xref: /openbmc/linux/drivers/edac/i5000_edac.c (revision 4800cd83)
1 /*
2  * Intel 5000(P/V/X) class Memory Controllers kernel module
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8  *	norsk5@xmission.com
9  *
10  * This module is based on the following document:
11  *
12  * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
24 
25 #include "edac_core.h"
26 
27 /*
28  * Alter this version for the I5000 module when modifications are made
29  */
30 #define I5000_REVISION    " Ver: 2.0.12 " __DATE__
31 #define EDAC_MOD_STR      "i5000_edac"
32 
33 #define i5000_printk(level, fmt, arg...) \
34         edac_printk(level, "i5000", fmt, ##arg)
35 
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37         edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38 
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
41 #endif
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
44 #endif
45 
46 /* Device 16,
47  * Function 0: System Address
48  * Function 1: Memory Branch Map, Control, Errors Register
49  * Function 2: FSB Error Registers
50  *
51  * All 3 functions of Device 16 (0,1,2) share the SAME DID
52  */
53 #define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
54 
55 /* OFFSETS for Function 0 */
56 
57 /* OFFSETS for Function 1 */
58 #define		AMBASE			0x48
59 #define		MAXCH			0x56
60 #define		MAXDIMMPERCH		0x57
61 #define		TOLM			0x6C
62 #define		REDMEMB			0x7C
63 #define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
64 #define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
65 #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
66 #define		MIR0			0x80
67 #define		MIR1			0x84
68 #define		MIR2			0x88
69 #define		AMIR0			0x8C
70 #define		AMIR1			0x90
71 #define		AMIR2			0x94
72 
73 #define		FERR_FAT_FBD		0x98
74 #define		NERR_FAT_FBD		0x9C
75 #define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
76 #define			FERR_FAT_FBDCHAN 0x30000000
77 #define			FERR_FAT_M3ERR	0x00000004
78 #define			FERR_FAT_M2ERR	0x00000002
79 #define			FERR_FAT_M1ERR	0x00000001
80 #define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
81 						FERR_FAT_M2ERR | \
82 						FERR_FAT_M3ERR)
83 
84 #define		FERR_NF_FBD		0xA0
85 
86 /* Thermal and SPD or BFD errors */
87 #define			FERR_NF_M28ERR	0x01000000
88 #define			FERR_NF_M27ERR	0x00800000
89 #define			FERR_NF_M26ERR	0x00400000
90 #define			FERR_NF_M25ERR	0x00200000
91 #define			FERR_NF_M24ERR	0x00100000
92 #define			FERR_NF_M23ERR	0x00080000
93 #define			FERR_NF_M22ERR	0x00040000
94 #define			FERR_NF_M21ERR	0x00020000
95 
96 /* Correctable errors */
97 #define			FERR_NF_M20ERR	0x00010000
98 #define			FERR_NF_M19ERR	0x00008000
99 #define			FERR_NF_M18ERR	0x00004000
100 #define			FERR_NF_M17ERR	0x00002000
101 
102 /* Non-Retry or redundant Retry errors */
103 #define			FERR_NF_M16ERR	0x00001000
104 #define			FERR_NF_M15ERR	0x00000800
105 #define			FERR_NF_M14ERR	0x00000400
106 #define			FERR_NF_M13ERR	0x00000200
107 
108 /* Uncorrectable errors */
109 #define			FERR_NF_M12ERR	0x00000100
110 #define			FERR_NF_M11ERR	0x00000080
111 #define			FERR_NF_M10ERR	0x00000040
112 #define			FERR_NF_M9ERR	0x00000020
113 #define			FERR_NF_M8ERR	0x00000010
114 #define			FERR_NF_M7ERR	0x00000008
115 #define			FERR_NF_M6ERR	0x00000004
116 #define			FERR_NF_M5ERR	0x00000002
117 #define			FERR_NF_M4ERR	0x00000001
118 
119 #define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
120 							FERR_NF_M11ERR | \
121 							FERR_NF_M10ERR | \
122 							FERR_NF_M9ERR | \
123 							FERR_NF_M8ERR | \
124 							FERR_NF_M7ERR | \
125 							FERR_NF_M6ERR | \
126 							FERR_NF_M5ERR | \
127 							FERR_NF_M4ERR)
128 #define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
129 							FERR_NF_M19ERR | \
130 							FERR_NF_M18ERR | \
131 							FERR_NF_M17ERR)
132 #define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
133 							FERR_NF_M28ERR)
134 #define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
135 							FERR_NF_M25ERR | \
136 							FERR_NF_M24ERR | \
137 							FERR_NF_M23ERR)
138 #define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
139 #define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
140 #define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
141 							FERR_NF_M14ERR | \
142 							FERR_NF_M15ERR)
143 
144 #define		NERR_NF_FBD		0xA4
145 #define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
146 							FERR_NF_CORRECTABLE | \
147 							FERR_NF_DIMM_SPARE | \
148 							FERR_NF_THERMAL | \
149 							FERR_NF_SPD_PROTOCOL | \
150 							FERR_NF_NORTH_CRC | \
151 							FERR_NF_NON_RETRY)
152 
153 #define		EMASK_FBD		0xA8
154 #define			EMASK_FBD_M28ERR	0x08000000
155 #define			EMASK_FBD_M27ERR	0x04000000
156 #define			EMASK_FBD_M26ERR	0x02000000
157 #define			EMASK_FBD_M25ERR	0x01000000
158 #define			EMASK_FBD_M24ERR	0x00800000
159 #define			EMASK_FBD_M23ERR	0x00400000
160 #define			EMASK_FBD_M22ERR	0x00200000
161 #define			EMASK_FBD_M21ERR	0x00100000
162 #define			EMASK_FBD_M20ERR	0x00080000
163 #define			EMASK_FBD_M19ERR	0x00040000
164 #define			EMASK_FBD_M18ERR	0x00020000
165 #define			EMASK_FBD_M17ERR	0x00010000
166 
167 #define			EMASK_FBD_M15ERR	0x00004000
168 #define			EMASK_FBD_M14ERR	0x00002000
169 #define			EMASK_FBD_M13ERR	0x00001000
170 #define			EMASK_FBD_M12ERR	0x00000800
171 #define			EMASK_FBD_M11ERR	0x00000400
172 #define			EMASK_FBD_M10ERR	0x00000200
173 #define			EMASK_FBD_M9ERR		0x00000100
174 #define			EMASK_FBD_M8ERR		0x00000080
175 #define			EMASK_FBD_M7ERR		0x00000040
176 #define			EMASK_FBD_M6ERR		0x00000020
177 #define			EMASK_FBD_M5ERR		0x00000010
178 #define			EMASK_FBD_M4ERR		0x00000008
179 #define			EMASK_FBD_M3ERR		0x00000004
180 #define			EMASK_FBD_M2ERR		0x00000002
