xref: /openbmc/linux/drivers/edac/i5000_edac.c (revision 9ac8d3fb)
1 /*
2  * Intel 5000(P/V/X) class Memory Controllers kernel module
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8  *	norsk5@xmission.com
9  *
10  * This module is based on the following document:
11  *
12  * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
24 
25 #include "edac_core.h"
26 
27 /*
28  * Alter this version for the I5000 module when modifications are made
29  */
30 #define I5000_REVISION    " Ver: 2.0.12 " __DATE__
31 #define EDAC_MOD_STR      "i5000_edac"
32 
33 #define i5000_printk(level, fmt, arg...) \
34         edac_printk(level, "i5000", fmt, ##arg)
35 
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37         edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38 
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
41 #endif
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
44 #endif
45 
46 /* Device 16,
47  * Function 0: System Address
48  * Function 1: Memory Branch Map, Control, Errors Register
49  * Function 2: FSB Error Registers
50  *
51  * All 3 functions of Device 16 (0,1,2) share the SAME DID
52  */
53 #define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
54 
55 /* OFFSETS for Function 0 */
56 
57 /* OFFSETS for Function 1 */
58 #define		AMBASE			0x48
59 #define		MAXCH			0x56
60 #define		MAXDIMMPERCH		0x57
61 #define		TOLM			0x6C
62 #define		REDMEMB			0x7C
63 #define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
64 #define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
65 #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
66 #define		MIR0			0x80
67 #define		MIR1			0x84
68 #define		MIR2			0x88
69 #define		AMIR0			0x8C
70 #define		AMIR1			0x90
71 #define		AMIR2			0x94
72 
73 #define		FERR_FAT_FBD		0x98
74 #define		NERR_FAT_FBD		0x9C
75 #define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
76 #define			FERR_FAT_FBDCHAN 0x30000000
77 #define			FERR_FAT_M3ERR	0x00000004
78 #define			FERR_FAT_M2ERR	0x00000002
79 #define			FERR_FAT_M1ERR	0x00000001
80 #define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
81 						FERR_FAT_M2ERR | \
82 						FERR_FAT_M3ERR)
83 
84 #define		FERR_NF_FBD		0xA0
85 
86 /* Thermal and SPD or BFD errors */
87 #define			FERR_NF_M28ERR	0x01000000
88 #define			FERR_NF_M27ERR	0x00800000
89 #define			FERR_NF_M26ERR	0x00400000
90 #define			FERR_NF_M25ERR	0x00200000
91 #define			FERR_NF_M24ERR	0x00100000
92 #define			FERR_NF_M23ERR	0x00080000
93 #define			FERR_NF_M22ERR	0x00040000
94 #define			FERR_NF_M21ERR	0x00020000
95 
96 /* Correctable errors */
97 #define			FERR_NF_M20ERR	0x00010000
98 #define			FERR_NF_M19ERR	0x00008000
99 #define			FERR_NF_M18ERR	0x00004000
100 #define			FERR_NF_M17ERR	0x00002000
101 
102 /* Non-Retry or redundant Retry errors */
103 #define			FERR_NF_M16ERR	0x00001000
104 #define			FERR_NF_M15ERR	0x00000800
105 #define			FERR_NF_M14ERR	0x00000400
106 #define			FERR_NF_M13ERR	0x00000200
107 
108 /* Uncorrectable errors */
109 #define			FERR_NF_M12ERR	0x00000100
110 #define			FERR_NF_M11ERR	0x00000080
111 #define			FERR_NF_M10ERR	0x00000040
112 #define			FERR_NF_M9ERR	0x00000020
113 #define			FERR_NF_M8ERR	0x00000010
114 #define			FERR_NF_M7ERR	0x00000008
115 #define			FERR_NF_M6ERR	0x00000004
116 #define			FERR_NF_M5ERR	0x00000002
117 #define			FERR_NF_M4ERR	0x00000001
118 
119 #define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
120 							FERR_NF_M11ERR | \
121 							FERR_NF_M10ERR | \
122 							FERR_NF_M9ERR | \
123 							FERR_NF_M8ERR | \
124 							FERR_NF_M7ERR | \
125 							FERR_NF_M6ERR | \
126 							FERR_NF_M5ERR | \
127 							FERR_NF_M4ERR)
128 #define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
129 							FERR_NF_M19ERR | \
130 							FERR_NF_M18ERR | \
131 							FERR_NF_M17ERR)
132 #define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
133 							FERR_NF_M28ERR)
134 #define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
135 							FERR_NF_M25ERR | \
136 							FERR_NF_M24ERR | \
137 							FERR_NF_M23ERR)
138 #define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
139 #define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
140 #define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
141 							FERR_NF_M14ERR | \
142 							FERR_NF_M15ERR)
143 
144 #define		NERR_NF_FBD		0xA4
145 #define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
146 							FERR_NF_CORRECTABLE | \
147 							FERR_NF_DIMM_SPARE | \
148 							FERR_NF_THERMAL | \
149 							FERR_NF_SPD_PROTOCOL | \
150 							FERR_NF_NORTH_CRC | \
151 							FERR_NF_NON_RETRY)
152 
153 #define		EMASK_FBD		0xA8
154 #define			EMASK_FBD_M28ERR	0x08000000
155 #define			EMASK_FBD_M27ERR	0x04000000
156 #define			EMASK_FBD_M26ERR	0x02000000
157 #define			EMASK_FBD_M25ERR	0x01000000
158 #define			EMASK_FBD_M24ERR	0x00800000
159 #define			EMASK_FBD_M23ERR	0x00400000
160 #define			EMASK_FBD_M22ERR	0x00200000
161 #define			EMASK_FBD_M21ERR	0x00100000
162 #define			EMASK_FBD_M20ERR	0x00080000
163 #define			EMASK_FBD_M19ERR	0x00040000
164 #define			EMASK_FBD_M18ERR	0x00020000
165 #define			EMASK_FBD_M17ERR	0x00010000
166 
167 #define			EMASK_FBD_M15ERR	0x00004000
168 #define			EMASK_FBD_M14ERR	0x00002000
169 #define			EMASK_FBD_M13ERR	0x00001000
170 #define			EMASK_FBD_M12ERR	0x00000800
171 #define			EMASK_FBD_M11ERR	0x00000400
172 #define			EMASK_FBD_M10ERR	0x00000200
173 #define			EMASK_FBD_M9ERR		0x00000100
174 #define			EMASK_FBD_M8ERR		0x00000080
175 #define			EMASK_FBD_M7ERR		0x00000040
176 #define			EMASK_FBD_M6ERR		0x00000020
177 #define			EMASK_FBD_M5ERR		0x00000010
178 #define			EMASK_FBD_M4ERR		0x00000008
179 #define			EMASK_FBD_M3ERR		0x00000004
180 #define			EMASK_FBD_M2ERR		0x00000002
