xref: /openbmc/linux/drivers/edac/i7300_edac.c (revision 8ee90c5c)
1 /*
2  * Intel 7300 class Memory Controllers kernel module (Clarksboro)
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License version 2 only.
6  *
7  * Copyright (c) 2010 by:
8  *	 Mauro Carvalho Chehab
9  *
10  * Red Hat Inc. http://www.redhat.com
11  *
12  * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
13  *	http://www.intel.com/Assets/PDF/datasheet/318082.pdf
14  *
15  * TODO: The chipset allow checking for PCI Express errors also. Currently,
16  *	 the driver covers only memory error errors
17  *
18  * This driver uses "csrows" EDAC attribute to represent DIMM slot#
19  */
20 
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/pci.h>
24 #include <linux/pci_ids.h>
25 #include <linux/slab.h>
26 #include <linux/edac.h>
27 #include <linux/mmzone.h>
28 
29 #include "edac_module.h"
30 
31 /*
32  * Alter this version for the I7300 module when modifications are made
33  */
34 #define I7300_REVISION    " Ver: 1.0.0"
35 
36 #define EDAC_MOD_STR      "i7300_edac"
37 
38 #define i7300_printk(level, fmt, arg...) \
39 	edac_printk(level, "i7300", fmt, ##arg)
40 
41 #define i7300_mc_printk(mci, level, fmt, arg...) \
42 	edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
43 
44 /***********************************************
45  * i7300 Limit constants Structs and static vars
46  ***********************************************/
47 
48 /*
49  * Memory topology is organized as:
50  *	Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
51  *	Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
52  * Each channel can have to 8 DIMM sets (called as SLOTS)
53  * Slots should generally be filled in pairs
54  *	Except on Single Channel mode of operation
55  *		just slot 0/channel0 filled on this mode
56  *	On normal operation mode, the two channels on a branch should be
57  *		filled together for the same SLOT#
58  * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
59  *		channels on both branches should be filled
60  */
61 
62 /* Limits for i7300 */
63 #define MAX_SLOTS		8
64 #define MAX_BRANCHES		2
65 #define MAX_CH_PER_BRANCH	2
66 #define MAX_CHANNELS		(MAX_CH_PER_BRANCH * MAX_BRANCHES)
67 #define MAX_MIR			3
68 
69 #define to_channel(ch, branch)	((((branch)) << 1) | (ch))
70 
71 #define to_csrow(slot, ch, branch)					\
72 		(to_channel(ch, branch) | ((slot) << 2))
73 
74 /* Device name and register DID (Device ID) */
75 struct i7300_dev_info {
76 	const char *ctl_name;	/* name for this device */
77 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
78 };
79 
80 /* Table of devices attributes supported by this driver */
81 static const struct i7300_dev_info i7300_devs[] = {
82 	{
83 		.ctl_name = "I7300",
84 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
85 	},
86 };
87 
88 struct i7300_dimm_info {
89 	int megabytes;		/* size, 0 means not present  */
90 };
91 
92 /* driver private data structure */
93 struct i7300_pvt {
94 	struct pci_dev *pci_dev_16_0_fsb_ctlr;		/* 16.0 */
95 	struct pci_dev *pci_dev_16_1_fsb_addr_map;	/* 16.1 */
96 	struct pci_dev *pci_dev_16_2_fsb_err_regs;	/* 16.2 */
97 	struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES];	/* 21.0  and 22.0 */
98 
99 	u16 tolm;				/* top of low memory */
100 	u64 ambase;				/* AMB BAR */
101 
102 	u32 mc_settings;			/* Report several settings */
103 	u32 mc_settings_a;
104 
105 	u16 mir[MAX_MIR];			/* Memory Interleave Reg*/
106 
107 	u16 mtr[MAX_SLOTS][MAX_BRANCHES];	/* Memory Technlogy Reg */
108 	u16 ambpresent[MAX_CHANNELS];		/* AMB present regs */
109 
110 	/* DIMM information matrix, allocating architecture maximums */
111 	struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
112 
113 	/* Temporary buffer for use when preparing error messages */
114 	char *tmp_prt_buffer;
115 };
116 
117 /* FIXME: Why do we need to have this static? */
118 static struct edac_pci_ctl_info *i7300_pci;
119 
120 /***************************************************
121  * i7300 Register definitions for memory enumeration
122  ***************************************************/
123 
124 /*
125  * Device 16,
126  * Function 0: System Address (not documented)
127  * Function 1: Memory Branch Map, Control, Errors Register
128  */
129 
130 	/* OFFSETS for Function 0 */
131 #define AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
132 #define MAXCH			0x56 /* Max Channel Number */
133 #define MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
134 
135 	/* OFFSETS for Function 1 */
136 #define MC_SETTINGS		0x40
137   #define IS_MIRRORED(mc)		((mc) & (1 << 16))
138   #define IS_ECC_ENABLED(mc)		((mc) & (1 << 5))
139   #define IS_RETRY_ENABLED(mc)		((mc) & (1 << 31))
140   #define IS_SCRBALGO_ENHANCED(mc)	((mc) & (1 << 8))
141 
142 #define MC_SETTINGS_A		0x58
143   #define IS_SINGLE_MODE(mca)		((mca) & (1 << 14))
144 
145 #define TOLM			0x6C
146 
147 #define MIR0			0x80
148 #define MIR1			0x84
149 #define MIR2			0x88
150 
151 /*
152  * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
153  * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
154  * seems that we cannot use this information directly for the same usage.