181 #define			EMASK_FBD_M1ERR		0x00000001
182 
183 #define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
184 							EMASK_FBD_M2ERR | \
185 							EMASK_FBD_M3ERR)
186 
187 #define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
188 							EMASK_FBD_M5ERR | \
189 							EMASK_FBD_M6ERR | \
190 							EMASK_FBD_M7ERR | \
191 							EMASK_FBD_M8ERR | \
192 							EMASK_FBD_M9ERR | \
193 							EMASK_FBD_M10ERR | \
194 							EMASK_FBD_M11ERR | \
195 							EMASK_FBD_M12ERR)
196 #define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
197 							EMASK_FBD_M18ERR | \
198 							EMASK_FBD_M19ERR | \
199 							EMASK_FBD_M20ERR)
200 #define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
201 							EMASK_FBD_M28ERR)
202 #define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
203 							EMASK_FBD_M25ERR | \
204 							EMASK_FBD_M24ERR | \
205 							EMASK_FBD_M23ERR)
206 #define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
207 #define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
208 #define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
209 							EMASK_FBD_M14ERR | \
210 							EMASK_FBD_M13ERR)
211 
212 #define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
213 					ENABLE_EMASK_FBD_NORTH_CRC | \
214 					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215 					ENABLE_EMASK_FBD_THERMALS | \
216 					ENABLE_EMASK_FBD_DIMM_SPARE | \
217 					ENABLE_EMASK_FBD_FATAL_ERRORS | \
218 					ENABLE_EMASK_FBD_CORRECTABLE | \
219 					ENABLE_EMASK_FBD_UNCORRECTABLE)
220 
221 #define		ERR0_FBD		0xAC
222 #define		ERR1_FBD		0xB0
223 #define		ERR2_FBD		0xB4
224 #define		MCERR_FBD		0xB8
225 #define		NRECMEMA		0xBE
226 #define			NREC_BANK(x)		(((x)>>12) & 0x7)
227 #define			NREC_RDWR(x)		(((x)>>11) & 1)
228 #define			NREC_RANK(x)		(((x)>>8) & 0x7)
229 #define		NRECMEMB		0xC0
230 #define			NREC_CAS(x)		(((x)>>16) & 0xFFFFFF)
231 #define			NREC_RAS(x)		((x) & 0x7FFF)
232 #define		NRECFGLOG		0xC4
233 #define		NREEECFBDA		0xC8
234 #define		NREEECFBDB		0xCC
235 #define		NREEECFBDC		0xD0
236 #define		NREEECFBDD		0xD4
237 #define		NREEECFBDE		0xD8
238 #define		REDMEMA			0xDC
239 #define		RECMEMA			0xE2
240 #define			REC_BANK(x)		(((x)>>12) & 0x7)
241 #define			REC_RDWR(x)		(((x)>>11) & 1)
242 #define			REC_RANK(x)		(((x)>>8) & 0x7)
243 #define		RECMEMB			0xE4
244 #define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
245 #define			REC_RAS(x)		((x) & 0x7FFF)
246 #define		RECFGLOG		0xE8
247 #define		RECFBDA			0xEC
248 #define		RECFBDB			0xF0
249 #define		RECFBDC			0xF4
250 #define		RECFBDD			0xF8
251 #define		RECFBDE			0xFC
252 
253 /* OFFSETS for Function 2 */
254 
255 /*
256  * Device 21,
257  * Function 0: Memory Map Branch 0
258  *
259  * Device 22,
260  * Function 0: Memory Map Branch 1
261  */
262 #define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
263 #define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
264 
265 #define AMB_PRESENT_0	0x64
266 #define AMB_PRESENT_1	0x66
267 #define MTR0		0x80
268 #define MTR1		0x84
269 #define MTR2		0x88
270 #define MTR3		0x8C
271 
272 #define NUM_MTRS		4
273 #define CHANNELS_PER_BRANCH	(2)
274 
275 /* Defines to extract the vaious fields from the
276  *	MTRx - Memory Technology Registers
277  */
278 #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
279 #define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
280 #define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
281 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
282 #define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
283 #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
284 #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
285 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
286 #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
287 #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
288 
289 #ifdef CONFIG_EDAC_DEBUG
290 static char *numrow_toString[] = {
291 	"8,192 - 13 rows",
292 	"16,384 - 14 rows",
293 	"32,768 - 15 rows",
294 	"reserved"
295 };
296 
297 static char *numcol_toString[] = {
298 	"1,024 - 10 columns",
299 	"2,048 - 11 columns",
300 	"4,096 - 12 columns",
301 	"reserved"
302 };
303 #endif
304 
305 /* enables the report of miscellaneous messages as CE errors - default off */
306 static int misc_messages;
307 
308 /* Enumeration of supported devices */
309 enum i5000_chips {
310 	I5000P = 0,
311 	I5000V = 1,		/* future */
312 	I5000X = 2		/* future */
313 };
314 
315 /* Device name and register DID (Device ID) */
316 struct i5000_dev_info {
317 	const char *ctl_name;	/* name for this device */
318 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
319 };
320 
321 /* Table of devices attributes supported by this driver */
322 static const struct i5000_dev_info i5000_devs[] = {
323 	[I5000P] = {
324 		.ctl_name = "I5000",
325 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
326 	},
327 };
328 
329 struct i5000_dimm_info {
330 	int megabytes;		/* size, 0 means not present  */
331 	int dual_rank;
332 };
333 
334 #define	MAX_CHANNELS	6	/* max possible channels */
335 #define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
336 
337 /* driver private data structure */
338 struct i5000_pvt {
339 	struct pci_dev *system_address;	/* 16.0 */
340 	struct pci_dev *branchmap_werrors;	/* 16.1 */
341 	struct pci_dev *fsb_error_regs;	/* 16.2 */
342 	struct pci_dev *branch_0;	/* 21.0 */
343 	struct pci_dev *branch_1;	/* 22.0 */
344 
345 	u16 tolm;		/* top of low memory */
346 	u64 ambase;		/* AMB BAR */
347 
348 	u16 mir0, mir1, mir2;
349 
350 	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
351 	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
352 	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
