1332 1333 if (!pdev) { 1334 if (*prev) { 1335 *prev = pdev; 1336 return 0; 1337 } 1338 1339 if (dev_descr->optional) 1340 return 0; 1341 1342 if (devno == 0) 1343 return -ENODEV; 1344 1345 i7core_printk(KERN_INFO, 1346 "Device not found: dev %02x.%d PCI ID %04x:%04x\n", 1347 dev_descr->dev, dev_descr->func, 1348 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1349 1350 /* End of list, leave */ 1351 return -ENODEV; 1352 } 1353 bus = pdev->bus->number; 1354 1355 socket = last_bus - bus; 1356 1357 i7core_dev = get_i7core_dev(socket); 1358 if (!i7core_dev) { 1359 i7core_dev = alloc_i7core_dev(socket, table); 1360 if (!i7core_dev) { 1361 pci_dev_put(pdev); 1362 return -ENOMEM; 1363 } 1364 } 1365 1366 if (i7core_dev->pdev[devno]) { 1367 i7core_printk(KERN_ERR, 1368 "Duplicated device for " 1369 "dev %02x:%02x.%d PCI ID %04x:%04x\n", 1370 bus, dev_descr->dev, dev_descr->func, 1371 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1372 pci_dev_put(pdev); 1373 return -ENODEV; 1374 } 1375 1376 i7core_dev->pdev[devno] = pdev; 1377 1378 /* Sanity check */ 1379 if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || 1380 PCI_FUNC(pdev->devfn) != dev_descr->func)) { 1381 i7core_printk(KERN_ERR, 1382 "Device PCI ID %04x:%04x " 1383 "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n", 1384 PCI_VENDOR_ID_INTEL, dev_descr->dev_id, 1385 bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 1386 bus, dev_descr->dev, dev_descr->func); 1387 return -ENODEV; 1388 } 1389 1390 /* Be sure that the device is enabled */ 1391 if (unlikely(pci_enable_device(pdev) < 0)) { 1392 i7core_printk(KERN_ERR, 1393 "Couldn't enable " 1394 "dev %02x:%02x.%d PCI ID %04x:%04x\n", 1395 bus, dev_descr->dev, dev_descr->func, 1396 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1397 return -ENODEV; 1398 } 1399 1400 edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n", 1401 socket, bus, dev_descr->dev, 1402 dev_descr->func, 1403 PCI_VENDOR_ID_INTEL, dev_descr->dev_id); 1404 1405 /* 1406 * As stated on drivers/pci/search.c, the reference count for 1407 * @from is always decremented if it is not %NULL. So, as we need 1408 * to get all devices up to null, we need to do a get for the device 1409 */ 1410 pci_dev_get(pdev); 1411 1412 *prev = pdev; 1413 1414 return 0; 1415 } 1416 1417 static int i7core_get_all_devices(void) 1418 { 1419 int i, rc, last_bus; 1420 struct pci_dev *pdev = NULL; 1421 const struct pci_id_table *table = pci_dev_table; 1422 1423 last_bus = i7core_pci_lastbus(); 1424 1425 while (table && table->descr) { 1426 for (i = 0; i < table->n_devs; i++) { 1427 pdev = NULL; 1428 do { 1429 rc = i7core_get_onedevice(&pdev, table, i, 1430 last_bus); 1431 if (rc < 0) { 1432 if (i == 0) { 1433 i = table->n_devs; 1434 break; 1435 } 1436 i7core_put_all_devices(); 1437 return -ENODEV; 1438 } 1439 } while (pdev); 1440 } 1441 table++; 1442 } 1443 1444 return 0; 1445 } 1446 1447 static int mci_bind_devs(struct mem_ctl_info *mci, 1448 struct i7core_dev *i7core_dev) 1449 { 1450 struct i7core_pvt *pvt = mci->pvt_info; 1451 struct pci_dev *pdev; 1452 int i, func, slot; 1453 char *family; 1454 1455 pvt->is_registered = false; 1456 pvt->enable_scrub = false; 1457 for (i = 0; i < i7core_dev->n_devs; i++) { 1458 pdev = i7core_dev->pdev[i]; 1459 if (!pdev) 1460 continue; 1461 1462 func = PCI_FUNC(pdev->devfn); 1463 slot = PCI_SLOT(pdev->devfn); 1464 if (slot == 3) { 1465 if (unlikely(func > MAX_MCR_FUNC)) 1466 goto error; 1467 pvt->pci_mcr[func] = pdev; 1468 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) { 1469 if (unlikely(func > MAX_CHAN_FUNC)) 1470 goto error; 1471 pvt->pci_ch[slot - 4][func] = pdev; 1472 } else if (!slot && !func) { 1473 pvt->pci_noncore = pdev; 1474 1475 /* Detect the processor family */ 1476 switch (pdev->device) { 1477 case PCI_DEVICE_ID_INTEL_I7_NONCORE: 1478 family = "Xeon 35xx/ i7core"; 1479 pvt->enable_scrub = false; 1480 break; 1481 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT: 1482 family = "i7-800/i5-700"; 1483 pvt->enable_scrub = false; 1484 break; 1485 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE: 1486 family = "Xeon 34xx"; 1487 pvt->enable_scrub = false; 1488 break; 1489 case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT: 1490 family = "Xeon 55xx"; 1491 pvt->enable_scrub = true; 1492 break; 1493 case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2: 1494 family = "Xeon 56xx / i7-900"; 1495 pvt->enable_scrub = true; 1496 break; 1497 default: 1498 family = "unknown"; 1499 pvt->enable_scrub = false; 1500 } 1501 edac_dbg(0, "Detected a processor type %s\n", family); 1502 } else 1503 goto error; 1504 1505 edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n", 1506 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 1507 pdev, i7core_dev->socket); 1508 1509 if (PCI_SLOT(pdev->devfn) == 3 && 1510 PCI_FUNC(pdev->devfn) == 2) 1511 pvt->is_registered = true; 1512 } 1513 1514 return 0; 1515 1516 error: 1517 i7core_printk(KERN_ERR, "Device %d, function %d " 1518 "is out of the expected range\n", 1519 slot, func); 1520 return -EINVAL; 1521 } 1522 1523 /**************************************************************************** 1524 Error check routines 1525 ****************************************************************************/ 1526 1527 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci, 1528 const int chan, 1529 const int new0, 1530 const int new1, 1531 const int new2) 1532 { 1533 struct i7core_pvt *pvt = mci->pvt_info; 1534 int add0 = 0, add1 = 0, add2 = 0; 1535 /* Updates CE counters if it is not the first time here */ 1536 if (pvt->ce_count_available) { 1537 /* Updates CE counters */ 1538 1539 add2 = new2 - pvt->rdimm_last_ce_count[chan][2]; 1540 add1 = new1 - pvt->rdimm_last_ce_count[chan][1]; 1541 add0 = new0 - pvt->rdimm_last_ce_count[chan][0]; 1542 1543 if (add2 < 0) 1544 add2 += 0x7fff; 1545 pvt->rdimm_ce_count[chan][2] += add2; 1546 1547 if (add1 < 0) 1548 add1 += 0x7fff; 1549 pvt->rdimm_ce_count[chan][1] += add1; 1550 1551 if (add0 < 0) 1552 add0 += 0x7fff; 1553 pvt->rdimm_ce_count[chan][0] += add0; 1554 } else 1555 pvt->ce_count_available = 1; 1556 1557 /* Store the new values */ 1558 pvt->rdimm_last_ce_count[chan][2] = new2; 1559 pvt->rdimm_last_ce_count[chan][1] = new1; 1560 pvt->rdimm_last_ce_count[chan][0] = new0; 1561 1562 /*updated the edac core */ 1563 if (add0 != 0) 1564 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0, 1565 0, 0, 0, 1566 chan, 0, -1, "error", ""); 1567 if (add1 != 0) 1568 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1, 1569 0, 0, 0, 1570 chan, 1, -1, "error", ""); 1571 if (add2 != 0) 1572 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2, 1573 0, 0, 0, 1574 chan, 2, -1, "error", ""); 1575 } 1576 1577 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci) 1578 { 1579 struct i7core_pvt *pvt = mci->pvt_info; 1580 u32 rcv[3][2]; 1581 int i, new0, new1, new2; 1582 1583 /*Read DEV 3: FUN 2: MC_COR_ECC_CNT regs directly*/ 1584 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0, 1585 &rcv[0][0]); 1586 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1, 1587 &rcv[0][1]); 1588 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2, 1589 &rcv[1][0]); 1590 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3, 1591 &rcv[1][1]); 1592 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4, 1593 &rcv[2][0]); 1594 pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5, 