181 #define			EMASK_FBD_M1ERR		0x00000001
182 
183 #define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
184 							EMASK_FBD_M2ERR | \
185 							EMASK_FBD_M3ERR)
186 
187 #define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
188 							EMASK_FBD_M5ERR | \
189 							EMASK_FBD_M6ERR | \
190 							EMASK_FBD_M7ERR | \
191 							EMASK_FBD_M8ERR | \
192 							EMASK_FBD_M9ERR | \
193 							EMASK_FBD_M10ERR | \
194 							EMASK_FBD_M11ERR | \
195 							EMASK_FBD_M12ERR)
196 #define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
197 							EMASK_FBD_M18ERR | \
198 							EMASK_FBD_M19ERR | \
199 							EMASK_FBD_M20ERR)
200 #define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
201 							EMASK_FBD_M28ERR)
202 #define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
203 							EMASK_FBD_M25ERR | \
204 							EMASK_FBD_M24ERR | \
205 							EMASK_FBD_M23ERR)
206 #define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
207 #define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
208 #define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
209 							EMASK_FBD_M14ERR | \
210 							EMASK_FBD_M13ERR)
211 
212 #define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
213 					ENABLE_EMASK_FBD_NORTH_CRC | \
214 					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215 					ENABLE_EMASK_FBD_THERMALS | \
216 					ENABLE_EMASK_FBD_DIMM_SPARE | \
217 					ENABLE_EMASK_FBD_FATAL_ERRORS | \
218 					ENABLE_EMASK_FBD_CORRECTABLE | \
219 					ENABLE_EMASK_FBD_UNCORRECTABLE)
220 
221 #define		ERR0_FBD		0xAC
222 #define		ERR1_FBD		0xB0
223 #define		ERR2_FBD		0xB4
224 #define		MCERR_FBD		0xB8
225 #define		NRECMEMA		0xBE
226 #define			NREC_BANK(x)		(((x)>>12) & 0x7)
227 #define			NREC_RDWR(x)		(((x)>>11) & 1)
228 #define			NREC_RANK(x)		(((x)>>8) & 0x7)
229 #define		NRECMEMB		0xC0
230 #define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
231 #define			NREC_RAS(x)		((x) & 0x7FFF)
232 #define		NRECFGLOG		0xC4
233 #define		NREEECFBDA		0xC8
234 #define		NREEECFBDB		0xCC
235 #define		NREEECFBDC		0xD0
236 #define		NREEECFBDD		0xD4
237 #define		NREEECFBDE		0xD8
238 #define		REDMEMA			0xDC
239 #define		RECMEMA			0xE2
240 #define			REC_BANK(x)		(((x)>>12) & 0x7)
241 #define			REC_RDWR(x)		(((x)>>11) & 1)
242 #define			REC_RANK(x)		(((x)>>8) & 0x7)
243 #define		RECMEMB			0xE4
244 #define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
245 #define			REC_RAS(x)		((x) & 0x7FFF)
246 #define		RECFGLOG		0xE8
247 #define		RECFBDA			0xEC
248 #define		RECFBDB			0xF0
249 #define		RECFBDC			0xF4
250 #define		RECFBDD			0xF8
251 #define		RECFBDE			0xFC
252 
253 /* OFFSETS for Function 2 */
254 
255 /*
256  * Device 21,
257  * Function 0: Memory Map Branch 0
258  *
259  * Device 22,
260  * Function 0: Memory Map Branch 1
261  */
262 #define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
263 #define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
264 
265 #define AMB_PRESENT_0	0x64
266 #define AMB_PRESENT_1	0x66
267 #define MTR0		0x80
268 #define MTR1		0x84
269 #define MTR2		0x88
270 #define MTR3		0x8C
271 
272 #define NUM_MTRS		4
273 #define CHANNELS_PER_BRANCH	(2)
274 
275 /* Defines to extract the vaious fields from the
276  *	MTRx - Memory Technology Registers
277  */
278 #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
279 #define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
280 #define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
281 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
282 #define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
283 #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
284 #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
285 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
286 #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
287 #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
288 
289 #ifdef CONFIG_EDAC_DEBUG
290 static char *numrow_toString[] = {
291 	"8,192 - 13 rows",
292 	"16,384 - 14 rows",
293 	"32,768 - 15 rows",
294 	"reserved"
295 };
296 
297 static char *numcol_toString[] = {
298 	"1,024 - 10 columns",
299 	"2,048 - 11 columns",
300 	"4,096 - 12 columns",
301 	"reserved"
302 };
303 #endif
304 
305 /* enables the report of miscellaneous messages as CE errors - default off */
306 static int misc_messages;
307 
308 /* Enumeration of supported devices */
309 enum i5000_chips {
310 	I5000P = 0,
311 	I5000V = 1,		/* future */
312 	I5000X = 2		/* future */
313 };
314 
315 /* Device name and register DID (Device ID) */
316 struct i5000_dev_info {
317 	const char *ctl_name;	/* name for this device */
318 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
319 };
320 
321 /* Table of devices attributes supported by this driver */
322 static const struct i5000_dev_info i5000_devs[] = {
323 	[I5000P] = {
324 		.ctl_name = "I5000",
325 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
326 	},
327 };
328 
329 struct i5000_dimm_info {
330 	int megabytes;		/* size, 0 means not present  */
331 	int dual_rank;
332 };
333 
334 #define	MAX_CHANNELS	6	/* max possible channels */
335 #define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
336 
337 /* driver private data structure */
338 struct i5000_pvt {
339 	struct pci_dev *system_address;	/* 16.0 */
340 	struct pci_dev *branchmap_werrors;	/* 16.1 */
341 	struct pci_dev *fsb_error_regs;	/* 16.2 */
342 	struct pci_dev *branch_0;	/* 21.0 */
343 	struct pci_dev *branch_1;	/* 22.0 */
344 
345 	u16 tolm;		/* top of low memory */
346 	u64 ambase;		/* AMB BAR */
347 
348 	u16 mir0, mir1, mir2;
349 
350 	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
351 	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
352 	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
