1 /*
2 * Intel 5000(P/V/X) class Memory Controllers kernel module
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8 * norsk5@xmission.com
9 *
10 * This module is based on the following document:
11 *
12 * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13 * http://developer.intel.com/design/chipsets/datashts/313070.htm
14 *
15 */
16
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
24
25 #include "edac_module.h"
26
27 /*
28 * Alter this version for the I5000 module when modifications are made
29 */
30 #define I5000_REVISION " Ver: 2.0.12"
31 #define EDAC_MOD_STR "i5000_edac"
32
33 #define i5000_printk(level, fmt, arg...) \
34 edac_printk(level, "i5000", fmt, ##arg)
35
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37 edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0 0x25F5
41 #endif
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1 0x25F6
44 #endif
45
46 /* Device 16,
47 * Function 0: System Address
48 * Function 1: Memory Branch Map, Control, Errors Register
49 * Function 2: FSB Error Registers
50 *
51 * All 3 functions of Device 16 (0,1,2) share the SAME DID
52 */
53 #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
54
55 /* OFFSETS for Function 0 */
56
57 /* OFFSETS for Function 1 */
58 #define AMBASE 0x48
59 #define MAXCH 0x56
60 #define MAXDIMMPERCH 0x57
61 #define TOLM 0x6C
62 #define REDMEMB 0x7C
63 #define RED_ECC_LOCATOR(x) ((x) & 0x3FFFF)
64 #define REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
65 #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3FE00)
66 #define MIR0 0x80
67 #define MIR1 0x84
68 #define MIR2 0x88
69 #define AMIR0 0x8C
70 #define AMIR1 0x90
71 #define AMIR2 0x94
72
73 #define FERR_FAT_FBD 0x98
74 #define NERR_FAT_FBD 0x9C
75 #define EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
76 #define FERR_FAT_FBDCHAN 0x30000000
77 #define FERR_FAT_M3ERR 0x00000004
78 #define FERR_FAT_M2ERR 0x00000002
79 #define FERR_FAT_M1ERR 0x00000001
80 #define FERR_FAT_MASK (FERR_FAT_M1ERR | \
81 FERR_FAT_M2ERR | \
82 FERR_FAT_M3ERR)
83
84 #define FERR_NF_FBD 0xA0
85
86 /* Thermal and SPD or BFD errors */
87 #define FERR_NF_M28ERR 0x01000000
88 #define FERR_NF_M27ERR 0x00800000
89 #define FERR_NF_M26ERR 0x00400000
90 #define FERR_NF_M25ERR 0x00200000
91 #define FERR_NF_M24ERR 0x00100000
92 #define FERR_NF_M23ERR 0x00080000
93 #define FERR_NF_M22ERR 0x00040000
94 #define FERR_NF_M21ERR 0x00020000
95
96 /* Correctable errors */
97 #define FERR_NF_M20ERR 0x00010000
98 #define FERR_NF_M19ERR 0x00008000
99 #define FERR_NF_M18ERR 0x00004000
100 #define FERR_NF_M17ERR 0x00002000
101
102 /* Non-Retry or redundant Retry errors */
103 #define FERR_NF_M16ERR 0x00001000
104 #define FERR_NF_M15ERR 0x00000800
105 #define FERR_NF_M14ERR 0x00000400
106 #define FERR_NF_M13ERR 0x00000200
107
108 /* Uncorrectable errors */
109 #define FERR_NF_M12ERR 0x00000100
110 #define FERR_NF_M11ERR 0x00000080
111 #define FERR_NF_M10ERR 0x00000040
112 #define FERR_NF_M9ERR 0x00000020
113 #define FERR_NF_M8ERR 0x00000010
114 #define FERR_NF_M7ERR 0x00000008
115 #define FERR_NF_M6ERR 0x00000004
116 #define FERR_NF_M5ERR 0x00000002
117 #define FERR_NF_M4ERR 0x00000001
118
119 #define FERR_NF_UNCORRECTABLE (FERR_NF_M12ERR | \
120 FERR_NF_M11ERR | \
121 FERR_NF_M10ERR | \
122 FERR_NF_M9ERR | \
123 FERR_NF_M8ERR | \
124 FERR_NF_M7ERR | \
125 FERR_NF_M6ERR | \
126 FERR_NF_M5ERR | \
127 FERR_NF_M4ERR)
128 #define FERR_NF_CORRECTABLE (FERR_NF_M20ERR | \
129 FERR_NF_M19ERR | \
130 FERR_NF_M18ERR | \
131 FERR_NF_M17ERR)
132 #define FERR_NF_DIMM_SPARE (FERR_NF_M27ERR | \
133 FERR_NF_M28ERR)
134 #define FERR_NF_THERMAL (FERR_NF_M26ERR | \
135 FERR_NF_M25ERR | \
136 FERR_NF_M24ERR | \
137 FERR_NF_M23ERR)
138 #define FERR_NF_SPD_PROTOCOL (FERR_NF_M22ERR)
139 #define FERR_NF_NORTH_CRC (FERR_NF_M21ERR)
140 #define FERR_NF_NON_RETRY (FERR_NF_M13ERR | \
141 FERR_NF_M14ERR | \
142 FERR_NF_M15ERR)
143
144 #define NERR_NF_FBD 0xA4
145 #define FERR_NF_MASK (FERR_NF_UNCORRECTABLE | \
146 FERR_NF_CORRECTABLE | \
147 FERR_NF_DIMM_SPARE | \
148 FERR_NF_THERMAL | \
149 FERR_NF_SPD_PROTOCOL | \
150 FERR_NF_NORTH_CRC | \
151 FERR_NF_NON_RETRY)
152
153 #define EMASK_FBD 0xA8
154 #define EMASK_FBD_M28ERR 0x08000000
155 #define EMASK_FBD_M27ERR 0x04000000
156 #define EMASK_FBD_M26ERR 0x02000000
157 #define EMASK_FBD_M25ERR 0x01000000
158 #define EMASK_FBD_M24ERR 0x00800000
159 #define EMASK_FBD_M23ERR 0x00400000
160 #define EMASK_FBD_M22ERR 0x00200000
161 #define EMASK_FBD_M21ERR 0x00100000
162 #define EMASK_FBD_M20ERR 0x00080000
163 #define EMASK_FBD_M19ERR 0x00040000
164 #define EMASK_FBD_M18ERR 0x00020000
165 #define EMASK_FBD_M17ERR 0x00010000
166
167 #define EMASK_FBD_M15ERR 0x00004000
168 #define EMASK_FBD_M14ERR 0x00002000
169 #define EMASK_FBD_M13ERR 0x00001000
170 #define EMASK_FBD_M12ERR 0x00000800
171 #define EMASK_FBD_M11ERR 0x00000400
172 #define EMASK_FBD_M10ERR 0x00000200
173 #define EMASK_FBD_M9ERR 0x00000100
174 #define EMASK_FBD_M8ERR 0x00000080
175 #define EMASK_FBD_M7ERR 0x00000040
176 #define EMASK_FBD_M6ERR 0x00000020
177 #define EMASK_FBD_M5ERR 0x00000010
178 #define EMASK_FBD_M4ERR 0x00000008
179 #define EMASK_FBD_M3ERR 0x00000004
180 #define EMASK_FBD_M2ERR 0x00000002
181 #define EMASK_FBD_M1ERR 0x00000001
182