155  * Each memory slot may have up to 2 AMB interfaces, one for income and another
156  * for outcome interface to the next slot.
157  * For now, the driver just stores the AMB present registers, but rely only at
158  * the MTR info to detect memory.
159  * Datasheet is also not clear about how to map each AMBPRESENT registers to
160  * one of the 4 available channels.
161  */
162 #define AMBPRESENT_0	0x64
163 #define AMBPRESENT_1	0x66
164 
165 static const u16 mtr_regs[MAX_SLOTS] = {
166 	0x80, 0x84, 0x88, 0x8c,
167 	0x82, 0x86, 0x8a, 0x8e
168 };
169 
170 /*
171  * Defines to extract the vaious fields from the
172  *	MTRx - Memory Technology Registers
173  */
174 #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 8))
175 #define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 7))
176 #define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
177 #define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 5)) ? 8 : 4)
178 #define MTR_DIMM_RANKS(mtr)		(((mtr) & (1 << 4)) ? 1 : 0)
179 #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
180 #define MTR_DRAM_BANKS_ADDR_BITS	2
181 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
182 #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
183 #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
184 
185 /************************************************
186  * i7300 Register definitions for error detection
187  ************************************************/
188 
189 /*
190  * Device 16.1: FBD Error Registers
191  */
192 #define FERR_FAT_FBD	0x98
193 static const char *ferr_fat_fbd_name[] = {
194 	[22] = "Non-Redundant Fast Reset Timeout",
195 	[2]  = ">Tmid Thermal event with intelligent throttling disabled",
196 	[1]  = "Memory or FBD configuration CRC read error",
197 	[0]  = "Memory Write error on non-redundant retry or "
198 	       "FBD configuration Write error on retry",
199 };
200 #define GET_FBD_FAT_IDX(fbderr)	(((fbderr) >> 28) & 3)
201 #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))
202 
203 #define FERR_NF_FBD	0xa0
204 static const char *ferr_nf_fbd_name[] = {
205 	[24] = "DIMM-Spare Copy Completed",
206 	[23] = "DIMM-Spare Copy Initiated",
207 	[22] = "Redundant Fast Reset Timeout",
208 	[21] = "Memory Write error on redundant retry",
209 	[18] = "SPD protocol Error",
210 	[17] = "FBD Northbound parity error on FBD Sync Status",
211 	[16] = "Correctable Patrol Data ECC",
212 	[15] = "Correctable Resilver- or Spare-Copy Data ECC",
213 	[14] = "Correctable Mirrored Demand Data ECC",
214 	[13] = "Correctable Non-Mirrored Demand Data ECC",
215 	[11] = "Memory or FBD configuration CRC read error",
216 	[10] = "FBD Configuration Write error on first attempt",
217 	[9]  = "Memory Write error on first attempt",
218 	[8]  = "Non-Aliased Uncorrectable Patrol Data ECC",
219 	[7]  = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
220 	[6]  = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
221 	[5]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
222 	[4]  = "Aliased Uncorrectable Patrol Data ECC",
223 	[3]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
224 	[2]  = "Aliased Uncorrectable Mirrored Demand Data ECC",
225 	[1]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
226 	[0]  = "Uncorrectable Data ECC on Replay",
227 };
228 #define GET_FBD_NF_IDX(fbderr)	(((fbderr) >> 28) & 3)
229 #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
230 			      (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
231 			      (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
232 			      (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
233 			      (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
234 			      (1 << 1)  | (1 << 0))
235 
236 #define EMASK_FBD	0xa8
237 #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
238 			    (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
239 			    (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
240 			    (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
241 			    (1 << 9)  | (1 << 8)  | (1 << 7)  | (1 << 6)  |\
242 			    (1 << 5)  | (1 << 4)  | (1 << 3)  | (1 << 2)  |\
243 			    (1 << 1)  | (1 << 0))
244 
245 /*
246  * Device 16.2: Global Error Registers
247  */
248 
249 #define FERR_GLOBAL_HI	0x48
250 static const char *ferr_global_hi_name[] = {
251 	[3] = "FSB 3 Fatal Error",
252 	[2] = "FSB 2 Fatal Error",
253 	[1] = "FSB 1 Fatal Error",
254 	[0] = "FSB 0 Fatal Error",
255 };
256 #define ferr_global_hi_is_fatal(errno)	1
257 
258 #define FERR_GLOBAL_LO	0x40
259 static const char *ferr_global_lo_name[] = {
260 	[31] = "Internal MCH Fatal Error",
261 	[30] = "Intel QuickData Technology Device Fatal Error",
262 	[29] = "FSB1 Fatal Error",
263 	[28] = "FSB0 Fatal Error",
264 	[27] = "FBD Channel 3 Fatal Error",
265 	[26] = "FBD Channel 2 Fatal Error",
266 	[25] = "FBD Channel 1 Fatal Error",
267 	[24] = "FBD Channel 0 Fatal Error",
268 	[23] = "PCI Express Device 7Fatal Error",
269 	[22] = "PCI Express Device 6 Fatal Error",
270 	[21] = "PCI Express Device 5 Fatal Error",
271 	[20] = "PCI Express Device 4 Fatal Error",
272 	[19] = "PCI Express Device 3 Fatal Error",
273 	[18] = "PCI Express Device 2 Fatal Error",
274 	[17] = "PCI Express Device 1 Fatal Error",
275 	[16] = "ESI Fatal Error",
276 	[15] = "Internal MCH Non-Fatal Error",
