xref: /openbmc/linux/drivers/edac/i5400_edac.c (revision 63dc02bd)
1 /*
2  * Intel 5400 class Memory Controllers kernel module (Seaburg)
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Copyright (c) 2008 by:
8  *	 Ben Woodard <woodard@redhat.com>
9  *	 Mauro Carvalho Chehab <mchehab@redhat.com>
10  *
11  * Red Hat Inc. http://www.redhat.com
12  *
13  * Forked and adapted from the i5000_edac driver which was
14  * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
15  *
16  * This module is based on the following document:
17  *
18  * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
20  *
21  */
22 
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/edac.h>
29 #include <linux/mmzone.h>
30 
31 #include "edac_core.h"
32 
33 /*
34  * Alter this version for the I5400 module when modifications are made
35  */
36 #define I5400_REVISION    " Ver: 1.0.0"
37 
38 #define EDAC_MOD_STR      "i5400_edac"
39 
40 #define i5400_printk(level, fmt, arg...) \
41 	edac_printk(level, "i5400", fmt, ##arg)
42 
43 #define i5400_mc_printk(mci, level, fmt, arg...) \
44 	edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
45 
46 /* Limits for i5400 */
47 #define NUM_MTRS_PER_BRANCH	4
48 #define CHANNELS_PER_BRANCH	2
49 #define MAX_DIMMS_PER_CHANNEL	NUM_MTRS_PER_BRANCH
50 #define	MAX_CHANNELS		4
51 /* max possible csrows per channel */
52 #define MAX_CSROWS		(MAX_DIMMS_PER_CHANNEL)
53 
54 /* Device 16,
55  * Function 0: System Address
56  * Function 1: Memory Branch Map, Control, Errors Register
57  * Function 2: FSB Error Registers
58  *
59  * All 3 functions of Device 16 (0,1,2) share the SAME DID and
60  * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
61  * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
62  * for device 21 (0,1).
63  */
64 
65 	/* OFFSETS for Function 0 */
66 #define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
67 #define		MAXCH			0x56 /* Max Channel Number */
68 #define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
69 
70 	/* OFFSETS for Function 1 */
71 #define		TOLM			0x6C
72 #define		REDMEMB			0x7C
73 #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
74 #define		MIR0			0x80
75 #define		MIR1			0x84
76 #define		AMIR0			0x8c
77 #define		AMIR1			0x90
78 
79 	/* Fatal error registers */
80 #define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */
81 #define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */
82 
83 #define		NERR_FAT_FBD		0x9c
84 #define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */
85 
86 	/* Non-fatal error register */
87 #define		NERR_NF_FBD		0xa4
88 
89 	/* Enable error mask */
90 #define		EMASK_FBD		0xa8
91 
92 #define		ERR0_FBD		0xac
93 #define		ERR1_FBD		0xb0
94 #define		ERR2_FBD		0xb4
95 #define		MCERR_FBD		0xb8
96 
97 	/* No OFFSETS for Device 16 Function 2 */
98 
99 /*
100  * Device 21,
101  * Function 0: Memory Map Branch 0
102  *
103  * Device 22,
104  * Function 0: Memory Map Branch 1
105  */
106 
107 	/* OFFSETS for Function 0 */
108 #define AMBPRESENT_0	0x64
109 #define AMBPRESENT_1	0x66
110 #define MTR0		0x80
111 #define MTR1		0x82
112 #define MTR2		0x84
113 #define MTR3		0x86
114 
115 	/* OFFSETS for Function 1 */
116 #define NRECFGLOG		0x74
117 #define RECFGLOG		0x78
118 #define NRECMEMA		0xbe
119 #define NRECMEMB		0xc0
120 #define NRECFB_DIMMA		0xc4
121 #define NRECFB_DIMMB		0xc8
122 #define NRECFB_DIMMC		0xcc
123 #define NRECFB_DIMMD		0xd0
124 #define NRECFB_DIMME		0xd4
125 #define NRECFB_DIMMF		0xd8
126 #define REDMEMA			0xdC
127 #define RECMEMA			0xf0
128 #define RECMEMB			0xf4
129 #define RECFB_DIMMA		0xf8
130 #define RECFB_DIMMB		0xec
131 #define RECFB_DIMMC		0xf0
132 #define RECFB_DIMMD		0xf4
133 #define RECFB_DIMME		0xf8
134 #define RECFB_DIMMF		0xfC
135 
136 /*
137  * Error indicator bits and masks
138  * Error masks are according with Table 5-17 of i5400 datasheet
139  */
140 
141 enum error_mask {
142 	EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
143 	EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
144 	EMASK_M3  = 1<<2,  /* Reserved */
145 	EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
146 	EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
147 	EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
148 	EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
149 	EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
150 	EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
151 	EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
152 	EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
153 	EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
154 	EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
155 	EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
156 	EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
157 	EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
158 	EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
159 	EMASK_M18 = 1<<17, /* Unsupported on i5400 */
160 	EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
161 	EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
162 	EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
163 	EMASK_M22 = 1<<21, /* SPD protocol Error */
164 	EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
165 	EMASK_M24 = 1<<23, /* Refresh error */
166 	EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
167 	EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
168 	EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
169 	EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
170 	EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
171 };
172 
173 /*
174  * Names to translate bit error into something useful
175  */
176 static const char *error_name[] = {