183 #define ENABLE_EMASK_FBD_FATAL_ERRORS (EMASK_FBD_M1ERR | \
184 EMASK_FBD_M2ERR | \
185 EMASK_FBD_M3ERR)
186
187 #define ENABLE_EMASK_FBD_UNCORRECTABLE (EMASK_FBD_M4ERR | \
188 EMASK_FBD_M5ERR | \
189 EMASK_FBD_M6ERR | \
190 EMASK_FBD_M7ERR | \
191 EMASK_FBD_M8ERR | \
192 EMASK_FBD_M9ERR | \
193 EMASK_FBD_M10ERR | \
194 EMASK_FBD_M11ERR | \
195 EMASK_FBD_M12ERR)
196 #define ENABLE_EMASK_FBD_CORRECTABLE (EMASK_FBD_M17ERR | \
197 EMASK_FBD_M18ERR | \
198 EMASK_FBD_M19ERR | \
199 EMASK_FBD_M20ERR)
200 #define ENABLE_EMASK_FBD_DIMM_SPARE (EMASK_FBD_M27ERR | \
201 EMASK_FBD_M28ERR)
202 #define ENABLE_EMASK_FBD_THERMALS (EMASK_FBD_M26ERR | \
203 EMASK_FBD_M25ERR | \
204 EMASK_FBD_M24ERR | \
205 EMASK_FBD_M23ERR)
206 #define ENABLE_EMASK_FBD_SPD_PROTOCOL (EMASK_FBD_M22ERR)
207 #define ENABLE_EMASK_FBD_NORTH_CRC (EMASK_FBD_M21ERR)
208 #define ENABLE_EMASK_FBD_NON_RETRY (EMASK_FBD_M15ERR | \
209 EMASK_FBD_M14ERR | \
210 EMASK_FBD_M13ERR)
211
212 #define ENABLE_EMASK_ALL (ENABLE_EMASK_FBD_NON_RETRY | \
213 ENABLE_EMASK_FBD_NORTH_CRC | \
214 ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215 ENABLE_EMASK_FBD_THERMALS | \
216 ENABLE_EMASK_FBD_DIMM_SPARE | \
217 ENABLE_EMASK_FBD_FATAL_ERRORS | \
218 ENABLE_EMASK_FBD_CORRECTABLE | \
219 ENABLE_EMASK_FBD_UNCORRECTABLE)
220
221 #define ERR0_FBD 0xAC
222 #define ERR1_FBD 0xB0
223 #define ERR2_FBD 0xB4
224 #define MCERR_FBD 0xB8
225 #define NRECMEMA 0xBE
226 #define NREC_BANK(x) (((x)>>12) & 0x7)
227 #define NREC_RDWR(x) (((x)>>11) & 1)
228 #define NREC_RANK(x) (((x)>>8) & 0x7)
229 #define NRECMEMB 0xC0
230 #define NREC_CAS(x) (((x)>>16) & 0xFFF)
231 #define NREC_RAS(x) ((x) & 0x7FFF)
232 #define NRECFGLOG 0xC4
233 #define NREEECFBDA 0xC8
234 #define NREEECFBDB 0xCC
235 #define NREEECFBDC 0xD0
236 #define NREEECFBDD 0xD4
237 #define NREEECFBDE 0xD8
238 #define REDMEMA 0xDC
239 #define RECMEMA 0xE2
240 #define REC_BANK(x) (((x)>>12) & 0x7)
241 #define REC_RDWR(x) (((x)>>11) & 1)
242 #define REC_RANK(x) (((x)>>8) & 0x7)
243 #define RECMEMB 0xE4
244 #define REC_CAS(x) (((x)>>16) & 0xFFFFFF)
245 #define REC_RAS(x) ((x) & 0x7FFF)
246 #define RECFGLOG 0xE8
247 #define RECFBDA 0xEC
248 #define RECFBDB 0xF0
249 #define RECFBDC 0xF4
250 #define RECFBDD 0xF8
251 #define RECFBDE 0xFC
252
253 /* OFFSETS for Function 2 */
254
255 /*
256 * Device 21,
257 * Function 0: Memory Map Branch 0
258 *
259 * Device 22,
260 * Function 0: Memory Map Branch 1
261 */
262 #define PCI_DEVICE_ID_I5000_BRANCH_0 0x25F5
263 #define PCI_DEVICE_ID_I5000_BRANCH_1 0x25F6
264
265 #define AMB_PRESENT_0 0x64
266 #define AMB_PRESENT_1 0x66
267 #define MTR0 0x80
268 #define MTR1 0x84
269 #define MTR2 0x88
270 #define MTR3 0x8C
271
272 #define NUM_MTRS 4
273 #define CHANNELS_PER_BRANCH 2
274 #define MAX_BRANCHES 2
275
276 /* Defines to extract the various fields from the
277 * MTRx - Memory Technology Registers
278 */
279 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (0x1 << 8))
280 #define MTR_DRAM_WIDTH(mtr) ((((mtr) >> 6) & 0x1) ? 8 : 4)
281 #define MTR_DRAM_BANKS(mtr) ((((mtr) >> 5) & 0x1) ? 8 : 4)
282 #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
283 #define MTR_DIMM_RANK(mtr) (((mtr) >> 4) & 0x1)
284 #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
285 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
286 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
287 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
288 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
289
290 /* enables the report of miscellaneous messages as CE errors - default off */
291 static int misc_messages;
292
293 /* Enumeration of supported devices */
294 enum i5000_chips {
295 I5000P = 0,
296 I5000V = 1, /* future */
297 I5000X = 2 /* future */
298 };
299
300 /* Device name and register DID (Device ID) */
301 struct i5000_dev_info {
302 const char *ctl_name; /* name for this device */
303 u16 fsb_mapping_errors; /* DID for the branchmap,control */
304 };
305
306 /* Table of devices attributes supported by this driver */
307 static const struct i5000_dev_info i5000_devs[] = {
308 [I5000P] = {
309 .ctl_name = "I5000",
310 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
311 },
312 };
313
314 struct i5000_dimm_info {
315 int megabytes; /* size, 0 means not present */
316 int dual_rank;
317 };
318
319 #define MAX_CHANNELS 6 /* max possible channels */
320 #define MAX_CSROWS (8*2) /* max possible csrows per channel */
321
322 /* driver private data structure */
323 struct i5000_pvt {
324 struct pci_dev *system_address; /* 16.0 */
325 struct pci_dev *branchmap_werrors; /* 16.1 */
326 struct pci_dev *fsb_error_regs; /* 16.2 */
327 struct pci_dev *branch_0; /* 21.0 */
328 struct pci_dev *branch_1; /* 22.0 */
329
330 u16 tolm; /* top of low memory */
331 union {
332 u64 ambase; /* AMB BAR */
333 struct {
334 u32 ambase_bottom;
335 u32 ambase_top;
336 } u __packed;
337 };
338
339 u16 mir0, mir1, mir2;
340
341 u16 b0_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
342 u16 b0_ambpresent0; /* Branch 0, Channel 0 */
343 u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
344
345 u16 b1_mtr[NUM_MTRS]; /* Memory Technlogy Reg */
346 u16 b1_ambpresent0; /* Branch 1, Channel 8 */
347 u16 b1_ambpresent1; /* Branch 1, Channel 1 */
348
349 /* DIMM information matrix, allocating architecture maximums */