1595 &rcv[2][1]); 1596 for (i = 0 ; i < 3; i++) { 1597 edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n", 1598 (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]); 1599 /*if the channel has 3 dimms*/ 1600 if (pvt->channel[i].dimms > 2) { 1601 new0 = DIMM_BOT_COR_ERR(rcv[i][0]); 1602 new1 = DIMM_TOP_COR_ERR(rcv[i][0]); 1603 new2 = DIMM_BOT_COR_ERR(rcv[i][1]); 1604 } else { 1605 new0 = DIMM_TOP_COR_ERR(rcv[i][0]) + 1606 DIMM_BOT_COR_ERR(rcv[i][0]); 1607 new1 = DIMM_TOP_COR_ERR(rcv[i][1]) + 1608 DIMM_BOT_COR_ERR(rcv[i][1]); 1609 new2 = 0; 1610 } 1611 1612 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2); 1613 } 1614 } 1615 1616 /* This function is based on the device 3 function 4 registers as described on: 1617 * Intel Xeon Processor 5500 Series Datasheet Volume 2 1618 * http://www.intel.com/Assets/PDF/datasheet/321322.pdf 1619 * also available at: 1620 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf 1621 */ 1622 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci) 1623 { 1624 struct i7core_pvt *pvt = mci->pvt_info; 1625 u32 rcv1, rcv0; 1626 int new0, new1, new2; 1627 1628 if (!pvt->pci_mcr[4]) { 1629 edac_dbg(0, "MCR registers not found\n"); 1630 return; 1631 } 1632 1633 /* Corrected test errors */ 1634 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1); 1635 pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0); 1636 1637 /* Store the new values */ 1638 new2 = DIMM2_COR_ERR(rcv1); 1639 new1 = DIMM1_COR_ERR(rcv0); 1640 new0 = DIMM0_COR_ERR(rcv0); 1641 1642 /* Updates CE counters if it is not the first time here */ 1643 if (pvt->ce_count_available) { 1644 /* Updates CE counters */ 1645 int add0, add1, add2; 1646 1647 add2 = new2 - pvt->udimm_last_ce_count[2]; 1648 add1 = new1 - pvt->udimm_last_ce_count[1]; 1649 add0 = new0 - pvt->udimm_last_ce_count[0]; 1650 1651 if (add2 < 0) 1652 add2 += 0x7fff; 1653 pvt->udimm_ce_count[2] += add2; 1654 1655 if (add1 < 0) 1656 add1 += 0x7fff; 1657 pvt->udimm_ce_count[1] += add1; 1658 1659 if (add0 < 0) 1660 add0 += 0x7fff; 1661 pvt->udimm_ce_count[0] += add0; 1662 1663 if (add0 | add1 | add2) 1664 i7core_printk(KERN_ERR, "New Corrected error(s): " 1665 "dimm0: +%d, dimm1: +%d, dimm2 +%d\n", 1666 add0, add1, add2); 1667 } else 1668 pvt->ce_count_available = 1; 1669 1670 /* Store the new values */ 1671 pvt->udimm_last_ce_count[2] = new2; 1672 pvt->udimm_last_ce_count[1] = new1; 1673 pvt->udimm_last_ce_count[0] = new0; 1674 } 1675 1676 /* 1677 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32 1678 * Architectures Software Developer’s Manual Volume 3B. 1679 * Nehalem are defined as family 0x06, model 0x1a 1680 * 1681 * The MCA registers used here are the following ones: 1682 * struct mce field MCA Register 1683 * m->status MSR_IA32_MC8_STATUS 1684 * m->addr MSR_IA32_MC8_ADDR 1685 * m->misc MSR_IA32_MC8_MISC 1686 * In the case of Nehalem, the error information is masked at .status and .misc 1687 * fields 1688 */ 1689 static void i7core_mce_output_error(struct mem_ctl_info *mci, 1690 const struct mce *m) 1691 { 1692 struct i7core_pvt *pvt = mci->pvt_info; 1693 char *optype, *err; 1694 enum hw_event_mc_err_type tp_event; 1695 unsigned long error = m->status & 0x1ff0000l; 1696 bool uncorrected_error = m->mcgstatus & 1ll << 61; 1697 bool ripv = m->mcgstatus & 1; 1698 u32 optypenum = (m->status >> 4) & 0x07; 1699 u32 core_err_cnt = (m->status >> 38) & 0x7fff; 1700 u32 dimm = (m->misc >> 16) & 0x3; 1701 u32 channel = (m->misc >> 18) & 0x3; 1702 u32 syndrome = m->misc >> 32; 1703 u32 errnum = find_first_bit(&error, 32); 1704 1705 if (uncorrected_error) { 1706 if (ripv) 1707 tp_event = HW_EVENT_ERR_FATAL; 1708 else 1709 tp_event = HW_EVENT_ERR_UNCORRECTED; 