177 	[0]  = "Memory Write error on non-redundant retry",
178 	[1]  = "Memory or FB-DIMM configuration CRC read error",
179 	/* Reserved */
180 	[3]  = "Uncorrectable Data ECC on Replay",
181 	[4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
182 	/* M6 Unsupported on i5400 */
183 	[6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
184 	[7]  = "Aliased Uncorrectable Patrol Data ECC",
185 	[8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
186 	/* M10 Unsupported on i5400 */
187 	[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
188 	[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
189 	[12] = "Memory Write error on first attempt",
190 	[13] = "FB-DIMM Configuration Write error on first attempt",
191 	[14] = "Memory or FB-DIMM configuration CRC read error",
192 	[15] = "Channel Failed-Over Occurred",
193 	[16] = "Correctable Non-Mirrored Demand Data ECC",
194 	/* M18 Unsupported on i5400 */
195 	[18] = "Correctable Resilver- or Spare-Copy Data ECC",
196 	[19] = "Correctable Patrol Data ECC",
197 	[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
198 	[21] = "SPD protocol Error",
199 	[22] = "Non-Redundant Fast Reset Timeout",
200 	[23] = "Refresh error",
201 	[24] = "Memory Write error on redundant retry",
202 	[25] = "Redundant Fast Reset Timeout",
203 	[26] = "Correctable Counter Threshold Exceeded",
204 	[27] = "DIMM-Spare Copy Completed",
205 	[28] = "DIMM-Isolation Completed",
206 };
207 
208 /* Fatal errors */
209 #define ERROR_FAT_MASK		(EMASK_M1 | \
210 				 EMASK_M2 | \
211 				 EMASK_M23)
212 
213 /* Correctable errors */
214 #define ERROR_NF_CORRECTABLE	(EMASK_M27 | \
215 				 EMASK_M20 | \
216 				 EMASK_M19 | \
217 				 EMASK_M18 | \
218 				 EMASK_M17 | \
219 				 EMASK_M16)
220 #define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \
221 				 EMASK_M28)
222 #define ERROR_NF_SPD_PROTOCOL	(EMASK_M22)
223 #define ERROR_NF_NORTH_CRC	(EMASK_M21)
224 
225 /* Recoverable errors */
226 #define ERROR_NF_RECOVERABLE	(EMASK_M26 | \
227 				 EMASK_M25 | \
228 				 EMASK_M24 | \
229 				 EMASK_M15 | \
230 				 EMASK_M14 | \
231 				 EMASK_M13 | \
232 				 EMASK_M12 | \
233 				 EMASK_M11 | \
234 				 EMASK_M9  | \
235 				 EMASK_M8  | \
236 				 EMASK_M7  | \
237 				 EMASK_M5)
238 
239 /* uncorrectable errors */
240 #define ERROR_NF_UNCORRECTABLE	(EMASK_M4)
241 
242 /* mask to all non-fatal errors */
243 #define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \
244 				 ERROR_NF_UNCORRECTABLE | \
245 				 ERROR_NF_RECOVERABLE   | \
246 				 ERROR_NF_DIMM_SPARE    | \
247 				 ERROR_NF_SPD_PROTOCOL  | \
248 				 ERROR_NF_NORTH_CRC)
249 
250 /*
251  * Define error masks for the several registers
252  */
253 
254 /* Enable all fatal and non fatal errors */
255 #define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK)
256 
257 /* mask for fatal error registers */
258 #define FERR_FAT_MASK ERROR_FAT_MASK
259 
260 /* masks for non-fatal error register */
261 static inline int to_nf_mask(unsigned int mask)
262 {
263 	return (mask & EMASK_M29) | (mask >> 3);
264 };
265 
266 static inline int from_nf_ferr(unsigned int mask)
267 {
268 	return (mask & EMASK_M29) |		/* Bit 28 */
269 	       (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */
270 };
271 
272 #define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK)
273 #define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE)
274 #define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE)
275 #define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL)
276 #define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC)
277 #define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE)
278 #define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE)
279 
280 /* Defines to extract the vaious fields from the
281  *	MTRx - Memory Technology Registers
282  */
283 #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10))
284 #define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9))
285 #define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4)
286 #define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
287 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
288 #define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1)
289 #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
290 #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
291 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
292 #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
293 #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
294 
295 /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
296 static inline int extract_fbdchan_indx(u32 x)
297 {
298 	return (x>>28) & 0x3;
299 }
300 
301 #ifdef CONFIG_EDAC_DEBUG
302 /* MTR NUMROW */
303 static const char *numrow_toString[] = {
304 	"8,192 - 13 rows",
305 	"16,384 - 14 rows",
306 	"32,768 - 15 rows",
307 	"65,536 - 16 rows"
308 };
309 
310 /* MTR NUMCOL */
311 static const char *numcol_toString[] = {
312 	"1,024 - 10 columns",
313 	"2,048 - 11 columns",
314 	"4,096 - 12 columns",
315 	"reserved"
316 };
317 #endif
318 
319 /* Device name and register DID (Device ID) */
320 struct i5400_dev_info {
321 	const char *ctl_name;	/* name for this device */
322 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
323 };
324 
325 /* Table of devices attributes supported by this driver */
326 static const struct i5400_dev_info i5400_devs[] = {
327 	{
328 		.ctl_name = "I5400",
329 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
330 	},
331 };
332 
333 struct i5400_dimm_info {
334 	int megabytes;		/* size, 0 means not present  */
335 };
336 
337 /* driver private data structure */
338 struct i5400_pvt {
339 	struct pci_dev *system_address;		/* 16.0 */