353 
354 	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
355 	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
356 	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
357 
358 	/* DIMM information matrix, allocating architecture maximums */
359 	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
360 
361 	/* Actual values for this controller */
362 	int maxch;		/* Max channels */
363 	int maxdimmperch;	/* Max DIMMs per channel */
364 };
365 
366 /* I5000 MCH error information retrieved from Hardware */
367 struct i5000_error_info {
368 
369 	/* These registers are always read from the MC */
370 	u32 ferr_fat_fbd;	/* First Errors Fatal */
371 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
372 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
373 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
374 
375 	/* These registers are input ONLY if there was a Recoverable  Error */
376 	u32 redmemb;		/* Recoverable Mem Data Error log B */
377 	u16 recmema;		/* Recoverable Mem Error log A */
378 	u32 recmemb;		/* Recoverable Mem Error log B */
379 
380 	/* These registers are input ONLY if there was a
381 	 * Non-Recoverable Error */
382 	u16 nrecmema;		/* Non-Recoverable Mem log A */
383 	u16 nrecmemb;		/* Non-Recoverable Mem log B */
384 
385 };
386 
387 static struct edac_pci_ctl_info *i5000_pci;
388 
389 /*
390  *	i5000_get_error_info	Retrieve the hardware error information from
391  *				the hardware and cache it in the 'info'
392  *				structure
393  */
394 static void i5000_get_error_info(struct mem_ctl_info *mci,
395 				 struct i5000_error_info *info)
396 {
397 	struct i5000_pvt *pvt;
398 	u32 value;
399 
400 	pvt = mci->pvt_info;
401 
402 	/* read in the 1st FATAL error register */
403 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
404 
405 	/* Mask only the bits that the doc says are valid
406 	 */
407 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
408 
409 	/* If there is an error, then read in the */
410 	/* NEXT FATAL error register and the Memory Error Log Register A */
411 	if (value & FERR_FAT_MASK) {
412 		info->ferr_fat_fbd = value;
413 
414 		/* harvest the various error data we need */
415 		pci_read_config_dword(pvt->branchmap_werrors,
416 				NERR_FAT_FBD, &info->nerr_fat_fbd);
417 		pci_read_config_word(pvt->branchmap_werrors,
418 				NRECMEMA, &info->nrecmema);
419 		pci_read_config_word(pvt->branchmap_werrors,
420 				NRECMEMB, &info->nrecmemb);
421 
422 		/* Clear the error bits, by writing them back */
423 		pci_write_config_dword(pvt->branchmap_werrors,
424 				FERR_FAT_FBD, value);
425 	} else {
426 		info->ferr_fat_fbd = 0;
427 		info->nerr_fat_fbd = 0;
428 		info->nrecmema = 0;
429 		info->nrecmemb = 0;
430 	}
431 
432 	/* read in the 1st NON-FATAL error register */
433 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
434 
435 	/* If there is an error, then read in the 1st NON-FATAL error
436 	 * register as well */
437 	if (value & FERR_NF_MASK) {
438 		info->ferr_nf_fbd = value;
439 
440 		/* harvest the various error data we need */
441 		pci_read_config_dword(pvt->branchmap_werrors,
442 				NERR_NF_FBD, &info->nerr_nf_fbd);
443 		pci_read_config_word(pvt->branchmap_werrors,
444 				RECMEMA, &info->recmema);
445 		pci_read_config_dword(pvt->branchmap_werrors,
446 				RECMEMB, &info->recmemb);
447 		pci_read_config_dword(pvt->branchmap_werrors,
448 				REDMEMB, &info->redmemb);
449 
450 		/* Clear the error bits, by writing them back */
451 		pci_write_config_dword(pvt->branchmap_werrors,
452 				FERR_NF_FBD, value);
453 	} else {
454 		info->ferr_nf_fbd = 0;
455 		info->nerr_nf_fbd = 0;
456 		info->recmema = 0;
457 		info->recmemb = 0;
458 		info->redmemb = 0;
459 	}
460 }
461 
462 /*
463  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
464  * 					struct i5000_error_info *info,
465  * 					int handle_errors);
466  *
467  *	handle the Intel FATAL errors, if any
468  */
469 static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
470 					struct i5000_error_info *info,
471 					int handle_errors)
472 {
473 	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
474 	char *specific = NULL;
475 	u32 allErrors;
476 	int branch;
477 	int channel;
478 	int bank;
479 	int rank;
480 	int rdwr;
481 	int ras, cas;
482 
483 	/* mask off the Error bits that are possible */
484 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
485 	if (!allErrors)
486 		return;		/* if no error, return now */
487 
488 	branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
489 	channel = branch;
490 
491 	/* Use the NON-Recoverable macros to extract data */
492 	bank = NREC_BANK(info->nrecmema);
493 	rank = NREC_RANK(info->nrecmema);
494 	rdwr = NREC_RDWR(info->nrecmema);
495 	ras = NREC_RAS(info->nrecmemb);
496 	cas = NREC_CAS(info->nrecmemb);
497 
498 	debugf0("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
499 		"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
500 		rank, channel, channel + 1, branch >> 1, bank,
501 		rdwr ? "Write" : "Read", ras, cas);
502 
503 	/* Only 1 bit will be on */
504 	switch (allErrors) {
505 	case FERR_FAT_M1ERR:
506 		specific = "Alert on non-redundant retry or fast "
507 				"reset timeout";
508 		break;
509 	case FERR_FAT_M2ERR:
510 		specific = "Northbound CRC error on non-redundant "
511 				"retry";
512 		break;
513 	case FERR_FAT_M3ERR:
514 		{
515 		static int done;
516 
517 		/*
518 		 * This error is generated to inform that the intelligent
519 		 * throttling is disabled and the temperature passed the
520 		 * specified middle point. Since this is something the BIOS
521 		 * should take care of, we'll warn only once to avoid
522 		 * worthlessly flooding the log.