350 struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
351
352 /* Actual values for this controller */
353 int maxch; /* Max channels */
354 int maxdimmperch; /* Max DIMMs per channel */
355 };
356
357 /* I5000 MCH error information retrieved from Hardware */
358 struct i5000_error_info {
359
360 /* These registers are always read from the MC */
361 u32 ferr_fat_fbd; /* First Errors Fatal */
362 u32 nerr_fat_fbd; /* Next Errors Fatal */
363 u32 ferr_nf_fbd; /* First Errors Non-Fatal */
364 u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
365
366 /* These registers are input ONLY if there was a Recoverable Error */
367 u32 redmemb; /* Recoverable Mem Data Error log B */
368 u16 recmema; /* Recoverable Mem Error log A */
369 u32 recmemb; /* Recoverable Mem Error log B */
370
371 /* These registers are input ONLY if there was a
372 * Non-Recoverable Error */
373 u16 nrecmema; /* Non-Recoverable Mem log A */
374 u32 nrecmemb; /* Non-Recoverable Mem log B */
375
376 };
377
378 static struct edac_pci_ctl_info *i5000_pci;
379
380 /*
381 * i5000_get_error_info Retrieve the hardware error information from
382 * the hardware and cache it in the 'info'
383 * structure
384 */
i5000_get_error_info(struct mem_ctl_info * mci,struct i5000_error_info * info)385 static void i5000_get_error_info(struct mem_ctl_info *mci,
386 struct i5000_error_info *info)
387 {
388 struct i5000_pvt *pvt;
389 u32 value;
390
391 pvt = mci->pvt_info;
392
393 /* read in the 1st FATAL error register */
394 pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
395
396 /* Mask only the bits that the doc says are valid
397 */
398 value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
399
400 /* If there is an error, then read in the */
401 /* NEXT FATAL error register and the Memory Error Log Register A */
402 if (value & FERR_FAT_MASK) {
403 info->ferr_fat_fbd = value;
404
405 /* harvest the various error data we need */
406 pci_read_config_dword(pvt->branchmap_werrors,
407 NERR_FAT_FBD, &info->nerr_fat_fbd);
408 pci_read_config_word(pvt->branchmap_werrors,
409 NRECMEMA, &info->nrecmema);
410 pci_read_config_dword(pvt->branchmap_werrors,
411 NRECMEMB, &info->nrecmemb);
412
413 /* Clear the error bits, by writing them back */
414 pci_write_config_dword(pvt->branchmap_werrors,
415 FERR_FAT_FBD, value);
416 } else {
417 info->ferr_fat_fbd = 0;
418 info->nerr_fat_fbd = 0;
419 info->nrecmema = 0;
420 info->nrecmemb = 0;
421 }
422
423 /* read in the 1st NON-FATAL error register */
424 pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
425
426 /* If there is an error, then read in the 1st NON-FATAL error
427 * register as well */
428 if (value & FERR_NF_MASK) {
429 info->ferr_nf_fbd = value;
430
431 /* harvest the various error data we need */
432 pci_read_config_dword(pvt->branchmap_werrors,
433 NERR_NF_FBD, &info->nerr_nf_fbd);
434 pci_read_config_word(pvt->branchmap_werrors,
435 RECMEMA, &info->recmema);
436 pci_read_config_dword(pvt->branchmap_werrors,
437 RECMEMB, &info->recmemb);
438 pci_read_config_dword(pvt->branchmap_werrors,
439 REDMEMB, &info->redmemb);
440
441 /* Clear the error bits, by writing them back */
442 pci_write_config_dword(pvt->branchmap_werrors,
443 FERR_NF_FBD, value);
444 } else {
445 info->ferr_nf_fbd = 0;
446 info->nerr_nf_fbd = 0;
447 info->recmema = 0;
448 info->recmemb = 0;
449 info->redmemb = 0;
450 }
451 }
452
453 /*
454 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
455 * struct i5000_error_info *info,
456 * int handle_errors);
457 *
458 * handle the Intel FATAL errors, if any
459 */
i5000_process_fatal_error_info(struct mem_ctl_info * mci,struct i5000_error_info * info,int handle_errors)460 static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
461 struct i5000_error_info *info,
462 int handle_errors)
463 {
464 char msg[EDAC_MC_LABEL_LEN + 1 + 160];
465 char *specific = NULL;
466 u32 allErrors;
467 int channel;
468 int bank;
469 int rank;
470 int rdwr;
471 int ras, cas;
472
473 /* mask off the Error bits that are possible */
474 allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
475 if (!allErrors)
476 return; /* if no error, return now */
477
478 channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
479
480 /* Use the NON-Recoverable macros to extract data */
481 bank = NREC_BANK(info->nrecmema);
482 rank = NREC_RANK(info->nrecmema);
483 rdwr = NREC_RDWR(info->nrecmema);
484 ras = NREC_RAS(info->nrecmemb);
485 cas = NREC_CAS(info->nrecmemb);
486
487 edac_dbg(0, "\t\tCSROW= %d Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
488 rank, channel, bank,
489 rdwr ? "Write" : "Read", ras, cas);
490
491 /* Only 1 bit will be on */
492 switch (allErrors) {
493 case FERR_FAT_M1ERR:
494 specific = "Alert on non-redundant retry or fast "
495 "reset timeout";
496 break;
497 case FERR_FAT_M2ERR:
498 specific = "Northbound CRC error on non-redundant "
499 "retry";
500 break;
501 case FERR_FAT_M3ERR:
502 {
503 static int done;
504
505 /*
506 * This error is generated to inform that the intelligent
507 * throttling is disabled and the temperature passed the
508 * specified middle point. Since this is something the BIOS
509 * should take care of, we'll warn only once to avoid
510 * worthlessly flooding the log.
