xref: /openbmc/linux/drivers/edac/i5000_edac.c (revision cd238eff)
1 /*
2  * Intel 5000(P/V/X) class Memory Controllers kernel module
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8  *	norsk5@xmission.com
9  *
10  * This module is based on the following document:
11  *
12  * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
24 
25 #include "edac_module.h"
26 
27 /*
28  * Alter this version for the I5000 module when modifications are made
29  */
30 #define I5000_REVISION    " Ver: 2.0.12"
31 #define EDAC_MOD_STR      "i5000_edac"
32 
33 #define i5000_printk(level, fmt, arg...) \
34         edac_printk(level, "i5000", fmt, ##arg)
35 
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37         edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38 
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
41 #endif
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
44 #endif
45 
46 /* Device 16,
47  * Function 0: System Address
48  * Function 1: Memory Branch Map, Control, Errors Register
49  * Function 2: FSB Error Registers
50  *
51  * All 3 functions of Device 16 (0,1,2) share the SAME DID
52  */
53 #define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
54 
55 /* OFFSETS for Function 0 */
56 
57 /* OFFSETS for Function 1 */
58 #define		AMBASE			0x48
59 #define		MAXCH			0x56
60 #define		MAXDIMMPERCH		0x57
61 #define		TOLM			0x6C
62 #define		REDMEMB			0x7C
63 #define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
64 #define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
65 #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
66 #define		MIR0			0x80
67 #define		MIR1			0x84
68 #define		MIR2			0x88
69 #define		AMIR0			0x8C
70 #define		AMIR1			0x90
71 #define		AMIR2			0x94
72 
73 #define		FERR_FAT_FBD		0x98
74 #define		NERR_FAT_FBD		0x9C
75 #define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
76 #define			FERR_FAT_FBDCHAN 0x30000000
77 #define			FERR_FAT_M3ERR	0x00000004
78 #define			FERR_FAT_M2ERR	0x00000002
79 #define			FERR_FAT_M1ERR	0x00000001
80 #define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
81 						FERR_FAT_M2ERR | \
82 						FERR_FAT_M3ERR)
83 
84 #define		FERR_NF_FBD		0xA0
85 
86 /* Thermal and SPD or BFD errors */
87 #define			FERR_NF_M28ERR	0x01000000
88 #define			FERR_NF_M27ERR	0x00800000
89 #define			FERR_NF_M26ERR	0x00400000
90 #define			FERR_NF_M25ERR	0x00200000
91 #define			FERR_NF_M24ERR	0x00100000
92 #define			FERR_NF_M23ERR	0x00080000
93 #define			FERR_NF_M22ERR	0x00040000
94 #define			FERR_NF_M21ERR	0x00020000
95 
96 /* Correctable errors */
97 #define			FERR_NF_M20ERR	0x00010000
98 #define			FERR_NF_M19ERR	0x00008000
99 #define			FERR_NF_M18ERR	0x00004000
100 #define			FERR_NF_M17ERR	0x00002000
101 
102 /* Non-Retry or redundant Retry errors */
103 #define			FERR_NF_M16ERR	0x00001000
104 #define			FERR_NF_M15ERR	0x00000800
105 #define			FERR_NF_M14ERR	0x00000400
106 #define			FERR_NF_M13ERR	0x00000200
107 
108 /* Uncorrectable errors */
109 #define			FERR_NF_M12ERR	0x00000100
110 #define			FERR_NF_M11ERR	0x00000080
111 #define			FERR_NF_M10ERR	0x00000040
112 #define			FERR_NF_M9ERR	0x00000020
113 #define			FERR_NF_M8ERR	0x00000010
114 #define			FERR_NF_M7ERR	0x00000008
115 #define			FERR_NF_M6ERR	0x00000004
116 #define			FERR_NF_M5ERR	0x00000002
117 #define			FERR_NF_M4ERR	0x00000001
118 
119 #define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
120 							FERR_NF_M11ERR | \
121 							FERR_NF_M10ERR | \
122 							FERR_NF_M9ERR | \
123 							FERR_NF_M8ERR | \
124 							FERR_NF_M7ERR | \
125 							FERR_NF_M6ERR | \
126 							FERR_NF_M5ERR | \
127 							FERR_NF_M4ERR)
128 #define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
129 							FERR_NF_M19ERR | \
130 							FERR_NF_M18ERR | \
131 							FERR_NF_M17ERR)
132 #define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
133 							FERR_NF_M28ERR)
134 #define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
135 							FERR_NF_M25ERR | \
136 							FERR_NF_M24ERR | \
137 							FERR_NF_M23ERR)
138 #define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
139 #define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
140 #define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
141 							FERR_NF_M14ERR | \
142 							FERR_NF_M15ERR)
143 
144 #define		NERR_NF_FBD		0xA4
145 #define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
146 							FERR_NF_CORRECTABLE | \
147 							FERR_NF_DIMM_SPARE | \
148 							FERR_NF_THERMAL | \
149 							FERR_NF_SPD_PROTOCOL | \
150 							FERR_NF_NORTH_CRC | \
151 							FERR_NF_NON_RETRY)
152 
153 #define		EMASK_FBD		0xA8
154 #define			EMASK_FBD_M28ERR	0x08000000
155 #define			EMASK_FBD_M27ERR	0x04000000
156 #define			EMASK_FBD_M26ERR	0x02000000
157 #define			EMASK_FBD_M25ERR	0x01000000
158 #define			EMASK_FBD_M24ERR	0x00800000
159 #define			EMASK_FBD_M23ERR	0x00400000
160 #define			EMASK_FBD_M22ERR	0x00200000
161 #define			EMASK_FBD_M21ERR	0x00100000
162 #define			EMASK_FBD_M20ERR	0x00080000
163 #define			EMASK_FBD_M19ERR	0x00040000
164 #define			EMASK_FBD_M18ERR	0x00020000
165 #define			EMASK_FBD_M17ERR	0x00010000
166 
167 #define			EMASK_FBD_M15ERR	0x00004000
168 #define			EMASK_FBD_M14ERR	0x00002000
169 #define			EMASK_FBD_M13ERR	0x00001000
170 #define			EMASK_FBD_M12ERR	0x00000800
171 #define			EMASK_FBD_M11ERR	0x00000400
172 #define			EMASK_FBD_M10ERR	0x00000200
173 #define			EMASK_FBD_M9ERR		0x00000100
174 #define			EMASK_FBD_M8ERR		0x00000080
175 #define			EMASK_FBD_M7ERR		0x00000040
176 #define			EMASK_FBD_M6ERR		0x00000020
177 #define			EMASK_FBD_M5ERR		0x00000010