353 
354 	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
355 	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
356 	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
357 
358 	/* DIMM information matrix, allocating architecture maximums */
359 	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
360 
361 	/* Actual values for this controller */
362 	int maxch;		/* Max channels */
363 	int maxdimmperch;	/* Max DIMMs per channel */
364 };
365 
366 /* I5000 MCH error information retrieved from Hardware */
367 struct i5000_error_info {
368 
369 	/* These registers are always read from the MC */
370 	u32 ferr_fat_fbd;	/* First Errors Fatal */
371 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
372 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
373 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
374 
375 	/* These registers are input ONLY if there was a Recoverable  Error */
376 	u32 redmemb;		/* Recoverable Mem Data Error log B */
377 	u16 recmema;		/* Recoverable Mem Error log A */
378 	u32 recmemb;		/* Recoverable Mem Error log B */
379 
380 	/* These registers are input ONLY if there was a
381 	 * Non-Recoverable Error */
382 	u16 nrecmema;		/* Non-Recoverable Mem log A */
383 	u16 nrecmemb;		/* Non-Recoverable Mem log B */
384 
385 };
386 
387 static struct edac_pci_ctl_info *i5000_pci;
388 
389 /*
390  *	i5000_get_error_info	Retrieve the hardware error information from
391  *				the hardware and cache it in the 'info'
392  *				structure
393  */
394 static void i5000_get_error_info(struct mem_ctl_info *mci,
395 				 struct i5000_error_info *info)
396 {
397 	struct i5000_pvt *pvt;
398 	u32 value;
399 
400 	pvt = mci->pvt_info;
401 
402 	/* read in the 1st FATAL error register */
403 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
404 
405 	/* Mask only the bits that the doc says are valid
406 	 */
407 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
408 
409 	/* If there is an error, then read in the */
410 	/* NEXT FATAL error register and the Memory Error Log Register A */
411 	if (value & FERR_FAT_MASK) {
412 		info->ferr_fat_fbd = value;
413 
414 		/* harvest the various error data we need */
415 		pci_read_config_dword(pvt->branchmap_werrors,
416 				NERR_FAT_FBD, &info->nerr_fat_fbd);
417 		pci_read_config_word(pvt->branchmap_werrors,
418 				NRECMEMA, &info->nrecmema);
419 		pci_read_config_word(pvt->branchmap_werrors,
420 				NRECMEMB, &info->nrecmemb);
421 
422 		/* Clear the error bits, by writing them back */
423 		pci_write_config_dword(pvt->branchmap_werrors,
424 				FERR_FAT_FBD, value);
425 	} else {
426 		info->ferr_fat_fbd = 0;
427 		info->nerr_fat_fbd = 0;
428 		info->nrecmema = 0;
429 		info->nrecmemb = 0;
430 	}
431 
432 	/* read in the 1st NON-FATAL error register */
433 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
434 
435 	/* If there is an error, then read in the 1st NON-FATAL error
436 	 * register as well */
437 	if (value & FERR_NF_MASK) {
438 		info->ferr_nf_fbd = value;
439 
440 		/* harvest the various error data we need */
441 		pci_read_config_dword(pvt->branchmap_werrors,
442 				NERR_NF_FBD, &info->nerr_nf_fbd);
443 		pci_read_config_word(pvt->branchmap_werrors,
444 				RECMEMA, &info->recmema);
445 		pci_read_config_dword(pvt->branchmap_werrors,
446 				RECMEMB, &info->recmemb);
447 		pci_read_config_dword(pvt->branchmap_werrors,
448 				REDMEMB, &info->redmemb);
449 
450 		/* Clear the error bits, by writing them back */
451 		pci_write_config_dword(pvt->branchmap_werrors,
452 				FERR_NF_FBD, value);
453 	} else {
454 		info->ferr_nf_fbd = 0;
455 		info->nerr_nf_fbd = 0;
456 		info->recmema = 0;
457 		info->recmemb = 0;
458 		info->redmemb = 0;
459 	}
460 }
461 
462 /*
463  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
464  * 					struct i5000_error_info *info,
465  * 					int handle_errors);
466  *
467  *	handle the Intel FATAL errors, if any
468  */
469 static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
470 					struct i5000_error_info *info,
471 					int handle_errors)
472 {
473 	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
474 	char *specific = NULL;
475 	u32 allErrors;
476 	int branch;
477 	int channel;
478 	int bank;
479 	int rank;
480 	int rdwr;
481 	int ras, cas;
482 
483 	/* mask off the Error bits that are possible */
484 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
485 	if (!allErrors)
486 		return;		/* if no error, return now */
487 
488 	branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
489 	channel = branch;
490 
491 	/* Use the NON-Recoverable macros to extract data */
492 	bank = NREC_BANK(info->nrecmema);
493 	rank = NREC_RANK(info->nrecmema);
494 	rdwr = NREC_RDWR(info->nrecmema);
495 	ras = NREC_RAS(info->nrecmemb);
496 	cas = NREC_CAS(info->nrecmemb);
497 
498 	debugf0("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
499 		"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
500 		rank, channel, channel + 1, branch >> 1, bank,
501 		rdwr ? "Write" : "Read", ras, cas);
502 
503 	/* Only 1 bit will be on */
504 	switch (allErrors) {
505 	case FERR_FAT_M1ERR:
506 		specific = "Alert on non-redundant retry or fast "
507 				"reset timeout";
508 		break;
509 	case FERR_FAT_M2ERR:
510 		specific = "Northbound CRC error on non-redundant "
511 				"retry";
512 		break;
513 	case FERR_FAT_M3ERR:
514 		{
515 		static int done;
516 
517 		/*
518 		 * This error is generated to inform that the intelligent
519 		 * throttling is disabled and the temperature passed the
520 		 * specified middle point. Since this is something the BIOS
521 		 * should take care of, we'll warn only once to avoid
522 		 * worthlessly flooding the log.