511 */
512 if (done)
513 return;
514 done++;
515
516 specific = ">Tmid Thermal event with intelligent "
517 "throttling disabled";
518 }
519 break;
520 }
521
522 /* Form out message */
523 snprintf(msg, sizeof(msg),
524 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
525 bank, ras, cas, allErrors, specific);
526
527 /* Call the helper to output message */
528 edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
529 channel >> 1, channel & 1, rank,
530 rdwr ? "Write error" : "Read error",
531 msg);
532 }
533
534 /*
535 * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
536 * struct i5000_error_info *info,
537 * int handle_errors);
538 *
539 * handle the Intel NON-FATAL errors, if any
540 */
i5000_process_nonfatal_error_info(struct mem_ctl_info * mci,struct i5000_error_info * info,int handle_errors)541 static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
542 struct i5000_error_info *info,
543 int handle_errors)
544 {
545 char msg[EDAC_MC_LABEL_LEN + 1 + 170];
546 char *specific = NULL;
547 u32 allErrors;
548 u32 ue_errors;
549 u32 ce_errors;
550 u32 misc_errors;
551 int branch;
552 int channel;
553 int bank;
554 int rank;
555 int rdwr;
556 int ras, cas;
557
558 /* mask off the Error bits that are possible */
559 allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
560 if (!allErrors)
561 return; /* if no error, return now */
562
563 /* ONLY ONE of the possible error bits will be set, as per the docs */
564 ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
565 if (ue_errors) {
566 edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
567
568 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
569
570 /*
571 * According with i5000 datasheet, bit 28 has no significance
572 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
573 */
574 channel = branch & 2;
575
576 bank = NREC_BANK(info->nrecmema);
577 rank = NREC_RANK(info->nrecmema);
578 rdwr = NREC_RDWR(info->nrecmema);
579 ras = NREC_RAS(info->nrecmemb);
580 cas = NREC_CAS(info->nrecmemb);
581
582 edac_dbg(0, "\t\tCSROW= %d Channels= %d,%d (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
583 rank, channel, channel + 1, branch >> 1, bank,
584 rdwr ? "Write" : "Read", ras, cas);
585
586 switch (ue_errors) {
587 case FERR_NF_M12ERR:
588 specific = "Non-Aliased Uncorrectable Patrol Data ECC";
589 break;
590 case FERR_NF_M11ERR:
591 specific = "Non-Aliased Uncorrectable Spare-Copy "
592 "Data ECC";
593 break;
594 case FERR_NF_M10ERR:
595 specific = "Non-Aliased Uncorrectable Mirrored Demand "
596 "Data ECC";
597 break;
598 case FERR_NF_M9ERR:
599 specific = "Non-Aliased Uncorrectable Non-Mirrored "
600 "Demand Data ECC";
601 break;
602 case FERR_NF_M8ERR:
603 specific = "Aliased Uncorrectable Patrol Data ECC";
604 break;
605 case FERR_NF_M7ERR:
606 specific = "Aliased Uncorrectable Spare-Copy Data ECC";
607 break;
608 case FERR_NF_M6ERR:
609 specific = "Aliased Uncorrectable Mirrored Demand "
610 "Data ECC";
611 break;
612 case FERR_NF_M5ERR:
613 specific = "Aliased Uncorrectable Non-Mirrored Demand "
614 "Data ECC";
615 break;
616 case FERR_NF_M4ERR:
617 specific = "Uncorrectable Data ECC on Replay";
618 break;
619 }
620
621 /* Form out message */
622 snprintf(msg, sizeof(msg),
623 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
624 rank, bank, ras, cas, ue_errors, specific);
625
626 /* Call the helper to output message */
627 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
628 channel >> 1, -1, rank,
629 rdwr ? "Write error" : "Read error",
630 msg);
631 }
632
633 /* Check correctable errors */
634 ce_errors = allErrors & FERR_NF_CORRECTABLE;
635 if (ce_errors) {
636 edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
637
638 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
639
640 channel = 0;
641 if (REC_ECC_LOCATOR_ODD(info->redmemb))
642 channel = 1;
643
644 /* Convert channel to be based from zero, instead of
645 * from branch base of 0 */
646 channel += branch;
647
648 bank = REC_BANK(info->recmema);
649 rank = REC_RANK(info->recmema);
650 rdwr = REC_RDWR(info->recmema);
651 ras = REC_RAS(info->recmemb);
652 cas = REC_CAS(info->recmemb);
653
654 edac_dbg(0, "\t\tCSROW= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
655 rank, channel, branch >> 1, bank,
656 rdwr ? "Write" : "Read", ras, cas);
657
658 switch (ce_errors) {
659 case FERR_NF_M17ERR:
660 specific = "Correctable Non-Mirrored Demand Data ECC";
661 break;
662 case FERR_NF_M18ERR:
663 specific = "Correctable Mirrored Demand Data ECC";
664 break;
665 case FERR_NF_M19ERR:
666 specific = "Correctable Spare-Copy Data ECC";
667 break;
668 case FERR_NF_M20ERR:
669 specific = "Correctable Patrol Data ECC";
670 break;
671 }
672
673 /* Form out message */
674 snprintf(msg, sizeof(msg),
675 "Rank=%d Bank=%d RDWR=%s RAS=%d "
676 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
677 rdwr ? "Write" : "Read", ras, cas, ce_errors,
678 specific);
679
680 /* Call the helper to output message */
681 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
682 channel >> 1, channel % 2, rank,
683 rdwr ? "Write error" : "Read error",
684 msg);
685 }
686
687 if (!misc_messages)
688 return;
689
690 misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
691 FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
692 if (misc_errors) {
693 switch (misc_errors) {
694 case FERR_NF_M13ERR:
695 specific = "Non-Retry or Redundant Retry FBD Memory "
696 "Alert or Redundant Fast Reset Timeout";
697 break;
698 case FERR_NF_M14ERR:
699 specific = "Non-Retry or Redundant Retry FBD "
700 "Configuration Alert";
701 break;
702 case FERR_NF_M15ERR:
703 specific = "Non-Retry or Redundant Retry FBD "
704 "Northbound CRC error on read data";
705 break;
706 case FERR_NF_M21ERR:
707 specific = "FBD Northbound CRC error on "
708 "FBD Sync Status";
709 break;
710 case FERR_NF_M22ERR:
711 specific = "SPD protocol error";
712 break;
713 case FERR_NF_M27ERR:
714 specific = "DIMM-spare copy started";
715 break;
716 case FERR_NF_M28ERR:
717 specific = "DIMM-spare copy completed";
718 break;
719 }
720 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
721
722 /* Form out message */
723 snprintf(msg, sizeof(msg),
724 "Err=%#x (%s)", misc_errors, specific);
725
726 /* Call the helper to output message */
727 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
728 branch >> 1, -1, -1,
729 "Misc error", msg);
730 }
731 }
732
733 /*
734 * i5000_process_error_info Process the error info that is
735 * in the 'info' structure, previously retrieved from hardware
736 */
i5000_process_error_info(struct mem_ctl_info * mci,struct i5000_error_info * info,int handle_errors)737 static void i5000_process_error_info(struct mem_ctl_info *mci,
738 struct i5000_error_info *info,
739 int handle_errors)
740 {
741 /* First handle any fatal errors that occurred */
742 i5000_process_fatal_error_info(mci, info, handle_errors);
743
744 /* now handle any non-fatal errors that occurred */
745 i5000_process_nonfatal_error_info(mci, info, handle_errors);
746 }
747
748 /*
749 * i5000_clear_error Retrieve any error from the hardware
750 * but do NOT process that error.