178 #define			EMASK_FBD_M4ERR		0x00000008
179 #define			EMASK_FBD_M3ERR		0x00000004
180 #define			EMASK_FBD_M2ERR		0x00000002
181 #define			EMASK_FBD_M1ERR		0x00000001
182 
183 #define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
184 							EMASK_FBD_M2ERR | \
185 							EMASK_FBD_M3ERR)
186 
187 #define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
188 							EMASK_FBD_M5ERR | \
189 							EMASK_FBD_M6ERR | \
190 							EMASK_FBD_M7ERR | \
191 							EMASK_FBD_M8ERR | \
192 							EMASK_FBD_M9ERR | \
193 							EMASK_FBD_M10ERR | \
194 							EMASK_FBD_M11ERR | \
195 							EMASK_FBD_M12ERR)
196 #define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
197 							EMASK_FBD_M18ERR | \
198 							EMASK_FBD_M19ERR | \
199 							EMASK_FBD_M20ERR)
200 #define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
201 							EMASK_FBD_M28ERR)
202 #define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
203 							EMASK_FBD_M25ERR | \
204 							EMASK_FBD_M24ERR | \
205 							EMASK_FBD_M23ERR)
206 #define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
207 #define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
208 #define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
209 							EMASK_FBD_M14ERR | \
210 							EMASK_FBD_M13ERR)
211 
212 #define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
213 					ENABLE_EMASK_FBD_NORTH_CRC | \
214 					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215 					ENABLE_EMASK_FBD_THERMALS | \
216 					ENABLE_EMASK_FBD_DIMM_SPARE | \
217 					ENABLE_EMASK_FBD_FATAL_ERRORS | \
218 					ENABLE_EMASK_FBD_CORRECTABLE | \
219 					ENABLE_EMASK_FBD_UNCORRECTABLE)
220 
221 #define		ERR0_FBD		0xAC
222 #define		ERR1_FBD		0xB0
223 #define		ERR2_FBD		0xB4
224 #define		MCERR_FBD		0xB8
225 #define		NRECMEMA		0xBE
226 #define			NREC_BANK(x)		(((x)>>12) & 0x7)
227 #define			NREC_RDWR(x)		(((x)>>11) & 1)
228 #define			NREC_RANK(x)		(((x)>>8) & 0x7)
229 #define		NRECMEMB		0xC0
230 #define			NREC_CAS(x)		(((x)>>16) & 0xFFF)
231 #define			NREC_RAS(x)		((x) & 0x7FFF)
232 #define		NRECFGLOG		0xC4
233 #define		NREEECFBDA		0xC8
234 #define		NREEECFBDB		0xCC
235 #define		NREEECFBDC		0xD0
236 #define		NREEECFBDD		0xD4
237 #define		NREEECFBDE		0xD8
238 #define		REDMEMA			0xDC
239 #define		RECMEMA			0xE2
240 #define			REC_BANK(x)		(((x)>>12) & 0x7)
241 #define			REC_RDWR(x)		(((x)>>11) & 1)
242 #define			REC_RANK(x)		(((x)>>8) & 0x7)
243 #define		RECMEMB			0xE4
244 #define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
245 #define			REC_RAS(x)		((x) & 0x7FFF)
246 #define		RECFGLOG		0xE8
247 #define		RECFBDA			0xEC
248 #define		RECFBDB			0xF0
249 #define		RECFBDC			0xF4
250 #define		RECFBDD			0xF8
251 #define		RECFBDE			0xFC
252 
253 /* OFFSETS for Function 2 */
254 
255 /*
256  * Device 21,
257  * Function 0: Memory Map Branch 0
258  *
259  * Device 22,
260  * Function 0: Memory Map Branch 1
261  */
262 #define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
263 #define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
264 
265 #define AMB_PRESENT_0	0x64
266 #define AMB_PRESENT_1	0x66
267 #define MTR0		0x80
268 #define MTR1		0x84
269 #define MTR2		0x88
270 #define MTR3		0x8C
271 
272 #define NUM_MTRS		4
273 #define CHANNELS_PER_BRANCH	2
274 #define MAX_BRANCHES		2
275 
276 /* Defines to extract the various fields from the
277  *	MTRx - Memory Technology Registers
278  */
279 #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
280 #define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
281 #define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
282 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
283 #define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
284 #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
285 #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
286 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
287 #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
288 #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
289 
290 /* enables the report of miscellaneous messages as CE errors - default off */
291 static int misc_messages;
292 
293 /* Enumeration of supported devices */
294 enum i5000_chips {
295 	I5000P = 0,
296 	I5000V = 1,		/* future */
297 	I5000X = 2		/* future */
298 };
299 
300 /* Device name and register DID (Device ID) */
301 struct i5000_dev_info {
302 	const char *ctl_name;	/* name for this device */
303 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
304 };
305 
306 /* Table of devices attributes supported by this driver */
307 static const struct i5000_dev_info i5000_devs[] = {
308 	[I5000P] = {
309 		.ctl_name = "I5000",
310 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
311 	},
312 };
313 
314 struct i5000_dimm_info {
315 	int megabytes;		/* size, 0 means not present  */
316 	int dual_rank;
317 };
318 
319 #define	MAX_CHANNELS	6	/* max possible channels */
320 #define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
321 
322 /* driver private data structure */
323 struct i5000_pvt {
324 	struct pci_dev *system_address;	/* 16.0 */
325 	struct pci_dev *branchmap_werrors;	/* 16.1 */
326 	struct pci_dev *fsb_error_regs;	/* 16.2 */
327 	struct pci_dev *branch_0;	/* 21.0 */
328 	struct pci_dev *branch_1;	/* 22.0 */
329 
330 	u16 tolm;		/* top of low memory */
331 	union {
332 		u64 ambase;		/* AMB BAR */
333 		struct {
334 			u32 ambase_bottom;
335 			u32 ambase_top;
336 		} u __packed;
337 	};
338 
339 	u16 mir0, mir1, mir2;
340 
341 	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
342 	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