523 		 */
524 		if (done)
525 			return;
526 		done++;
527 
528 		specific = ">Tmid Thermal event with intelligent "
529 			   "throttling disabled";
530 		}
531 		break;
532 	}
533 
534 	/* Form out message */
535 	snprintf(msg, sizeof(msg),
536 		 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
537 		 "FATAL Err=0x%x (%s))",
538 		 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
539 		 allErrors, specific);
540 
541 	/* Call the helper to output message */
542 	edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
543 }
544 
545 /*
546  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
547  * 				struct i5000_error_info *info,
548  * 				int handle_errors);
549  *
550  *	handle the Intel NON-FATAL errors, if any
551  */
552 static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
553 					struct i5000_error_info *info,
554 					int handle_errors)
555 {
556 	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
557 	char *specific = NULL;
558 	u32 allErrors;
559 	u32 ue_errors;
560 	u32 ce_errors;
561 	u32 misc_errors;
562 	int branch;
563 	int channel;
564 	int bank;
565 	int rank;
566 	int rdwr;
567 	int ras, cas;
568 
569 	/* mask off the Error bits that are possible */
570 	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
571 	if (!allErrors)
572 		return;		/* if no error, return now */
573 
574 	/* ONLY ONE of the possible error bits will be set, as per the docs */
575 	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
576 	if (ue_errors) {
577 		debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
578 
579 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
580 
581 		/*
582 		 * According with i5000 datasheet, bit 28 has no significance
583 		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
584 		 */
585 		channel = branch & 2;
586 
587 		bank = NREC_BANK(info->nrecmema);
588 		rank = NREC_RANK(info->nrecmema);
589 		rdwr = NREC_RDWR(info->nrecmema);
590 		ras = NREC_RAS(info->nrecmemb);
591 		cas = NREC_CAS(info->nrecmemb);
592 
593 		debugf0
594 			("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
595 			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
596 			rank, channel, channel + 1, branch >> 1, bank,
597 			rdwr ? "Write" : "Read", ras, cas);
598 
599 		switch (ue_errors) {
600 		case FERR_NF_M12ERR:
601 			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
602 			break;
603 		case FERR_NF_M11ERR:
604 			specific = "Non-Aliased Uncorrectable Spare-Copy "
605 					"Data ECC";
606 			break;
607 		case FERR_NF_M10ERR:
608 			specific = "Non-Aliased Uncorrectable Mirrored Demand "
609 					"Data ECC";
610 			break;
611 		case FERR_NF_M9ERR:
612 			specific = "Non-Aliased Uncorrectable Non-Mirrored "
613 					"Demand Data ECC";
614 			break;
615 		case FERR_NF_M8ERR:
616 			specific = "Aliased Uncorrectable Patrol Data ECC";
617 			break;
618 		case FERR_NF_M7ERR:
619 			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
620 			break;
621 		case FERR_NF_M6ERR:
622 			specific = "Aliased Uncorrectable Mirrored Demand "
623 					"Data ECC";
624 			break;
625 		case FERR_NF_M5ERR:
626 			specific = "Aliased Uncorrectable Non-Mirrored Demand "
627 					"Data ECC";
628 			break;
629 		case FERR_NF_M4ERR:
630 			specific = "Uncorrectable Data ECC on Replay";
631 			break;
632 		}
633 
634 		/* Form out message */
635 		snprintf(msg, sizeof(msg),
636 			 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
637 			 "CAS=%d, UE Err=0x%x (%s))",
638 			 branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
639 			 ue_errors, specific);
640 
641 		/* Call the helper to output message */
642 		edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
643 	}
644 
645 	/* Check correctable errors */
646 	ce_errors = allErrors & FERR_NF_CORRECTABLE;
647 	if (ce_errors) {
648 		debugf0("\tCorrected bits= 0x%x\n", ce_errors);
649 
650 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
651 
652 		channel = 0;
653 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
654 			channel = 1;
655 
656 		/* Convert channel to be based from zero, instead of
657 		 * from branch base of 0 */
658 		channel += branch;
659 
660 		bank = REC_BANK(info->recmema);
661 		rank = REC_RANK(info->recmema);
662 		rdwr = REC_RDWR(info->recmema);
663 		ras = REC_RAS(info->recmemb);
664 		cas = REC_CAS(info->recmemb);
665 
666 		debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
667 			"DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
668 			rank, channel, branch >> 1, bank,
669 			rdwr ? "Write" : "Read", ras, cas);
670 
671 		switch (ce_errors) {
672 		case FERR_NF_M17ERR:
673 			specific = "Correctable Non-Mirrored Demand Data ECC";
674 			break;
675 		case FERR_NF_M18ERR:
676 			specific = "Correctable Mirrored Demand Data ECC";
677 			break;
678 		case FERR_NF_M19ERR:
679 			specific = "Correctable Spare-Copy Data ECC";
680 			break;
681 		case FERR_NF_M20ERR:
682 			specific = "Correctable Patrol Data ECC";
683 			break;
684 		}
685 
686 		/* Form out message */
687 		snprintf(msg, sizeof(msg),
688 			 "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
689 			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
690 			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
691 			 specific);
692 
693 		/* Call the helper to output message */
694 		edac_mc_handle_fbd_ce(mci, rank, channel, msg);
695 	}
696 
697 	if (!misc_messages)
698 		return;
699 
700 	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
701 				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
702 	if (misc_errors) {
703 		switch (misc_errors) {
704 		case FERR_NF_M13ERR:
705 			specific = "Non-Retry or Redundant Retry FBD Memory "
706 					"Alert or Redundant Fast Reset Timeout";
707 			break;
708 		case FERR_NF_M14ERR:
709 			specific = "Non-Retry or Redundant Retry FBD "
710 					"Configuration Alert";
711 			break;
712 		case FERR_NF_M15ERR:
713 			specific = "Non-Retry or Redundant Retry FBD "
714 					"Northbound CRC error on read data";
715 			break;
716 		case FERR_NF_M21ERR:
717 			specific = "FBD Northbound CRC error on "
718 					"FBD Sync Status";
719 			break;
720 		case FERR_NF_M22ERR:
721 			specific = "SPD protocol error";
722 			break;
723 		case FERR_NF_M27ERR:
724 			specific = "DIMM-spare copy started";
725 			break;
726 		case FERR_NF_M28ERR:
727 			specific = "DIMM-spare copy completed";
728 			break;
729 		}
730 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
731 
732 		/* Form out message */
733 		snprintf(msg, sizeof(msg),
734 			 "(Branch=%d Err=%#x (%s))", branch >> 1,
735 			 misc_errors, specific);
736 
737 		/* Call the helper to output message */
738 		edac_mc_handle_fbd_ce(mci, 0, 0, msg);
739 	}
740 }
741 
742 /*
743  *	i5000_process_error_info	Process the error info that is
744  *	in the 'info' structure, previously retrieved from hardware
745  */
746 static void i5000_process_error_info(struct mem_ctl_info *mci,
747 				struct i5000_error_info *info,
748 				int handle_errors)
749 {
750 	/* First handle any fatal errors that occurred */
751 	i5000_process_fatal_error_info(mci, info, handle_errors);
752 
753 	/* now handle any non-fatal errors that occurred */
754 	i5000_process_nonfatal_error_info(mci, info, handle_errors);
755 }
756 
757 /*
758  *	i5000_clear_error	Retrieve any error from the hardware
759  *				but do NOT process that error.