751 * Used for 'clearing' out of previous errors
752 * Called by the Core module.
753 */
i5000_clear_error(struct mem_ctl_info * mci)754 static void i5000_clear_error(struct mem_ctl_info *mci)
755 {
756 struct i5000_error_info info;
757
758 i5000_get_error_info(mci, &info);
759 }
760
761 /*
762 * i5000_check_error Retrieve and process errors reported by the
763 * hardware. Called by the Core module.
764 */
i5000_check_error(struct mem_ctl_info * mci)765 static void i5000_check_error(struct mem_ctl_info *mci)
766 {
767 struct i5000_error_info info;
768
769 i5000_get_error_info(mci, &info);
770 i5000_process_error_info(mci, &info, 1);
771 }
772
773 /*
774 * i5000_get_devices Find and perform 'get' operation on the MCH's
775 * device/functions we want to reference for this driver
776 *
777 * Need to 'get' device 16 func 1 and func 2
778 */
i5000_get_devices(struct mem_ctl_info * mci,int dev_idx)779 static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
780 {
781 //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
782 struct i5000_pvt *pvt;
783 struct pci_dev *pdev;
784
785 pvt = mci->pvt_info;
786
787 /* Attempt to 'get' the MCH register we want */
788 pdev = NULL;
789 while (1) {
790 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
791 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
792
793 /* End of list, leave */
794 if (pdev == NULL) {
795 i5000_printk(KERN_ERR,
796 "'system address,Process Bus' "
797 "device not found:"
798 "vendor 0x%x device 0x%x FUNC 1 "
799 "(broken BIOS?)\n",
800 PCI_VENDOR_ID_INTEL,
801 PCI_DEVICE_ID_INTEL_I5000_DEV16);
802
803 return 1;
804 }
805
806 /* Scan for device 16 func 1 */
807 if (PCI_FUNC(pdev->devfn) == 1)
808 break;
809 }
810
811 pvt->branchmap_werrors = pdev;
812
813 /* Attempt to 'get' the MCH register we want */
814 pdev = NULL;
815 while (1) {
816 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
817 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
818
819 if (pdev == NULL) {
820 i5000_printk(KERN_ERR,
821 "MC: 'branchmap,control,errors' "
822 "device not found:"
823 "vendor 0x%x device 0x%x Func 2 "
824 "(broken BIOS?)\n",
825 PCI_VENDOR_ID_INTEL,
826 PCI_DEVICE_ID_INTEL_I5000_DEV16);
827
828 pci_dev_put(pvt->branchmap_werrors);
829 return 1;
830 }
831
832 /* Scan for device 16 func 1 */
833 if (PCI_FUNC(pdev->devfn) == 2)
834 break;
835 }
836
837 pvt->fsb_error_regs = pdev;
838
839 edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
840 pci_name(pvt->system_address),
841 pvt->system_address->vendor, pvt->system_address->device);
842 edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
843 pci_name(pvt->branchmap_werrors),
844 pvt->branchmap_werrors->vendor,
845 pvt->branchmap_werrors->device);
846 edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
847 pci_name(pvt->fsb_error_regs),
848 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
849
850 pdev = NULL;
851 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
852 PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
853
854 if (pdev == NULL) {
855 i5000_printk(KERN_ERR,
856 "MC: 'BRANCH 0' device not found:"
857 "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
858 PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
859
860 pci_dev_put(pvt->branchmap_werrors);
861 pci_dev_put(pvt->fsb_error_regs);
862 return 1;
863 }
864
865 pvt->branch_0 = pdev;
866
867 /* If this device claims to have more than 2 channels then
868 * fetch Branch 1's information
869 */
870 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
871 pdev = NULL;
872 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
873 PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
874
875 if (pdev == NULL) {
876 i5000_printk(KERN_ERR,
877 "MC: 'BRANCH 1' device not found:"
878 "vendor 0x%x device 0x%x Func 0 "
879 "(broken BIOS?)\n",
880 PCI_VENDOR_ID_INTEL,
881 PCI_DEVICE_ID_I5000_BRANCH_1);
882
883 pci_dev_put(pvt->branchmap_werrors);
884 pci_dev_put(pvt->fsb_error_regs);
885 pci_dev_put(pvt->branch_0);
886 return 1;
887 }
888
889 pvt->branch_1 = pdev;
890 }
891
892 return 0;
893 }
894
895 /*
896 * i5000_put_devices 'put' all the devices that we have
897 * reserved via 'get'
898 */
i5000_put_devices(struct mem_ctl_info * mci)899 static void i5000_put_devices(struct mem_ctl_info *mci)
900 {
901 struct i5000_pvt *pvt;
902
903 pvt = mci->pvt_info;
904
905 pci_dev_put(pvt->branchmap_werrors); /* FUNC 1 */
906 pci_dev_put(pvt->fsb_error_regs); /* FUNC 2 */
907 pci_dev_put(pvt->branch_0); /* DEV 21 */
908
909 /* Only if more than 2 channels do we release the second branch */
910 if (pvt->maxch >= CHANNELS_PER_BRANCH)
911 pci_dev_put(pvt->branch_1); /* DEV 22 */
912 }
913
914 /*
915 * determine_amb_resent
916 *
917 * the information is contained in NUM_MTRS different registers
918 * determineing which of the NUM_MTRS requires knowing
919 * which channel is in question
920 *
921 * 2 branches, each with 2 channels
922 * b0_ambpresent0 for channel '0'
923 * b0_ambpresent1 for channel '1'
924 * b1_ambpresent0 for channel '2'
925 * b1_ambpresent1 for channel '3'
926 */
determine_amb_present_reg(struct i5000_pvt * pvt,int channel)927 static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
928 {
929 int amb_present;
930
931 if (channel < CHANNELS_PER_BRANCH) {
932 if (channel & 0x1)
933 amb_present = pvt->b0_ambpresent1;
934 else
935 amb_present = pvt->b0_ambpresent0;
936 } else {
937 if (channel & 0x1)
938 amb_present = pvt->b1_ambpresent1;
939 else
940 amb_present = pvt->b1_ambpresent0;
941 }
942
943 return amb_present;
944 }
945
946 /*
947 * determine_mtr(pvt, csrow, channel)
948 *
949 * return the proper MTR register as determine by the csrow and channel desired
950 */
determine_mtr(struct i5000_pvt * pvt,int slot,int channel)951 static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
952 {
953 int mtr;
954
955 if (channel < CHANNELS_PER_BRANCH)
956 mtr = pvt->b0_mtr[slot];
957 else
958 mtr = pvt->b1_mtr[slot];
959
960 return mtr;
961 }
962
963 /*
964 */
decode_mtr(int slot_row,u16 mtr)965 static void decode_mtr(int slot_row, u16 mtr)
966 {
967 int ans;
968
969 ans = MTR_DIMMS_PRESENT(mtr);
970
971 edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
972 slot_row, mtr, ans ? "" : "NOT ");
973 if (!ans)
974 return;
975
976 edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