343 	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
344 
345 	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
346 	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
347 	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
348 
349 	/* DIMM information matrix, allocating architecture maximums */
350 	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
351 
352 	/* Actual values for this controller */
353 	int maxch;		/* Max channels */
354 	int maxdimmperch;	/* Max DIMMs per channel */
355 };
356 
357 /* I5000 MCH error information retrieved from Hardware */
358 struct i5000_error_info {
359 
360 	/* These registers are always read from the MC */
361 	u32 ferr_fat_fbd;	/* First Errors Fatal */
362 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
363 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
364 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
365 
366 	/* These registers are input ONLY if there was a Recoverable  Error */
367 	u32 redmemb;		/* Recoverable Mem Data Error log B */
368 	u16 recmema;		/* Recoverable Mem Error log A */
369 	u32 recmemb;		/* Recoverable Mem Error log B */
370 
371 	/* These registers are input ONLY if there was a
372 	 * Non-Recoverable Error */
373 	u16 nrecmema;		/* Non-Recoverable Mem log A */
374 	u32 nrecmemb;		/* Non-Recoverable Mem log B */
375 
376 };
377 
378 static struct edac_pci_ctl_info *i5000_pci;
379 
380 /*
381  *	i5000_get_error_info	Retrieve the hardware error information from
382  *				the hardware and cache it in the 'info'
383  *				structure
384  */
385 static void i5000_get_error_info(struct mem_ctl_info *mci,
386 				 struct i5000_error_info *info)
387 {
388 	struct i5000_pvt *pvt;
389 	u32 value;
390 
391 	pvt = mci->pvt_info;
392 
393 	/* read in the 1st FATAL error register */
394 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
395 
396 	/* Mask only the bits that the doc says are valid
397 	 */
398 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
399 
400 	/* If there is an error, then read in the */
401 	/* NEXT FATAL error register and the Memory Error Log Register A */
402 	if (value & FERR_FAT_MASK) {
403 		info->ferr_fat_fbd = value;
404 
405 		/* harvest the various error data we need */
406 		pci_read_config_dword(pvt->branchmap_werrors,
407 				NERR_FAT_FBD, &info->nerr_fat_fbd);
408 		pci_read_config_word(pvt->branchmap_werrors,
409 				NRECMEMA, &info->nrecmema);
410 		pci_read_config_dword(pvt->branchmap_werrors,
411 				NRECMEMB, &info->nrecmemb);
412 
413 		/* Clear the error bits, by writing them back */
414 		pci_write_config_dword(pvt->branchmap_werrors,
415 				FERR_FAT_FBD, value);
416 	} else {
417 		info->ferr_fat_fbd = 0;
418 		info->nerr_fat_fbd = 0;
419 		info->nrecmema = 0;
420 		info->nrecmemb = 0;
421 	}
422 
423 	/* read in the 1st NON-FATAL error register */
424 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
425 
426 	/* If there is an error, then read in the 1st NON-FATAL error
427 	 * register as well */
428 	if (value & FERR_NF_MASK) {
429 		info->ferr_nf_fbd = value;
430 
431 		/* harvest the various error data we need */
432 		pci_read_config_dword(pvt->branchmap_werrors,
433 				NERR_NF_FBD, &info->nerr_nf_fbd);
434 		pci_read_config_word(pvt->branchmap_werrors,
435 				RECMEMA, &info->recmema);
436 		pci_read_config_dword(pvt->branchmap_werrors,
437 				RECMEMB, &info->recmemb);
438 		pci_read_config_dword(pvt->branchmap_werrors,
439 				REDMEMB, &info->redmemb);
440 
441 		/* Clear the error bits, by writing them back */
442 		pci_write_config_dword(pvt->branchmap_werrors,
443 				FERR_NF_FBD, value);
444 	} else {
445 		info->ferr_nf_fbd = 0;
446 		info->nerr_nf_fbd = 0;
447 		info->recmema = 0;
448 		info->recmemb = 0;
449 		info->redmemb = 0;
450 	}
451 }
452 
453 /*
454  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
455  * 					struct i5000_error_info *info,
456  * 					int handle_errors);
457  *
458  *	handle the Intel FATAL errors, if any
459  */
460 static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
461 					struct i5000_error_info *info,
462 					int handle_errors)
463 {
464 	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
465 	char *specific = NULL;
466 	u32 allErrors;
467 	int channel;
468 	int bank;
469 	int rank;
470 	int rdwr;
471 	int ras, cas;
472 
473 	/* mask off the Error bits that are possible */
474 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
475 	if (!allErrors)
476 		return;		/* if no error, return now */
477 
478 	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
479 
480 	/* Use the NON-Recoverable macros to extract data */
481 	bank = NREC_BANK(info->nrecmema);
482 	rank = NREC_RANK(info->nrecmema);
483 	rdwr = NREC_RDWR(info->nrecmema);
484 	ras = NREC_RAS(info->nrecmemb);
485 	cas = NREC_CAS(info->nrecmemb);
486 
487 	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
488 		 rank, channel, bank,
489 		 rdwr ? "Write" : "Read", ras, cas);
490 
491 	/* Only 1 bit will be on */
492 	switch (allErrors) {
493 	case FERR_FAT_M1ERR:
494 		specific = "Alert on non-redundant retry or fast "
495 				"reset timeout";
496 		break;
497 	case FERR_FAT_M2ERR:
498 		specific = "Northbound CRC error on non-redundant "
499 				"retry";
500 		break;
501 	case FERR_FAT_M3ERR:
502 		{
503 		static int done;
504 
505 		/*
506 		 * This error is generated to inform that the intelligent
507 		 * throttling is disabled and the temperature passed the
508 		 * specified middle point. Since this is something the BIOS
509 		 * should take care of, we'll warn only once to avoid
510 		 * worthlessly flooding the log.