523 		 */
524 		if (done)
525 			return;
526 		done++;
527 
528 		specific = ">Tmid Thermal event with intelligent "
529 			   "throttling disabled";
530 		}
531 		break;
532 	}
533 
534 	/* Form out message */
535 	snprintf(msg, sizeof(msg),
536 		 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
537 		 "FATAL Err=0x%x (%s))",
538 		 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
539 		 allErrors, specific);
540 
541 	/* Call the helper to output message */
542 	edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
543 }
544 
545 /*
546  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
547  * 				struct i5000_error_info *info,
548  * 				int handle_errors);
549  *
550  *	handle the Intel NON-FATAL errors, if any
551  */
552 static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
553 					struct i5000_error_info *info,
554 					int handle_errors)
555 {
556 	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
557 	char *specific = NULL;
558 	u32 allErrors;
559 	u32 ue_errors;
560 	u32 ce_errors;
561 	u32 misc_errors;
562 	int branch;
563 	int channel;
564 	int bank;
565 	int rank;
566 	int rdwr;
567 	int ras, cas;
568 
569 	/* mask off the Error bits that are possible */
570 	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
571 	if (!allErrors)
572 		return;		/* if no error, return now */
573 
574 	/* ONLY ONE of the possible error bits will be set, as per the docs */
575 	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
576 	if (ue_errors) {
577 		debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
578 
579 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
580 		channel = branch;
581 		bank = NREC_BANK(info->nrecmema);
582 		rank = NREC_RANK(info->nrecmema);
583 		rdwr = NREC_RDWR(info->nrecmema);
584 		ras = NREC_RAS(info->nrecmemb);
585 		cas = NREC_CAS(info->nrecmemb);
586 
587 		debugf0
588 			("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
589 			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
590 			rank, channel, channel + 1, branch >> 1, bank,
591 			rdwr ? "Write" : "Read", ras, cas);
592 
593 		switch (ue_errors) {
594 		case FERR_NF_M12ERR:
595 			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
596 			break;
597 		case FERR_NF_M11ERR:
598 			specific = "Non-Aliased Uncorrectable Spare-Copy "
599 					"Data ECC";
600 			break;
601 		case FERR_NF_M10ERR:
602 			specific = "Non-Aliased Uncorrectable Mirrored Demand "
603 					"Data ECC";
604 			break;
605 		case FERR_NF_M9ERR:
606 			specific = "Non-Aliased Uncorrectable Non-Mirrored "
607 					"Demand Data ECC";
608 			break;
609 		case FERR_NF_M8ERR:
610 			specific = "Aliased Uncorrectable Patrol Data ECC";
611 			break;
612 		case FERR_NF_M7ERR:
613 			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
614 			break;
615 		case FERR_NF_M6ERR:
616 			specific = "Aliased Uncorrectable Mirrored Demand "
617 					"Data ECC";
618 			break;
619 		case FERR_NF_M5ERR:
620 			specific = "Aliased Uncorrectable Non-Mirrored Demand "
621 					"Data ECC";
622 			break;
623 		case FERR_NF_M4ERR:
624 			specific = "Uncorrectable Data ECC on Replay";
625 			break;
626 		}
627 
628 		/* Form out message */
629 		snprintf(msg, sizeof(msg),
630 			 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
631 			 "CAS=%d, UE Err=0x%x (%s))",
632 			 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
633 			 ue_errors, specific);
634 
635 		/* Call the helper to output message */
636 		edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
637 	}
638 
639 	/* Check correctable errors */
640 	ce_errors = allErrors & FERR_NF_CORRECTABLE;
641 	if (ce_errors) {
642 		debugf0("\tCorrected bits= 0x%x\n", ce_errors);
643 
644 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
645 
646 		channel = 0;
647 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
648 			channel = 1;
649 
650 		/* Convert channel to be based from zero, instead of
651 		 * from branch base of 0 */
652 		channel += branch;
653 
654 		bank = REC_BANK(info->recmema);
655 		rank = REC_RANK(info->recmema);
656 		rdwr = REC_RDWR(info->recmema);
657 		ras = REC_RAS(info->recmemb);
658 		cas = REC_CAS(info->recmemb);
659 
660 		debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
661 			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
662 			rank, channel, branch >> 1, bank,
663 			rdwr ? "Write" : "Read", ras, cas);
664 
665 		switch (ce_errors) {
666 		case FERR_NF_M17ERR:
667 			specific = "Correctable Non-Mirrored Demand Data ECC";
668 			break;
669 		case FERR_NF_M18ERR:
670 			specific = "Correctable Mirrored Demand Data ECC";
671 			break;
672 		case FERR_NF_M19ERR:
673 			specific = "Correctable Spare-Copy Data ECC";
674 			break;
675 		case FERR_NF_M20ERR:
676 			specific = "Correctable Patrol Data ECC";
677 			break;
678 		}
679 
680 		/* Form out message */
681 		snprintf(msg, sizeof(msg),
682 			 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
683 			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
684 			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
685 			 specific);
686 
687 		/* Call the helper to output message */
688 		edac_mc_handle_fbd_ce(mci, rank, channel, msg);
689 	}
690 
691 	if (!misc_messages)
692 		return;
693 
694 	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
695 				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
696 	if (misc_errors) {
697 		switch (misc_errors) {
698 		case FERR_NF_M13ERR:
699 			specific = "Non-Retry or Redundant Retry FBD Memory "
700 					"Alert or Redundant Fast Reset Timeout";
701 			break;
702 		case FERR_NF_M14ERR:
703 			specific = "Non-Retry or Redundant Retry FBD "
704 					"Configuration Alert";
705 			break;
706 		case FERR_NF_M15ERR:
707 			specific = "Non-Retry or Redundant Retry FBD "
708 					"Northbound CRC error on read data";
709 			break;
710 		case FERR_NF_M21ERR:
711 			specific = "FBD Northbound CRC error on "
712 					"FBD Sync Status";
713 			break;
714 		case FERR_NF_M22ERR:
715 			specific = "SPD protocol error";
716 			break;
717 		case FERR_NF_M27ERR:
718 			specific = "DIMM-spare copy started";
719 			break;
720 		case FERR_NF_M28ERR:
721 			specific = "DIMM-spare copy completed";
722 			break;
723 		}
724 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
725 
726 		/* Form out message */
727 		snprintf(msg, sizeof(msg),
728 			 "(Branch=%d Err=%#x (%s))", branch >> 1,
729 			 misc_errors, specific);
730 
731 		/* Call the helper to output message */
732 		edac_mc_handle_fbd_ce(mci, 0, 0, msg);
733 	}
734 }
735 
736 /*
737  *	i5000_process_error_info	Process the error info that is
738  *	in the 'info' structure, previously retrieved from hardware
739  */
740 static void i5000_process_error_info(struct mem_ctl_info *mci,
741 				struct i5000_error_info *info,
742 				int handle_errors)
743 {
744 	/* First handle any fatal errors that occurred */
745 	i5000_process_fatal_error_info(mci, info, handle_errors);
746 
747 	/* now handle any non-fatal errors that occurred */
748 	i5000_process_nonfatal_error_info(mci, info, handle_errors);
749 }
750 
751 /*
752  *	i5000_clear_error	Retrieve any error from the hardware
753  *				but do NOT process that error.