340 	struct pci_dev *branchmap_werrors;	/* 16.1 */
341 	struct pci_dev *fsb_error_regs;		/* 16.2 */
342 	struct pci_dev *branch_0;		/* 21.0 */
343 	struct pci_dev *branch_1;		/* 22.0 */
344 
345 	u16 tolm;				/* top of low memory */
346 	u64 ambase;				/* AMB BAR */
347 
348 	u16 mir0, mir1;
349 
350 	u16 b0_mtr[NUM_MTRS_PER_BRANCH];	/* Memory Technlogy Reg */
351 	u16 b0_ambpresent0;			/* Branch 0, Channel 0 */
352 	u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */
353 
354 	u16 b1_mtr[NUM_MTRS_PER_BRANCH];	/* Memory Technlogy Reg */
355 	u16 b1_ambpresent0;			/* Branch 1, Channel 8 */
356 	u16 b1_ambpresent1;			/* Branch 1, Channel 1 */
357 
358 	/* DIMM information matrix, allocating architecture maximums */
359 	struct i5400_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
360 
361 	/* Actual values for this controller */
362 	int maxch;				/* Max channels */
363 	int maxdimmperch;			/* Max DIMMs per channel */
364 };
365 
366 /* I5400 MCH error information retrieved from Hardware */
367 struct i5400_error_info {
368 	/* These registers are always read from the MC */
369 	u32 ferr_fat_fbd;	/* First Errors Fatal */
370 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
371 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
372 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
373 
374 	/* These registers are input ONLY if there was a Recoverable Error */
375 	u32 redmemb;		/* Recoverable Mem Data Error log B */
376 	u16 recmema;		/* Recoverable Mem Error log A */
377 	u32 recmemb;		/* Recoverable Mem Error log B */
378 
379 	/* These registers are input ONLY if there was a Non-Rec Error */
380 	u16 nrecmema;		/* Non-Recoverable Mem log A */
381 	u16 nrecmemb;		/* Non-Recoverable Mem log B */
382 
383 };
384 
385 /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
386    5400 better to use an inline function than a macro in this case */
387 static inline int nrec_bank(struct i5400_error_info *info)
388 {
389 	return ((info->nrecmema) >> 12) & 0x7;
390 }
391 static inline int nrec_rank(struct i5400_error_info *info)
392 {
393 	return ((info->nrecmema) >> 8) & 0xf;
394 }
395 static inline int nrec_buf_id(struct i5400_error_info *info)
396 {
397 	return ((info->nrecmema)) & 0xff;
398 }
399 static inline int nrec_rdwr(struct i5400_error_info *info)
400 {
401 	return (info->nrecmemb) >> 31;
402 }
403 /* This applies to both NREC and REC string so it can be used with nrec_rdwr
404    and rec_rdwr */
405 static inline const char *rdwr_str(int rdwr)
406 {
407 	return rdwr ? "Write" : "Read";
408 }
409 static inline int nrec_cas(struct i5400_error_info *info)
410 {
411 	return ((info->nrecmemb) >> 16) & 0x1fff;
412 }
413 static inline int nrec_ras(struct i5400_error_info *info)
414 {
415 	return (info->nrecmemb) & 0xffff;
416 }
417 static inline int rec_bank(struct i5400_error_info *info)
418 {
419 	return ((info->recmema) >> 12) & 0x7;
420 }
421 static inline int rec_rank(struct i5400_error_info *info)
422 {
423 	return ((info->recmema) >> 8) & 0xf;
424 }
425 static inline int rec_rdwr(struct i5400_error_info *info)
426 {
427 	return (info->recmemb) >> 31;
428 }
429 static inline int rec_cas(struct i5400_error_info *info)
430 {
431 	return ((info->recmemb) >> 16) & 0x1fff;
432 }
433 static inline int rec_ras(struct i5400_error_info *info)
434 {
435 	return (info->recmemb) & 0xffff;
436 }
437 
438 static struct edac_pci_ctl_info *i5400_pci;
439 
440 /*
441  *	i5400_get_error_info	Retrieve the hardware error information from
442  *				the hardware and cache it in the 'info'
443  *				structure
444  */
445 static void i5400_get_error_info(struct mem_ctl_info *mci,
446 				 struct i5400_error_info *info)
447 {
448 	struct i5400_pvt *pvt;
449 	u32 value;
450 
451 	pvt = mci->pvt_info;
452 
453 	/* read in the 1st FATAL error register */
454 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
455 
456 	/* Mask only the bits that the doc says are valid
457 	 */
458 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
459 
460 	/* If there is an error, then read in the
461 	   NEXT FATAL error register and the Memory Error Log Register A
462 	 */
463 	if (value & FERR_FAT_MASK) {
464 		info->ferr_fat_fbd = value;
465 
466 		/* harvest the various error data we need */
467 		pci_read_config_dword(pvt->branchmap_werrors,
468 				NERR_FAT_FBD, &info->nerr_fat_fbd);
469 		pci_read_config_word(pvt->branchmap_werrors,
470 				NRECMEMA, &info->nrecmema);
471 		pci_read_config_word(pvt->branchmap_werrors,
472 				NRECMEMB, &info->nrecmemb);
473 
474 		/* Clear the error bits, by writing them back */
475 		pci_write_config_dword(pvt->branchmap_werrors,
476 				FERR_FAT_FBD, value);
477 	} else {
478 		info->ferr_fat_fbd = 0;
479 		info->nerr_fat_fbd = 0;
480 		info->nrecmema = 0;
481 		info->nrecmemb = 0;
482 	}
483 
484 	/* read in the 1st NON-FATAL error register */
485 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
486 
487 	/* If there is an error, then read in the 1st NON-FATAL error
488 	 * register as well */
489 	if (value & FERR_NF_MASK) {
490 		info->ferr_nf_fbd = value;
491 
492 		/* harvest the various error data we need */
493 		pci_read_config_dword(pvt->branchmap_werrors,
494 				NERR_NF_FBD, &info->nerr_nf_fbd);
495 		pci_read_config_word(pvt->branchmap_werrors,
496 				RECMEMA, &info->recmema);
497 		pci_read_config_dword(pvt->branchmap_werrors,
498 				RECMEMB, &info->recmemb);
499 		pci_read_config_dword(pvt->branchmap_werrors,
500 				REDMEMB, &info->redmemb);
501 
502 		/* Clear the error bits, by writing them back */
503 		pci_write_config_dword(pvt->branchmap_werrors,
504 				FERR_NF_FBD, value);
505 	} else {
506 		info->ferr_nf_fbd = 0;
507 		info->nerr_nf_fbd = 0;