511 		 */
512 		if (done)
513 			return;
514 		done++;
515 
516 		specific = ">Tmid Thermal event with intelligent "
517 			   "throttling disabled";
518 		}
519 		break;
520 	}
521 
522 	/* Form out message */
523 	snprintf(msg, sizeof(msg),
524 		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
525 		 bank, ras, cas, allErrors, specific);
526 
527 	/* Call the helper to output message */
528 	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
529 			     channel >> 1, channel & 1, rank,
530 			     rdwr ? "Write error" : "Read error",
531 			     msg);
532 }
533 
534 /*
535  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
536  * 				struct i5000_error_info *info,
537  * 				int handle_errors);
538  *
539  *	handle the Intel NON-FATAL errors, if any
540  */
541 static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
542 					struct i5000_error_info *info,
543 					int handle_errors)
544 {
545 	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
546 	char *specific = NULL;
547 	u32 allErrors;
548 	u32 ue_errors;
549 	u32 ce_errors;
550 	u32 misc_errors;
551 	int branch;
552 	int channel;
553 	int bank;
554 	int rank;
555 	int rdwr;
556 	int ras, cas;
557 
558 	/* mask off the Error bits that are possible */
559 	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
560 	if (!allErrors)
561 		return;		/* if no error, return now */
562 
563 	/* ONLY ONE of the possible error bits will be set, as per the docs */
564 	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
565 	if (ue_errors) {
566 		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
567 
568 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
569 
570 		/*
571 		 * According with i5000 datasheet, bit 28 has no significance
572 		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
573 		 */
574 		channel = branch & 2;
575 
576 		bank = NREC_BANK(info->nrecmema);
577 		rank = NREC_RANK(info->nrecmema);
578 		rdwr = NREC_RDWR(info->nrecmema);
579 		ras = NREC_RAS(info->nrecmemb);
580 		cas = NREC_CAS(info->nrecmemb);
581 
582 		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
583 			 rank, channel, channel + 1, branch >> 1, bank,
584 			 rdwr ? "Write" : "Read", ras, cas);
585 
586 		switch (ue_errors) {
587 		case FERR_NF_M12ERR:
588 			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
589 			break;
590 		case FERR_NF_M11ERR:
591 			specific = "Non-Aliased Uncorrectable Spare-Copy "
592 					"Data ECC";
593 			break;
594 		case FERR_NF_M10ERR:
595 			specific = "Non-Aliased Uncorrectable Mirrored Demand "
596 					"Data ECC";
597 			break;
598 		case FERR_NF_M9ERR:
599 			specific = "Non-Aliased Uncorrectable Non-Mirrored "
600 					"Demand Data ECC";
601 			break;
602 		case FERR_NF_M8ERR:
603 			specific = "Aliased Uncorrectable Patrol Data ECC";
604 			break;
605 		case FERR_NF_M7ERR:
606 			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
607 			break;
608 		case FERR_NF_M6ERR:
609 			specific = "Aliased Uncorrectable Mirrored Demand "
610 					"Data ECC";
611 			break;
612 		case FERR_NF_M5ERR:
613 			specific = "Aliased Uncorrectable Non-Mirrored Demand "
614 					"Data ECC";
615 			break;
616 		case FERR_NF_M4ERR:
617 			specific = "Uncorrectable Data ECC on Replay";
618 			break;
619 		}
620 
621 		/* Form out message */
622 		snprintf(msg, sizeof(msg),
623 			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
624 			 rank, bank, ras, cas, ue_errors, specific);
625 
626 		/* Call the helper to output message */
627 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
628 				channel >> 1, -1, rank,
629 				rdwr ? "Write error" : "Read error",
630 				msg);
631 	}
632 
633 	/* Check correctable errors */
634 	ce_errors = allErrors & FERR_NF_CORRECTABLE;
635 	if (ce_errors) {
636 		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
637 
638 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
639 
640 		channel = 0;
641 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
642 			channel = 1;
643 
644 		/* Convert channel to be based from zero, instead of
645 		 * from branch base of 0 */
646 		channel += branch;
647 
648 		bank = REC_BANK(info->recmema);
649 		rank = REC_RANK(info->recmema);
650 		rdwr = REC_RDWR(info->recmema);
651 		ras = REC_RAS(info->recmemb);
652 		cas = REC_CAS(info->recmemb);
653 
654 		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
655 			 rank, channel, branch >> 1, bank,
656 			 rdwr ? "Write" : "Read", ras, cas);
657 
658 		switch (ce_errors) {
659 		case FERR_NF_M17ERR:
660 			specific = "Correctable Non-Mirrored Demand Data ECC";
661 			break;
662 		case FERR_NF_M18ERR:
663 			specific = "Correctable Mirrored Demand Data ECC";
664 			break;
665 		case FERR_NF_M19ERR:
666 			specific = "Correctable Spare-Copy Data ECC";
667 			break;
668 		case FERR_NF_M20ERR:
669 			specific = "Correctable Patrol Data ECC";
670 			break;
671 		}
672 
673 		/* Form out message */
674 		snprintf(msg, sizeof(msg),
675 			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
676 			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
677 			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
678 			 specific);
679 
680 		/* Call the helper to output message */
681 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
682 				channel >> 1, channel % 2, rank,
683 				rdwr ? "Write error" : "Read error",
684 				msg);
685 	}
686 
687 	if (!misc_messages)
688 		return;
689 
690 	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
691 				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
692 	if (misc_errors) {
693 		switch (misc_errors) {
694 		case FERR_NF_M13ERR:
695 			specific = "Non-Retry or Redundant Retry FBD Memory "
696 					"Alert or Redundant Fast Reset Timeout";
697 			break;
698 		case FERR_NF_M14ERR:
699 			specific = "Non-Retry or Redundant Retry FBD "
700 					"Configuration Alert";
701 			break;
702 		case FERR_NF_M15ERR:
703 			specific = "Non-Retry or Redundant Retry FBD "
704 					"Northbound CRC error on read data";
705 			break;
706 		case FERR_NF_M21ERR:
707 			specific = "FBD Northbound CRC error on "
708 					"FBD Sync Status";
709 			break;
710 		case FERR_NF_M22ERR:
711 			specific = "SPD protocol error";
712 			break;
713 		case FERR_NF_M27ERR:
714 			specific = "DIMM-spare copy started";
715 			break;
716 		case FERR_NF_M28ERR:
717 			specific = "DIMM-spare copy completed";
718 			break;
719 		}
720 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
721 
722 		/* Form out message */
723 		snprintf(msg, sizeof(msg),
724 			 "Err=%#x (%s)", misc_errors, specific);
725 
726 		/* Call the helper to output message */
727 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
728 				branch >> 1, -1, -1,
729 				"Misc error", msg);
730 	}
731 }
732 
733 /*
734  *	i5000_process_error_info	Process the error info that is
735  *	in the 'info' structure, previously retrieved from hardware
736  */
737 static void i5000_process_error_info(struct mem_ctl_info *mci,
738 				struct i5000_error_info *info,
739 				int handle_errors)
740 {
741 	/* First handle any fatal errors that occurred */
742 	i5000_process_fatal_error_info(mci, info, handle_errors);
743 
744 	/* now handle any non-fatal errors that occurred */
745 	i5000_process_nonfatal_error_info(mci, info, handle_errors);
746 }
747 
748 /*
749  *	i5000_clear_error	Retrieve any error from the hardware
750  *				but do NOT process that error.
751  *				Used for 'clearing' out of previous errors
752  *				Called by the Core module.
753  */
754 static void i5000_clear_error(struct mem_ctl_info *mci)
755 {
756 	struct i5000_error_info info;
757 
758 	i5000_get_error_info(mci, &info);
759 }
760 
761 /*
762  *	i5000_check_error	Retrieve and process errors reported by the
763  *				hardware. Called by the Core module.