277 	[14] = "Intel QuickData Technology Device Non Fatal Error",
278 	[13] = "FSB1 Non-Fatal Error",
279 	[12] = "FSB 0 Non-Fatal Error",
280 	[11] = "FBD Channel 3 Non-Fatal Error",
281 	[10] = "FBD Channel 2 Non-Fatal Error",
282 	[9]  = "FBD Channel 1 Non-Fatal Error",
283 	[8]  = "FBD Channel 0 Non-Fatal Error",
284 	[7]  = "PCI Express Device 7 Non-Fatal Error",
285 	[6]  = "PCI Express Device 6 Non-Fatal Error",
286 	[5]  = "PCI Express Device 5 Non-Fatal Error",
287 	[4]  = "PCI Express Device 4 Non-Fatal Error",
288 	[3]  = "PCI Express Device 3 Non-Fatal Error",
289 	[2]  = "PCI Express Device 2 Non-Fatal Error",
290 	[1]  = "PCI Express Device 1 Non-Fatal Error",
291 	[0]  = "ESI Non-Fatal Error",
292 };
293 #define ferr_global_lo_is_fatal(errno)	((errno < 16) ? 0 : 1)
294 
295 #define NRECMEMA	0xbe
296   #define NRECMEMA_BANK(v)	(((v) >> 12) & 7)
297   #define NRECMEMA_RANK(v)	(((v) >> 8) & 15)
298 
299 #define NRECMEMB	0xc0
300   #define NRECMEMB_IS_WR(v)	((v) & (1 << 31))
301   #define NRECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
302   #define NRECMEMB_RAS(v)	((v) & 0xffff)
303 
304 #define REDMEMA		0xdc
305 
306 #define REDMEMB		0x7c
307 
308 #define RECMEMA		0xe0
309   #define RECMEMA_BANK(v)	(((v) >> 12) & 7)
310   #define RECMEMA_RANK(v)	(((v) >> 8) & 15)
311 
312 #define RECMEMB		0xe4
313   #define RECMEMB_IS_WR(v)	((v) & (1 << 31))
314   #define RECMEMB_CAS(v)	(((v) >> 16) & 0x1fff)
315   #define RECMEMB_RAS(v)	((v) & 0xffff)
316 
317 /********************************************
318  * i7300 Functions related to error detection
319  ********************************************/
320 
321 /**
322  * get_err_from_table() - Gets the error message from a table
323  * @table:	table name (array of char *)
324  * @size:	number of elements at the table
325  * @pos:	position of the element to be returned
326  *
327  * This is a small routine that gets the pos-th element of a table. If the
328  * element doesn't exist (or it is empty), it returns "reserved".
329  * Instead of calling it directly, the better is to call via the macro
330  * GET_ERR_FROM_TABLE(), that automatically checks the table size via
331  * ARRAY_SIZE() macro
332  */
333 static const char *get_err_from_table(const char *table[], int size, int pos)
334 {
335 	if (unlikely(pos >= size))
336 		return "Reserved";
337 
338 	if (unlikely(!table[pos]))
339 		return "Reserved";
340 
341 	return table[pos];
342 }
343 
344 #define GET_ERR_FROM_TABLE(table, pos)				\
345 	get_err_from_table(table, ARRAY_SIZE(table), pos)
346 
347 /**
348  * i7300_process_error_global() - Retrieve the hardware error information from
349  *				  the hardware global error registers and
350  *				  sends it to dmesg
351  * @mci: struct mem_ctl_info pointer
352  */
353 static void i7300_process_error_global(struct mem_ctl_info *mci)
354 {
355 	struct i7300_pvt *pvt;
356 	u32 errnum, error_reg;
357 	unsigned long errors;
358 	const char *specific;
359 	bool is_fatal;
360 
361 	pvt = mci->pvt_info;
362 
363 	/* read in the 1st FATAL error register */
364 	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
365 			      FERR_GLOBAL_HI, &error_reg);
366 	if (unlikely(error_reg)) {
367 		errors = error_reg;
368 		errnum = find_first_bit(&errors,
369 					ARRAY_SIZE(ferr_global_hi_name));
370 		specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
371 		is_fatal = ferr_global_hi_is_fatal(errnum);
372 
373 		/* Clear the error bit */
374 		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
375 				       FERR_GLOBAL_HI, error_reg);
376 
377 		goto error_global;
378 	}
379 
380 	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
381 			      FERR_GLOBAL_LO, &error_reg);
382 	if (unlikely(error_reg)) {
383 		errors = error_reg;
384 		errnum = find_first_bit(&errors,
385 					ARRAY_SIZE(ferr_global_lo_name));
386 		specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
387 		is_fatal = ferr_global_lo_is_fatal(errnum);
388 
389 		/* Clear the error bit */
390 		pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
391 				       FERR_GLOBAL_LO, error_reg);
392 
393 		goto error_global;
394 	}
395 	return;
396 
397 error_global:
398 	i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
399 			is_fatal ? "Fatal" : "NOT fatal", specific);
400 }
401 
402 /**
403  * i7300_process_fbd_error() - Retrieve the hardware error information from
404  *			       the FBD error registers and sends it via
405  *			       EDAC error API calls
406  * @mci: struct mem_ctl_info pointer
407  */
408 static void i7300_process_fbd_error(struct mem_ctl_info *mci)
409 {
410 	struct i7300_pvt *pvt;
411 	u32 errnum, value, error_reg;
412 	u16 val16;
413 	unsigned branch, channel, bank, rank, cas, ras;
414 	u32 syndrome;
415 
416 	unsigned long errors;
417 	const char *specific;
418 	bool is_wr;
419 
420 	pvt = mci->pvt_info;
421 
422 	/* read in the 1st FATAL error register */
423 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
424 			      FERR_FAT_FBD, &error_reg);
425 	if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
426 		errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
427 		errnum = find_first_bit(&errors,
428 					ARRAY_SIZE(ferr_fat_fbd_name));
429 		specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
430 		branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