508 		info->recmema = 0;
509 		info->recmemb = 0;
510 		info->redmemb = 0;
511 	}
512 }
513 
514 /*
515  * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
516  * 					struct i5400_error_info *info,
517  * 					int handle_errors);
518  *
519  *	handle the Intel FATAL and unrecoverable errors, if any
520  */
521 static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
522 				    struct i5400_error_info *info,
523 				    unsigned long allErrors)
524 {
525 	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
526 	int branch;
527 	int channel;
528 	int bank;
529 	int buf_id;
530 	int rank;
531 	int rdwr;
532 	int ras, cas;
533 	int errnum;
534 	char *type = NULL;
535 
536 	if (!allErrors)
537 		return;		/* if no error, return now */
538 
539 	if (allErrors &  ERROR_FAT_MASK)
540 		type = "FATAL";
541 	else if (allErrors & FERR_NF_UNCORRECTABLE)
542 		type = "NON-FATAL uncorrected";
543 	else
544 		type = "NON-FATAL recoverable";
545 
546 	/* ONLY ONE of the possible error bits will be set, as per the docs */
547 
548 	branch = extract_fbdchan_indx(info->ferr_fat_fbd);
549 	channel = branch;
550 
551 	/* Use the NON-Recoverable macros to extract data */
552 	bank = nrec_bank(info);
553 	rank = nrec_rank(info);
554 	buf_id = nrec_buf_id(info);
555 	rdwr = nrec_rdwr(info);
556 	ras = nrec_ras(info);
557 	cas = nrec_cas(info);
558 
559 	debugf0("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
560 		"DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
561 		rank, channel, channel + 1, branch >> 1, bank,
562 		buf_id, rdwr_str(rdwr), ras, cas);
563 
564 	/* Only 1 bit will be on */
565 	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
566 
567 	/* Form out message */
568 	snprintf(msg, sizeof(msg),
569 		 "%s (Branch=%d DRAM-Bank=%d Buffer ID = %d RDWR=%s "
570 		 "RAS=%d CAS=%d %s Err=0x%lx (%s))",
571 		 type, branch >> 1, bank, buf_id, rdwr_str(rdwr), ras, cas,
572 		 type, allErrors, error_name[errnum]);
573 
574 	/* Call the helper to output message */
575 	edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
576 }
577 
578 /*
579  * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
580  * 				struct i5400_error_info *info,
581  * 				int handle_errors);
582  *
583  *	handle the Intel NON-FATAL errors, if any
584  */
585 static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
586 					struct i5400_error_info *info)
587 {
588 	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
589 	unsigned long allErrors;
590 	int branch;
591 	int channel;
592 	int bank;
593 	int rank;
594 	int rdwr;
595 	int ras, cas;
596 	int errnum;
597 
598 	/* mask off the Error bits that are possible */
599 	allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
600 	if (!allErrors)
601 		return;		/* if no error, return now */
602 
603 	/* ONLY ONE of the possible error bits will be set, as per the docs */
604 
605 	if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
606 		i5400_proccess_non_recoverable_info(mci, info, allErrors);
607 		return;
608 	}
609 
610 	/* Correctable errors */
611 	if (allErrors & ERROR_NF_CORRECTABLE) {
612 		debugf0("\tCorrected bits= 0x%lx\n", allErrors);
613 
614 		branch = extract_fbdchan_indx(info->ferr_nf_fbd);
615 
616 		channel = 0;
617 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
618 			channel = 1;
619 
620 		/* Convert channel to be based from zero, instead of
621 		 * from branch base of 0 */
622 		channel += branch;
623 
624 		bank = rec_bank(info);
625 		rank = rec_rank(info);
626 		rdwr = rec_rdwr(info);
627 		ras = rec_ras(info);
628 		cas = rec_cas(info);
629 
630 		/* Only 1 bit will be on */
631 		errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
632 
633 		debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
634 			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
635 			rank, channel, branch >> 1, bank,
636 			rdwr_str(rdwr), ras, cas);
637 
638 		/* Form out message */
639 		snprintf(msg, sizeof(msg),
640 			 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
641 			 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
642 			 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
643 			 allErrors, error_name[errnum]);
644 
645 		/* Call the helper to output message */
646 		edac_mc_handle_fbd_ce(mci, rank, channel, msg);
647 
648 		return;
649 	}
650 
651 	/* Miscellaneous errors */
652 	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
653 
654 	branch = extract_fbdchan_indx(info->ferr_nf_fbd);
655 
656 	i5400_mc_printk(mci, KERN_EMERG,
657 			"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
658 			branch >> 1, allErrors, error_name[errnum]);
659 }
660 
661 /*
662  *	i5400_process_error_info	Process the error info that is
663  *	in the 'info' structure, previously retrieved from hardware
664  */
665 static void i5400_process_error_info(struct mem_ctl_info *mci,
666 				struct i5400_error_info *info)
667 {	u32 allErrors;
668 
669 	/* First handle any fatal errors that occurred */
670 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
671 	i5400_proccess_non_recoverable_info(mci, info, allErrors);
672 
673 	/* now handle any non-fatal errors that occurred */
674 	i5400_process_nonfatal_error_info(mci, info);
675 }
676 
677 /*
678  *	i5400_clear_error	Retrieve any error from the hardware
679  *				but do NOT process that error.
680  *				Used for 'clearing' out of previous errors
681  *				Called by the Core module.
682  */
683 static void i5400_clear_error(struct mem_ctl_info *mci)
684 {
685 	struct i5400_error_info info;
686 
687 	i5400_get_error_info(mci, &info);
688 }
689 
690 /*
691  *	i5400_check_error	Retrieve and process errors reported by the
692  *				hardware. Called by the Core module.