764  */
765 static void i5000_check_error(struct mem_ctl_info *mci)
766 {
767 	struct i5000_error_info info;
768 	edac_dbg(4, "MC%d\n", mci->mc_idx);
769 	i5000_get_error_info(mci, &info);
770 	i5000_process_error_info(mci, &info, 1);
771 }
772 
773 /*
774  *	i5000_get_devices	Find and perform 'get' operation on the MCH's
775  *			device/functions we want to reference for this driver
776  *
777  *			Need to 'get' device 16 func 1 and func 2
778  */
779 static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
780 {
781 	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
782 	struct i5000_pvt *pvt;
783 	struct pci_dev *pdev;
784 
785 	pvt = mci->pvt_info;
786 
787 	/* Attempt to 'get' the MCH register we want */
788 	pdev = NULL;
789 	while (1) {
790 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
791 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
792 
793 		/* End of list, leave */
794 		if (pdev == NULL) {
795 			i5000_printk(KERN_ERR,
796 				"'system address,Process Bus' "
797 				"device not found:"
798 				"vendor 0x%x device 0x%x FUNC 1 "
799 				"(broken BIOS?)\n",
800 				PCI_VENDOR_ID_INTEL,
801 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
802 
803 			return 1;
804 		}
805 
806 		/* Scan for device 16 func 1 */
807 		if (PCI_FUNC(pdev->devfn) == 1)
808 			break;
809 	}
810 
811 	pvt->branchmap_werrors = pdev;
812 
813 	/* Attempt to 'get' the MCH register we want */
814 	pdev = NULL;
815 	while (1) {
816 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
817 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
818 
819 		if (pdev == NULL) {
820 			i5000_printk(KERN_ERR,
821 				"MC: 'branchmap,control,errors' "
822 				"device not found:"
823 				"vendor 0x%x device 0x%x Func 2 "
824 				"(broken BIOS?)\n",
825 				PCI_VENDOR_ID_INTEL,
826 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
827 
828 			pci_dev_put(pvt->branchmap_werrors);
829 			return 1;
830 		}
831 
832 		/* Scan for device 16 func 1 */
833 		if (PCI_FUNC(pdev->devfn) == 2)
834 			break;
835 	}
836 
837 	pvt->fsb_error_regs = pdev;
838 
839 	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
840 		 pci_name(pvt->system_address),
841 		 pvt->system_address->vendor, pvt->system_address->device);
842 	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
843 		 pci_name(pvt->branchmap_werrors),
844 		 pvt->branchmap_werrors->vendor,
845 		 pvt->branchmap_werrors->device);
846 	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
847 		 pci_name(pvt->fsb_error_regs),
848 		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
849 
850 	pdev = NULL;
851 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
852 			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
853 
854 	if (pdev == NULL) {
855 		i5000_printk(KERN_ERR,
856 			"MC: 'BRANCH 0' device not found:"
857 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
858 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
859 
860 		pci_dev_put(pvt->branchmap_werrors);
861 		pci_dev_put(pvt->fsb_error_regs);
862 		return 1;
863 	}
864 
865 	pvt->branch_0 = pdev;
866 
867 	/* If this device claims to have more than 2 channels then
868 	 * fetch Branch 1's information
869 	 */
870 	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
871 		pdev = NULL;
872 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
873 				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
874 
875 		if (pdev == NULL) {
876 			i5000_printk(KERN_ERR,
877 				"MC: 'BRANCH 1' device not found:"
878 				"vendor 0x%x device 0x%x Func 0 "
879 				"(broken BIOS?)\n",
880 				PCI_VENDOR_ID_INTEL,
881 				PCI_DEVICE_ID_I5000_BRANCH_1);
882 
883 			pci_dev_put(pvt->branchmap_werrors);
884 			pci_dev_put(pvt->fsb_error_regs);
885 			pci_dev_put(pvt->branch_0);
886 			return 1;
887 		}
888 
889 		pvt->branch_1 = pdev;
890 	}
891 
892 	return 0;
893 }
894 
895 /*
896  *	i5000_put_devices	'put' all the devices that we have
897  *				reserved via 'get'
898  */
899 static void i5000_put_devices(struct mem_ctl_info *mci)
900 {
901 	struct i5000_pvt *pvt;
902 
903 	pvt = mci->pvt_info;
904 
905 	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
906 	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
907 	pci_dev_put(pvt->branch_0);	/* DEV 21 */
908 
909 	/* Only if more than 2 channels do we release the second branch */
910 	if (pvt->maxch >= CHANNELS_PER_BRANCH)
911 		pci_dev_put(pvt->branch_1);	/* DEV 22 */
912 }
913 
914 /*
915  *	determine_amb_resent
916  *
917  *		the information is contained in NUM_MTRS different registers
918  *		determineing which of the NUM_MTRS requires knowing
919  *		which channel is in question
920  *
921  *	2 branches, each with 2 channels
922  *		b0_ambpresent0 for channel '0'
923  *		b0_ambpresent1 for channel '1'
924  *		b1_ambpresent0 for channel '2'
925  *		b1_ambpresent1 for channel '3'
926  */
927 static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
928 {
929 	int amb_present;
930 
931 	if (channel < CHANNELS_PER_BRANCH) {
932 		if (channel & 0x1)
933 			amb_present = pvt->b0_ambpresent1;
934 		else
935 			amb_present = pvt->b0_ambpresent0;
936 	} else {
937 		if (channel & 0x1)
938 			amb_present = pvt->b1_ambpresent1;
939 		else
940 			amb_present = pvt->b1_ambpresent0;
941 	}
942 
943 	return amb_present;
944 }
945 
946 /*
947  * determine_mtr(pvt, csrow, channel)
948  *
949  *	return the proper MTR register as determine by the csrow and channel desired
950  */
951 static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
952 {
953 	int mtr;
954 
955 	if (channel < CHANNELS_PER_BRANCH)
956 		mtr = pvt->b0_mtr[slot];
957 	else
958 		mtr = pvt->b1_mtr[slot];
959 
960 	return mtr;
961 }
962 
963 /*
964  */
965 static void decode_mtr(int slot_row, u16 mtr)
966 {
967 	int ans;
968 
969 	ans = MTR_DIMMS_PRESENT(mtr);
970 
971 	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
972 		 slot_row, mtr, ans ? "" : "NOT ");
973 	if (!ans)
974 		return;
975 
976 	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
977 	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
978 	edac_dbg(2, "\t\tNUMRANK: %s\n",
979 		 MTR_DIMM_RANK(mtr) ? "double" : "single");
980 	edac_dbg(2, "\t\tNUMROW: %s\n",
981 		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