977 edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
978 edac_dbg(2, "\t\tNUMRANK: %s\n",
979 MTR_DIMM_RANK(mtr) ? "double" : "single");
980 edac_dbg(2, "\t\tNUMROW: %s\n",
981 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
982 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
983 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
984 "reserved");
985 edac_dbg(2, "\t\tNUMCOL: %s\n",
986 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
987 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
988 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
989 "reserved");
990 }
991
handle_channel(struct i5000_pvt * pvt,int slot,int channel,struct i5000_dimm_info * dinfo)992 static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
993 struct i5000_dimm_info *dinfo)
994 {
995 int mtr;
996 int amb_present_reg;
997 int addrBits;
998
999 mtr = determine_mtr(pvt, slot, channel);
1000 if (MTR_DIMMS_PRESENT(mtr)) {
1001 amb_present_reg = determine_amb_present_reg(pvt, channel);
1002
1003 /* Determine if there is a DIMM present in this DIMM slot */
1004 if (amb_present_reg) {
1005 dinfo->dual_rank = MTR_DIMM_RANK(mtr);
1006
1007 /* Start with the number of bits for a Bank
1008 * on the DRAM */
1009 addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
1010 /* Add the number of ROW bits */
1011 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
1012 /* add the number of COLUMN bits */
1013 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
1014
1015 /* Dual-rank memories have twice the size */
1016 if (dinfo->dual_rank)
1017 addrBits++;
1018
1019 addrBits += 6; /* add 64 bits per DIMM */
1020 addrBits -= 20; /* divide by 2^^20 */
1021 addrBits -= 3; /* 8 bits per bytes */
1022
1023 dinfo->megabytes = 1 << addrBits;
1024 }
1025 }
1026 }
1027
1028 /*
1029 * calculate_dimm_size
1030 *
1031 * also will output a DIMM matrix map, if debug is enabled, for viewing
1032 * how the DIMMs are populated
1033 */
calculate_dimm_size(struct i5000_pvt * pvt)1034 static void calculate_dimm_size(struct i5000_pvt *pvt)
1035 {
1036 struct i5000_dimm_info *dinfo;
1037 int slot, channel, branch;
1038 char *p, *mem_buffer;
1039 int space, n;
1040
1041 /* ================= Generate some debug output ================= */
1042 space = PAGE_SIZE;
1043 mem_buffer = p = kmalloc(space, GFP_KERNEL);
1044 if (p == NULL) {
1045 i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1046 __FILE__, __func__);
1047 return;
1048 }
1049
1050 /* Scan all the actual slots
1051 * and calculate the information for each DIMM
1052 * Start with the highest slot first, to display it first
1053 * and work toward the 0th slot
1054 */
1055 for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
1056
1057 /* on an odd slot, first output a 'boundary' marker,
1058 * then reset the message buffer */
1059 if (slot & 0x1) {
1060 n = snprintf(p, space, "--------------------------"
1061 "--------------------------------");
1062 p += n;
1063 space -= n;
1064 edac_dbg(2, "%s\n", mem_buffer);
1065 p = mem_buffer;
1066 space = PAGE_SIZE;
1067 }
1068 n = snprintf(p, space, "slot %2d ", slot);
1069 p += n;
1070 space -= n;
1071
1072 for (channel = 0; channel < pvt->maxch; channel++) {
1073 dinfo = &pvt->dimm_info[slot][channel];
1074 handle_channel(pvt, slot, channel, dinfo);
1075 if (dinfo->megabytes)
1076 n = snprintf(p, space, "%4d MB %dR| ",
1077 dinfo->megabytes, dinfo->dual_rank + 1);
1078 else
1079 n = snprintf(p, space, "%4d MB | ", 0);
1080 p += n;
1081 space -= n;
1082 }
1083 p += n;
1084 space -= n;
1085 edac_dbg(2, "%s\n", mem_buffer);
1086 p = mem_buffer;
1087 space = PAGE_SIZE;
1088 }
1089
1090 /* Output the last bottom 'boundary' marker */
1091 n = snprintf(p, space, "--------------------------"
1092 "--------------------------------");
1093 p += n;
1094 space -= n;
1095 edac_dbg(2, "%s\n", mem_buffer);
1096 p = mem_buffer;
1097 space = PAGE_SIZE;
1098
1099 /* now output the 'channel' labels */
1100 n = snprintf(p, space, " ");
1101 p += n;
1102 space -= n;
1103 for (channel = 0; channel < pvt->maxch; channel++) {
1104 n = snprintf(p, space, "channel %d | ", channel);
1105 p += n;
1106 space -= n;
1107 }
1108 edac_dbg(2, "%s\n", mem_buffer);
1109 p = mem_buffer;
1110 space = PAGE_SIZE;
1111
1112 n = snprintf(p, space, " ");
1113 p += n;
1114 for (branch = 0; branch < MAX_BRANCHES; branch++) {
1115 n = snprintf(p, space, " branch %d | ", branch);
1116 p += n;
1117 space -= n;
1118 }
1119
1120 /* output the last message and free buffer */
1121 edac_dbg(2, "%s\n", mem_buffer);
1122 kfree(mem_buffer);
1123 }
1124
1125 /*
1126 * i5000_get_mc_regs read in the necessary registers and
1127 * cache locally
1128 *
1129 * Fills in the private data members
1130 */
i5000_get_mc_regs(struct mem_ctl_info * mci)1131 static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1132 {
1133 struct i5000_pvt *pvt;
1134 u32 actual_tolm;
1135 u16 limit;
1136 int slot_row;
1137 int way0, way1;
1138
1139 pvt = mci->pvt_info;
1140
1141 pci_read_config_dword(pvt->system_address, AMBASE,
1142 &pvt->u.ambase_bottom);
1143 pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1144 &pvt->u.ambase_top);
1145
1146 edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1147 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1148
1149 /* Get the Branch Map regs */
1150 pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1151 pvt->tolm >>= 12;
1152 edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
1153 pvt->tolm, pvt->tolm);
1154
1155 actual_tolm = pvt->tolm << 28;
1156 edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
1157 actual_tolm, actual_tolm);
1158
1159 pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1160 pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1161 pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1162
1163 /* Get the MIR[0-2] regs */
1164 limit = (pvt->mir0 >> 4) & 0x0FFF;
1165 way0 = pvt->mir0 & 0x1;
1166 way1 = pvt->mir0 & 0x2;
1167 edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
1168 limit, way1, way0);
1169 limit = (pvt->mir1 >> 4) & 0x0FFF;
1170 way0 = pvt->mir1 & 0x1;
1171 way1 = pvt->mir1 & 0x2;
1172 edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
1173 limit, way1, way0);
1174 limit = (pvt->mir2 >> 4) & 0x0FFF;
1175 way0 = pvt->mir2 & 0x1;
