1 /* 2 * Intel 3000/3010 Memory Controller kernel module 3 * Copyright (C) 2007 Akamai Technologies, Inc. 4 * Shamelessly copied from: 5 * Intel D82875P Memory Controller kernel module 6 * (C) 2003 Linux Networx (http://lnxi.com) 7 * 8 * This file may be distributed under the terms of the 9 * GNU General Public License. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/pci.h> 15 #include <linux/pci_ids.h> 16 #include <linux/edac.h> 17 #include "edac_core.h" 18 19 #define I3000_REVISION "1.1" 20 21 #define EDAC_MOD_STR "i3000_edac" 22 23 #define I3000_RANKS 8 24 #define I3000_RANKS_PER_CHANNEL 4 25 #define I3000_CHANNELS 2 26 27 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */ 28 29 #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */ 30 #define I3000_MCHBAR_MASK 0xffffc000 31 #define I3000_MMR_WINDOW_SIZE 16384 32 33 #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b) 34 * 35 * 7:1 reserved 36 * 0 bit 32 of address 37 */ 38 #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b) 39 * 40 * 31:7 address 41 * 6:1 reserved 42 * 0 Error channel 0/1 43 */ 44 #define I3000_DEAP_GRAIN (1 << 7) 45 46 /* 47 * Helper functions to decode the DEAP/EDEAP hardware registers. 48 * 49 * The type promotion here is deliberate; we're deriving an 50 * unsigned long pfn and offset from hardware regs which are u8/u32. 51 */ 52 53 static inline unsigned long deap_pfn(u8 edeap, u32 deap) 54 { 55 deap >>= PAGE_SHIFT; 56 deap |= (edeap & 1) << (32 - PAGE_SHIFT); 57 return deap; 58 } 59 60 static inline unsigned long deap_offset(u32 deap) 61 { 62 return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK; 63 } 64 65 static inline int deap_channel(u32 deap) 66 { 67 return deap & 1; 68 } 69 70 #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b) 71 * 72 * 7:0 DRAM ECC Syndrome 73 */ 74 75 #define I3000_ERRSTS 0xc8 /* Error Status Register (16b) 76 * 77 * 15:12 reserved 78 * 11 MCH Thermal Sensor Event 79 * for SMI/SCI/SERR 80 * 10 reserved 81 * 9 LOCK to non-DRAM Memory Flag (LCKF) 82 * 8 Received Refresh Timeout Flag (RRTOF) 83 * 7:2 reserved 84 * 1 Multi-bit DRAM ECC Error Flag (DMERR) 85 * 0 Single-bit DRAM ECC Error Flag (DSERR) 86 */ 87 #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */ 88 #define I3000_ERRSTS_UE 0x0002 89 #define I3000_ERRSTS_CE 0x0001 90 91 #define I3000_ERRCMD 0xca /* Error Command (16b) 92 * 93 * 15:12 reserved 94 * 11 SERR on MCH Thermal Sensor Event 95 * (TSESERR) 96 * 10 reserved 97 * 9 SERR on LOCK to non-DRAM Memory 98 * (LCKERR) 99 * 8 SERR on DRAM Refresh Timeout 100 * (DRTOERR) 101 * 7:2 reserved 102 * 1 SERR Multi-Bit DRAM ECC Error 103 * (DMERR) 104 * 0 SERR on Single-Bit ECC Error 105 * (DSERR) 106 */ 107 108 /* Intel MMIO register space - device 0 function 0 - MMR space */ 109 110 #define I3000_DRB_SHIFT 25 /* 32MiB grain */ 111 112 #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4) 113 * 114 * 7:0 Channel 0 DRAM Rank Boundary Address 115 */ 116 #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4) 117 * 118 * 7:0 Channel 1 DRAM Rank Boundary Address 119 */ 120 121 #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2) 122 * 123 * 7 reserved 124 * 6:4 DRAM odd Rank Attribute 125 * 3 reserved 126 * 2:0 DRAM even Rank Attribute 127 * 128 * Each attribute defines the page 129 * size of the corresponding rank: 130 * 000: unpopulated 131 * 001: reserved 132 * 010: 4 KB 133 * 011: 8 KB 134 * 100: 16 KB 135 * Others: reserved 136 */ 137 #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */ 138 139 static inline unsigned char odd_rank_attrib(unsigned char dra) 140 { 141 return (dra & 0x70) >> 4; 142 } 143 144 static inline unsigned