982 		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
983 		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
984 		 "reserved");
985 	edac_dbg(2, "\t\tNUMCOL: %s\n",
986 		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
987 		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
988 		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
989 		 "reserved");
990 }
991 
992 static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
993 			struct i5000_dimm_info *dinfo)
994 {
995 	int mtr;
996 	int amb_present_reg;
997 	int addrBits;
998 
999 	mtr = determine_mtr(pvt, slot, channel);
1000 	if (MTR_DIMMS_PRESENT(mtr)) {
1001 		amb_present_reg = determine_amb_present_reg(pvt, channel);
1002 
1003 		/* Determine if there is a DIMM present in this DIMM slot */
1004 		if (amb_present_reg) {
1005 			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1006 
1007 			/* Start with the number of bits for a Bank
1008 				* on the DRAM */
1009 			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1010 			/* Add the number of ROW bits */
1011 			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1012 			/* add the number of COLUMN bits */
1013 			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1014 
1015 			/* Dual-rank memories have twice the size */
1016 			if (dinfo->dual_rank)
1017 				addrBits++;
1018 
1019 			addrBits += 6;	/* add 64 bits per DIMM */
1020 			addrBits -= 20;	/* divide by 2^^20 */
1021 			addrBits -= 3;	/* 8 bits per bytes */
1022 
1023 			dinfo->megabytes = 1 << addrBits;
1024 		}
1025 	}
1026 }
1027 
1028 /*
1029  *	calculate_dimm_size
1030  *
1031  *	also will output a DIMM matrix map, if debug is enabled, for viewing
1032  *	how the DIMMs are populated
1033  */
1034 static void calculate_dimm_size(struct i5000_pvt *pvt)
1035 {
1036 	struct i5000_dimm_info *dinfo;
1037 	int slot, channel, branch;
1038 	char *p, *mem_buffer;
1039 	int space, n;
1040 
1041 	/* ================= Generate some debug output ================= */
1042 	space = PAGE_SIZE;
1043 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
1044 	if (p == NULL) {
1045 		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046 			__FILE__, __func__);
1047 		return;
1048 	}
1049 
1050 	/* Scan all the actual slots
1051 	 * and calculate the information for each DIMM
1052 	 * Start with the highest slot first, to display it first
1053 	 * and work toward the 0th slot
1054 	 */
1055 	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056 
1057 		/* on an odd slot, first output a 'boundary' marker,
1058 		 * then reset the message buffer  */
1059 		if (slot & 0x1) {
1060 			n = snprintf(p, space, "--------------------------"
1061 				"--------------------------------");
1062 			p += n;
1063 			space -= n;
1064 			edac_dbg(2, "%s\n", mem_buffer);
1065 			p = mem_buffer;
1066 			space = PAGE_SIZE;
1067 		}
1068 		n = snprintf(p, space, "slot %2d    ", slot);
1069 		p += n;
1070 		space -= n;
1071 
1072 		for (channel = 0; channel < pvt->maxch; channel++) {
1073 			dinfo = &pvt->dimm_info[slot][channel];
1074 			handle_channel(pvt, slot, channel, dinfo);
1075 			if (dinfo->megabytes)
1076 				n = snprintf(p, space, "%4d MB %dR| ",
1077 					     dinfo->megabytes, dinfo->dual_rank + 1);
1078 			else
1079 				n = snprintf(p, space, "%4d MB   | ", 0);
1080 			p += n;
1081 			space -= n;
1082 		}
1083 		p += n;
1084 		space -= n;
1085 		edac_dbg(2, "%s\n", mem_buffer);
1086 		p = mem_buffer;
1087 		space = PAGE_SIZE;
1088 	}
1089 
1090 	/* Output the last bottom 'boundary' marker */
1091 	n = snprintf(p, space, "--------------------------"
1092 		"--------------------------------");
1093 	p += n;
1094 	space -= n;
1095 	edac_dbg(2, "%s\n", mem_buffer);
1096 	p = mem_buffer;
1097 	space = PAGE_SIZE;
1098 
1099 	/* now output the 'channel' labels */
1100 	n = snprintf(p, space, "           ");
1101 	p += n;
1102 	space -= n;
1103 	for (channel = 0; channel < pvt->maxch; channel++) {
1104 		n = snprintf(p, space, "channel %d | ", channel);
1105 		p += n;
1106 		space -= n;
1107 	}
1108 	edac_dbg(2, "%s\n", mem_buffer);
1109 	p = mem_buffer;
1110 	space = PAGE_SIZE;
1111 
1112 	n = snprintf(p, space, "           ");
1113 	p += n;
1114 	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1115 		n = snprintf(p, space, "       branch %d       | ", branch);
1116 		p += n;
1117 		space -= n;
1118 	}
1119 
1120 	/* output the last message and free buffer */
1121 	edac_dbg(2, "%s\n", mem_buffer);
1122 	kfree(mem_buffer);
1123 }
1124 
1125 /*
1126  *	i5000_get_mc_regs	read in the necessary registers and
1127  *				cache locally
1128  *
1129  *			Fills in the private data members
1130  */
1131 static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1132 {
1133 	struct i5000_pvt *pvt;
1134 	u32 actual_tolm;
1135 	u16 limit;
1136 	int slot_row;
1137 	int way0, way1;
1138 
1139 	pvt = mci->pvt_info;
1140 
1141 	pci_read_config_dword(pvt->system_address, AMBASE,
1142 			&pvt->u.ambase_bottom);
1143 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1144 			&pvt->u.ambase_top);
1145 
1146 	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1147 		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1148 
1149 	/* Get the Branch Map regs */
1150 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1151 	pvt->tolm >>= 12;
1152 	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
1153 		 pvt->tolm, pvt->tolm);
1154 
1155 	actual_tolm = pvt->tolm << 28;
1156 	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
1157 		 actual_tolm, actual_tolm);
1158 
1159 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1160 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1161 	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1162 
1163 	/* Get the MIR[0-2] regs */
1164 	limit = (pvt->mir0 >> 4) & 0x0FFF;
1165 	way0 = pvt->mir0 & 0x1;
1166 	way1 = pvt->mir0 & 0x2;
1167 	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1168 		 limit, way1, way0);
1169 	limit = (pvt->mir1 >> 4) & 0x0FFF;
1170 	way0 = pvt->mir1 & 0x1;
1171 	way1 = pvt->mir1 & 0x2;
1172 	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1173 		 limit, way1, way0);
1174 	limit = (pvt->mir2 >> 4) & 0x0FFF;
1175 	way0 = pvt->mir2 & 0x1;
1176 	way1 = pvt->mir2 & 0x2;
1177 	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1178 		 limit, way1, way0);