754  *				Used for 'clearing' out of previous errors
755  *				Called by the Core module.
756  */
757 static void i5000_clear_error(struct mem_ctl_info *mci)
758 {
759 	struct i5000_error_info info;
760 
761 	i5000_get_error_info(mci, &info);
762 }
763 
764 /*
765  *	i5000_check_error	Retrieve and process errors reported by the
766  *				hardware. Called by the Core module.
767  */
768 static void i5000_check_error(struct mem_ctl_info *mci)
769 {
770 	struct i5000_error_info info;
771 	debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
772 	i5000_get_error_info(mci, &info);
773 	i5000_process_error_info(mci, &info, 1);
774 }
775 
776 /*
777  *	i5000_get_devices	Find and perform 'get' operation on the MCH's
778  *			device/functions we want to reference for this driver
779  *
780  *			Need to 'get' device 16 func 1 and func 2
781  */
782 static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
783 {
784 	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
785 	struct i5000_pvt *pvt;
786 	struct pci_dev *pdev;
787 
788 	pvt = mci->pvt_info;
789 
790 	/* Attempt to 'get' the MCH register we want */
791 	pdev = NULL;
792 	while (1) {
793 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
794 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
795 
796 		/* End of list, leave */
797 		if (pdev == NULL) {
798 			i5000_printk(KERN_ERR,
799 				"'system address,Process Bus' "
800 				"device not found:"
801 				"vendor 0x%x device 0x%x FUNC 1 "
802 				"(broken BIOS?)\n",
803 				PCI_VENDOR_ID_INTEL,
804 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
805 
806 			return 1;
807 		}
808 
809 		/* Scan for device 16 func 1 */
810 		if (PCI_FUNC(pdev->devfn) == 1)
811 			break;
812 	}
813 
814 	pvt->branchmap_werrors = pdev;
815 
816 	/* Attempt to 'get' the MCH register we want */
817 	pdev = NULL;
818 	while (1) {
819 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
820 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
821 
822 		if (pdev == NULL) {
823 			i5000_printk(KERN_ERR,
824 				"MC: 'branchmap,control,errors' "
825 				"device not found:"
826 				"vendor 0x%x device 0x%x Func 2 "
827 				"(broken BIOS?)\n",
828 				PCI_VENDOR_ID_INTEL,
829 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
830 
831 			pci_dev_put(pvt->branchmap_werrors);
832 			return 1;
833 		}
834 
835 		/* Scan for device 16 func 1 */
836 		if (PCI_FUNC(pdev->devfn) == 2)
837 			break;
838 	}
839 
840 	pvt->fsb_error_regs = pdev;
841 
842 	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
843 		pci_name(pvt->system_address),
844 		pvt->system_address->vendor, pvt->system_address->device);
845 	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
846 		pci_name(pvt->branchmap_werrors),
847 		pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
848 	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
849 		pci_name(pvt->fsb_error_regs),
850 		pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
851 
852 	pdev = NULL;
853 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
854 			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
855 
856 	if (pdev == NULL) {
857 		i5000_printk(KERN_ERR,
858 			"MC: 'BRANCH 0' device not found:"
859 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
860 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
861 
862 		pci_dev_put(pvt->branchmap_werrors);
863 		pci_dev_put(pvt->fsb_error_regs);
864 		return 1;
865 	}
866 
867 	pvt->branch_0 = pdev;
868 
869 	/* If this device claims to have more than 2 channels then
870 	 * fetch Branch 1's information
871 	 */
872 	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
873 		pdev = NULL;
874 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
875 				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
876 
877 		if (pdev == NULL) {
878 			i5000_printk(KERN_ERR,
879 				"MC: 'BRANCH 1' device not found:"
880 				"vendor 0x%x device 0x%x Func 0 "
881 				"(broken BIOS?)\n",
882 				PCI_VENDOR_ID_INTEL,
883 				PCI_DEVICE_ID_I5000_BRANCH_1);
884 
885 			pci_dev_put(pvt->branchmap_werrors);
886 			pci_dev_put(pvt->fsb_error_regs);
887 			pci_dev_put(pvt->branch_0);
888 			return 1;
889 		}
890 
891 		pvt->branch_1 = pdev;
892 	}
893 
894 	return 0;
895 }
896 
897 /*
898  *	i5000_put_devices	'put' all the devices that we have
899  *				reserved via 'get'
900  */
901 static void i5000_put_devices(struct mem_ctl_info *mci)
902 {
903 	struct i5000_pvt *pvt;
904 
905 	pvt = mci->pvt_info;
906 
907 	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
908 	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
909 	pci_dev_put(pvt->branch_0);	/* DEV 21 */
910 
911 	/* Only if more than 2 channels do we release the second branch */
912 	if (pvt->maxch >= CHANNELS_PER_BRANCH)
913 		pci_dev_put(pvt->branch_1);	/* DEV 22 */
914 }
915 
916 /*
917  *	determine_amb_resent
918  *
919  *		the information is contained in NUM_MTRS different registers
920  *		determineing which of the NUM_MTRS requires knowing
921  *		which channel is in question
922  *
923  *	2 branches, each with 2 channels
924  *		b0_ambpresent0 for channel '0'
925  *		b0_ambpresent1 for channel '1'
926  *		b1_ambpresent0 for channel '2'
927  *		b1_ambpresent1 for channel '3'
928  */
929 static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
930 {
931 	int amb_present;
932 
933 	if (channel < CHANNELS_PER_BRANCH) {
934 		if (channel & 0x1)
935 			amb_present = pvt->b0_ambpresent1;
936 		else
937 			amb_present = pvt->b0_ambpresent0;
938 	} else {
939 		if (channel & 0x1)
940 			amb_present = pvt->b1_ambpresent1;
941 		else
942 			amb_present = pvt->b1_ambpresent0;
943 	}
944 
945 	return amb_present;
946 }
947 
948 /*
949  * determine_mtr(pvt, csrow, channel)
950  *
951  *	return the proper MTR register as determine by the csrow and channel desired
952  */
953 static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
954 {
955 	int mtr;
956 
957 	if (channel < CHANNELS_PER_BRANCH)
958 		mtr = pvt->b0_mtr[csrow >> 1];
959 	else
960 		mtr = pvt->b1_mtr[csrow >> 1];
961 
962 	return mtr;
963 }
964 
965 /*
966  */
967 static void decode_mtr(int slot_row, u16 mtr)