1176 way1 = pvt->mir2 & 0x2;
1177 edac_dbg(2, "MIR2: limit= 0x%x WAY1= %u WAY0= %x\n",
1178 limit, way1, way0);
1179
1180 /* Get the MTR[0-3] regs */
1181 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1182 int where = MTR0 + (slot_row * sizeof(u32));
1183
1184 pci_read_config_word(pvt->branch_0, where,
1185 &pvt->b0_mtr[slot_row]);
1186
1187 edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1188 slot_row, where, pvt->b0_mtr[slot_row]);
1189
1190 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1191 pci_read_config_word(pvt->branch_1, where,
1192 &pvt->b1_mtr[slot_row]);
1193 edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1194 slot_row, where, pvt->b1_mtr[slot_row]);
1195 } else {
1196 pvt->b1_mtr[slot_row] = 0;
1197 }
1198 }
1199
1200 /* Read and dump branch 0's MTRs */
1201 edac_dbg(2, "Memory Technology Registers:\n");
1202 edac_dbg(2, " Branch 0:\n");
1203 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1204 decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1205 }
1206 pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1207 &pvt->b0_ambpresent0);
1208 edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1209 pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1210 &pvt->b0_ambpresent1);
1211 edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1212
1213 /* Only if we have 2 branchs (4 channels) */
1214 if (pvt->maxch < CHANNELS_PER_BRANCH) {
1215 pvt->b1_ambpresent0 = 0;
1216 pvt->b1_ambpresent1 = 0;
1217 } else {
1218 /* Read and dump branch 1's MTRs */
1219 edac_dbg(2, " Branch 1:\n");
1220 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1221 decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1222 }
1223 pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1224 &pvt->b1_ambpresent0);
1225 edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1226 pvt->b1_ambpresent0);
1227 pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1228 &pvt->b1_ambpresent1);
1229 edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1230 pvt->b1_ambpresent1);
1231 }
1232
1233 /* Go and determine the size of each DIMM and place in an
1234 * orderly matrix */
1235 calculate_dimm_size(pvt);
1236 }
1237
1238 /*
1239 * i5000_init_csrows Initialize the 'csrows' table within
1240 * the mci control structure with the
1241 * addressing of memory.
1242 *
1243 * return:
1244 * 0 success
1245 * 1 no actual memory found on this MC
1246 */
i5000_init_csrows(struct mem_ctl_info * mci)1247 static int i5000_init_csrows(struct mem_ctl_info *mci)
1248 {
1249 struct i5000_pvt *pvt;
1250 struct dimm_info *dimm;
1251 int empty;
1252 int max_csrows;
1253 int mtr;
1254 int csrow_megs;
1255 int channel;
1256 int slot;
1257
1258 pvt = mci->pvt_info;
1259 max_csrows = pvt->maxdimmperch * 2;
1260
1261 empty = 1; /* Assume NO memory */
1262
1263 /*
1264 * FIXME: The memory layout used to map slot/channel into the
1265 * real memory architecture is weird: branch+slot are "csrows"
1266 * and channel is channel. That required an extra array (dimm_info)
1267 * to map the dimms. A good cleanup would be to remove this array,
1268 * and do a loop here with branch, channel, slot
1269 */
1270 for (slot = 0; slot < max_csrows; slot++) {
1271 for (channel = 0; channel < pvt->maxch; channel++) {
1272
1273 mtr = determine_mtr(pvt, slot, channel);
1274
1275 if (!MTR_DIMMS_PRESENT(mtr))
1276 continue;
1277
1278 dimm = edac_get_dimm(mci, channel / MAX_BRANCHES,
1279 channel % MAX_BRANCHES, slot);
1280
1281 csrow_megs = pvt->dimm_info[slot][channel].megabytes;
1282 dimm->grain = 8;
1283
1284 /* Assume DDR2 for now */
1285 dimm->mtype = MEM_FB_DDR2;
1286
1287 /* ask what device type on this row */
1288 if (MTR_DRAM_WIDTH(mtr) == 8)
1289 dimm->dtype = DEV_X8;
1290 else
1291 dimm->dtype = DEV_X4;
1292
1293 dimm->edac_mode = EDAC_S8ECD8ED;
1294 dimm->nr_pages = csrow_megs << 8;
1295 }
1296
1297 empty = 0;
1298 }
1299
1300 return empty;
1301 }
1302
1303 /*
1304 * i5000_enable_error_reporting
1305 * Turn on the memory reporting features of the hardware
1306 */
i5000_enable_error_reporting(struct mem_ctl_info * mci)1307 static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1308 {
1309 struct i5000_pvt *pvt;
1310 u32 fbd_error_mask;
1311
1312 pvt = mci->pvt_info;
1313
1314 /* Read the FBD Error Mask Register */
1315 pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1316 &fbd_error_mask);
1317
1318 /* Enable with a '0' */
1319 fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1320
1321 pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1322 fbd_error_mask);
1323 }
1324
1325 /*
1326 * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
1327 *
1328 * ask the device how many channels are present and how many CSROWS
1329 * as well
1330 */
i5000_get_dimm_and_channel_counts(struct pci_dev * pdev,int * num_dimms_per_channel,int * num_channels)1331 static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1332 int *num_dimms_per_channel,
1333 int *num_channels)
1334 {
1335 u8 value;
1336
1337 /* Need to retrieve just how many channels and dimms per channel are
1338 * supported on this memory controller
1339 */
1340 pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1341 *num_dimms_per_channel = (int)value;
1342
1343 pci_read_config_byte(pdev, MAXCH, &value);
1344 *num_channels = (int)value;
1345 }
1346
1347 /*
1348 * i5000_probe1 Probe for ONE instance of device to see if it is
1349 * present.
1350 * return:
1351 * 0 for FOUND a device
1352 * < 0 for error code
1353 */
i5000_probe1(struct pci_dev * pdev,int dev_idx)1354 static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1355 {
1356 struct mem_ctl_info *mci;
1357 struct edac_mc_layer layers[3];
1358 struct i5000_pvt *pvt;
1359 int num_channels;
1360 int num_dimms_per_channel;
1361
1362 edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1363 pdev->bus->number,
1364 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1365
1366 /* We only are looking for func 0 of the set */
1367 if (PCI_FUNC(pdev->devfn) != 0)
1368 return -ENODEV;
1369
1370 /* Ask the devices for the number of CSROWS and CHANNELS so
1371 * that we can calculate the memory resources, etc
1372 *
1373 * The Chipset will report what it can handle which will be greater
1374 * or equal to what the motherboard manufacturer will implement.