760  *				Used for 'clearing' out of previous errors
761  *				Called by the Core module.
762  */
763 static void i5000_clear_error(struct mem_ctl_info *mci)
764 {
765 	struct i5000_error_info info;
766 
767 	i5000_get_error_info(mci, &info);
768 }
769 
770 /*
771  *	i5000_check_error	Retrieve and process errors reported by the
772  *				hardware. Called by the Core module.
773  */
774 static void i5000_check_error(struct mem_ctl_info *mci)
775 {
776 	struct i5000_error_info info;
777 	debugf4("MC%d: %s: %s()\n", mci->mc_idx, __FILE__, __func__);
778 	i5000_get_error_info(mci, &info);
779 	i5000_process_error_info(mci, &info, 1);
780 }
781 
782 /*
783  *	i5000_get_devices	Find and perform 'get' operation on the MCH's
784  *			device/functions we want to reference for this driver
785  *
786  *			Need to 'get' device 16 func 1 and func 2
787  */
788 static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
789 {
790 	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
791 	struct i5000_pvt *pvt;
792 	struct pci_dev *pdev;
793 
794 	pvt = mci->pvt_info;
795 
796 	/* Attempt to 'get' the MCH register we want */
797 	pdev = NULL;
798 	while (1) {
799 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
800 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
801 
802 		/* End of list, leave */
803 		if (pdev == NULL) {
804 			i5000_printk(KERN_ERR,
805 				"'system address,Process Bus' "
806 				"device not found:"
807 				"vendor 0x%x device 0x%x FUNC 1 "
808 				"(broken BIOS?)\n",
809 				PCI_VENDOR_ID_INTEL,
810 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
811 
812 			return 1;
813 		}
814 
815 		/* Scan for device 16 func 1 */
816 		if (PCI_FUNC(pdev->devfn) == 1)
817 			break;
818 	}
819 
820 	pvt->branchmap_werrors = pdev;
821 
822 	/* Attempt to 'get' the MCH register we want */
823 	pdev = NULL;
824 	while (1) {
825 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
826 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
827 
828 		if (pdev == NULL) {
829 			i5000_printk(KERN_ERR,
830 				"MC: 'branchmap,control,errors' "
831 				"device not found:"
832 				"vendor 0x%x device 0x%x Func 2 "
833 				"(broken BIOS?)\n",
834 				PCI_VENDOR_ID_INTEL,
835 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
836 
837 			pci_dev_put(pvt->branchmap_werrors);
838 			return 1;
839 		}
840 
841 		/* Scan for device 16 func 1 */
842 		if (PCI_FUNC(pdev->devfn) == 2)
843 			break;
844 	}
845 
846 	pvt->fsb_error_regs = pdev;
847 
848 	debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
849 		pci_name(pvt->system_address),
850 		pvt->system_address->vendor, pvt->system_address->device);
851 	debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
852 		pci_name(pvt->branchmap_werrors),
853 		pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
854 	debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
855 		pci_name(pvt->fsb_error_regs),
856 		pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
857 
858 	pdev = NULL;
859 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
860 			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
861 
862 	if (pdev == NULL) {
863 		i5000_printk(KERN_ERR,
864 			"MC: 'BRANCH 0' device not found:"
865 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
866 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
867 
868 		pci_dev_put(pvt->branchmap_werrors);
869 		pci_dev_put(pvt->fsb_error_regs);
870 		return 1;
871 	}
872 
873 	pvt->branch_0 = pdev;
874 
875 	/* If this device claims to have more than 2 channels then
876 	 * fetch Branch 1's information
877 	 */
878 	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
879 		pdev = NULL;
880 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
881 				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
882 
883 		if (pdev == NULL) {
884 			i5000_printk(KERN_ERR,
885 				"MC: 'BRANCH 1' device not found:"
886 				"vendor 0x%x device 0x%x Func 0 "
887 				"(broken BIOS?)\n",
888 				PCI_VENDOR_ID_INTEL,
889 				PCI_DEVICE_ID_I5000_BRANCH_1);
890 
891 			pci_dev_put(pvt->branchmap_werrors);
892 			pci_dev_put(pvt->fsb_error_regs);
893 			pci_dev_put(pvt->branch_0);
894 			return 1;
895 		}
896 
897 		pvt->branch_1 = pdev;
898 	}
899 
900 	return 0;
901 }
902 
903 /*
904  *	i5000_put_devices	'put' all the devices that we have
905  *				reserved via 'get'
906  */
907 static void i5000_put_devices(struct mem_ctl_info *mci)
908 {
909 	struct i5000_pvt *pvt;
910 
911 	pvt = mci->pvt_info;
912 
913 	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
914 	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
915 	pci_dev_put(pvt->branch_0);	/* DEV 21 */
916 
917 	/* Only if more than 2 channels do we release the second branch */
918 	if (pvt->maxch >= CHANNELS_PER_BRANCH)
919 		pci_dev_put(pvt->branch_1);	/* DEV 22 */
920 }
921 
922 /*
923  *	determine_amb_resent
924  *
925  *		the information is contained in NUM_MTRS different registers
926  *		determineing which of the NUM_MTRS requires knowing
927  *		which channel is in question
928  *
929  *	2 branches, each with 2 channels
930  *		b0_ambpresent0 for channel '0'
931  *		b0_ambpresent1 for channel '1'
932  *		b1_ambpresent0 for channel '2'
933  *		b1_ambpresent1 for channel '3'
934  */
935 static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
936 {
937 	int amb_present;
938 
939 	if (channel < CHANNELS_PER_BRANCH) {
940 		if (channel & 0x1)
941 			amb_present = pvt->b0_ambpresent1;
942 		else
943 			amb_present = pvt->b0_ambpresent0;
944 	} else {
945 		if (channel & 0x1)
946 			amb_present = pvt->b1_ambpresent1;
947 		else
948 			amb_present = pvt->b1_ambpresent0;
949 	}
950 
951 	return amb_present;
952 }
953 
954 /*
955  * determine_mtr(pvt, csrow, channel)
956  *
957  *	return the proper MTR register as determine by the csrow and channel desired
958  */
959 static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
960 {
961 	int mtr;
962 
963 	if (channel < CHANNELS_PER_BRANCH)
964 		mtr = pvt->b0_mtr[csrow >> 1];
965 	else
966 		mtr = pvt->b1_mtr[csrow >> 1];
967 
968 	return mtr;
969 }
970 
971 /*
972  */
973 static void decode_mtr(int slot_row, u16 mtr)
974 {
975 	int ans;
976 
977 	ans = MTR_DIMMS_PRESENT(mtr);
978 
979 	debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
980 		ans ? "Present" : "NOT Present");
981 	if (!ans)
982 		return;
983 
984 	debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
985 	debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
986 	debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
987 	debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
988 	debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
989 }
990 
991 static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
992 			struct i5000_dimm_info *dinfo)
993 {
994 	int mtr;
995 	int amb_present_reg;
996 	int addrBits;
997 
998 	mtr = determine_mtr(pvt, csrow, channel);
999 	if (MTR_DIMMS_PRESENT(mtr)) {
1000 		amb_present_reg = determine_amb_present_reg(pvt, channel);
1001 
1002 		/* Determine if there is  a  DIMM present in this DIMM slot */
1003 		if (amb_present_reg & (1 << (csrow >> 1))) {
1004 			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1005 
1006 			if (!((dinfo->dual_rank == 0) &&
1007 				((csrow & 0x1) == 0x1))) {
1008 				/* Start with the number of bits for a Bank
