xref: /openbmc/linux/drivers/edac/i3000_edac.c (revision 384740dc)
1 /*
2  * Intel 3000/3010 Memory Controller kernel module
3  * Copyright (C) 2007 Akamai Technologies, Inc.
4  * Shamelessly copied from:
5  * 	Intel D82875P Memory Controller kernel module
6  * 	(C) 2003 Linux Networx (http://lnxi.com)
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/pci_ids.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include "edac_core.h"
19 
20 #define I3000_REVISION		"1.1"
21 
22 #define EDAC_MOD_STR		"i3000_edac"
23 
24 #define I3000_RANKS		8
25 #define I3000_RANKS_PER_CHANNEL	4
26 #define I3000_CHANNELS		2
27 
28 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
29 
30 #define I3000_MCHBAR		0x44	/* MCH Memory Mapped Register BAR */
31 #define I3000_MCHBAR_MASK	0xffffc000
32 #define I3000_MMR_WINDOW_SIZE	16384
33 
34 #define I3000_EDEAP	0x70	/* Extended DRAM Error Address Pointer (8b)
35 				 *
36 				 * 7:1   reserved
37 				 * 0     bit 32 of address
38 				 */
39 #define I3000_DEAP	0x58	/* DRAM Error Address Pointer (32b)
40 				 *
41 				 * 31:7  address
42 				 * 6:1   reserved
43 				 * 0     Error channel 0/1
44 				 */
45 #define I3000_DEAP_GRAIN 		(1 << 7)
46 
47 /*
48  * Helper functions to decode the DEAP/EDEAP hardware registers.
49  *
50  * The type promotion here is deliberate; we're deriving an
51  * unsigned long pfn and offset from hardware regs which are u8/u32.
52  */
53 
54 static inline unsigned long deap_pfn(u8 edeap, u32 deap)
55 {
56 	deap >>= PAGE_SHIFT;
57 	deap |= (edeap & 1) << (32 - PAGE_SHIFT);
58 	return deap;
59 }
60 
61 static inline unsigned long deap_offset(u32 deap)
62 {
63 	return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
64 }
65 
66 static inline int deap_channel(u32 deap)
67 {
68 	return deap & 1;
69 }
70 
71 #define I3000_DERRSYN	0x5c	/* DRAM Error Syndrome (8b)
72 				 *
73 				 *  7:0  DRAM ECC Syndrome
74 				 */
75 
76 #define I3000_ERRSTS	0xc8	/* Error Status Register (16b)
77 				 *
78 				 * 15:12 reserved
79 				 * 11    MCH Thermal Sensor Event
80 				 *         for SMI/SCI/SERR
81 				 * 10    reserved
82 				 *  9    LOCK to non-DRAM Memory Flag (LCKF)
83 				 *  8    Received Refresh Timeout Flag (RRTOF)
84 				 *  7:2  reserved
85 				 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
86 				 *  0    Single-bit DRAM ECC Error Flag (DSERR)
87 				 */
88 #define I3000_ERRSTS_BITS	0x0b03	/* bits which indicate errors */
89 #define I3000_ERRSTS_UE		0x0002
90 #define I3000_ERRSTS_CE		0x0001
91 
92 #define I3000_ERRCMD	0xca	/* Error Command (16b)
93 				 *
94 				 * 15:12 reserved
95 				 * 11    SERR on MCH Thermal Sensor Event
96 				 *         (TSESERR)
97 				 * 10    reserved
98 				 *  9    SERR on LOCK to non-DRAM Memory
99 				 *         (LCKERR)
100 				 *  8    SERR on DRAM Refresh Timeout
101 				 *         (DRTOERR)
102 				 *  7:2  reserved
103 				 *  1    SERR Multi-Bit DRAM ECC Error
104 				 *         (DMERR)
105 				 *  0    SERR on Single-Bit ECC Error
106 				 *         (DSERR)
107 				 */
108 
109 /* Intel  MMIO register space - device 0 function 0 - MMR space */
110 
111 #define I3000_DRB_SHIFT 25	/* 32MiB grain */
112 
113 #define I3000_C0DRB	0x100	/* Channel 0 DRAM Rank Boundary (8b x 4)
114 				 *
115 				 * 7:0   Channel 0 DRAM Rank Boundary Address