1710 } else { 1711 tp_event = HW_EVENT_ERR_CORRECTED; 1712 } 1713 1714 switch (optypenum) { 1715 case 0: 1716 optype = "generic undef request"; 1717 break; 1718 case 1: 1719 optype = "read error"; 1720 break; 1721 case 2: 1722 optype = "write error"; 1723 break; 1724 case 3: 1725 optype = "addr/cmd error"; 1726 break; 1727 case 4: 1728 optype = "scrubbing error"; 1729 break; 1730 default: 1731 optype = "reserved"; 1732 break; 1733 } 1734 1735 switch (errnum) { 1736 case 16: 1737 err = "read ECC error"; 1738 break; 1739 case 17: 1740 err = "RAS ECC error"; 1741 break; 1742 case 18: 1743 err = "write parity error"; 1744 break; 1745 case 19: 1746 err = "redundacy loss"; 1747 break; 1748 case 20: 1749 err = "reserved"; 1750 break; 1751 case 21: 1752 err = "memory range error"; 1753 break; 1754 case 22: 1755 err = "RTID out of range"; 1756 break; 1757 case 23: 1758 err = "address parity error"; 1759 break; 1760 case 24: 1761 err = "byte enable parity error"; 1762 break; 1763 default: 1764 err = "unknown"; 1765 } 1766 1767 /* 1768 * Call the helper to output message 1769 * FIXME: what to do if core_err_cnt > 1? Currently, it generates 1770 * only one event 1771 */ 1772 if (uncorrected_error || !pvt->is_registered) 1773 edac_mc_handle_error(tp_event, mci, core_err_cnt, 1774 m->addr >> PAGE_SHIFT, 1775 m->addr & ~PAGE_MASK, 1776 syndrome, 1777 channel, dimm, -1, 1778 err, optype); 1779 } 1780 1781 /* 1782 * i7core_check_error Retrieve and process errors reported by the 1783 * hardware. Called by the Core module. 1784 */ 1785 static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m) 1786 { 1787 struct i7core_pvt *pvt = mci->pvt_info; 1788 1789 i7core_mce_output_error(mci, m); 1790 1791 /* 1792 * Now, let's increment CE error counts 1793 */ 1794 if (!pvt->is_registered) 1795 i7core_udimm_check_mc_ecc_err(mci); 1796 else 1797 i7core_rdimm_check_mc_ecc_err(mci); 1798 } 1799 1800 /* 1801 * Check that logging is enabled and that this is the right type 1802 * of error for us to handle. 1803 */ 1804 static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val, 1805 void *data) 1806 { 1807 struct mce *mce = (struct mce *)data; 1808 struct i7core_dev *i7_dev; 1809 struct mem_ctl_info *mci; 1810 struct i7core_pvt *pvt; 1811 1812 i7_dev = get_i7core_dev(mce->socketid); 1813 if (!i7_dev) 1814 return NOTIFY_DONE; 1815 1816 mci = i7_dev->mci; 1817 pvt = mci->pvt_info; 1818 1819 /* 1820 * Just let mcelog handle it if the error is 1821 * outside the memory controller 1822 */ 1823 if (((mce->status & 0xffff) >> 7) != 1) 1824 return NOTIFY_DONE; 1825 1826 /* Bank 8 registers are the only ones that we know how to handle */ 1827 if (mce->bank != 8) 1828 return NOTIFY_DONE; 1829 1830 i7core_check_error(mci, mce); 1831 1832 /* Advise mcelog that the errors were handled */ 1833 return NOTIFY_STOP; 1834 } 1835 1836 static struct notifier_block i7_mce_dec = { 1837 .notifier_call = i7core_mce_check_error, 1838 .priority = MCE_PRIO_EDAC, 1839 }; 1840 1841 struct memdev_dmi_entry { 1842 u8 type; 1843 u8 length; 1844 u16 handle; 1845 u16 phys_mem_array_handle; 1846 u16 mem_err_info_handle; 1847 u16 total_width; 1848 u16 data_width; 1849 u16 size; 1850 u8 form; 1851 u8 device_set; 1852 u8 device_locator; 1853 u8 bank_locator; 1854 u8 memory_type; 1855 u16 type_detail; 1856 u16 speed; 1857 u8 manufacturer; 1858 u8 serial_number; 1859 u8 asset_tag; 1860 u8 part_number; 1861 u8 attributes; 1862 u32 extended_size; 1863 u16 conf_mem_clk_speed; 1864 } __attribute__((__packed__)); 1865 1866 1867 /* 1868 * Decode the DRAM Clock Frequency, be paranoid, make sure that all 1869 * memory devices show the same speed, and if they don't then consider 1870 * all speeds to be invalid. 