1009 				 * on the DRAM */
1010 				addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1011 				/* Add thenumber of ROW bits */
1012 				addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1013 				/* add the number of COLUMN bits */
1014 				addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1015 
1016 				addrBits += 6;	/* add 64 bits per DIMM */
1017 				addrBits -= 20;	/* divide by 2^^20 */
1018 				addrBits -= 3;	/* 8 bits per bytes */
1019 
1020 				dinfo->megabytes = 1 << addrBits;
1021 			}
1022 		}
1023 	}
1024 }
1025 
1026 /*
1027  *	calculate_dimm_size
1028  *
1029  *	also will output a DIMM matrix map, if debug is enabled, for viewing
1030  *	how the DIMMs are populated
1031  */
1032 static void calculate_dimm_size(struct i5000_pvt *pvt)
1033 {
1034 	struct i5000_dimm_info *dinfo;
1035 	int csrow, max_csrows;
1036 	char *p, *mem_buffer;
1037 	int space, n;
1038 	int channel;
1039 
1040 	/* ================= Generate some debug output ================= */
1041 	space = PAGE_SIZE;
1042 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
1043 	if (p == NULL) {
1044 		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1045 			__FILE__, __func__);
1046 		return;
1047 	}
1048 
1049 	n = snprintf(p, space, "\n");
1050 	p += n;
1051 	space -= n;
1052 
1053 	/* Scan all the actual CSROWS (which is # of DIMMS * 2)
1054 	 * and calculate the information for each DIMM
1055 	 * Start with the highest csrow first, to display it first
1056 	 * and work toward the 0th csrow
1057 	 */
1058 	max_csrows = pvt->maxdimmperch * 2;
1059 	for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
1060 
1061 		/* on an odd csrow, first output a 'boundary' marker,
1062 		 * then reset the message buffer  */
1063 		if (csrow & 0x1) {
1064 			n = snprintf(p, space, "---------------------------"
1065 				"--------------------------------");
1066 			p += n;
1067 			space -= n;
1068 			debugf2("%s\n", mem_buffer);
1069 			p = mem_buffer;
1070 			space = PAGE_SIZE;
1071 		}
1072 		n = snprintf(p, space, "csrow %2d    ", csrow);
1073 		p += n;
1074 		space -= n;
1075 
1076 		for (channel = 0; channel < pvt->maxch; channel++) {
1077 			dinfo = &pvt->dimm_info[csrow][channel];
1078 			handle_channel(pvt, csrow, channel, dinfo);
1079 			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1080 			p += n;
1081 			space -= n;
1082 		}
1083 		n = snprintf(p, space, "\n");
1084 		p += n;
1085 		space -= n;
1086 	}
1087 
1088 	/* Output the last bottom 'boundary' marker */
1089 	n = snprintf(p, space, "---------------------------"
1090 		"--------------------------------\n");
1091 	p += n;
1092 	space -= n;
1093 
1094 	/* now output the 'channel' labels */
1095 	n = snprintf(p, space, "            ");
1096 	p += n;
1097 	space -= n;
1098 	for (channel = 0; channel < pvt->maxch; channel++) {
1099 		n = snprintf(p, space, "channel %d | ", channel);
1100 		p += n;
1101 		space -= n;
1102 	}
1103 	n = snprintf(p, space, "\n");
1104 	p += n;
1105 	space -= n;
1106 
1107 	/* output the last message and free buffer */
1108 	debugf2("%s\n", mem_buffer);
1109 	kfree(mem_buffer);
1110 }
1111 
1112 /*
1113  *	i5000_get_mc_regs	read in the necessary registers and
1114  *				cache locally
1115  *
1116  *			Fills in the private data members
1117  */
1118 static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1119 {
1120 	struct i5000_pvt *pvt;
1121 	u32 actual_tolm;
1122 	u16 limit;
1123 	int slot_row;
1124 	int maxch;
1125 	int maxdimmperch;
1126 	int way0, way1;
1127 
1128 	pvt = mci->pvt_info;
1129 
1130 	pci_read_config_dword(pvt->system_address, AMBASE,
1131 			(u32 *) & pvt->ambase);
1132 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1133 			((u32 *) & pvt->ambase) + sizeof(u32));
1134 
1135 	maxdimmperch = pvt->maxdimmperch;
1136 	maxch = pvt->maxch;
1137 
1138 	debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1139 		(long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1140 
1141 	/* Get the Branch Map regs */
1142 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1143 	pvt->tolm >>= 12;
1144 	debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1145 		pvt->tolm);
1146 
1147 	actual_tolm = pvt->tolm << 28;
1148 	debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
1149 
1150 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1151 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1152 	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1153 
1154 	/* Get the MIR[0-2] regs */
1155 	limit = (pvt->mir0 >> 4) & 0x0FFF;
1156 	way0 = pvt->mir0 & 0x1;
1157 	way1 = pvt->mir0 & 0x2;
1158 	debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1159 	limit = (pvt->mir1 >> 4) & 0x0FFF;
1160 	way0 = pvt->mir1 & 0x1;
1161 	way1 = pvt->mir1 & 0x2;
1162 	debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1163 	limit = (pvt->mir2 >> 4) & 0x0FFF;
1164 	way0 = pvt->mir2 & 0x1;
1165 	way1 = pvt->mir2 & 0x2;
1166 	debugf2("MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1167 
1168 	/* Get the MTR[0-3] regs */
1169 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1170 		int where = MTR0 + (slot_row * sizeof(u32));
1171 
1172 		pci_read_config_word(pvt->branch_0, where,
1173 				&pvt->b0_mtr[slot_row]);
1174 
1175 		debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1176 			pvt->b0_mtr[slot_row]);
1177 
1178 		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1179 			pci_read_config_word(pvt->branch_1, where,
1180 					&pvt->b1_mtr[slot_row]);
1181 			debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
1182 				where, pvt->b1_mtr[slot_row]);
1183 		} else {
1184 			pvt->b1_mtr[slot_row] = 0;
1185 		}
1186 	}
1187 
1188 	/* Read and dump branch 0's MTRs */
1189 	debugf2("\nMemory Technology Registers:\n");
1190 	debugf2("   Branch 0:\n");
1191 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1192 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1193 	}
1194 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1195 			&pvt->b0_ambpresent0);
1196 	debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1197 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1198 			&pvt->b0_ambpresent1);
1199 	debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1200 
1201 	/* Only if we have 2 branchs (4 channels) */
1202 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1203 		pvt->b1_ambpresent0 = 0;
1204 		pvt->b1_ambpresent1 = 0;
1205 	} else {
1206 		/* Read and dump  branch 1's MTRs */
1207 		debugf2("   Branch 1:\n");
1208 		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1209 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1210 		}
1211 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1212 				&pvt->b1_ambpresent0);
1213 		debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1214 			pvt->b1_ambpresent0);
1215 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1216 				&pvt->b1_ambpresent1);
1217 		debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1218 			pvt->b1_ambpresent1);
1219 	}
1220 
1221 	/* Go and determine the size of each DIMM and place in an
1222 	 * orderly matrix */
1223 	calculate_dimm_size(pvt);
1224 }
1225 
1226 /*
1227  *	i5000_init_csrows	Initialize the 'csrows' table within
1228  *				the mci control	structure with the
1229  *				addressing of memory.