431 
432 		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
433 				     NRECMEMA, &val16);
434 		bank = NRECMEMA_BANK(val16);
435 		rank = NRECMEMA_RANK(val16);
436 
437 		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
438 				NRECMEMB, &value);
439 		is_wr = NRECMEMB_IS_WR(value);
440 		cas = NRECMEMB_CAS(value);
441 		ras = NRECMEMB_RAS(value);
442 
443 		/* Clean the error register */
444 		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
445 				FERR_FAT_FBD, error_reg);
446 
447 		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
448 			 "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
449 			 bank, ras, cas, errors, specific);
450 
451 		edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
452 				     branch, -1, rank,
453 				     is_wr ? "Write error" : "Read error",
454 				     pvt->tmp_prt_buffer);
455 
456 	}
457 
458 	/* read in the 1st NON-FATAL error register */
459 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
460 			      FERR_NF_FBD, &error_reg);
461 	if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
462 		errors = error_reg & FERR_NF_FBD_ERR_MASK;
463 		errnum = find_first_bit(&errors,
464 					ARRAY_SIZE(ferr_nf_fbd_name));
465 		specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
466 		branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0;
467 
468 		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
469 			REDMEMA, &syndrome);
470 
471 		pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
472 				     RECMEMA, &val16);
473 		bank = RECMEMA_BANK(val16);
474 		rank = RECMEMA_RANK(val16);
475 
476 		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
477 				RECMEMB, &value);
478 		is_wr = RECMEMB_IS_WR(value);
479 		cas = RECMEMB_CAS(value);
480 		ras = RECMEMB_RAS(value);
481 
482 		pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
483 				     REDMEMB, &value);
484 		channel = (branch << 1);
485 
486 		/* Second channel ? */
487 		channel += !!(value & BIT(17));
488 
489 		/* Clear the error bit */
490 		pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
491 				FERR_NF_FBD, error_reg);
492 
493 		/* Form out message */
494 		snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
495 			 "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
496 			 bank, ras, cas, errors, specific);
497 
498 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0,
499 				     syndrome,
500 				     branch >> 1, channel % 2, rank,
501 				     is_wr ? "Write error" : "Read error",
502 				     pvt->tmp_prt_buffer);
503 	}
504 	return;
505 }
506 
507 /**
508  * i7300_check_error() - Calls the error checking subroutines
509  * @mci: struct mem_ctl_info pointer
510  */
511 static void i7300_check_error(struct mem_ctl_info *mci)
512 {
513 	i7300_process_error_global(mci);
514 	i7300_process_fbd_error(mci);
515 };
516 
517 /**
518  * i7300_clear_error() - Clears the error registers
519  * @mci: struct mem_ctl_info pointer
520  */
521 static void i7300_clear_error(struct mem_ctl_info *mci)
522 {
523 	struct i7300_pvt *pvt = mci->pvt_info;
524 	u32 value;
525 	/*
526 	 * All error values are RWC - we need to read and write 1 to the
527 	 * bit that we want to cleanup
528 	 */
529 
530 	/* Clear global error registers */
531 	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
532 			      FERR_GLOBAL_HI, &value);
533 	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
534 			      FERR_GLOBAL_HI, value);
535 
536 	pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
537 			      FERR_GLOBAL_LO, &value);
538 	pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
539 			      FERR_GLOBAL_LO, value);
540 
541 	/* Clear FBD error registers */
542 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
543 			      FERR_FAT_FBD, &value);
544 	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
545 			      FERR_FAT_FBD, value);
546 
547 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
548 			      FERR_NF_FBD, &value);
549 	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
550 			      FERR_NF_FBD, value);
551 }
552 
553 /**
554  * i7300_enable_error_reporting() - Enable the memory reporting logic at the
555  *				    hardware
556  * @mci: struct mem_ctl_info pointer
557  */
558 static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
559 {
560 	struct i7300_pvt *pvt = mci->pvt_info;
561 	u32 fbd_error_mask;
562 
563 	/* Read the FBD Error Mask Register */
564 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
565 			      EMASK_FBD, &fbd_error_mask);
566 
567 	/* Enable with a '0' */
568 	fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
569 
570 	pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
571 			       EMASK_FBD, fbd_error_mask);
572 }
573 
574 /************************************************
575  * i7300 Functions related to memory enumberation
576  ************************************************/
577 
578 /**
579  * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
580  * @pvt: pointer to the private data struct used by i7300 driver
581  * @slot: DIMM slot (0 to 7)
582  * @ch: Channel number within the branch (0 or 1)
583  * @branch: Branch number (0 or 1)
584  * @dinfo: Pointer to DIMM info where dimm size is stored
585  * @p_csrow: Pointer to the struct csrow_info that corresponds to that element