1871 */ 1872 static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq) 1873 { 1874 int *dclk_freq = _dclk_freq; 1875 u16 dmi_mem_clk_speed; 1876 1877 if (*dclk_freq == -1) 1878 return; 1879 1880 if (dh->type == DMI_ENTRY_MEM_DEVICE) { 1881 struct memdev_dmi_entry *memdev_dmi_entry = 1882 (struct memdev_dmi_entry *)dh; 1883 unsigned long conf_mem_clk_speed_offset = 1884 (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed - 1885 (unsigned long)&memdev_dmi_entry->type; 1886 unsigned long speed_offset = 1887 (unsigned long)&memdev_dmi_entry->speed - 1888 (unsigned long)&memdev_dmi_entry->type; 1889 1890 /* Check that a DIMM is present */ 1891 if (memdev_dmi_entry->size == 0) 1892 return; 1893 1894 /* 1895 * Pick the configured speed if it's available, otherwise 1896 * pick the DIMM speed, or we don't have a speed. 1897 */ 1898 if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) { 1899 dmi_mem_clk_speed = 1900 memdev_dmi_entry->conf_mem_clk_speed; 1901 } else if (memdev_dmi_entry->length > speed_offset) { 1902 dmi_mem_clk_speed = memdev_dmi_entry->speed; 1903 } else { 1904 *dclk_freq = -1; 1905 return; 1906 } 1907 1908 if (*dclk_freq == 0) { 1909 /* First pass, speed was 0 */ 1910 if (dmi_mem_clk_speed > 0) { 1911 /* Set speed if a valid speed is read */ 1912 *dclk_freq = dmi_mem_clk_speed; 1913 } else { 1914 /* Otherwise we don't have a valid speed */ 1915 *dclk_freq = -1; 1916 } 1917 } else if (*dclk_freq > 0 && 1918 *dclk_freq != dmi_mem_clk_speed) { 1919 /* 1920 * If we have a speed, check that all DIMMS are the same 1921 * speed, otherwise set the speed as invalid. 1922 */ 1923 *dclk_freq = -1; 1924 } 1925 } 1926 } 1927 1928 /* 1929 * The default DCLK frequency is used as a fallback if we 1930 * fail to find anything reliable in the DMI. The value 1931 * is taken straight from the datasheet. 1932 */ 1933 #define DEFAULT_DCLK_FREQ 800 1934 1935 static int get_dclk_freq(void) 1936 { 1937 int dclk_freq = 0; 1938 1939 dmi_walk(decode_dclk, (void *)&dclk_freq); 1940 1941 if (dclk_freq < 1) 1942 return DEFAULT_DCLK_FREQ; 1943 1944 return dclk_freq; 1945 } 1946 1947 /* 1948 * set_sdram_scrub_rate This routine sets byte/sec bandwidth scrub rate 1949 * to hardware according to SCRUBINTERVAL formula 1950 * found in datasheet. 1951 */ 1952 static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw) 1953 { 1954 struct i7core_pvt *pvt = mci->pvt_info; 1955 struct pci_dev *pdev; 1956 u32 dw_scrub; 1957 u32 dw_ssr; 1958 1959 /* Get data from the MC register, function 2 */ 1960 pdev = pvt->pci_mcr[2]; 1961 if (!pdev) 1962 return -ENODEV; 1963 1964 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub); 1965 1966 if (new_bw == 0) { 1967 /* Prepare to disable petrol scrub */ 1968 dw_scrub &= ~STARTSCRUB; 1969 /* Stop the patrol scrub engine */ 1970 write_and_test(pdev, MC_SCRUB_CONTROL, 1971 dw_scrub & ~SCRUBINTERVAL_MASK); 1972 1973 /* Get current status of scrub rate and set bit to disable */ 1974 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); 1975 dw_ssr &= ~SSR_MODE_MASK; 1976 dw_ssr |= SSR_MODE_DISABLE; 1977 } else { 1978 const int cache_line_size = 64; 1979 const u32 freq_dclk_mhz = pvt->dclk_freq; 1980 unsigned long long scrub_interval; 1981 /* 1982 * Translate the desired scrub rate to a register value and 1983 * program the corresponding register value. 