xref: /openbmc/linux/drivers/edac/i3000_edac.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * Intel 3000/3010 Memory Controller kernel module
3  * Copyright (C) 2007 Akamai Technologies, Inc.
4  * Shamelessly copied from:
5  * 	Intel D82875P Memory Controller kernel module
6  * 	(C) 2003 Linux Networx (http://lnxi.com)
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/edac.h>
17 #include "edac_core.h"
18 
19 #define I3000_REVISION		"1.1"
20 
21 #define EDAC_MOD_STR		"i3000_edac"
22 
23 #define I3000_RANKS		8
24 #define I3000_RANKS_PER_CHANNEL	4
25 #define I3000_CHANNELS		2
26 
27 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
28 
29 #define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
30 #define I3000_MCHBAR_MASK	0xffffc000
31 #define I3000_MMR_WINDOW_SIZE	16384
32 
33 #define I3000_EDEAP	0x70	/* Extended DRAM Error Address Pointer (8b)
34 				 *
35 				 * 7:1   reserved
36 				 * 0     bit 32 of address
37 				 */
38 #define I3000_DEAP	0x58	/* DRAM Error Address Pointer (32b)
39 				 *
40 				 * 31:7  address
41 				 * 6:1   reserved
42 				 * 0     Error channel 0/1
43 				 */
44 #define I3000_DEAP_GRAIN 		(1 << 7)
45 
46 /*
47  * Helper functions to decode the DEAP/EDEAP hardware registers.
48  *
49  * The type promotion here is deliberate; we're deriving an
50  * unsigned long pfn and offset from hardware regs which are u8/u32.
51  */
52 
53 static inline unsigned long deap_pfn(u8 edeap, u32 deap)
54 {
55 	deap >>= PAGE_SHIFT;
56 	deap |= (edeap & 1) << (32 - PAGE_SHIFT);
57 	return deap;
58 }
59 
60 static inline unsigned long deap_offset(u32 deap)
61 {
62 	return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
63 }
64 
65 static inline int deap_channel(u32 deap)
66 {
67 	return deap & 1;
68 }
69 
70 #define I3000_DERRSYN	0x5c	/* DRAM Error Syndrome (8b)
71 				 *
72 				 *  7:0  DRAM ECC Syndrome
73 				 */
74 
75 #define I3000_ERRSTS	0xc8	/* Error Status Register (16b)
76 				 *
77 				 * 15:12 reserved
78 				 * 11    MCH Thermal Sensor Event
79 				 *         for SMI/SCI/SERR
80 				 * 10    reserved
81 				 *  9    LOCK to non-DRAM Memory Flag (LCKF)
82 				 *  8    Received Refresh Timeout Flag (RRTOF)
83 				 *  7:2  reserved
84 				 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
85 				 *  0    Single-bit DRAM ECC Error Flag (DSERR)
86 				 */
87 #define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
88 #define I3000_ERRSTS_UE		0x0002
89 #define I3000_ERRSTS_CE		0x0001
90 
91 #define I3000_ERRCMD	0xca	/* Error Command (16b)
92 				 *
93 				 * 15:12 reserved
94 				 * 11    SERR on MCH Thermal Sensor Event
95 				 *         (TSESERR)
96 				 * 10    reserved
97 				 *  9    SERR on LOCK to non-DRAM Memory
98 				 *         (LCKERR)
99 				 *  8    SERR on DRAM Refresh Timeout
100 				 *         (DRTOERR)
101 				 *  7:2  reserved
102 				 *  1    SERR Multi-Bit DRAM ECC Error
103 				 *         (DMERR)
104 				 *  0    SERR on Single-Bit ECC Error
105 				 *         (DSERR)
106 				 */
107 
108 /* Intel  MMIO register space - device 0 function 0 - MMR space */
109 
110 #define I3000_DRB_SHIFT 25	/* 32MiB grain */
111 
112 #define I3000_C0DRB	0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
113 				 *
114 				 * 7:0   Channel 0 DRAM Rank Boundary Address
115 				 */
116 #define I3000_C1DRB	0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
117 				 *
118 				 * 7:0   Channel 1 DRAM Rank Boundary Address
119 				 */
120 
121 #define I3000_C0DRA	0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
122 				 *
123 				 * 7     reserved
124 				 * 6:4   DRAM odd Rank Attribute
125 				 * 3     reserved
126 				 * 2:0   DRAM even Rank Attribute
127 				 *
128 				 * Each attribute defines the page
129 				 * size of the corresponding rank:
130 				 *     000: unpopulated
131 				 *     001: reserved
132 				 *     010: 4 KB
133 				 *     011: 8 KB
134 				 *     100: 16 KB
135 				 *     Others: reserved
136 				 */
137 #define I3000_C1DRA	0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
138 
139 static inline unsigned char odd_rank_attrib(unsigned char dra)
140 {