116 				 */
117 #define I3000_C1DRB	0x180	/* Channel 1 DRAM Rank Boundary (8b x 4)
118 				 *
119 				 * 7:0   Channel 1 DRAM Rank Boundary Address
120 				 */
121 
122 #define I3000_C0DRA	0x108	/* Channel 0 DRAM Rank Attribute (8b x 2)
123 				 *
124 				 * 7     reserved
125 				 * 6:4   DRAM odd Rank Attribute
126 				 * 3     reserved
127 				 * 2:0   DRAM even Rank Attribute
128 				 *
129 				 * Each attribute defines the page
130 				 * size of the corresponding rank:
131 				 *     000: unpopulated
132 				 *     001: reserved
133 				 *     010: 4 KB
134 				 *     011: 8 KB
135 				 *     100: 16 KB
136 				 *     Others: reserved
137 				 */
138 #define I3000_C1DRA	0x188	/* Channel 1 DRAM Rank Attribute (8b x 2) */
139 
140 static inline unsigned char odd_rank_attrib(unsigned char dra)
141 {
142 	return (dra & 0x70) >> 4;
143 }
144 
145 static inline unsigned char even_rank_attrib(unsigned char dra)
146 {
147 	return dra & 0x07;
148 }
149 
150 #define I3000_C0DRC0	0x120	/* DRAM Controller Mode 0 (32b)
151 				 *
152 				 * 31:30 reserved
153 				 * 29    Initialization Complete (IC)
154 				 * 28:11 reserved
155 				 * 10:8  Refresh Mode Select (RMS)
156 				 * 7     reserved
157 				 * 6:4   Mode Select (SMS)
158 				 * 3:2   reserved
159 				 * 1:0   DRAM Type (DT)
160 				 */
161 
162 #define I3000_C0DRC1	0x124	/* DRAM Controller Mode 1 (32b)
163 				 *
164 				 * 31    Enhanced Addressing Enable (ENHADE)
165 				 * 30:0  reserved
166 				 */
167 
168 enum i3000p_chips {
169 	I3000 = 0,
170 };
171 
172 struct i3000_dev_info {
173 	const char *ctl_name;
174 };
175 
176 struct i3000_error_info {
177 	u16 errsts;
178 	u8 derrsyn;
179 	u8 edeap;
180 	u32 deap;
181 	u16 errsts2;
182 };
183 
184 static const struct i3000_dev_info i3000_devs[] = {
185 	[I3000] = {
186 		.ctl_name = "i3000"},
187 };
188 
189 static struct pci_dev *mci_pdev;
190 static int i3000_registered = 1;
191 static struct edac_pci_ctl_info *i3000_pci;
192 
193 static void i3000_get_error_info(struct mem_ctl_info *mci,
194 				 struct i3000_error_info *info)
195 {
196 	struct pci_dev *pdev;
197 
198 	pdev = to_pci_dev(mci->dev);
199 
200 	/*
201 	 * This is a mess because there is no atomic way to read all the
202 	 * registers at once and the registers can transition from CE being
203 	 * overwritten by UE.
204 	 */
205 	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
206 	if (!(info->errsts & I3000_ERRSTS_BITS))
207 		return;
208 	pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
209 	pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
210 	pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
211 	pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
212 
213 	/*
214 	 * If the error is the same for both reads then the first set
215 	 * of reads is valid.  If there is a change then there is a CE
216 	 * with no info and the second set of reads is valid and
217 	 * should be UE info.
218 	 */
219 	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
220 		pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
221 		pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
222 		pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
223 	}
224 
225 	/*
226 	 * Clear any error bits.
227 	 * (Yes, we really clear bits by writing 1 to them.)