586  */
587 static int decode_mtr(struct i7300_pvt *pvt,
588 		      int slot, int ch, int branch,
589 		      struct i7300_dimm_info *dinfo,
590 		      struct dimm_info *dimm)
591 {
592 	int mtr, ans, addrBits, channel;
593 
594 	channel = to_channel(ch, branch);
595 
596 	mtr = pvt->mtr[slot][branch];
597 	ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
598 
599 	edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n",
600 		 slot, channel, ans ? "" : "NOT ");
601 
602 	/* Determine if there is a DIMM present in this DIMM slot */
603 	if (!ans)
604 		return 0;
605 
606 	/* Start with the number of bits for a Bank
607 	* on the DRAM */
608 	addrBits = MTR_DRAM_BANKS_ADDR_BITS;
609 	/* Add thenumber of ROW bits */
610 	addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
611 	/* add the number of COLUMN bits */
612 	addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
613 	/* add the number of RANK bits */
614 	addrBits += MTR_DIMM_RANKS(mtr);
615 
616 	addrBits += 6;	/* add 64 bits per DIMM */
617 	addrBits -= 20;	/* divide by 2^^20 */
618 	addrBits -= 3;	/* 8 bits per bytes */
619 
620 	dinfo->megabytes = 1 << addrBits;
621 
622 	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
623 
624 	edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
625 		 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
626 
627 	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
628 	edac_dbg(2, "\t\tNUMRANK: %s\n",
629 		 MTR_DIMM_RANKS(mtr) ? "double" : "single");
630 	edac_dbg(2, "\t\tNUMROW: %s\n",
631 		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
632 		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
633 		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
634 		 "65,536 - 16 rows");
635 	edac_dbg(2, "\t\tNUMCOL: %s\n",
636 		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
637 		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
638 		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
639 		 "reserved");
640 	edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes);
641 
642 	/*
643 	 * The type of error detection actually depends of the
644 	 * mode of operation. When it is just one single memory chip, at
645 	 * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
646 	 * In normal or mirrored mode, it uses Lockstep mode,
647 	 * with the possibility of using an extended algorithm for x8 memories
648 	 * See datasheet Sections 7.3.6 to 7.3.8
649 	 */
650 
651 	dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
652 	dimm->grain = 8;
653 	dimm->mtype = MEM_FB_DDR2;
654 	if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
655 		dimm->edac_mode = EDAC_SECDED;
656 		edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
657 	} else {
658 		edac_dbg(2, "\t\tECC code is on Lockstep mode\n");
659 		if (MTR_DRAM_WIDTH(mtr) == 8)
660 			dimm->edac_mode = EDAC_S8ECD8ED;
661 		else
662 			dimm->edac_mode = EDAC_S4ECD4ED;
663 	}
664 
665 	/* ask what device type on this row */
666 	if (MTR_DRAM_WIDTH(mtr) == 8) {
667 		edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n",
668 			 IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
669 			 "enhanced" : "normal");
670 
671 		dimm->dtype = DEV_X8;
672 	} else
673 		dimm->dtype = DEV_X4;
674 
675 	return mtr;
676 }
677 
678 /**
679  * print_dimm_size() - Prints dump of the memory organization
680  * @pvt: pointer to the private data struct used by i7300 driver
681  *
682  * Useful for debug. If debug is disabled, this routine do nothing
683  */
684 static void print_dimm_size(struct i7300_pvt *pvt)
685 {
686 #ifdef CONFIG_EDAC_DEBUG
687 	struct i7300_dimm_info *dinfo;
688 	char *p;
689 	int space, n;
690 	int channel, slot;
691 
692 	space = PAGE_SIZE;
693 	p = pvt->tmp_prt_buffer;
694 
695 	n = snprintf(p, space, "              ");
696 	p += n;
697 	space -= n;
698 	for (channel = 0; channel < MAX_CHANNELS; channel++) {
699 		n = snprintf(p, space, "channel %d | ", channel);
700 		p += n;
701 		space -= n;
702 	}
703 	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
704 	p = pvt->tmp_prt_buffer;
705 	space = PAGE_SIZE;
706 	n = snprintf(p, space, "-------------------------------"
707 			       "------------------------------");
708 	p += n;
709 	space -= n;
710 	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
711 	p = pvt->tmp_prt_buffer;
712 	space = PAGE_SIZE;
713 
714 	for (slot = 0; slot < MAX_SLOTS; slot++) {
715 		n = snprintf(p, space, "csrow/SLOT %d  ", slot);
716 		p += n;
717 		space -= n;
718 
719 		for (channel = 0; channel < MAX_CHANNELS; channel++) {
720 			dinfo = &pvt->dimm_info[slot][channel];
721 			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
722 			p += n;
723 			space -= n;
724 		}
725 
726 		edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
727 		p = pvt->tmp_prt_buffer;
728 		space = PAGE_SIZE;
729 	}
730 
731 	n = snprintf(p, space, "-------------------------------"
732 			       "------------------------------");
733 	p += n;
734 	space -= n;
735 	edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
736 	p = pvt->tmp_prt_buffer;
737 	space = PAGE_SIZE;
738 #endif
739 }
740 
741 /**
742  * i7300_init_csrows() - Initialize the 'csrows' table within
743  *			 the mci control structure with the
744  *			 addressing of memory.