141 	return (dra & 0x70) >> 4;
142 }
143 
144 static inline unsigned char even_rank_attrib(unsigned char dra)
145 {
146 	return dra & 0x07;
147 }
148 
149 #define I3000_C0DRC0	0x120	/* DRAM Controller Mode 0 (32b)
150 				 *
151 				 * 31:30 reserved
152 				 * 29    Initialization Complete (IC)
153 				 * 28:11 reserved
154 				 * 10:8  Refresh Mode Select (RMS)
155 				 * 7     reserved
156 				 * 6:4   Mode Select (SMS)
157 				 * 3:2   reserved
158 				 * 1:0   DRAM Type (DT)
159 				 */
160 
161 #define I3000_C0DRC1	0x124	/* DRAM Controller Mode 1 (32b)
162 				 *
163 				 * 31    Enhanced Addressing Enable (ENHADE)
164 				 * 30:0  reserved
165 				 */
166 
167 enum i3000p_chips {
168 	I3000 = 0,
169 };
170 
171 struct i3000_dev_info {
172 	const char *ctl_name;
173 };
174 
175 struct i3000_error_info {
176 	u16 errsts;
177 	u8 derrsyn;
178 	u8 edeap;
179 	u32 deap;
180 	u16 errsts2;
181 };
182 
183 static const struct i3000_dev_info i3000_devs[] = {
184 	[I3000] = {
185 		.ctl_name = "i3000"},
186 };
187 
188 static struct pci_dev *mci_pdev;
189 static int i3000_registered = 1;
190 static struct edac_pci_ctl_info *i3000_pci;
191 
192 static void i3000_get_error_info(struct mem_ctl_info *mci,
193 				 struct i3000_error_info *info)
194 {
195 	struct pci_dev *pdev;
196 
197 	pdev = to_pci_dev(mci->dev);
198 
199 	/*
200 	 * This is a mess because there is no atomic way to read all the
201 	 * registers at once and the registers can transition from CE being
202 	 * overwritten by UE.
203 	 */
204 	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
205 	if (!(info->errsts & I3000_ERRSTS_BITS))
206 		return;
207 	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
208 	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
209 	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
210 	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
211 
212 	/*
213 	 * If the error is the same for both reads then the first set
214 	 * of reads is valid.  If there is a change then there is a CE
215 	 * with no info and the second set of reads is valid and
216 	 * should be UE info.
217 	 */
218 	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
219 		pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
220 		pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
221 		pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
222 	}
223 
224 	/*
225 	 * Clear any error bits.
226 	 * (Yes, we really clear bits by writing 1 to them.)
227 	 */
228 	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
229 			 I3000_ERRSTS_BITS);
230 }
231 
232 static int i3000_process_error_info(struct mem_ctl_info *mci,
233 				struct i3000_error_info *info,
234 				int handle_errors)
235 {
236 	int row, multi_chan, channel;
237 	unsigned long pfn, offset;
238 
239 	multi_chan = mci->csrows[0].nr_channels - 1;
240 
241 	if (!(info->errsts & I3000_ERRSTS_BITS))
242 		return 0;
243 
244 	if (!handle_errors)
245 		return 1;
246 
247 	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
248 		edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
249 		info->errsts = info->errsts2;
250 	}
251 
252 	pfn = deap_pfn(info->edeap, info->deap);
253 	offset = deap_offset(info->deap);
254 	channel = deap_channel(info->deap);
255 
256 	row = edac_mc_find_csrow_by_page(mci, pfn);
257 
258 	if (info->errsts & I3000_ERRSTS_UE)
259 		edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
260 	else
261 		edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
262 				multi_chan ? channel : 0, "i3000 CE");
263 
264 	return 1;
265 }
266 
267 static void i3000_check(struct mem_ctl_info *mci)
268 {
269 	struct i3000_error_info info;
270 
271 	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
272 	i3000_get_error_info(mci, &info);
273 	i3000_process_error_info(mci, &info, 1);
274 }
275 
276 static int i3000_is_interleaved(const unsigned char *c0dra,
277 				const unsigned char *c1dra,
278 				const unsigned char *c0drb,
279 				const unsigned char *c1drb)
280 {
281 	int i;
282 
283 	/*
284 	 * If the channels aren't populated identically then
285 	 * we're not interleaved.