1230  *
1231  *	return:
1232  *		0	success
1233  *		1	no actual memory found on this MC
1234  */
1235 static int i5000_init_csrows(struct mem_ctl_info *mci)
1236 {
1237 	struct i5000_pvt *pvt;
1238 	struct csrow_info *p_csrow;
1239 	int empty, channel_count;
1240 	int max_csrows;
1241 	int mtr, mtr1;
1242 	int csrow_megs;
1243 	int channel;
1244 	int csrow;
1245 
1246 	pvt = mci->pvt_info;
1247 
1248 	channel_count = pvt->maxch;
1249 	max_csrows = pvt->maxdimmperch * 2;
1250 
1251 	empty = 1;		/* Assume NO memory */
1252 
1253 	for (csrow = 0; csrow < max_csrows; csrow++) {
1254 		p_csrow = &mci->csrows[csrow];
1255 
1256 		p_csrow->csrow_idx = csrow;
1257 
1258 		/* use branch 0 for the basis */
1259 		mtr = pvt->b0_mtr[csrow >> 1];
1260 		mtr1 = pvt->b1_mtr[csrow >> 1];
1261 
1262 		/* if no DIMMS on this row, continue */
1263 		if (!MTR_DIMMS_PRESENT(mtr) && !MTR_DIMMS_PRESENT(mtr1))
1264 			continue;
1265 
1266 		/* FAKE OUT VALUES, FIXME */
1267 		p_csrow->first_page = 0 + csrow * 20;
1268 		p_csrow->last_page = 9 + csrow * 20;
1269 		p_csrow->page_mask = 0xFFF;
1270 
1271 		p_csrow->grain = 8;
1272 
1273 		csrow_megs = 0;
1274 		for (channel = 0; channel < pvt->maxch; channel++) {
1275 			csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1276 		}
1277 
1278 		p_csrow->nr_pages = csrow_megs << 8;
1279 
1280 		/* Assume DDR2 for now */
1281 		p_csrow->mtype = MEM_FB_DDR2;
1282 
1283 		/* ask what device type on this row */
1284 		if (MTR_DRAM_WIDTH(mtr))
1285 			p_csrow->dtype = DEV_X8;
1286 		else
1287 			p_csrow->dtype = DEV_X4;
1288 
1289 		p_csrow->edac_mode = EDAC_S8ECD8ED;
1290 
1291 		empty = 0;
1292 	}
1293 
1294 	return empty;
1295 }
1296 
1297 /*
1298  *	i5000_enable_error_reporting
1299  *			Turn on the memory reporting features of the hardware
1300  */
1301 static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1302 {
1303 	struct i5000_pvt *pvt;
1304 	u32 fbd_error_mask;
1305 
1306 	pvt = mci->pvt_info;
1307 
1308 	/* Read the FBD Error Mask Register */
1309 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1310 			&fbd_error_mask);
1311 
1312 	/* Enable with a '0' */
1313 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1314 
1315 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1316 			fbd_error_mask);
1317 }
1318 
1319 /*
1320  * i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1321  *
1322  *	ask the device how many channels are present and how many CSROWS
1323  *	 as well
1324  */
1325 static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1326 					int *num_dimms_per_channel,
1327 					int *num_channels)
1328 {
1329 	u8 value;
1330 
1331 	/* Need to retrieve just how many channels and dimms per channel are
1332 	 * supported on this memory controller
1333 	 */
1334 	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1335 	*num_dimms_per_channel = (int)value *2;
1336 
1337 	pci_read_config_byte(pdev, MAXCH, &value);
1338 	*num_channels = (int)value;
1339 }
1340 
1341 /*
1342  *	i5000_probe1	Probe for ONE instance of device to see if it is
1343  *			present.
1344  *	return:
1345  *		0 for FOUND a device
1346  *		< 0 for error code
1347  */
1348 static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1349 {
1350 	struct mem_ctl_info *mci;
1351 	struct i5000_pvt *pvt;
1352 	int num_channels;
1353 	int num_dimms_per_channel;
1354 	int num_csrows;
1355 
1356 	debugf0("MC: %s: %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1357 		__FILE__, __func__,
1358 		pdev->bus->number,
1359 		PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1360 
1361 	/* We only are looking for func 0 of the set */
1362 	if (PCI_FUNC(pdev->devfn) != 0)
1363 		return -ENODEV;
1364 
1365 	/* Ask the devices for the number of CSROWS and CHANNELS so
1366 	 * that we can calculate the memory resources, etc
1367 	 *
1368 	 * The Chipset will report what it can handle which will be greater
1369 	 * or equal to what the motherboard manufacturer will implement.
1370 	 *
1371 	 * As we don't have a motherboard identification routine to determine
1372 	 * actual number of slots/dimms per channel, we thus utilize the
1373 	 * resource as specified by the chipset. Thus, we might have
1374 	 * have more DIMMs per channel than actually on the mobo, but this
1375 	 * allows the driver to support upto the chipset max, without
1376 	 * some fancy mobo determination.