693  */
694 static void i5400_check_error(struct mem_ctl_info *mci)
695 {
696 	struct i5400_error_info info;
697 	debugf4("MC%d: %s: %s()\n", mci->mc_idx, __FILE__, __func__);
698 	i5400_get_error_info(mci, &info);
699 	i5400_process_error_info(mci, &info);
700 }
701 
702 /*
703  *	i5400_put_devices	'put' all the devices that we have
704  *				reserved via 'get'
705  */
706 static void i5400_put_devices(struct mem_ctl_info *mci)
707 {
708 	struct i5400_pvt *pvt;
709 
710 	pvt = mci->pvt_info;
711 
712 	/* Decrement usage count for devices */
713 	pci_dev_put(pvt->branch_1);
714 	pci_dev_put(pvt->branch_0);
715 	pci_dev_put(pvt->fsb_error_regs);
716 	pci_dev_put(pvt->branchmap_werrors);
717 }
718 
719 /*
720  *	i5400_get_devices	Find and perform 'get' operation on the MCH's
721  *			device/functions we want to reference for this driver
722  *
723  *			Need to 'get' device 16 func 1 and func 2
724  */
725 static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
726 {
727 	struct i5400_pvt *pvt;
728 	struct pci_dev *pdev;
729 
730 	pvt = mci->pvt_info;
731 	pvt->branchmap_werrors = NULL;
732 	pvt->fsb_error_regs = NULL;
733 	pvt->branch_0 = NULL;
734 	pvt->branch_1 = NULL;
735 
736 	/* Attempt to 'get' the MCH register we want */
737 	pdev = NULL;
738 	while (1) {
739 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
740 				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
741 		if (!pdev) {
742 			/* End of list, leave */
743 			i5400_printk(KERN_ERR,
744 				"'system address,Process Bus' "
745 				"device not found:"
746 				"vendor 0x%x device 0x%x ERR func 1 "
747 				"(broken BIOS?)\n",
748 				PCI_VENDOR_ID_INTEL,
749 				PCI_DEVICE_ID_INTEL_5400_ERR);
750 			return -ENODEV;
751 		}
752 
753 		/* Store device 16 func 1 */
754 		if (PCI_FUNC(pdev->devfn) == 1)
755 			break;
756 	}
757 	pvt->branchmap_werrors = pdev;
758 
759 	pdev = NULL;
760 	while (1) {
761 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
762 				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
763 		if (!pdev) {
764 			/* End of list, leave */
765 			i5400_printk(KERN_ERR,
766 				"'system address,Process Bus' "
767 				"device not found:"
768 				"vendor 0x%x device 0x%x ERR func 2 "
769 				"(broken BIOS?)\n",
770 				PCI_VENDOR_ID_INTEL,
771 				PCI_DEVICE_ID_INTEL_5400_ERR);
772 
773 			pci_dev_put(pvt->branchmap_werrors);
774 			return -ENODEV;
775 		}
776 
777 		/* Store device 16 func 2 */
778 		if (PCI_FUNC(pdev->devfn) == 2)
779 			break;
780 	}
781 	pvt->fsb_error_regs = pdev;
782 
783 	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
784 		pci_name(pvt->system_address),
785 		pvt->system_address->vendor, pvt->system_address->device);
786 	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
787 		pci_name(pvt->branchmap_werrors),
788 		pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
789 	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
790 		pci_name(pvt->fsb_error_regs),
791 		pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
792 
793 	pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
794 				       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
795 	if (!pvt->branch_0) {
796 		i5400_printk(KERN_ERR,
797 			"MC: 'BRANCH 0' device not found:"
798 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
799 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
800 
801 		pci_dev_put(pvt->fsb_error_regs);
802 		pci_dev_put(pvt->branchmap_werrors);
803 		return -ENODEV;
804 	}
805 
806 	/* If this device claims to have more than 2 channels then
807 	 * fetch Branch 1's information
808 	 */
809 	if (pvt->maxch < CHANNELS_PER_BRANCH)
810 		return 0;
811 
812 	pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
813 				       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
814 	if (!pvt->branch_1) {
815 		i5400_printk(KERN_ERR,
816 			"MC: 'BRANCH 1' device not found:"
817 			"vendor 0x%x device 0x%x Func 0 "
818 			"(broken BIOS?)\n",
819 			PCI_VENDOR_ID_INTEL,
820 			PCI_DEVICE_ID_INTEL_5400_FBD1);
821 
822 		pci_dev_put(pvt->branch_0);
823 		pci_dev_put(pvt->fsb_error_regs);
824 		pci_dev_put(pvt->branchmap_werrors);
825 		return -ENODEV;
826 	}
827 
828 	return 0;
829 }
830 
831 /*
832  *	determine_amb_present
833  *
834  *		the information is contained in NUM_MTRS_PER_BRANCH different
835  *		registers determining which of the NUM_MTRS_PER_BRANCH requires
836  *              knowing which channel is in question
837  *
838  *	2 branches, each with 2 channels
839  *		b0_ambpresent0 for channel '0'
840  *		b0_ambpresent1 for channel '1'
841  *		b1_ambpresent0 for channel '2'
842  *		b1_ambpresent1 for channel '3'
843  */
844 static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
845 {
846 	int amb_present;
847 
848 	if (channel < CHANNELS_PER_BRANCH) {
849 		if (channel & 0x1)
850 			amb_present = pvt->b0_ambpresent1;
851 		else
852 			amb_present = pvt->b0_ambpresent0;
853 	} else {
854 		if (channel & 0x1)
855 			amb_present = pvt->b1_ambpresent1;
856 		else
857 			amb_present = pvt->b1_ambpresent0;
858 	}
859 
860 	return amb_present;
861 }
862 
863 /*
864  * determine_mtr(pvt, csrow, channel)
865  *
866  * return the proper MTR register as determine by the csrow and desired channel
867  */
868 static int determine_mtr(struct i5400_pvt *pvt, int csrow, int channel)
869 {
870 	int mtr;
871 	int n;