745  * @mci: struct mem_ctl_info pointer
746  */
747 static int i7300_init_csrows(struct mem_ctl_info *mci)
748 {
749 	struct i7300_pvt *pvt;
750 	struct i7300_dimm_info *dinfo;
751 	int rc = -ENODEV;
752 	int mtr;
753 	int ch, branch, slot, channel, max_channel, max_branch;
754 	struct dimm_info *dimm;
755 
756 	pvt = mci->pvt_info;
757 
758 	edac_dbg(2, "Memory Technology Registers:\n");
759 
760 	if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
761 		max_branch = 1;
762 		max_channel = 1;
763 	} else {
764 		max_branch = MAX_BRANCHES;
765 		max_channel = MAX_CH_PER_BRANCH;
766 	}
767 
768 	/* Get the AMB present registers for the four channels */
769 	for (branch = 0; branch < max_branch; branch++) {
770 		/* Read and dump branch 0's MTRs */
771 		channel = to_channel(0, branch);
772 		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
773 				     AMBPRESENT_0,
774 				&pvt->ambpresent[channel]);
775 		edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
776 			 channel, pvt->ambpresent[channel]);
777 
778 		if (max_channel == 1)
779 			continue;
780 
781 		channel = to_channel(1, branch);
782 		pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
783 				     AMBPRESENT_1,
784 				&pvt->ambpresent[channel]);
785 		edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
786 			 channel, pvt->ambpresent[channel]);
787 	}
788 
789 	/* Get the set of MTR[0-7] regs by each branch */
790 	for (slot = 0; slot < MAX_SLOTS; slot++) {
791 		int where = mtr_regs[slot];
792 		for (branch = 0; branch < max_branch; branch++) {
793 			pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
794 					where,
795 					&pvt->mtr[slot][branch]);
796 			for (ch = 0; ch < max_channel; ch++) {
797 				int channel = to_channel(ch, branch);
798 
799 				dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
800 					       mci->n_layers, branch, ch, slot);
801 
802 				dinfo = &pvt->dimm_info[slot][channel];
803 
804 				mtr = decode_mtr(pvt, slot, ch, branch,
805 						 dinfo, dimm);
806 
807 				/* if no DIMMS on this row, continue */
808 				if (!MTR_DIMMS_PRESENT(mtr))
809 					continue;
810 
811 				rc = 0;
812 
813 			}
814 		}
815 	}
816 
817 	return rc;
818 }
819 
820 /**
821  * decode_mir() - Decodes Memory Interleave Register (MIR) info
822  * @int mir_no: number of the MIR register to decode
823  * @mir: array with the MIR data cached on the driver
824  */
825 static void decode_mir(int mir_no, u16 mir[MAX_MIR])
826 {
827 	if (mir[mir_no] & 3)
828 		edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
829 			 mir_no,
830 			 (mir[mir_no] >> 4) & 0xfff,
831 			 (mir[mir_no] & 1) ? "B0" : "",
832 			 (mir[mir_no] & 2) ? "B1" : "");
833 }
834 
835 /**
836  * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
837  * @mci: struct mem_ctl_info pointer
838  *
839  * Data read is cached internally for its usage when needed
840  */
841 static int i7300_get_mc_regs(struct mem_ctl_info *mci)
842 {
843 	struct i7300_pvt *pvt;
844 	u32 actual_tolm;
845 	int i, rc;
846 
847 	pvt = mci->pvt_info;
848 
849 	pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
850 			(u32 *) &pvt->ambase);
851 
852 	edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
853 
854 	/* Get the Branch Map regs */
855 	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
856 	pvt->tolm >>= 12;
857 	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
858 		 pvt->tolm, pvt->tolm);
859 
860 	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
861 	edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
862 		 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
863 
864 	/* Get memory controller settings */
865 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
866 			     &pvt->mc_settings);
867 	pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
868 			     &pvt->mc_settings_a);
869 
870 	if (IS_SINGLE_MODE(pvt->mc_settings_a))
871 		edac_dbg(0, "Memory controller operating on single mode\n");
872 	else
873 		edac_dbg(0, "Memory controller operating on %smirrored mode\n",
874 			 IS_MIRRORED(pvt->mc_settings) ? "" : "non-");
875 
876 	edac_dbg(0, "Error detection is %s\n",
877 		 IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
878 	edac_dbg(0, "Retry is %s\n",
879 		 IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
880 
881 	/* Get Memory Interleave Range registers */
882 	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
883 			     &pvt->mir[0]);
884 	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
885 			     &pvt->mir[1]);
886 	pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
887 			     &pvt->mir[2]);
888 
889 	/* Decode the MIR regs */
890 	for (i = 0; i < MAX_MIR; i++)
891 		decode_mir(i, pvt->mir);
892 
893 	rc = i7300_init_csrows(mci);
894 	if (rc < 0)
895 		return rc;
896 
897 	/* Go and determine the size of each DIMM and place in an
898 	 * orderly matrix */
899 	print_dimm_size(pvt);
900 
901 	return 0;
902 }