1375 *
1376 * As we don't have a motherboard identification routine to determine
1377 * actual number of slots/dimms per channel, we thus utilize the
1378 * resource as specified by the chipset. Thus, we might have
1379 * have more DIMMs per channel than actually on the mobo, but this
1380 * allows the driver to support up to the chipset max, without
1381 * some fancy mobo determination.
1382 */
1383 i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1384 &num_channels);
1385
1386 edac_dbg(0, "MC: Number of Branches=2 Channels= %d DIMMS= %d\n",
1387 num_channels, num_dimms_per_channel);
1388
1389 /* allocate a new MC control structure */
1390
1391 layers[0].type = EDAC_MC_LAYER_BRANCH;
1392 layers[0].size = MAX_BRANCHES;
1393 layers[0].is_virt_csrow = false;
1394 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1395 layers[1].size = num_channels / MAX_BRANCHES;
1396 layers[1].is_virt_csrow = false;
1397 layers[2].type = EDAC_MC_LAYER_SLOT;
1398 layers[2].size = num_dimms_per_channel;
1399 layers[2].is_virt_csrow = true;
1400 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1401 if (mci == NULL)
1402 return -ENOMEM;
1403
1404 edac_dbg(0, "MC: mci = %p\n", mci);
1405
1406 mci->pdev = &pdev->dev; /* record ptr to the generic device */
1407
1408 pvt = mci->pvt_info;
1409 pvt->system_address = pdev; /* Record this device in our private */
1410 pvt->maxch = num_channels;
1411 pvt->maxdimmperch = num_dimms_per_channel;
1412
1413 /* 'get' the pci devices we want to reserve for our use */
1414 if (i5000_get_devices(mci, dev_idx))
1415 goto fail0;
1416
1417 /* Time to get serious */
1418 i5000_get_mc_regs(mci); /* retrieve the hardware registers */
1419
1420 mci->mc_idx = 0;
1421 mci->mtype_cap = MEM_FLAG_FB_DDR2;
1422 mci->edac_ctl_cap = EDAC_FLAG_NONE;
1423 mci->edac_cap = EDAC_FLAG_NONE;
1424 mci->mod_name = "i5000_edac.c";
1425 mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1426 mci->dev_name = pci_name(pdev);
1427 mci->ctl_page_to_phys = NULL;
1428
1429 /* Set the function pointer to an actual operation function */
1430 mci->edac_check = i5000_check_error;
1431
1432 /* initialize the MC control structure 'csrows' table
1433 * with the mapping and control information */
1434 if (i5000_init_csrows(mci)) {
1435 edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
1436 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1437 } else {
1438 edac_dbg(1, "MC: Enable error reporting now\n");
1439 i5000_enable_error_reporting(mci);
1440 }
1441
1442 /* add this new MC control structure to EDAC's list of MCs */
1443 if (edac_mc_add_mc(mci)) {
1444 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1445 /* FIXME: perhaps some code should go here that disables error
1446 * reporting if we just enabled it
1447 */
1448 goto fail1;
1449 }
1450
1451 i5000_clear_error(mci);
1452
1453 /* allocating generic PCI control info */
1454 i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1455 if (!i5000_pci) {
1456 printk(KERN_WARNING
1457 "%s(): Unable to create PCI control\n",
1458 __func__);
1459 printk(KERN_WARNING
1460 "%s(): PCI error report via EDAC not setup\n",
1461 __func__);
1462 }
1463
1464 return 0;
1465
1466 /* Error exit unwinding stack */
1467 fail1:
1468
1469 i5000_put_devices(mci);
1470
1471 fail0:
1472 edac_mc_free(mci);
1473 return -ENODEV;
1474 }
1475
1476 /*
1477 * i5000_init_one constructor for one instance of device
1478 *
1479 * returns:
1480 * negative on error
1481 * count (>= 0)
1482 */
i5000_init_one(struct pci_dev * pdev,const struct pci_device_id * id)1483 static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1484 {
1485 int rc;
1486
1487 edac_dbg(0, "MC:\n");
1488
1489 /* wake up device */
1490 rc = pci_enable_device(pdev);
1491 if (rc)
1492 return rc;
1493
1494 /* now probe and enable the device */
1495 return i5000_probe1(pdev, id->driver_data);
1496 }
1497
1498 /*
1499 * i5000_remove_one destructor for one instance of device
1500 *
1501 */
i5000_remove_one(struct pci_dev * pdev)1502 static void i5000_remove_one(struct pci_dev *pdev)
1503 {
1504 struct mem_ctl_info *mci;
1505
1506 edac_dbg(0, "\n");
1507
1508 if (i5000_pci)
1509 edac_pci_release_generic_ctl(i5000_pci);
1510
1511 if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1512 return;
1513
1514 /* retrieve references to resources, and free those resources */
1515 i5000_put_devices(mci);
1516 edac_mc_free(mci);
1517 }
1518
1519 /*
1520 * pci_device_id table for which devices we are looking for
1521 *
1522 * The "E500P" device is the first device supported.
1523 */
1524 static const struct pci_device_id i5000_pci_tbl[] = {
1525 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1526 .driver_data = I5000P},
1527
1528 {0,} /* 0 terminated list. */
1529 };
1530
1531 MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1532
1533 /*
1534 * i5000_driver pci_driver structure for this module
1535 *
1536 */
1537 static struct pci_driver i5000_driver = {
1538 .name = KBUILD_BASENAME,
1539 .probe = i5000_init_one,
1540 .remove = i5000_remove_one,
1541 .id_table = i5000_pci_tbl,
1542 };
1543
1544 /*
1545 * i5000_init Module entry function
1546 * Try to initialize this module for its devices
1547 */
i5000_init(void)1548 static int __init i5000_init(void)
1549 {
1550 int pci_rc;
1551
1552 edac_dbg(2, "MC:\n");
1553
1554 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1555 opstate_init();
1556
1557 pci_rc = pci_register_driver(&i5000_driver);
1558
1559 return (pci_rc < 0) ? pci_rc : 0;
1560 }
1561
1562 /*
1563 * i5000_exit() Module exit function
1564 * Unregister the driver
1565 */
i5000_exit(void)1566 static void __exit i5000_exit(void)
1567 {
1568 edac_dbg(2, "MC:\n");
1569 pci_unregister_driver(&i5000_driver);
1570 }
1571
1572 module_init(i5000_init);
1573 module_exit(i5000_exit);
1574
1575 MODULE_LICENSE("GPL");
1576 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1577 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - " I5000_REVISION);
1578
1579 module_param(edac_op_state, int, 0444);
1580 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1581 module_param(misc_messages, int, 0444);
1582 MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1583