872 
873 	/* There is one MTR for each slot pair of FB-DIMMs,
874 	   Each slot pair may be at branch 0 or branch 1.
875 	 */
876 	n = csrow;
877 
878 	if (n >= NUM_MTRS_PER_BRANCH) {
879 		debugf0("ERROR: trying to access an invalid csrow: %d\n",
880 			csrow);
881 		return 0;
882 	}
883 
884 	if (channel < CHANNELS_PER_BRANCH)
885 		mtr = pvt->b0_mtr[n];
886 	else
887 		mtr = pvt->b1_mtr[n];
888 
889 	return mtr;
890 }
891 
892 /*
893  */
894 static void decode_mtr(int slot_row, u16 mtr)
895 {
896 	int ans;
897 
898 	ans = MTR_DIMMS_PRESENT(mtr);
899 
900 	debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
901 		ans ? "Present" : "NOT Present");
902 	if (!ans)
903 		return;
904 
905 	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
906 
907 	debugf2("\t\tELECTRICAL THROTTLING is %s\n",
908 		MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
909 
910 	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
911 	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
912 	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
913 	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
914 }
915 
916 static void handle_channel(struct i5400_pvt *pvt, int csrow, int channel,
917 			struct i5400_dimm_info *dinfo)
918 {
919 	int mtr;
920 	int amb_present_reg;
921 	int addrBits;
922 
923 	mtr = determine_mtr(pvt, csrow, channel);
924 	if (MTR_DIMMS_PRESENT(mtr)) {
925 		amb_present_reg = determine_amb_present_reg(pvt, channel);
926 
927 		/* Determine if there is a DIMM present in this DIMM slot */
928 		if (amb_present_reg & (1 << csrow)) {
929 			/* Start with the number of bits for a Bank
930 			 * on the DRAM */
931 			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
932 			/* Add thenumber of ROW bits */
933 			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
934 			/* add the number of COLUMN bits */
935 			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
936 			/* add the number of RANK bits */
937 			addrBits += MTR_DIMM_RANK(mtr);
938 
939 			addrBits += 6;	/* add 64 bits per DIMM */
940 			addrBits -= 20;	/* divide by 2^^20 */
941 			addrBits -= 3;	/* 8 bits per bytes */
942 
943 			dinfo->megabytes = 1 << addrBits;
944 		}
945 	}
946 }
947 
948 /*
949  *	calculate_dimm_size
950  *
951  *	also will output a DIMM matrix map, if debug is enabled, for viewing
952  *	how the DIMMs are populated
953  */
954 static void calculate_dimm_size(struct i5400_pvt *pvt)
955 {
956 	struct i5400_dimm_info *dinfo;
957 	int csrow, max_csrows;
958 	char *p, *mem_buffer;
959 	int space, n;
960 	int channel;
961 
962 	/* ================= Generate some debug output ================= */
963 	space = PAGE_SIZE;
964 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
965 	if (p == NULL) {
966 		i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
967 			__FILE__, __func__);
968 		return;
969 	}
970 
971 	/* Scan all the actual CSROWS
972 	 * and calculate the information for each DIMM
973 	 * Start with the highest csrow first, to display it first
974 	 * and work toward the 0th csrow
975 	 */
976 	max_csrows = pvt->maxdimmperch;
977 	for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
978 
979 		/* on an odd csrow, first output a 'boundary' marker,
980 		 * then reset the message buffer  */
981 		if (csrow & 0x1) {
982 			n = snprintf(p, space, "---------------------------"
983 					"--------------------------------");
984 			p += n;
985 			space -= n;
986 			debugf2("%s\n", mem_buffer);
987 			p = mem_buffer;
988 			space = PAGE_SIZE;
989 		}
990 		n = snprintf(p, space, "csrow %2d    ", csrow);
991 		p += n;
992 		space -= n;
993 
994 		for (channel = 0; channel < pvt->maxch; channel++) {
995 			dinfo = &pvt->dimm_info[csrow][channel];
996 			handle_channel(pvt, csrow, channel, dinfo);
997 			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
998 			p += n;
999 			space -= n;
1000 		}
1001 		debugf2("%s\n", mem_buffer);
1002 		p = mem_buffer;
1003 		space = PAGE_SIZE;
1004 	}
1005 
1006 	/* Output the last bottom 'boundary' marker */
1007 	n = snprintf(p, space, "---------------------------"
1008 			"--------------------------------");
1009 	p += n;
1010 	space -= n;
1011 	debugf2("%s\n", mem_buffer);
1012 	p = mem_buffer;
1013 	space = PAGE_SIZE;
1014 
1015 	/* now output the 'channel' labels */
1016 	n = snprintf(p, space, "            ");
1017 	p += n;
1018 	space -= n;
1019 	for (channel = 0; channel < pvt->maxch; channel++) {
1020 		n = snprintf(p, space, "channel %d | ", channel);
1021 		p += n;
1022 		space -= n;
1023 	}
1024 
1025 	/* output the last message and free buffer */
1026 	debugf2("%s\n", mem_buffer);
1027 	kfree(mem_buffer);
1028 }
1029 
1030 /*
1031  *	i5400_get_mc_regs	read in the necessary registers and
1032  *				cache locally
1033  *
1034  *			Fills in the private data members
1035  */
1036 static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1037 {
1038 	struct i5400_pvt *pvt;
1039 	u32 actual_tolm;
1040 	u16 limit;
1041 	int slot_row;
1042 	int maxch;
1043 	int maxdimmperch;
1044 	int way0, way1;
1045 
1046 	pvt = mci->pvt_info;
1047 
1048 	pci_read_config_dword(pvt->system_address, AMBASE,
1049 			(u32 *) &pvt->ambase);
1050 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1051 			((u32 *) &pvt->ambase) + sizeof(u32));
1052 
1053 	maxdimmperch = pvt->maxdimmperch;
1054 	maxch = pvt->maxch;
1055 
1056 	debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1057 		(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1058 
1059 	/* Get the Branch Map regs */
1060 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1061 	pvt->tolm >>= 12;
1062 	debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1063 		pvt->tolm);
1064 
1065 	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1066 	debugf2("Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1067 		actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1068 
1069 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1070 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1071 
1072 	/* Get the MIR[0-1] regs */
1073 	limit = (pvt->mir0 >> 4) & 0x0fff;
1074 	way0 = pvt->mir0 & 0x1;
1075 	way1 = pvt->mir0 & 0x2;
1076 	debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1077 	limit = (pvt->mir1 >> 4) & 0xfff;
1078 	way0 = pvt->mir1 & 0x1;
1079 	way1 = pvt->mir1 & 0x2;
1080 	debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1081 
1082 	/* Get the set of MTR[0-3] regs by each branch */
1083 	for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++) {
1084 		int where = MTR0 + (slot_row * sizeof(u16));
1085 
1086 		/* Branch 0 set of MTR registers */
1087 		pci_read_config_word(pvt->branch_0, where,
1088 				&pvt->b0_mtr[slot_row]);
1089 
1090 		debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1091 			pvt->b0_mtr[slot_row]);
1092 
1093 		if (pvt->maxch < CHANNELS_PER_BRANCH) {
1094 			pvt->b1_mtr[slot_row] = 0;
1095 			continue;
1096 		}
1097 
1098 		/* Branch 1 set of MTR registers */
1099 		pci_read_config_word(pvt->branch_1, where,
1100 				&pvt->b1_mtr[slot_row]);
1101 		debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row, where,
1102 			pvt->b1_mtr[slot_row]);
1103 	}
1104 
1105 	/* Read and dump branch 0's MTRs */
1106 	debugf2("\nMemory Technology Registers:\n");
1107 	debugf2("   Branch 0:\n");
1108 	for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1109 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1110 
1111 	pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1112 			&pvt->b0_ambpresent0);
1113 	debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1114 	pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1115 			&pvt->b0_ambpresent1);
1116 	debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1117 
1118 	/* Only if we have 2 branchs (4 channels) */
1119 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1120 		pvt->b1_ambpresent0 = 0;
1121 		pvt->b1_ambpresent1 = 0;
1122 	} else {
1123 		/* Read and dump  branch 1's MTRs */
1124 		debugf2("   Branch 1:\n");
1125 		for (slot_row = 0; slot_row < NUM_MTRS_PER_BRANCH; slot_row++)
1126 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1127 
1128 		pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1129 				&pvt->b1_ambpresent0);
1130 		debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1131 			pvt->b1_ambpresent0);
1132 		pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1133 				&pvt->b1_ambpresent1);
1134 		debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1135 			pvt->b1_ambpresent1);
1136 	}
1137 
1138 	/* Go and determine the size of each DIMM and place in an
1139 	 * orderly matrix */
1140 	calculate_dimm_size(pvt);
1141 }
1142 
1143 /*
1144  *	i5400_init_csrows	Initialize the 'csrows' table within
1145  *				the mci control	structure with the
1146  *				addressing of memory.