char even_rank_attrib(unsigned char dra) 145 { 146 return dra & 0x07; 147 } 148 149 #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b) 150 * 151 * 31:30 reserved 152 * 29 Initialization Complete (IC) 153 * 28:11 reserved 154 * 10:8 Refresh Mode Select (RMS) 155 * 7 reserved 156 * 6:4 Mode Select (SMS) 157 * 3:2 reserved 158 * 1:0 DRAM Type (DT) 159 */ 160 161 #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b) 162 * 163 * 31 Enhanced Addressing Enable (ENHADE) 164 * 30:0 reserved 165 */ 166 167 enum i3000p_chips { 168 I3000 = 0, 169 }; 170 171 struct i3000_dev_info { 172 const char *ctl_name; 173 }; 174 175 struct i3000_error_info { 176 u16 errsts; 177 u8 derrsyn; 178 u8 edeap; 179 u32 deap; 180 u16 errsts2; 181 }; 182 183 static const struct i3000_dev_info i3000_devs[] = { 184 [I3000] = { 185 .ctl_name = "i3000"}, 186 }; 187 188 static struct pci_dev *mci_pdev; 189 static int i3000_registered = 1; 190 static struct edac_pci_ctl_info *i3000_pci; 191 192 static void i3000_get_error_info(struct mem_ctl_info *mci, 193 struct i3000_error_info *info) 194 { 195 struct pci_dev *pdev; 196 197 pdev = to_pci_dev(mci->dev); 198 199 /* 200 * This is a mess because there is no atomic way to read all the 201 * registers at once and the registers can transition from CE being 202 * overwritten by UE. 203 */ 204 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts); 205 if (!(info->errsts & I3000_ERRSTS_BITS)) 206 return; 207 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); 208 pci_read_config_dword(pdev, I3000_DEAP, &info->deap); 209 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); 210 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2); 211 212 /* 213 * If the error is the same for both reads then the first set 214 * of reads is valid. If there is a change then there is a CE 215 * with no info and the second set of reads is valid and 216 * should be UE info. 217 */ 218 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { 219 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); 220 pci_read_config_dword(pdev, I3000_DEAP, &info->deap); 221 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); 222 } 223 224 /* 225 * Clear any error bits. 226 * (Yes, we really clear bits by writing 1 to them.) 227 */ 228 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, 229 I3000_ERRSTS_BITS); 230 } 231 232 static int i3000_process_error_info(struct mem_ctl_info *mci, 233 struct i3000_error_info *info, 234 int handle_errors) 235 { 236 int row, multi_chan, channel; 237 unsigned long pfn, offset; 238 239 multi_chan = mci->csrows[0].nr_channels - 1; 240 241 if (!(info->errsts & I3000_ERRSTS_BITS)) 242 return 0; 243 244 if (!handle_errors) 245 return 1; 246 247 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { 248 edac_mc_handle_ce_no_info(mci, "UE overwrote CE"); 249 info->errsts = info->errsts2; 250 } 251 252 pfn = deap_pfn(info->edeap, info->deap); 253 offset = deap_offset(info->deap); 254 channel = deap_channel(info->deap); 255 256 row = edac_mc_find_csrow_by_page(mci, pfn); 257 258 if (info->errsts & I3000_ERRSTS_UE) 259 edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE"); 260 else 261 edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row, 262 multi_chan ? channel : 0, "i3000 CE"); 263 264 return 1; 265 } 266 267 static void i3000_check(struct mem_ctl_info *mci) 268 { 269 struct i3000_error_info info; 270 271 debugf1("MC%d: %s()\n", mci->mc_idx, __func__); 272 i3000_get_error_info(mci, &info); 273 i3000_process_error_info(mci, &info, 1); 274 } 275 276 static int i3000_is_interleaved(const unsigned char *c0dra, 277 const unsigned char *c1dra, 278 const unsigned char *c0drb, 279 const unsigned char *c1drb) 280 { 281 int i; 282 283 /* 284 * If the channels aren't populated identically then 285 * we're not interleaved. 