1179 
1180 	/* Get the MTR[0-3] regs */
1181 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1182 		int where = MTR0 + (slot_row * sizeof(u32));
1183 
1184 		pci_read_config_word(pvt->branch_0, where,
1185 				&pvt->b0_mtr[slot_row]);
1186 
1187 		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1188 			 slot_row, where, pvt->b0_mtr[slot_row]);
1189 
1190 		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1191 			pci_read_config_word(pvt->branch_1, where,
1192 					&pvt->b1_mtr[slot_row]);
1193 			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1194 				 slot_row, where, pvt->b1_mtr[slot_row]);
1195 		} else {
1196 			pvt->b1_mtr[slot_row] = 0;
1197 		}
1198 	}
1199 
1200 	/* Read and dump branch 0's MTRs */
1201 	edac_dbg(2, "Memory Technology Registers:\n");
1202 	edac_dbg(2, "   Branch 0:\n");
1203 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1204 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1205 	}
1206 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1207 			&pvt->b0_ambpresent0);
1208 	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1209 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1210 			&pvt->b0_ambpresent1);
1211 	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1212 
1213 	/* Only if we have 2 branchs (4 channels) */
1214 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1215 		pvt->b1_ambpresent0 = 0;
1216 		pvt->b1_ambpresent1 = 0;
1217 	} else {
1218 		/* Read and dump  branch 1's MTRs */
1219 		edac_dbg(2, "   Branch 1:\n");
1220 		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1221 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1222 		}
1223 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1224 				&pvt->b1_ambpresent0);
1225 		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1226 			 pvt->b1_ambpresent0);
1227 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1228 				&pvt->b1_ambpresent1);
1229 		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1230 			 pvt->b1_ambpresent1);
1231 	}
1232 
1233 	/* Go and determine the size of each DIMM and place in an
1234 	 * orderly matrix */
1235 	calculate_dimm_size(pvt);
1236 }
1237 
1238 /*
1239  *	i5000_init_csrows	Initialize the 'csrows' table within
1240  *				the mci control	structure with the
1241  *				addressing of memory.
1242  *
1243  *	return:
1244  *		0	success
1245  *		1	no actual memory found on this MC
1246  */
1247 static int i5000_init_csrows(struct mem_ctl_info *mci)
1248 {
1249 	struct i5000_pvt *pvt;
1250 	struct dimm_info *dimm;
1251 	int empty;
1252 	int max_csrows;
1253 	int mtr;
1254 	int csrow_megs;
1255 	int channel;
1256 	int slot;
1257 
1258 	pvt = mci->pvt_info;
1259 	max_csrows = pvt->maxdimmperch * 2;
1260 
1261 	empty = 1;		/* Assume NO memory */
1262 
1263 	/*
1264 	 * FIXME: The memory layout used to map slot/channel into the
1265 	 * real memory architecture is weird: branch+slot are "csrows"
1266 	 * and channel is channel. That required an extra array (dimm_info)
1267 	 * to map the dimms. A good cleanup would be to remove this array,
1268 	 * and do a loop here with branch, channel, slot
1269 	 */
1270 	for (slot = 0; slot < max_csrows; slot++) {
1271 		for (channel = 0; channel < pvt->maxch; channel++) {
1272 
1273 			mtr = determine_mtr(pvt, slot, channel);
1274 
1275 			if (!MTR_DIMMS_PRESENT(mtr))
1276 				continue;
1277 
1278 			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1279 				       channel / MAX_BRANCHES,
1280 				       channel % MAX_BRANCHES, slot);
1281 
1282 			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1283 			dimm->grain = 8;
1284 
1285 			/* Assume DDR2 for now */
1286 			dimm->mtype = MEM_FB_DDR2;
1287 
1288 			/* ask what device type on this row */
1289 			if (MTR_DRAM_WIDTH(mtr) == 8)
1290 				dimm->dtype = DEV_X8;
1291 			else
1292 				dimm->dtype = DEV_X4;
1293 
1294 			dimm->edac_mode = EDAC_S8ECD8ED;
1295 			dimm->nr_pages = csrow_megs << 8;
1296 		}
1297 
1298 		empty = 0;
1299 	}
1300 
1301 	return empty;
1302 }
1303 
1304 /*
1305  *	i5000_enable_error_reporting
1306  *			Turn on the memory reporting features of the hardware
1307  */
1308 static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1309 {
1310 	struct i5000_pvt *pvt;
1311 	u32 fbd_error_mask;
1312 
1313 	pvt = mci->pvt_info;
1314 
1315 	/* Read the FBD Error Mask Register */
1316 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1317 			&fbd_error_mask);
1318 
1319 	/* Enable with a '0' */
1320 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1321 
1322 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1323 			fbd_error_mask);
1324 }
1325 
1326 /*
1327  * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1328  *
1329  *	ask the device how many channels are present and how many CSROWS
1330  *	 as well
1331  */
1332 static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1333 					int *num_dimms_per_channel,
1334 					int *num_channels)
1335 {
1336 	u8 value;
1337 
1338 	/* Need to retrieve just how many channels and dimms per channel are
1339 	 * supported on this memory controller
1340 	 */
1341 	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1342 	*num_dimms_per_channel = (int)value;
1343 
1344 	pci_read_config_byte(pdev, MAXCH, &value);
1345 	*num_channels = (int)value;
1346 }
1347 
1348 /*
1349  *	i5000_probe1	Probe for ONE instance of device to see if it is
1350  *			present.
1351  *	return:
1352  *		0 for FOUND a device
1353  *		< 0 for error code
1354  */
1355 static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1356 {
1357 	struct mem_ctl_info *mci;
1358 	struct edac_mc_layer layers[3];
1359 	struct i5000_pvt *pvt;
1360 	int num_channels;
1361 	int num_dimms_per_channel;
1362 
1363 	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1364 		 pdev->bus->number,
1365 		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1366 
1367 	/* We only are looking for func 0 of the set */
1368 	if (PCI_FUNC(pdev->devfn) != 0)
1369 		return -ENODEV;
1370 
1371 	/* Ask the devices for the number of CSROWS and CHANNELS so
1372 	 * that we can calculate the memory resources, etc
1373 	 *
1374 	 * The Chipset will report what it can handle which will be greater
1375 	 * or equal to what the motherboard manufacturer will implement.