1147  *
1148  *	return:
1149  *		0	success
1150  *		1	no actual memory found on this MC
1151  */
1152 static int i5400_init_csrows(struct mem_ctl_info *mci)
1153 {
1154 	struct i5400_pvt *pvt;
1155 	struct csrow_info *p_csrow;
1156 	int empty, channel_count;
1157 	int max_csrows;
1158 	int mtr;
1159 	int csrow_megs;
1160 	int channel;
1161 	int csrow;
1162 
1163 	pvt = mci->pvt_info;
1164 
1165 	channel_count = pvt->maxch;
1166 	max_csrows = pvt->maxdimmperch;
1167 
1168 	empty = 1;		/* Assume NO memory */
1169 
1170 	for (csrow = 0; csrow < max_csrows; csrow++) {
1171 		p_csrow = &mci->csrows[csrow];
1172 
1173 		p_csrow->csrow_idx = csrow;
1174 
1175 		/* use branch 0 for the basis */
1176 		mtr = determine_mtr(pvt, csrow, 0);
1177 
1178 		/* if no DIMMS on this row, continue */
1179 		if (!MTR_DIMMS_PRESENT(mtr))
1180 			continue;
1181 
1182 		/* FAKE OUT VALUES, FIXME */
1183 		p_csrow->first_page = 0 + csrow * 20;
1184 		p_csrow->last_page = 9 + csrow * 20;
1185 		p_csrow->page_mask = 0xFFF;
1186 
1187 		p_csrow->grain = 8;
1188 
1189 		csrow_megs = 0;
1190 		for (channel = 0; channel < pvt->maxch; channel++)
1191 			csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1192 
1193 		p_csrow->nr_pages = csrow_megs << 8;
1194 
1195 		/* Assume DDR2 for now */
1196 		p_csrow->mtype = MEM_FB_DDR2;
1197 
1198 		/* ask what device type on this row */
1199 		if (MTR_DRAM_WIDTH(mtr))
1200 			p_csrow->dtype = DEV_X8;
1201 		else
1202 			p_csrow->dtype = DEV_X4;
1203 
1204 		p_csrow->edac_mode = EDAC_S8ECD8ED;
1205 
1206 		empty = 0;
1207 	}
1208 
1209 	return empty;
1210 }
1211 
1212 /*
1213  *	i5400_enable_error_reporting
1214  *			Turn on the memory reporting features of the hardware
1215  */
1216 static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1217 {
1218 	struct i5400_pvt *pvt;
1219 	u32 fbd_error_mask;
1220 
1221 	pvt = mci->pvt_info;
1222 
1223 	/* Read the FBD Error Mask Register */
1224 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1225 			&fbd_error_mask);
1226 
1227 	/* Enable with a '0' */
1228 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1229 
1230 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1231 			fbd_error_mask);
1232 }
1233 
1234 /*
1235  *	i5400_probe1	Probe for ONE instance of device to see if it is
1236  *			present.
1237  *	return:
1238  *		0 for FOUND a device
1239  *		< 0 for error code
1240  */
1241 static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1242 {
1243 	struct mem_ctl_info *mci;
1244 	struct i5400_pvt *pvt;
1245 	int num_channels;
1246 	int num_dimms_per_channel;
1247 	int num_csrows;
1248 
1249 	if (dev_idx >= ARRAY_SIZE(i5400_devs))
1250 		return -EINVAL;
1251 
1252 	debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1253 		__FILE__, __func__,
1254 		pdev->bus->number,
1255 		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1256 
1257 	/* We only are looking for func 0 of the set */
1258 	if (PCI_FUNC(pdev->devfn) != 0)
1259 		return -ENODEV;
1260 
1261 	/* As we don't have a motherboard identification routine to determine
1262 	 * actual number of slots/dimms per channel, we thus utilize the
1263 	 * resource as specified by the chipset. Thus, we might have
1264 	 * have more DIMMs per channel than actually on the mobo, but this
1265 	 * allows the driver to support up to the chipset max, without
1266 	 * some fancy mobo determination.