1377 	 */
1378 	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1379 					&num_channels);
1380 	num_csrows = num_dimms_per_channel * 2;
1381 
1382 	debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
1383 		__func__, num_channels, num_dimms_per_channel, num_csrows);
1384 
1385 	/* allocate a new MC control structure */
1386 	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1387 
1388 	if (mci == NULL)
1389 		return -ENOMEM;
1390 
1391 	kobject_get(&mci->edac_mci_kobj);
1392 	debugf0("MC: %s: %s(): mci = %p\n", __FILE__, __func__, mci);
1393 
1394 	mci->dev = &pdev->dev;	/* record ptr  to the generic device */
1395 
1396 	pvt = mci->pvt_info;
1397 	pvt->system_address = pdev;	/* Record this device in our private */
1398 	pvt->maxch = num_channels;
1399 	pvt->maxdimmperch = num_dimms_per_channel;
1400 
1401 	/* 'get' the pci devices we want to reserve for our use */
1402 	if (i5000_get_devices(mci, dev_idx))
1403 		goto fail0;
1404 
1405 	/* Time to get serious */
1406 	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
1407 
1408 	mci->mc_idx = 0;
1409 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1410 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1411 	mci->edac_cap = EDAC_FLAG_NONE;
1412 	mci->mod_name = "i5000_edac.c";
1413 	mci->mod_ver = I5000_REVISION;
1414 	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1415 	mci->dev_name = pci_name(pdev);
1416 	mci->ctl_page_to_phys = NULL;
1417 
1418 	/* Set the function pointer to an actual operation function */
1419 	mci->edac_check = i5000_check_error;
1420 
1421 	/* initialize the MC control structure 'csrows' table
1422 	 * with the mapping and control information */
1423 	if (i5000_init_csrows(mci)) {
1424 		debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1425 			"    because i5000_init_csrows() returned nonzero "
1426 			"value\n");
1427 		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
1428 	} else {
1429 		debugf1("MC: Enable error reporting now\n");
1430 		i5000_enable_error_reporting(mci);
1431 	}
1432 
1433 	/* add this new MC control structure to EDAC's list of MCs */
1434 	if (edac_mc_add_mc(mci)) {
1435 		debugf0("MC: %s: %s(): failed edac_mc_add_mc()\n",
1436 			__FILE__, __func__);
1437 		/* FIXME: perhaps some code should go here that disables error
1438 		 * reporting if we just enabled it
1439 		 */
1440 		goto fail1;
1441 	}
1442 
1443 	i5000_clear_error(mci);
1444 
1445 	/* allocating generic PCI control info */
1446 	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1447 	if (!i5000_pci) {
1448 		printk(KERN_WARNING
1449 			"%s(): Unable to create PCI control\n",
1450 			__func__);
1451 		printk(KERN_WARNING
1452 			"%s(): PCI error report via EDAC not setup\n",
1453 			__func__);
1454 	}
1455 
1456 	return 0;
1457 
1458 	/* Error exit unwinding stack */
1459 fail1:
1460 
1461 	i5000_put_devices(mci);
1462 
1463 fail0:
1464 	kobject_put(&mci->edac_mci_kobj);
1465 	edac_mc_free(mci);
1466 	return -ENODEV;
1467 }
1468 
1469 /*
1470  *	i5000_init_one	constructor for one instance of device
1471  *
1472  * 	returns:
1473  *		negative on error
1474  *		count (>= 0)
1475  */
1476 static int __devinit i5000_init_one(struct pci_dev *pdev,
1477 				const struct pci_device_id *id)
1478 {
1479 	int rc;
1480 
1481 	debugf0("MC: %s: %s()\n", __FILE__, __func__);
1482 
1483 	/* wake up device */
1484 	rc = pci_enable_device(pdev);
1485 	if (rc)
1486 		return rc;
1487 
1488 	/* now probe and enable the device */
1489 	return i5000_probe1(pdev, id->driver_data);
1490 }
1491 
1492 /*
1493  *	i5000_remove_one	destructor for one instance of device
1494  *
1495  */
1496 static void __devexit i5000_remove_one(struct pci_dev *pdev)
1497 {
1498 	struct mem_ctl_info *mci;
1499 
1500 	debugf0("%s: %s()\n", __FILE__, __func__);
1501 
1502 	if (i5000_pci)
1503 		edac_pci_release_generic_ctl(i5000_pci);
1504 
1505 	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1506 		return;
1507 
1508 	/* retrieve references to resources, and free those resources */
1509 	i5000_put_devices(mci);
1510 	kobject_put(&mci->edac_mci_kobj);
1511 	edac_mc_free(mci);
1512 }
1513 
1514 /*
1515  *	pci_device_id	table for which devices we are looking for
1516  *
1517  *	The "E500P" device is the first device supported.
1518  */
1519 static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
1520 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1521 	 .driver_data = I5000P},
1522 
1523 	{0,}			/* 0 terminated list. */
1524 };
1525 
1526 MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1527 
1528 /*
1529  *	i5000_driver	pci_driver structure for this module
1530  *
1531  */
1532 static struct pci_driver i5000_driver = {
1533 	.name = KBUILD_BASENAME,
1534 	.probe = i5000_init_one,
1535 	.remove = __devexit_p(i5000_remove_one),
1536 	.id_table = i5000_pci_tbl,
1537 };
1538 
1539 /*
1540  *	i5000_init		Module entry function
1541  *			Try to initialize this module for its devices
1542  */
1543 static int __init i5000_init(void)
1544 {
1545 	int pci_rc;
1546 
1547 	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1548 
1549        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1550        opstate_init();
1551 
1552 	pci_rc = pci_register_driver(&i5000_driver);
1553 
1554 	return (pci_rc < 0) ? pci_rc : 0;
1555 }
1556 
1557 /*
1558  *	i5000_exit()	Module exit function
1559  *			Unregister the driver
1560  */
1561 static void __exit i5000_exit(void)
1562 {
1563 	debugf2("MC: %s: %s()\n", __FILE__, __func__);
1564 	pci_unregister_driver(&i5000_driver);
1565 }
1566 
1567 module_init(i5000_init);
1568 module_exit(i5000_exit);
1569 
1570 MODULE_LICENSE("GPL");
1571 MODULE_AUTHOR
1572     ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1573 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1574 		I5000_REVISION);
1575 
1576 module_param(edac_op_state, int, 0444);
1577 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1578 module_param(misc_messages, int, 0444);
1579 MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1580 
1581