286 	 */
287 	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
288 		if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
289 			even_rank_attrib(c0dra[i]) !=
290 						even_rank_attrib(c1dra[i]))
291 			return 0;
292 
293 	/*
294 	 * If the rank boundaries for the two channels are different
295 	 * then we're not interleaved.
296 	 */
297 	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
298 		if (c0drb[i] != c1drb[i])
299 			return 0;
300 
301 	return 1;
302 }
303 
304 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
305 {
306 	int rc;
307 	int i;
308 	struct mem_ctl_info *mci = NULL;
309 	unsigned long last_cumul_size;
310 	int interleaved, nr_channels;
311 	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
312 	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
313 	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
314 	unsigned long mchbar;
315 	void __iomem *window;
316 
317 	debugf0("MC: %s()\n", __func__);
318 
319 	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
320 	mchbar &= I3000_MCHBAR_MASK;
321 	window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
322 	if (!window) {
323 		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
324 			mchbar);
325 		return -ENODEV;
326 	}
327 
328 	c0dra[0] = readb(window + I3000_C0DRA + 0);	/* ranks 0,1 */
329 	c0dra[1] = readb(window + I3000_C0DRA + 1);	/* ranks 2,3 */
330 	c1dra[0] = readb(window + I3000_C1DRA + 0);	/* ranks 0,1 */
331 	c1dra[1] = readb(window + I3000_C1DRA + 1);	/* ranks 2,3 */
332 
333 	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
334 		c0drb[i] = readb(window + I3000_C0DRB + i);
335 		c1drb[i] = readb(window + I3000_C1DRB + i);
336 	}
337 
338 	iounmap(window);
339 
340 	/*
341 	 * Figure out how many channels we have.
342 	 *
343 	 * If we have what the datasheet calls "asymmetric channels"
344 	 * (essentially the same as what was called "virtual single
345 	 * channel mode" in the i82875) then it's a single channel as
346 	 * far as EDAC is concerned.
347 	 */
348 	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
349 	nr_channels = interleaved ? 2 : 1;
350 	mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
351 	if (!mci)
352 		return -ENOMEM;
353 
354 	debugf3("MC: %s(): init mci\n", __func__);
355 
356 	mci->dev = &pdev->dev;
357 	mci->mtype_cap = MEM_FLAG_DDR2;
358 
359 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
360 	mci->edac_cap = EDAC_FLAG_SECDED;
361 
362 	mci->mod_name = EDAC_MOD_STR;
363 	mci->mod_ver = I3000_REVISION;
364 	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
365 	mci->dev_name = pci_name(pdev);
366 	mci->edac_check = i3000_check;
367 	mci->ctl_page_to_phys = NULL;
368 
369 	/*
370 	 * The dram rank boundary (DRB) reg values are boundary addresses
371 	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
372 	 * cumulative; the last one will contain the total memory
373 	 * contained in all ranks.
374 	 *
375 	 * If we're in interleaved mode then we're only walking through
376 	 * the ranks of controller 0, so we double all the values we see.
377 	 */
378 	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
379 		u8 value;
380 		u32 cumul_size;
381 		struct csrow_info *csrow = &mci->csrows[i];
382 
383 		value = drb[i];
384 		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
385 		if (interleaved)
386 			cumul_size <<= 1;
387 		debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
388 			__func__, i, cumul_size);
389 		if (cumul_size == last_cumul_size) {
390 			csrow->mtype = MEM_EMPTY;
391 			continue;
392 		}
393 
394 		csrow->first_page = last_cumul_size;
395 		csrow->last_page = cumul_size - 1;
396 		csrow->nr_pages = cumul_size - last_cumul_size;
397 		last_cumul_size = cumul_size;
398 		csrow->grain = I3000_DEAP_GRAIN;
399 		csrow->mtype = MEM_DDR2;
400 		csrow->dtype = DEV_UNKNOWN;
401 		csrow->edac_mode = EDAC_UNKNOWN;
402 	}
403 
404 	/*
405 	 * Clear any error bits.