1267 	 */
1268 	num_dimms_per_channel = MAX_DIMMS_PER_CHANNEL;
1269 	num_channels = MAX_CHANNELS;
1270 	num_csrows = num_dimms_per_channel;
1271 
1272 	debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
1273 		__func__, num_channels, num_dimms_per_channel, num_csrows);
1274 
1275 	/* allocate a new MC control structure */
1276 	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1277 
1278 	if (mci == NULL)
1279 		return -ENOMEM;
1280 
1281 	debugf0("MC: %s: %s(): mci = %p\n", __FILE__, __func__, mci);
1282 
1283 	mci->dev = &pdev->dev;	/* record ptr  to the generic device */
1284 
1285 	pvt = mci->pvt_info;
1286 	pvt->system_address = pdev;	/* Record this device in our private */
1287 	pvt->maxch = num_channels;
1288 	pvt->maxdimmperch = num_dimms_per_channel;
1289 
1290 	/* 'get' the pci devices we want to reserve for our use */
1291 	if (i5400_get_devices(mci, dev_idx))
1292 		goto fail0;
1293 
1294 	/* Time to get serious */
1295 	i5400_get_mc_regs(mci);	/* retrieve the hardware registers */
1296 
1297 	mci->mc_idx = 0;
1298 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1299 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1300 	mci->edac_cap = EDAC_FLAG_NONE;
1301 	mci->mod_name = "i5400_edac.c";
1302 	mci->mod_ver = I5400_REVISION;
1303 	mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1304 	mci->dev_name = pci_name(pdev);
1305 	mci->ctl_page_to_phys = NULL;
1306 
1307 	/* Set the function pointer to an actual operation function */
1308 	mci->edac_check = i5400_check_error;
1309 
1310 	/* initialize the MC control structure 'csrows' table
1311 	 * with the mapping and control information */
1312 	if (i5400_init_csrows(mci)) {
1313 		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1314 			"    because i5400_init_csrows() returned nonzero "
1315 			"value\n");
1316 		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1317 	} else {
1318 		debugf1("MC: Enable error reporting now\n");
1319 		i5400_enable_error_reporting(mci);
1320 	}
1321 
1322 	/* add this new MC control structure to EDAC's list of MCs */
1323 	if (edac_mc_add_mc(mci)) {
1324 		debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n",
1325 			__FILE__, __func__);
1326 		/* FIXME: perhaps some code should go here that disables error
1327 		 * reporting if we just enabled it
1328 		 */
1329 		goto fail1;
1330 	}
1331 
1332 	i5400_clear_error(mci);
1333 
1334 	/* allocating generic PCI control info */
1335 	i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1336 	if (!i5400_pci) {
1337 		printk(KERN_WARNING
1338 			"%s(): Unable to create PCI control\n",
1339 			__func__);
1340 		printk(KERN_WARNING
1341 			"%s(): PCI error report via EDAC not setup\n",
1342 			__func__);
1343 	}
1344 
1345 	return 0;
1346 
1347 	/* Error exit unwinding stack */
1348 fail1:
1349 
1350 	i5400_put_devices(mci);
1351 
1352 fail0:
1353 	edac_mc_free(mci);
1354 	return -ENODEV;
1355 }
1356 
1357 /*
1358  *	i5400_init_one	constructor for one instance of device
1359  *
1360  * 	returns:
1361  *		negative on error
1362  *		count (>= 0)
1363  */
1364 static int __devinit i5400_init_one(struct pci_dev *pdev,
1365 				const struct pci_device_id *id)
1366 {
1367 	int rc;
1368 
1369 	debugf0("MC: %s: %s()\n", __FILE__, __func__);
1370 
1371 	/* wake up device */
1372 	rc = pci_enable_device(pdev);
1373 	if (rc)
1374 		return rc;
1375 
1376 	/* now probe and enable the device */
1377 	return i5400_probe1(pdev, id->driver_data);
1378 }
1379 
1380 /*
1381  *	i5400_remove_one	destructor for one instance of device
1382  *
1383  */
1384 static void __devexit i5400_remove_one(struct pci_dev *pdev)
1385 {
1386 	struct mem_ctl_info *mci;
1387 
1388 	debugf0("%s: %s()\n", __FILE__, __func__);
1389 
1390 	if (i5400_pci)
1391 		edac_pci_release_generic_ctl(i5400_pci);
1392 
1393 	mci = edac_mc_del_mc(&pdev->dev);
1394 	if (!mci)
1395 		return;
1396 
1397 	/* retrieve references to resources, and free those resources */
1398 	i5400_put_devices(mci);
1399 
1400 	edac_mc_free(mci);
1401 }
1402 
1403 /*
1404  *	pci_device_id	table for which devices we are looking for
1405  *
1406  *	The "E500P" device is the first device supported.
1407  */
1408 static DEFINE_PCI_DEVICE_TABLE(i5400_pci_tbl) = {
1409 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1410 	{0,}			/* 0 terminated list. */
1411 };
1412 
1413 MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1414 
1415 /*
1416  *	i5400_driver	pci_driver structure for this module
1417  *
1418  */
1419 static struct pci_driver i5400_driver = {
1420 	.name = "i5400_edac",
1421 	.probe = i5400_init_one,
1422 	.remove = __devexit_p(i5400_remove_one),
1423 	.id_table = i5400_pci_tbl,
1424 };
1425 
1426 /*
1427  *	i5400_init		Module entry function
1428  *			Try to initialize this module for its devices
1429  */
1430 static int __init i5400_init(void)
1431 {
1432 	int pci_rc;
1433 
1434 	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1435 
1436 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1437 	opstate_init();
1438 
1439 	pci_rc = pci_register_driver(&i5400_driver);
1440 
1441 	return (pci_rc < 0) ? pci_rc : 0;
1442 }
1443 
1444 /*
1445  *	i5400_exit()	Module exit function
1446  *			Unregister the driver
1447  */
1448 static void __exit i5400_exit(void)
1449 {
1450 	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1451 	pci_unregister_driver(&i5400_driver);
1452 }
1453 
1454 module_init(i5400_init);
1455 module_exit(i5400_exit);
1456 
1457 MODULE_LICENSE("GPL");
1458 MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1459 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1460 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1461 MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1462 		   I5400_REVISION);
1463 
1464 module_param(edac_op_state, int, 0444);
1465 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1466