286 */ 287 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++) 288 if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) || 289 even_rank_attrib(c0dra[i]) != 290 even_rank_attrib(c1dra[i])) 291 return 0; 292 293 /* 294 * If the rank boundaries for the two channels are different 295 * then we're not interleaved. 296 */ 297 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) 298 if (c0drb[i] != c1drb[i]) 299 return 0; 300 301 return 1; 302 } 303 304 static int i3000_probe1(struct pci_dev *pdev, int dev_idx) 305 { 306 int rc; 307 int i; 308 struct mem_ctl_info *mci = NULL; 309 unsigned long last_cumul_size; 310 int interleaved, nr_channels; 311 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS]; 312 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2]; 313 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL]; 314 unsigned long mchbar; 315 void __iomem *window; 316 317 debugf0("MC: %s()\n", __func__); 318 319 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar); 320 mchbar &= I3000_MCHBAR_MASK; 321 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE); 322 if (!window) { 323 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", 324 mchbar); 325 return -ENODEV; 326 } 327 328 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */ 329 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */ 330 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */ 331 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */ 332 333 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) { 334 c0drb[i] = readb(window + I3000_C0DRB + i); 335 c1drb[i] = readb(window + I3000_C1DRB + i); 336 } 337 338 iounmap(window); 339 340 /* 341 * Figure out how many channels we have. 342 * 343 * If we have what the datasheet calls "asymmetric channels" 344 * (essentially the same as what was called "virtual single 345 * channel mode" in the i82875) then it's a single channel as 346 * far as EDAC is concerned. 347 */ 348 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb); 349 nr_channels = interleaved ? 2 : 1; 350 mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0); 351 if (!mci) 352 return -ENOMEM; 353 354 debugf3("MC: %s(): init mci\n", __func__); 355 356 mci->dev = &pdev->dev; 357 mci->mtype_cap = MEM_FLAG_DDR2; 358 359 mci->edac_ctl_cap = EDAC_FLAG_SECDED; 360 mci->edac_cap = EDAC_FLAG_SECDED; 361 362 mci->mod_name = EDAC_MOD_STR; 363 mci->mod_ver = I3000_REVISION; 364 mci->ctl_name = i3000_devs[dev_idx].ctl_name; 365 mci->dev_name = pci_name(pdev); 366 mci->edac_check = i3000_check; 367 mci->ctl_page_to_phys = NULL; 368 369 /* 370 * The dram rank boundary (DRB) reg values are boundary addresses 371 * for each DRAM rank with a granularity of 32MB. DRB regs are 372 * cumulative; the last one will contain the total memory 373 * contained in all ranks. 374 * 375 * If we're in interleaved mode then we're only walking through 376 * the ranks of controller 0, so we double all the values we see. 377 */ 378 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) { 379 u8 value; 380 u32 cumul_size; 381 struct csrow_info *csrow = &mci->csrows[i]; 382 383 value = drb[i]; 384 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT); 385 if (interleaved) 386 cumul_size <<= 1; 387 debugf3("MC: %s(): (%d) cumul_size 0x%x\n", 388 __func__, i, cumul_size); 389 if (cumul_size == last_cumul_size) { 390 csrow->mtype = MEM_EMPTY; 391 continue; 392 } 393 394 csrow->first_page = last_cumul_size; 395 csrow->last_page = cumul_size - 1; 