968 {
969 	int ans;
970 
971 	ans = MTR_DIMMS_PRESENT(mtr);
972 
973 	debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
974 		ans ? "Present" : "NOT Present");
975 	if (!ans)
976 		return;
977 
978 	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
979 	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
980 	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
981 	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
982 	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
983 }
984 
985 static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
986 			struct i5000_dimm_info *dinfo)
987 {
988 	int mtr;
989 	int amb_present_reg;
990 	int addrBits;
991 
992 	mtr = determine_mtr(pvt, csrow, channel);
993 	if (MTR_DIMMS_PRESENT(mtr)) {
994 		amb_present_reg = determine_amb_present_reg(pvt, channel);
995 
996 		/* Determine if there is  a  DIMM present in this DIMM slot */
997 		if (amb_present_reg & (1 << (csrow >> 1))) {
998 			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
999 
1000 			if (!((dinfo->dual_rank == 0) &&
1001 				((csrow & 0x1) == 0x1))) {
1002 				/* Start with the number of bits for a Bank
1003 				 * on the DRAM */
1004 				addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1005 				/* Add thenumber of ROW bits */
1006 				addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1007 				/* add the number of COLUMN bits */
1008 				addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1009 
1010 				addrBits += 6;	/* add 64 bits per DIMM */
1011 				addrBits -= 20;	/* divide by 2^^20 */
1012 				addrBits -= 3;	/* 8 bits per bytes */
1013 
1014 				dinfo->megabytes = 1 << addrBits;
1015 			}
1016 		}
1017 	}
1018 }
1019 
1020 /*
1021  *	calculate_dimm_size
1022  *
1023  *	also will output a DIMM matrix map, if debug is enabled, for viewing
1024  *	how the DIMMs are populated
1025  */
1026 static void calculate_dimm_size(struct i5000_pvt *pvt)
1027 {
1028 	struct i5000_dimm_info *dinfo;
1029 	int csrow, max_csrows;
1030 	char *p, *mem_buffer;
1031 	int space, n;
1032 	int channel;
1033 
1034 	/* ================= Generate some debug output ================= */
1035 	space = PAGE_SIZE;
1036 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
1037 	if (p == NULL) {
1038 		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1039 			__FILE__, __func__);
1040 		return;
1041 	}
1042 
1043 	n = snprintf(p, space, "\n");
1044 	p += n;
1045 	space -= n;
1046 
1047 	/* Scan all the actual CSROWS (which is # of DIMMS * 2)
1048 	 * and calculate the information for each DIMM
1049 	 * Start with the highest csrow first, to display it first
1050 	 * and work toward the 0th csrow
1051 	 */
1052 	max_csrows = pvt->maxdimmperch * 2;
1053 	for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
1054 
1055 		/* on an odd csrow, first output a 'boundary' marker,
1056 		 * then reset the message buffer  */
1057 		if (csrow & 0x1) {
1058 			n = snprintf(p, space, "---------------------------"
1059 				"--------------------------------");
1060 			p += n;
1061 			space -= n;
1062 			debugf2("%s\n", mem_buffer);
1063 			p = mem_buffer;
1064 			space = PAGE_SIZE;
1065 		}
1066 		n = snprintf(p, space, "csrow %2d    ", csrow);
1067 		p += n;
1068 		space -= n;
1069 
1070 		for (channel = 0; channel < pvt->maxch; channel++) {
1071 			dinfo = &pvt->dimm_info[csrow][channel];
1072 			handle_channel(pvt, csrow, channel, dinfo);
1073 			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1074 			p += n;
1075 			space -= n;
1076 		}
1077 		n = snprintf(p, space, "\n");
1078 		p += n;
1079 		space -= n;
1080 	}
1081 
1082 	/* Output the last bottom 'boundary' marker */
1083 	n = snprintf(p, space, "---------------------------"
1084 		"--------------------------------\n");
1085 	p += n;
1086 	space -= n;
1087 
1088 	/* now output the 'channel' labels */
1089 	n = snprintf(p, space, "            ");
1090 	p += n;
1091 	space -= n;
1092 	for (channel = 0; channel < pvt->maxch; channel++) {
1093 		n = snprintf(p, space, "channel %d | ", channel);
1094 		p += n;
1095 		space -= n;
1096 	}
1097 	n = snprintf(p, space, "\n");
1098 	p += n;
1099 	space -= n;
1100 
1101 	/* output the last message and free buffer */
1102 	debugf2("%s\n", mem_buffer);
1103 	kfree(mem_buffer);
1104 }
1105 
1106 /*
1107  *	i5000_get_mc_regs	read in the necessary registers and
1108  *				cache locally
1109  *
1110  *			Fills in the private data members
1111  */
1112 static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1113 {
1114 	struct i5000_pvt *pvt;
1115 	u32 actual_tolm;
1116 	u16 limit;
1117 	int slot_row;
1118 	int maxch;
1119 	int maxdimmperch;
1120 	int way0, way1;
1121 
1122 	pvt = mci->pvt_info;
1123 
1124 	pci_read_config_dword(pvt->system_address, AMBASE,
1125 			(u32 *) & pvt->ambase);
1126 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1127 			((u32 *) & pvt->ambase) + sizeof(u32));
1128 
1129 	maxdimmperch = pvt->maxdimmperch;
1130 	maxch = pvt->maxch;
1131 
1132 	debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1133 		(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1134 
1135 	/* Get the Branch Map regs */
1136 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1137 	pvt->tolm >>= 12;
1138 	debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1139 		pvt->tolm);
1140 
1141 	actual_tolm = pvt->tolm << 28;
1142 	debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
1143 
1144 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1145 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1146 	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1147 
1148 	/* Get the MIR[0-2] regs */
1149 	limit = (pvt->mir0 >> 4) & 0x0FFF;
1150 	way0 = pvt->mir0 & 0x1;
1151 	way1 = pvt->mir0 & 0x2;
1152 	debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1153 	limit = (pvt->mir1 >> 4) & 0x0FFF;
1154 	way0 = pvt->mir1 & 0x1;
1155 	way1 = pvt->mir1 & 0x2;
1156 	debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1157 	limit = (pvt->mir2 >> 4) & 0x0FFF;
1158 	way0 = pvt->mir2 & 0x1;
1159 	way1 = pvt->mir2 & 0x2;
1160 	debugf2("MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1161 