1376 	 *
1377 	 * As we don't have a motherboard identification routine to determine
1378 	 * actual number of slots/dimms per channel, we thus utilize the
1379 	 * resource as specified by the chipset. Thus, we might have
1380 	 * have more DIMMs per channel than actually on the mobo, but this
1381 	 * allows the driver to support up to the chipset max, without
1382 	 * some fancy mobo determination.
1383 	 */
1384 	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1385 					&num_channels);
1386 
1387 	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
1388 		 num_channels, num_dimms_per_channel);
1389 
1390 	/* allocate a new MC control structure */
1391 
1392 	layers[0].type = EDAC_MC_LAYER_BRANCH;
1393 	layers[0].size = MAX_BRANCHES;
1394 	layers[0].is_virt_csrow = false;
1395 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1396 	layers[1].size = num_channels / MAX_BRANCHES;
1397 	layers[1].is_virt_csrow = false;
1398 	layers[2].type = EDAC_MC_LAYER_SLOT;
1399 	layers[2].size = num_dimms_per_channel;
1400 	layers[2].is_virt_csrow = true;
1401 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1402 	if (mci == NULL)
1403 		return -ENOMEM;
1404 
1405 	edac_dbg(0, "MC: mci = %p\n", mci);
1406 
1407 	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1408 
1409 	pvt = mci->pvt_info;
1410 	pvt->system_address = pdev;	/* Record this device in our private */
1411 	pvt->maxch = num_channels;
1412 	pvt->maxdimmperch = num_dimms_per_channel;
1413 
1414 	/* 'get' the pci devices we want to reserve for our use */
1415 	if (i5000_get_devices(mci, dev_idx))
1416 		goto fail0;
1417 
1418 	/* Time to get serious */
1419 	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
1420 
1421 	mci->mc_idx = 0;
1422 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1423 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1424 	mci->edac_cap = EDAC_FLAG_NONE;
1425 	mci->mod_name = "i5000_edac.c";
1426 	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1427 	mci->dev_name = pci_name(pdev);
1428 	mci->ctl_page_to_phys = NULL;
1429 
1430 	/* Set the function pointer to an actual operation function */
1431 	mci->edac_check = i5000_check_error;
1432 
1433 	/* initialize the MC control structure 'csrows' table
1434 	 * with the mapping and control information */
1435 	if (i5000_init_csrows(mci)) {
1436 		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1437 		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1438 	} else {
1439 		edac_dbg(1, "MC: Enable error reporting now\n");
1440 		i5000_enable_error_reporting(mci);
1441 	}
1442 
1443 	/* add this new MC control structure to EDAC's list of MCs */
1444 	if (edac_mc_add_mc(mci)) {
1445 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1446 		/* FIXME: perhaps some code should go here that disables error
1447 		 * reporting if we just enabled it
1448 		 */
1449 		goto fail1;
1450 	}
1451 
1452 	i5000_clear_error(mci);
1453 
1454 	/* allocating generic PCI control info */
1455 	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1456 	if (!i5000_pci) {
1457 		printk(KERN_WARNING
1458 			"%s(): Unable to create PCI control\n",
1459 			__func__);
1460 		printk(KERN_WARNING
1461 			"%s(): PCI error report via EDAC not setup\n",
1462 			__func__);
1463 	}
1464 
1465 	return 0;
1466 
1467 	/* Error exit unwinding stack */
1468 fail1:
1469 
1470 	i5000_put_devices(mci);
1471 
1472 fail0:
1473 	edac_mc_free(mci);
1474 	return -ENODEV;
1475 }
1476 
1477 /*
1478  *	i5000_init_one	constructor for one instance of device
1479  *
1480  * 	returns:
1481  *		negative on error
1482  *		count (>= 0)
1483  */
1484 static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1485 {
1486 	int rc;
1487 
1488 	edac_dbg(0, "MC:\n");
1489 
1490 	/* wake up device */
1491 	rc = pci_enable_device(pdev);
1492 	if (rc)
1493 		return rc;
1494 
1495 	/* now probe and enable the device */
1496 	return i5000_probe1(pdev, id->driver_data);
1497 }
1498 
1499 /*
1500  *	i5000_remove_one	destructor for one instance of device
1501  *
1502  */
1503 static void i5000_remove_one(struct pci_dev *pdev)
1504 {
1505 	struct mem_ctl_info *mci;
1506 
1507 	edac_dbg(0, "\n");
1508 
1509 	if (i5000_pci)
1510 		edac_pci_release_generic_ctl(i5000_pci);
1511 
1512 	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1513 		return;
1514 
1515 	/* retrieve references to resources, and free those resources */
1516 	i5000_put_devices(mci);
1517 	edac_mc_free(mci);
1518 }
1519 
1520 /*
1521  *	pci_device_id	table for which devices we are looking for
1522  *
1523  *	The "E500P" device is the first device supported.
1524  */
1525 static const struct pci_device_id i5000_pci_tbl[] = {
1526 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1527 	 .driver_data = I5000P},
1528 
1529 	{0,}			/* 0 terminated list. */
1530 };
1531 
1532 MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1533 
1534 /*
1535  *	i5000_driver	pci_driver structure for this module
1536  *
1537  */
1538 static struct pci_driver i5000_driver = {
1539 	.name = KBUILD_BASENAME,
1540 	.probe = i5000_init_one,
1541 	.remove = i5000_remove_one,
1542 	.id_table = i5000_pci_tbl,
1543 };
1544 
1545 /*
1546  *	i5000_init		Module entry function
1547  *			Try to initialize this module for its devices
1548  */
1549 static int __init i5000_init(void)
1550 {
1551 	int pci_rc;
1552 
1553 	edac_dbg(2, "MC:\n");
1554 
1555 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1556 	opstate_init();
1557 
1558 	pci_rc = pci_register_driver(&i5000_driver);
1559 
1560 	return (pci_rc < 0) ? pci_rc : 0;
1561 }
1562 
1563 /*
1564  *	i5000_exit()	Module exit function
1565  *			Unregister the driver
1566  */
1567 static void __exit i5000_exit(void)
1568 {
1569 	edac_dbg(2, "MC:\n");
1570 	pci_unregister_driver(&i5000_driver);
1571 }
1572 
1573 module_init(i5000_init);
1574 module_exit(i5000_exit);
1575 
1576 MODULE_LICENSE("GPL");
1577 MODULE_AUTHOR
1578     ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1579 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1580 		I5000_REVISION);
1581 
1582 module_param(edac_op_state, int, 0444);
1583 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1584 module_param(misc_messages, int, 0444);
1585 MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1586 
1587