396 csrow->nr_pages = cumul_size - last_cumul_size; 397 last_cumul_size = cumul_size; 398 csrow->grain = I3000_DEAP_GRAIN; 399 csrow->mtype = MEM_DDR2; 400 csrow->dtype = DEV_UNKNOWN; 401 csrow->edac_mode = EDAC_UNKNOWN; 402 } 403 404 /* 405 * Clear any error bits. 406 * (Yes, we really clear bits by writing 1 to them.) 407 */ 408 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, 409 I3000_ERRSTS_BITS); 410 411 rc = -ENODEV; 412 if (edac_mc_add_mc(mci)) { 413 debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__); 414 goto fail; 415 } 416 417 /* allocating generic PCI control info */ 418 i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); 419 if (!i3000_pci) { 420 printk(KERN_WARNING 421 "%s(): Unable to create PCI control\n", 422 __func__); 423 printk(KERN_WARNING 424 "%s(): PCI error report via EDAC not setup\n", 425 __func__); 426 } 427 428 /* get this far and it's successful */ 429 debugf3("MC: %s(): success\n", __func__); 430 return 0; 431 432 fail: 433 if (mci) 434 edac_mc_free(mci); 435 436 return rc; 437 } 438 439 /* returns count (>= 0), or negative on error */ 440 static int __devinit i3000_init_one(struct pci_dev *pdev, 441 const struct pci_device_id *ent) 442 { 443 int rc; 444 445 debugf0("MC: %s()\n", __func__); 446 447 if (pci_enable_device(pdev) < 0) 448 return -EIO; 449 450 rc = i3000_probe1(pdev, ent->driver_data); 451 if (!mci_pdev) 452 mci_pdev = pci_dev_get(pdev); 453 454 return rc; 455 } 456 457 static void __devexit i3000_remove_one(struct pci_dev *pdev) 458 { 459 struct mem_ctl_info *mci; 460 461 debugf0("%s()\n", __func__); 462 463 if (i3000_pci) 464 edac_pci_release_generic_ctl(i3000_pci); 465 466 mci = edac_mc_del_mc(&pdev->dev); 467 if (!mci) 468 return; 469 470 edac_mc_free(mci); 471 } 472 473 static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = { 474 { 475 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, 476 I3000}, 477 { 478 0, 479 } /* 0 terminated list. */ 480 }; 481 482 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl); 483 484 static struct pci_driver i3000_driver = { 485 .name = EDAC_MOD_STR, 486 .probe = i3000_init_one, 487 .remove = __devexit_p(i3000_remove_one), 488 .id_table = i3000_pci_tbl, 489 }; 490 491 static int __init i3000_init(void) 492 { 493 int pci_rc; 494 495 debugf3("MC: %s()\n", __func__); 496 497 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 498 opstate_init(); 499 500 pci_rc = pci_register_driver(&i3000_driver); 501 if (pci_rc < 0) 502 goto fail0; 503 504 if (!mci_pdev) { 505 i3000_registered = 0; 506 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 507 PCI_DEVICE_ID_INTEL_3000_HB, NULL); 508 if (!mci_pdev) { 509 debugf0("i3000 pci_get_device fail\n"); 510 pci_rc = -ENODEV; 511 goto fail1; 512 } 513 514 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl); 515 if (pci_rc < 0) { 516 debugf0("i3000 init fail\n"); 517 pci_rc = -ENODEV; 518 goto fail1; 519 } 520 } 521 522 return 0; 523 524 fail1: 525 pci_unregister_driver(&i3000_driver); 526 527 fail0: 528 if (mci_pdev) 529 pci_dev_put(mci_pdev); 530 531 return pci_rc; 532 } 533 534 static void __exit i3000_exit(void) 535 { 536 debugf3("MC: %s()\n", __func__); 537 538 pci_unregister_driver(&i3000_driver); 539 if (!i3000_registered) { 540 i3000_remove_one(mci_pdev); 541 pci_dev_put(mci_pdev); 542 } 543 } 544 545 module_init(i3000_init); 546 module_exit(i3000_exit); 547 548 MODULE_LICENSE("GPL"); 549 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott"); 550 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers"); 551 552 module_param(edac_op_state, int, 0444); 553 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 554