1984 */ 1985 scrub_interval = (unsigned long long)freq_dclk_mhz * 1986 cache_line_size * 1000000; 1987 do_div(scrub_interval, new_bw); 1988 1989 if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK) 1990 return -EINVAL; 1991 1992 dw_scrub = SCRUBINTERVAL_MASK & scrub_interval; 1993 1994 /* Start the patrol scrub engine */ 1995 pci_write_config_dword(pdev, MC_SCRUB_CONTROL, 1996 STARTSCRUB | dw_scrub); 1997 1998 /* Get current status of scrub rate and set bit to enable */ 1999 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr); 2000 dw_ssr &= ~SSR_MODE_MASK; 2001 dw_ssr |= SSR_MODE_ENABLE; 2002 } 2003 /* Disable or enable scrubbing */ 2004 pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr); 2005 2006 return new_bw; 2007 } 2008 2009 /* 2010 * get_sdram_scrub_rate This routine convert current scrub rate value 2011 * into byte/sec bandwidth according to 2012 * SCRUBINTERVAL formula found in datasheet. 2013 */ 2014 static int get_sdram_scrub_rate(struct mem_ctl_info *mci) 2015 { 2016 struct i7core_pvt *pvt = mci->pvt_info; 2017 struct pci_dev *pdev; 2018 const u32 cache_line_size = 64; 2019 const u32 freq_dclk_mhz = pvt->dclk_freq; 2020 unsigned long long scrub_rate; 2021 u32 scrubval; 2022 2023 /* Get data from the MC register, function 2 */ 2024 pdev = pvt->pci_mcr[2]; 2025 if (!pdev) 2026 return -ENODEV; 2027 2028 /* Get current scrub control data */ 2029 pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval); 2030 2031 /* Mask highest 8-bits to 0 */ 2032 scrubval &= SCRUBINTERVAL_MASK; 2033 if (!scrubval) 2034 return 0; 2035 2036 /* Calculate scrub rate value into byte/sec bandwidth */ 2037 scrub_rate = (unsigned long long)freq_dclk_mhz * 2038 1000000 * cache_line_size; 2039 do_div(scrub_rate, scrubval); 2040 return (int)scrub_rate; 2041 } 2042 2043 static void enable_sdram_scrub_setting(struct mem_ctl_info *mci) 2044 { 2045 struct i7core_pvt *pvt = mci->pvt_info; 2046 u32 pci_lock; 2047 2048 /* Unlock writes to pci registers */ 2049 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); 2050 pci_lock &= ~0x3; 2051 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, 2052 pci_lock | MC_CFG_UNLOCK); 2053 2054 mci->set_sdram_scrub_rate = set_sdram_scrub_rate; 2055 mci->get_sdram_scrub_rate = get_sdram_scrub_rate; 2056 } 2057 2058 static void disable_sdram_scrub_setting(struct mem_ctl_info *mci) 2059 { 2060 struct i7core_pvt *pvt = mci->pvt_info; 2061 u32 pci_lock; 2062 2063 /* Lock writes to pci registers */ 2064 pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock); 2065 pci_lock &= ~0x3; 2066 pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, 2067 pci_lock | MC_CFG_LOCK); 2068 } 2069 2070 static void i7core_pci_ctl_create(struct i7core_pvt *pvt) 2071 { 2072 pvt->i7core_pci = edac_pci_create_generic_ctl( 2073 &pvt->i7core_dev->pdev[0]->dev, 2074 EDAC_MOD_STR); 2075 if (unlikely(!pvt->i7core_pci)) 2076 i7core_printk(KERN_WARNING, 2077 "Unable to setup PCI error report via EDAC\n"); 2078 } 2079 2080 static void i7core_pci_ctl_release(struct i7core_pvt *pvt) 2081 { 2082 if (likely(pvt->i7core_pci)) 2083 edac_pci_release_generic_ctl(pvt->i7core_pci); 2084 else 2085 i7core_printk(KERN_ERR, 2086 "Couldn't find mem_ctl_info for socket %d\n", 2087 pvt->i7core_dev->socket); 2088 pvt->i7core_pci = NULL; 2089 } 2090 2091 static void i7core_unregister_mci(struct i7core_dev *i7core_dev) 2092 { 2093 struct mem_ctl_info *mci = i7core_dev->mci; 2094 struct i7core_pvt *pvt; 2095 2096 if (unlikely(!mci || !mci->pvt_info)) { 2097 edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev); 2098 2099 i7core_printk(KERN_ERR, "Couldn't find mci handler\n"); 2100 return; 2101 } 2102 2103 pvt = mci->pvt_info; 2104 2105 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); 2106 2107 /* Disable scrubrate setting */ 2108 if (pvt->enable_scrub) 2109 disable_sdram_scrub_setting(mci); 2110 2111 /* Disable EDAC polling */ 2112 i7core_pci_ctl_release(pvt); 2113 2114 /* Remove MC sysfs nodes */ 2115 i7core_delete_sysfs_devices(mci); 2116 edac_mc_del_mc(mci->pdev); 