903 
904 /*************************************************
905  * i7300 Functions related to device probe/release
906  *************************************************/
907 
908 /**
909  * i7300_put_devices() - Release the PCI devices
910  * @mci: struct mem_ctl_info pointer
911  */
912 static void i7300_put_devices(struct mem_ctl_info *mci)
913 {
914 	struct i7300_pvt *pvt;
915 	int branch;
916 
917 	pvt = mci->pvt_info;
918 
919 	/* Decrement usage count for devices */
920 	for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
921 		pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
922 	pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
923 	pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
924 }
925 
926 /**
927  * i7300_get_devices() - Find and perform 'get' operation on the MCH's
928  *			 device/functions we want to reference for this driver
929  * @mci: struct mem_ctl_info pointer
930  *
931  * Access and prepare the several devices for usage:
932  * I7300 devices used by this driver:
933  *    Device 16, functions 0,1 and 2:	PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
934  *    Device 21 function 0:		PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
935  *    Device 22 function 0:		PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
936  */
937 static int i7300_get_devices(struct mem_ctl_info *mci)
938 {
939 	struct i7300_pvt *pvt;
940 	struct pci_dev *pdev;
941 
942 	pvt = mci->pvt_info;
943 
944 	/* Attempt to 'get' the MCH register we want */
945 	pdev = NULL;
946 	while ((pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
947 				      PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
948 				      pdev))) {
949 		/* Store device 16 funcs 1 and 2 */
950 		switch (PCI_FUNC(pdev->devfn)) {
951 		case 1:
952 			if (!pvt->pci_dev_16_1_fsb_addr_map)
953 				pvt->pci_dev_16_1_fsb_addr_map =
954 							pci_dev_get(pdev);
955 			break;
956 		case 2:
957 			if (!pvt->pci_dev_16_2_fsb_err_regs)
958 				pvt->pci_dev_16_2_fsb_err_regs =
959 							pci_dev_get(pdev);
960 			break;
961 		}
962 	}
963 
964 	if (!pvt->pci_dev_16_1_fsb_addr_map ||
965 	    !pvt->pci_dev_16_2_fsb_err_regs) {
966 		/* At least one device was not found */
967 		i7300_printk(KERN_ERR,
968 			"'system address,Process Bus' device not found:"
969 			"vendor 0x%x device 0x%x ERR funcs (broken BIOS?)\n",
970 			PCI_VENDOR_ID_INTEL,
971 			PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
972 		goto error;
973 	}
974 
975 	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
976 		 pci_name(pvt->pci_dev_16_0_fsb_ctlr),
977 		 pvt->pci_dev_16_0_fsb_ctlr->vendor,
978 		 pvt->pci_dev_16_0_fsb_ctlr->device);
979 	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
980 		 pci_name(pvt->pci_dev_16_1_fsb_addr_map),
981 		 pvt->pci_dev_16_1_fsb_addr_map->vendor,
982 		 pvt->pci_dev_16_1_fsb_addr_map->device);
983 	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
984 		 pci_name(pvt->pci_dev_16_2_fsb_err_regs),
985 		 pvt->pci_dev_16_2_fsb_err_regs->vendor,
986 		 pvt->pci_dev_16_2_fsb_err_regs->device);
987 
988 	pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
989 					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
990 					    NULL);
991 	if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
992 		i7300_printk(KERN_ERR,
993 			"MC: 'BRANCH 0' device not found:"
994 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
995 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
996 		goto error;
997 	}
998 
999 	pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
1000 					    PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
1001 					    NULL);
1002 	if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
1003 		i7300_printk(KERN_ERR,
1004 			"MC: 'BRANCH 1' device not found:"
1005 			"vendor 0x%x device 0x%x Func 0 "
1006 			"(broken BIOS?)\n",
1007 			PCI_VENDOR_ID_INTEL,
1008 			PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
1009 		goto error;
1010 	}
1011 
1012 	return 0;
1013 
1014 error:
1015 	i7300_put_devices(mci);
1016 	return -ENODEV;
1017 }
1018 
1019 /**
1020  * i7300_init_one() - Probe for one instance of the device
1021  * @pdev: struct pci_dev pointer
1022  * @id: struct pci_device_id pointer - currently unused
1023  */
1024 static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1025 {
1026 	struct mem_ctl_info *mci;
1027 	struct edac_mc_layer layers[3];
1028 	struct i7300_pvt *pvt;
1029 	int rc;
1030 
1031 	/* wake up device */
1032 	rc = pci_enable_device(pdev);
1033 	if (rc == -EIO)
1034 		return rc;
1035 
1036 	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1037 		 pdev->bus->number,
1038 		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1039 
1040 	/* We only are looking for func 0 of the set */
1041 	if (PCI_FUNC(pdev->devfn) != 0)
1042 		return -ENODEV;
1043 
1044 	/* allocate a new MC control structure */
1045 	layers[0].type = EDAC_MC_LAYER_BRANCH;