1162 	/* Get the MTR[0-3] regs */
1163 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1164 		int where = MTR0 + (slot_row * sizeof(u32));
1165 
1166 		pci_read_config_word(pvt->branch_0, where,
1167 				&pvt->b0_mtr[slot_row]);
1168 
1169 		debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1170 			pvt->b0_mtr[slot_row]);
1171 
1172 		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1173 			pci_read_config_word(pvt->branch_1, where,
1174 					&pvt->b1_mtr[slot_row]);
1175 			debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
1176 				where, pvt->b0_mtr[slot_row]);
1177 		} else {
1178 			pvt->b1_mtr[slot_row] = 0;
1179 		}
1180 	}
1181 
1182 	/* Read and dump branch 0's MTRs */
1183 	debugf2("\nMemory Technology Registers:\n");
1184 	debugf2("   Branch 0:\n");
1185 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1186 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1187 	}
1188 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1189 			&pvt->b0_ambpresent0);
1190 	debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1191 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1192 			&pvt->b0_ambpresent1);
1193 	debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1194 
1195 	/* Only if we have 2 branchs (4 channels) */
1196 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1197 		pvt->b1_ambpresent0 = 0;
1198 		pvt->b1_ambpresent1 = 0;
1199 	} else {
1200 		/* Read and dump  branch 1's MTRs */
1201 		debugf2("   Branch 1:\n");
1202 		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1203 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1204 		}
1205 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1206 				&pvt->b1_ambpresent0);
1207 		debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1208 			pvt->b1_ambpresent0);
1209 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1210 				&pvt->b1_ambpresent1);
1211 		debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1212 			pvt->b1_ambpresent1);
1213 	}
1214 
1215 	/* Go and determine the size of each DIMM and place in an
1216 	 * orderly matrix */
1217 	calculate_dimm_size(pvt);
1218 }
1219 
1220 /*
1221  *	i5000_init_csrows	Initialize the 'csrows' table within
1222  *				the mci control	structure with the
1223  *				addressing of memory.
1224  *
1225  *	return:
1226  *		0	success
1227  *		1	no actual memory found on this MC
1228  */
1229 static int i5000_init_csrows(struct mem_ctl_info *mci)
1230 {
1231 	struct i5000_pvt *pvt;
1232 	struct csrow_info *p_csrow;
1233 	int empty, channel_count;
1234 	int max_csrows;
1235 	int mtr;
1236 	int csrow_megs;
1237 	int channel;
1238 	int csrow;
1239 
1240 	pvt = mci->pvt_info;
1241 
1242 	channel_count = pvt->maxch;
1243 	max_csrows = pvt->maxdimmperch * 2;
1244 
1245 	empty = 1;		/* Assume NO memory */
1246 
1247 	for (csrow = 0; csrow < max_csrows; csrow++) {
1248 		p_csrow = &mci->csrows[csrow];
1249 
1250 		p_csrow->csrow_idx = csrow;
1251 
1252 		/* use branch 0 for the basis */
1253 		mtr = pvt->b0_mtr[csrow >> 1];
1254 
1255 		/* if no DIMMS on this row, continue */
1256 		if (!MTR_DIMMS_PRESENT(mtr))
1257 			continue;
1258 
1259 		/* FAKE OUT VALUES, FIXME */
1260 		p_csrow->first_page = 0 + csrow * 20;
1261 		p_csrow->last_page = 9 + csrow * 20;
1262 		p_csrow->page_mask = 0xFFF;
1263 
1264 		p_csrow->grain = 8;
1265 
1266 		csrow_megs = 0;
1267 		for (channel = 0; channel < pvt->maxch; channel++) {
1268 			csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1269 		}
1270 
1271 		p_csrow->nr_pages = csrow_megs << 8;
1272 
1273 		/* Assume DDR2 for now */
1274 		p_csrow->mtype = MEM_FB_DDR2;
1275 
1276 		/* ask what device type on this row */
1277 		if (MTR_DRAM_WIDTH(mtr))
1278 			p_csrow->dtype = DEV_X8;
1279 		else
1280 			p_csrow->dtype = DEV_X4;
1281 
1282 		p_csrow->edac_mode = EDAC_S8ECD8ED;
1283 
1284 		empty = 0;
1285 	}
1286 
1287 	return empty;
1288 }
1289 
1290 /*
1291  *	i5000_enable_error_reporting
1292  *			Turn on the memory reporting features of the hardware
1293  */
1294 static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1295 {
1296 	struct i5000_pvt *pvt;
1297 	u32 fbd_error_mask;
1298 
1299 	pvt = mci->pvt_info;
1300 
1301 	/* Read the FBD Error Mask Register */
1302 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1303 			&fbd_error_mask);
1304 
1305 	/* Enable with a '0' */
1306 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1307 
1308 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1309 			fbd_error_mask);
1310 }
1311 
1312 /*
1313  * i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1314  *
1315  *	ask the device how many channels are present and how many CSROWS
1316  *	 as well
1317  */
1318 static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1319 					int *num_dimms_per_channel,
1320 					int *num_channels)
1321 {
1322 	u8 value;
1323 
1324 	/* Need to retrieve just how many channels and dimms per channel are
1325 	 * supported on this memory controller
1326 	 */
1327 	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1328 	*num_dimms_per_channel = (int)value *2;
1329 
1330 	pci_read_config_byte(pdev, MAXCH, &value);
1331 	*num_channels = (int)value;
1332 }
1333 
1334 /*
1335  *	i5000_probe1	Probe for ONE instance of device to see if it is
1336  *			present.
1337  *	return:
1338  *		0 for FOUND a device
1339  *		< 0 for error code
1340  */
1341 static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1342 {
1343 	struct mem_ctl_info *mci;
1344 	struct i5000_pvt *pvt;
1345 	int num_channels;
1346 	int num_dimms_per_channel;
1347 	int num_csrows;
1348 
1349 	debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1350 		__func__,
1351 		pdev->bus->number,
1352 		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1353 
1354 	/* We only are looking for func 0 of the set */
1355 	if (PCI_FUNC(pdev->devfn) != 0)
1356 		return -ENODEV;
1357 
1358 	/* Ask the devices for the number of CSROWS and CHANNELS so
1359 	 * that we can calculate the memory resources, etc
1360 	 *
1361 	 * The Chipset will report what it can handle which will be greater
1362 	 * or equal to what the motherboard manufacturer will implement.