406 	 * (Yes, we really clear bits by writing 1 to them.)
407 	 */
408 	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
409 			 I3000_ERRSTS_BITS);
410 
411 	rc = -ENODEV;
412 	if (edac_mc_add_mc(mci)) {
413 		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
414 		goto fail;
415 	}
416 
417 	/* allocating generic PCI control info */
418 	i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
419 	if (!i3000_pci) {
420 		printk(KERN_WARNING
421 			"%s(): Unable to create PCI control\n",
422 			__func__);
423 		printk(KERN_WARNING
424 			"%s(): PCI error report via EDAC not setup\n",
425 			__func__);
426 	}
427 
428 	/* get this far and it's successful */
429 	debugf3("MC: %s(): success\n", __func__);
430 	return 0;
431 
432 fail:
433 	if (mci)
434 		edac_mc_free(mci);
435 
436 	return rc;
437 }
438 
439 /* returns count (>= 0), or negative on error */
440 static int __devinit i3000_init_one(struct pci_dev *pdev,
441 				const struct pci_device_id *ent)
442 {
443 	int rc;
444 
445 	debugf0("MC: %s()\n", __func__);
446 
447 	if (pci_enable_device(pdev) < 0)
448 		return -EIO;
449 
450 	rc = i3000_probe1(pdev, ent->driver_data);
451 	if (!mci_pdev)
452 		mci_pdev = pci_dev_get(pdev);
453 
454 	return rc;
455 }
456 
457 static void __devexit i3000_remove_one(struct pci_dev *pdev)
458 {
459 	struct mem_ctl_info *mci;
460 
461 	debugf0("%s()\n", __func__);
462 
463 	if (i3000_pci)
464 		edac_pci_release_generic_ctl(i3000_pci);
465 
466 	mci = edac_mc_del_mc(&pdev->dev);
467 	if (!mci)
468 		return;
469 
470 	edac_mc_free(mci);
471 }
472 
473 static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = {
474 	{
475 	 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
476 	 I3000},
477 	{
478 	 0,
479 	 }			/* 0 terminated list. */
480 };
481 
482 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
483 
484 static struct pci_driver i3000_driver = {
485 	.name = EDAC_MOD_STR,
486 	.probe = i3000_init_one,
487 	.remove = __devexit_p(i3000_remove_one),
488 	.id_table = i3000_pci_tbl,
489 };
490 
491 static int __init i3000_init(void)
492 {
493 	int pci_rc;
494 
495 	debugf3("MC: %s()\n", __func__);
496 
497        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
498        opstate_init();
499 
500 	pci_rc = pci_register_driver(&i3000_driver);
501 	if (pci_rc < 0)
502 		goto fail0;
503 
504 	if (!mci_pdev) {
505 		i3000_registered = 0;
506 		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
507 					PCI_DEVICE_ID_INTEL_3000_HB, NULL);
508 		if (!mci_pdev) {
509 			debugf0("i3000 pci_get_device fail\n");
510 			pci_rc = -ENODEV;
511 			goto fail1;
512 		}
513 
514 		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
515 		if (pci_rc < 0) {
516 			debugf0("i3000 init fail\n");
517 			pci_rc = -ENODEV;
518 			goto fail1;
519 		}
520 	}
521 
522 	return 0;
523 
524 fail1:
525 	pci_unregister_driver(&i3000_driver);
526 
527 fail0:
528 	if (mci_pdev)
529 		pci_dev_put(mci_pdev);
530 
531 	return pci_rc;
532 }
533 
534 static void __exit i3000_exit(void)
535 {
536 	debugf3("MC: %s()\n", __func__);
537 
538 	pci_unregister_driver(&i3000_driver);
539 	if (!i3000_registered) {
540 		i3000_remove_one(mci_pdev);
541 		pci_dev_put(mci_pdev);
542 	}
543 }
544 
545 module_init(i3000_init);
546 module_exit(i3000_exit);
547 
548 MODULE_LICENSE("GPL");
549 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
550 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
551 
552 module_param(edac_op_state, int, 0444);
553 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
554