1046 	layers[0].size = MAX_BRANCHES;
1047 	layers[0].is_virt_csrow = false;
1048 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1049 	layers[1].size = MAX_CH_PER_BRANCH;
1050 	layers[1].is_virt_csrow = true;
1051 	layers[2].type = EDAC_MC_LAYER_SLOT;
1052 	layers[2].size = MAX_SLOTS;
1053 	layers[2].is_virt_csrow = true;
1054 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1055 	if (mci == NULL)
1056 		return -ENOMEM;
1057 
1058 	edac_dbg(0, "MC: mci = %p\n", mci);
1059 
1060 	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1061 
1062 	pvt = mci->pvt_info;
1063 	pvt->pci_dev_16_0_fsb_ctlr = pdev;	/* Record this device in our private */
1064 
1065 	pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1066 	if (!pvt->tmp_prt_buffer) {
1067 		edac_mc_free(mci);
1068 		return -ENOMEM;
1069 	}
1070 
1071 	/* 'get' the pci devices we want to reserve for our use */
1072 	if (i7300_get_devices(mci))
1073 		goto fail0;
1074 
1075 	mci->mc_idx = 0;
1076 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1077 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1078 	mci->edac_cap = EDAC_FLAG_NONE;
1079 	mci->mod_name = "i7300_edac.c";
1080 	mci->ctl_name = i7300_devs[0].ctl_name;
1081 	mci->dev_name = pci_name(pdev);
1082 	mci->ctl_page_to_phys = NULL;
1083 
1084 	/* Set the function pointer to an actual operation function */
1085 	mci->edac_check = i7300_check_error;
1086 
1087 	/* initialize the MC control structure 'csrows' table
1088 	 * with the mapping and control information */
1089 	if (i7300_get_mc_regs(mci)) {
1090 		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n");
1091 		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1092 	} else {
1093 		edac_dbg(1, "MC: Enable error reporting now\n");
1094 		i7300_enable_error_reporting(mci);
1095 	}
1096 
1097 	/* add this new MC control structure to EDAC's list of MCs */
1098 	if (edac_mc_add_mc(mci)) {
1099 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1100 		/* FIXME: perhaps some code should go here that disables error
1101 		 * reporting if we just enabled it
1102 		 */
1103 		goto fail1;
1104 	}
1105 
1106 	i7300_clear_error(mci);
1107 
1108 	/* allocating generic PCI control info */
1109 	i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1110 	if (!i7300_pci) {
1111 		printk(KERN_WARNING
1112 			"%s(): Unable to create PCI control\n",
1113 			__func__);
1114 		printk(KERN_WARNING
1115 			"%s(): PCI error report via EDAC not setup\n",
1116 			__func__);
1117 	}
1118 
1119 	return 0;
1120 
1121 	/* Error exit unwinding stack */
1122 fail1:
1123 
1124 	i7300_put_devices(mci);
1125 
1126 fail0:
1127 	kfree(pvt->tmp_prt_buffer);
1128 	edac_mc_free(mci);
1129 	return -ENODEV;
1130 }
1131 
1132 /**
1133  * i7300_remove_one() - Remove the driver
1134  * @pdev: struct pci_dev pointer
1135  */
1136 static void i7300_remove_one(struct pci_dev *pdev)
1137 {
1138 	struct mem_ctl_info *mci;
1139 	char *tmp;
1140 
1141 	edac_dbg(0, "\n");
1142 
1143 	if (i7300_pci)
1144 		edac_pci_release_generic_ctl(i7300_pci);
1145 
1146 	mci = edac_mc_del_mc(&pdev->dev);
1147 	if (!mci)
1148 		return;
1149 
1150 	tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
1151 
1152 	/* retrieve references to resources, and free those resources */
1153 	i7300_put_devices(mci);
1154 
1155 	kfree(tmp);
1156 	edac_mc_free(mci);
1157 }
1158 
1159 /*
1160  * pci_device_id: table for which devices we are looking for
1161  *
1162  * Has only 8086:360c PCI ID
1163  */
1164 static const struct pci_device_id i7300_pci_tbl[] = {
1165 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
1166 	{0,}			/* 0 terminated list. */
1167 };
1168 
1169 MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
1170 
1171 /*
1172  * i7300_driver: pci_driver structure for this module
1173  */
1174 static struct pci_driver i7300_driver = {
1175 	.name = "i7300_edac",
1176 	.probe = i7300_init_one,
1177 	.remove = i7300_remove_one,
1178 	.id_table = i7300_pci_tbl,
1179 };
1180 
1181 /**
1182  * i7300_init() - Registers the driver
1183  */
1184 static int __init i7300_init(void)
1185 {
1186 	int pci_rc;
1187 
1188 	edac_dbg(2, "\n");
1189 
1190 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1191 	opstate_init();
1192 
1193 	pci_rc = pci_register_driver(&i7300_driver);
1194 
1195 	return (pci_rc < 0) ? pci_rc : 0;
1196 }
1197 
1198 /**
1199  * i7300_init() - Unregisters the driver
1200  */
1201 static void __exit i7300_exit(void)
1202 {
1203 	edac_dbg(2, "\n");
1204 	pci_unregister_driver(&i7300_driver);
1205 }
1206 
1207 module_init(i7300_init);
1208 module_exit(i7300_exit);
1209 
1210 MODULE_LICENSE("GPL");
1211 MODULE_AUTHOR("Mauro Carvalho Chehab");
1212 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1213 MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
1214 		   I7300_REVISION);
1215 
1216 module_param(edac_op_state, int, 0444);
1217 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1218