2117 2118 edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); 2119 kfree(mci->ctl_name); 2120 edac_mc_free(mci); 2121 i7core_dev->mci = NULL; 2122 } 2123 2124 static int i7core_register_mci(struct i7core_dev *i7core_dev) 2125 { 2126 struct mem_ctl_info *mci; 2127 struct i7core_pvt *pvt; 2128 int rc; 2129 struct edac_mc_layer layers[2]; 2130 2131 /* allocate a new MC control structure */ 2132 2133 layers[0].type = EDAC_MC_LAYER_CHANNEL; 2134 layers[0].size = NUM_CHANS; 2135 layers[0].is_virt_csrow = false; 2136 layers[1].type = EDAC_MC_LAYER_SLOT; 2137 layers[1].size = MAX_DIMMS; 2138 layers[1].is_virt_csrow = true; 2139 mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers, 2140 sizeof(*pvt)); 2141 if (unlikely(!mci)) 2142 return -ENOMEM; 2143 2144 edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev); 2145 2146 pvt = mci->pvt_info; 2147 memset(pvt, 0, sizeof(*pvt)); 2148 2149 /* Associates i7core_dev and mci for future usage */ 2150 pvt->i7core_dev = i7core_dev; 2151 i7core_dev->mci = mci; 2152 2153 /* 2154 * FIXME: how to handle RDDR3 at MCI level? It is possible to have 2155 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different 2156 * memory channels 2157 */ 2158 mci->mtype_cap = MEM_FLAG_DDR3; 2159 mci->edac_ctl_cap = EDAC_FLAG_NONE; 2160 mci->edac_cap = EDAC_FLAG_NONE; 2161 mci->mod_name = "i7core_edac.c"; 2162 mci->mod_ver = I7CORE_REVISION; 2163 mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", 2164 i7core_dev->socket); 2165 mci->dev_name = pci_name(i7core_dev->pdev[0]); 2166 mci->ctl_page_to_phys = NULL; 2167 2168 /* Store pci devices at mci for faster access */ 2169 rc = mci_bind_devs(mci, i7core_dev); 2170 if (unlikely(rc < 0)) 2171 goto fail0; 2172 2173 2174 /* Get dimm basic config */ 2175 get_dimm_config(mci); 2176 /* record ptr to the generic device */ 2177 mci->pdev = &i7core_dev->pdev[0]->dev; 2178 2179 /* Enable scrubrate setting */ 2180 if (pvt->enable_scrub) 2181 enable_sdram_scrub_setting(mci); 2182 2183 /* add this new MC control structure to EDAC's list of MCs */ 2184 if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) { 2185 edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); 2186 /* FIXME: perhaps some code should go here that disables error 2187 * reporting if we just enabled it 2188 */ 2189 2190 rc = -EINVAL; 2191 goto fail0; 2192 } 2193 if (i7core_create_sysfs_devices(mci)) { 2194 edac_dbg(0, "MC: failed to create sysfs nodes\n"); 2195 edac_mc_del_mc(mci->pdev); 2196 rc = -EINVAL; 2197 goto fail0; 2198 } 2199 2200 /* Default error mask is any memory */ 2201 pvt->inject.channel = 0; 2202 pvt->inject.dimm = -1; 2203 pvt->inject.rank = -1; 2204 pvt->inject.bank = -1; 2205 pvt->inject.page = -1; 2206 pvt->inject.col = -1; 2207 2208 /* allocating generic PCI control info */ 2209 i7core_pci_ctl_create(pvt); 2210 2211 /* DCLK for scrub rate setting */ 2212 pvt->dclk_freq = get_dclk_freq(); 2213 2214 return 0; 2215 2216 fail0: 2217 kfree(mci->ctl_name); 2218 edac_mc_free(mci); 2219 i7core_dev->mci = NULL; 2220 return rc; 2221 } 2222 2223 /* 2224 * i7core_probe Probe for ONE instance of device to see if it is 2225 * present. 