1363 	 *
1364 	 * As we don't have a motherboard identification routine to determine
1365 	 * actual number of slots/dimms per channel, we thus utilize the
1366 	 * resource as specified by the chipset. Thus, we might have
1367 	 * have more DIMMs per channel than actually on the mobo, but this
1368 	 * allows the driver to support upto the chipset max, without
1369 	 * some fancy mobo determination.
1370 	 */
1371 	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1372 					&num_channels);
1373 	num_csrows = num_dimms_per_channel * 2;
1374 
1375 	debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
1376 		__func__, num_channels, num_dimms_per_channel, num_csrows);
1377 
1378 	/* allocate a new MC control structure */
1379 	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1380 
1381 	if (mci == NULL)
1382 		return -ENOMEM;
1383 
1384 	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1385 
1386 	mci->dev = &pdev->dev;	/* record ptr  to the generic device */
1387 
1388 	pvt = mci->pvt_info;
1389 	pvt->system_address = pdev;	/* Record this device in our private */
1390 	pvt->maxch = num_channels;
1391 	pvt->maxdimmperch = num_dimms_per_channel;
1392 
1393 	/* 'get' the pci devices we want to reserve for our use */
1394 	if (i5000_get_devices(mci, dev_idx))
1395 		goto fail0;
1396 
1397 	/* Time to get serious */
1398 	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
1399 
1400 	mci->mc_idx = 0;
1401 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1402 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1403 	mci->edac_cap = EDAC_FLAG_NONE;
1404 	mci->mod_name = "i5000_edac.c";
1405 	mci->mod_ver = I5000_REVISION;
1406 	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1407 	mci->dev_name = pci_name(pdev);
1408 	mci->ctl_page_to_phys = NULL;
1409 
1410 	/* Set the function pointer to an actual operation function */
1411 	mci->edac_check = i5000_check_error;
1412 
1413 	/* initialize the MC control structure 'csrows' table
1414 	 * with the mapping and control information */
1415 	if (i5000_init_csrows(mci)) {
1416 		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1417 			"    because i5000_init_csrows() returned nonzero "
1418 			"value\n");
1419 		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1420 	} else {
1421 		debugf1("MC: Enable error reporting now\n");
1422 		i5000_enable_error_reporting(mci);
1423 	}
1424 
1425 	/* add this new MC control structure to EDAC's list of MCs */
1426 	if (edac_mc_add_mc(mci)) {
1427 		debugf0("MC: " __FILE__
1428 			": %s(): failed edac_mc_add_mc()\n", __func__);
1429 		/* FIXME: perhaps some code should go here that disables error
1430 		 * reporting if we just enabled it
1431 		 */
1432 		goto fail1;
1433 	}
1434 
1435 	i5000_clear_error(mci);
1436 
1437 	/* allocating generic PCI control info */
1438 	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1439 	if (!i5000_pci) {
1440 		printk(KERN_WARNING
1441 			"%s(): Unable to create PCI control\n",
1442 			__func__);
1443 		printk(KERN_WARNING
1444 			"%s(): PCI error report via EDAC not setup\n",
1445 			__func__);
1446 	}
1447 
1448 	return 0;
1449 
1450 	/* Error exit unwinding stack */
1451 fail1:
1452 
1453 	i5000_put_devices(mci);
1454 
1455 fail0:
1456 	edac_mc_free(mci);
1457 	return -ENODEV;
1458 }
1459 
1460 /*
1461  *	i5000_init_one	constructor for one instance of device
1462  *
1463  * 	returns:
1464  *		negative on error
1465  *		count (>= 0)
1466  */
1467 static int __devinit i5000_init_one(struct pci_dev *pdev,
1468 				const struct pci_device_id *id)
1469 {
1470 	int rc;
1471 
1472 	debugf0("MC: " __FILE__ ": %s()\n", __func__);
1473 
1474 	/* wake up device */
1475 	rc = pci_enable_device(pdev);
1476 	if (rc == -EIO)
1477 		return rc;
1478 
1479 	/* now probe and enable the device */
1480 	return i5000_probe1(pdev, id->driver_data);
1481 }
1482 
1483 /*
1484  *	i5000_remove_one	destructor for one instance of device
1485  *
1486  */
1487 static void __devexit i5000_remove_one(struct pci_dev *pdev)
1488 {
1489 	struct mem_ctl_info *mci;
1490 
1491 	debugf0(__FILE__ ": %s()\n", __func__);
1492 
1493 	if (i5000_pci)
1494 		edac_pci_release_generic_ctl(i5000_pci);
1495 
1496 	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1497 		return;
1498 
1499 	/* retrieve references to resources, and free those resources */
1500 	i5000_put_devices(mci);
1501 
1502 	edac_mc_free(mci);
1503 }
1504 
1505 /*
1506  *	pci_device_id	table for which devices we are looking for
1507  *
1508  *	The "E500P" device is the first device supported.
1509  */
1510 static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
1511 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1512 	 .driver_data = I5000P},
1513 
1514 	{0,}			/* 0 terminated list. */
1515 };
1516 
1517 MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1518 
1519 /*
1520  *	i5000_driver	pci_driver structure for this module
1521  *
1522  */
1523 static struct pci_driver i5000_driver = {
1524 	.name = KBUILD_BASENAME,
1525 	.probe = i5000_init_one,
1526 	.remove = __devexit_p(i5000_remove_one),
1527 	.id_table = i5000_pci_tbl,
1528 };
1529 
1530 /*
1531  *	i5000_init		Module entry function
1532  *			Try to initialize this module for its devices
1533  */
1534 static int __init i5000_init(void)
1535 {
1536 	int pci_rc;
1537 
1538 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1539 
1540        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1541        opstate_init();
1542 
1543 	pci_rc = pci_register_driver(&i5000_driver);
1544 
1545 	return (pci_rc < 0) ? pci_rc : 0;
1546 }
1547 
1548 /*
1549  *	i5000_exit()	Module exit function
1550  *			Unregister the driver
1551  */
1552 static void __exit i5000_exit(void)
1553 {
1554 	debugf2("MC: " __FILE__ ": %s()\n", __func__);
1555 	pci_unregister_driver(&i5000_driver);
1556 }
1557 
1558 module_init(i5000_init);
1559 module_exit(i5000_exit);
1560 
1561 MODULE_LICENSE("GPL");
1562 MODULE_AUTHOR
1563     ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1564 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1565 		I5000_REVISION);
1566 
1567 module_param(edac_op_state, int, 0444);
1568 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1569 module_param(misc_messages, int, 0444);
1570 MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1571 
1572