2226 * return: 2227 * 0 for FOUND a device 2228 * < 0 for error code 2229 */ 2230 2231 static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2232 { 2233 int rc, count = 0; 2234 struct i7core_dev *i7core_dev; 2235 2236 /* get the pci devices we want to reserve for our use */ 2237 mutex_lock(&i7core_edac_lock); 2238 2239 /* 2240 * All memory controllers are allocated at the first pass. 2241 */ 2242 if (unlikely(probed >= 1)) { 2243 mutex_unlock(&i7core_edac_lock); 2244 return -ENODEV; 2245 } 2246 probed++; 2247 2248 rc = i7core_get_all_devices(); 2249 if (unlikely(rc < 0)) 2250 goto fail0; 2251 2252 list_for_each_entry(i7core_dev, &i7core_edac_list, list) { 2253 count++; 2254 rc = i7core_register_mci(i7core_dev); 2255 if (unlikely(rc < 0)) 2256 goto fail1; 2257 } 2258 2259 /* 2260 * Nehalem-EX uses a different memory controller. However, as the 2261 * memory controller is not visible on some Nehalem/Nehalem-EP, we 2262 * need to indirectly probe via a X58 PCI device. The same devices 2263 * are found on (some) Nehalem-EX. So, on those machines, the 2264 * probe routine needs to return -ENODEV, as the actual Memory 2265 * Controller registers won't be detected. 2266 */ 2267 if (!count) { 2268 rc = -ENODEV; 2269 goto fail1; 2270 } 2271 2272 i7core_printk(KERN_INFO, 2273 "Driver loaded, %d memory controller(s) found.\n", 2274 count); 2275 2276 mutex_unlock(&i7core_edac_lock); 2277 return 0; 2278 2279 fail1: 2280 list_for_each_entry(i7core_dev, &i7core_edac_list, list) 2281 i7core_unregister_mci(i7core_dev); 2282 2283 i7core_put_all_devices(); 2284 fail0: 2285 mutex_unlock(&i7core_edac_lock); 2286 return rc; 2287 } 2288 2289 /* 2290 * i7core_remove destructor for one instance of device 2291 * 2292 */ 2293 static void i7core_remove(struct pci_dev *pdev) 2294 { 2295 struct i7core_dev *i7core_dev; 2296 2297 edac_dbg(0, "\n"); 2298 2299 /* 2300 * we have a trouble here: pdev value for removal will be wrong, since 2301 * it will point to the X58 register used to detect that the machine 2302 * is a Nehalem or upper design. However, due to the way several PCI 2303 * devices are grouped together to provide MC functionality, we need 2304 * to use a different method for releasing the devices 2305 */ 2306 2307 mutex_lock(&i7core_edac_lock); 2308 2309 if (unlikely(!probed)) { 2310 mutex_unlock(&i7core_edac_lock); 2311 return; 2312 } 2313 2314 list_for_each_entry(i7core_dev, &i7core_edac_list, list) 2315 i7core_unregister_mci(i7core_dev); 2316 2317 /* Release PCI resources */ 2318 i7core_put_all_devices(); 2319 2320 probed--; 2321 2322 mutex_unlock(&i7core_edac_lock); 2323 } 2324 2325 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl); 2326 2327 /* 2328 * i7core_driver pci_driver structure for this module 2329 * 2330 */ 2331 static struct pci_driver i7core_driver = { 2332 .name = "i7core_edac", 2333 .probe = i7core_probe, 2334 .remove = i7core_remove, 2335 .id_table = i7core_pci_tbl, 2336 }; 2337 2338 /* 2339 * i7core_init Module entry function 2340 * Try to initialize this module for its devices 2341 */ 2342 static int __init i7core_init(void) 2343 { 2344 int pci_rc; 2345 2346 edac_dbg(2, "\n"); 2347 2348 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 2349 opstate_init(); 2350 2351 if (use_pci_fixup) 2352 i7core_xeon_pci_fixup(pci_dev_table); 2353 2354 pci_rc = pci_register_driver(&i7core_driver); 2355 2356 if (pci_rc >= 0) { 2357 mce_register_decode_chain(&i7_mce_dec); 2358 return 0; 2359 } 2360 2361 i7core_printk(KERN_ERR, "Failed to register device with error %d.\n", 2362 pci_rc); 2363 2364 return pci_rc; 2365 } 2366 2367 /* 2368 * i7core_exit() Module exit function 2369 * Unregister the driver 2370 */ 2371 static void __exit i7core_exit(void) 2372 { 2373 edac_dbg(2, "\n"); 2374 pci_unregister_driver(&i7core_driver); 2375 mce_unregister_decode_chain(&i7_mce_dec); 2376 } 2377 2378 module_init(i7core_init); 2379 module_exit(i7core_exit); 2380 2381 MODULE_LICENSE("GPL"); 2382 MODULE_AUTHOR("Mauro Carvalho Chehab"); 2383 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); 2384 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - " 2385 I7CORE_REVISION); 2386 2387 module_param(edac_op_state, int, 0444); 2388 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 2389