228 	 */
229 	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
230 			 I3000_ERRSTS_BITS);
231 }
232 
233 static int i3000_process_error_info(struct mem_ctl_info *mci,
234 				struct i3000_error_info *info,
235 				int handle_errors)
236 {
237 	int row, multi_chan, channel;
238 	unsigned long pfn, offset;
239 
240 	multi_chan = mci->csrows[0].nr_channels - 1;
241 
242 	if (!(info->errsts & I3000_ERRSTS_BITS))
243 		return 0;
244 
245 	if (!handle_errors)
246 		return 1;
247 
248 	if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
249 		edac_mc_handle_ce_no_info(mci, "UE overwrote CE");
250 		info->errsts = info->errsts2;
251 	}
252 
253 	pfn = deap_pfn(info->edeap, info->deap);
254 	offset = deap_offset(info->deap);
255 	channel = deap_channel(info->deap);
256 
257 	row = edac_mc_find_csrow_by_page(mci, pfn);
258 
259 	if (info->errsts & I3000_ERRSTS_UE)
260 		edac_mc_handle_ue(mci, pfn, offset, row, "i3000 UE");
261 	else
262 		edac_mc_handle_ce(mci, pfn, offset, info->derrsyn, row,
263 				multi_chan ? channel : 0, "i3000 CE");
264 
265 	return 1;
266 }
267 
268 static void i3000_check(struct mem_ctl_info *mci)
269 {
270 	struct i3000_error_info info;
271 
272 	debugf1("MC%d: %s()\n", mci->mc_idx, __func__);
273 	i3000_get_error_info(mci, &info);
274 	i3000_process_error_info(mci, &info, 1);
275 }
276 
277 static int i3000_is_interleaved(const unsigned char *c0dra,
278 				const unsigned char *c1dra,
279 				const unsigned char *c0drb,
280 				const unsigned char *c1drb)
281 {
282 	int i;
283 
284 	/*
285 	 * If the channels aren't populated identically then
286 	 * we're not interleaved.
287 	 */
288 	for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
289 		if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
290 			even_rank_attrib(c0dra[i]) !=
291 						even_rank_attrib(c1dra[i]))
292 			return 0;
293 
294 	/*
295 	 * If the rank boundaries for the two channels are different
296 	 * then we're not interleaved.
297 	 */
298 	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
299 		if (c0drb[i] != c1drb[i])
300 			return 0;
301 
302 	return 1;
303 }
304 
305 static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
306 {
307 	int rc;
308 	int i;
309 	struct mem_ctl_info *mci = NULL;
310 	unsigned long last_cumul_size;
311 	int interleaved, nr_channels;
312 	unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
313 	unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
314 	unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
315 	unsigned long mchbar;
316 	void __iomem *window;
317 
318 	debugf0("MC: %s()\n", __func__);
319 
320 	pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
321 	mchbar &= I3000_MCHBAR_MASK;
322 	window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
323 	if (!window) {
324 		printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
325 			mchbar);
326 		return -ENODEV;
327 	}
328 
329 	c0dra[0] = readb(window + I3000_C0DRA + 0);	/* ranks 0,1 */
330 	c0dra[1] = readb(window + I3000_C0DRA + 1);	/* ranks 2,3 */
331 	c1dra[0] = readb(window + I3000_C1DRA + 0);	/* ranks 0,1 */
332 	c1dra[1] = readb(window + I3000_C1DRA + 1);	/* ranks 2,3 */
333 
334 	for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
335 		c0drb[i] = readb(window + I3000_C0DRB + i);
336 		c1drb[i] = readb(window + I3000_C1DRB + i);
337 	}
338 
339 	iounmap(window);
340 
341 	/*
342 	 * Figure out how many channels we have.
343 	 *
344 	 * If we have what the datasheet calls "asymmetric channels"
345 	 * (essentially the same as what was called "virtual single
346 	 * channel mode" in the i82875) then it's a single channel as
347 	 * far as EDAC is concerned.
348 	 */
349 	interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
350 	nr_channels = interleaved ? 2 : 1;
351 	mci = edac_mc_alloc(0, I3000_RANKS / nr_channels, nr_channels, 0);
352 	if (!mci)
353 		return -ENOMEM;
354 
355 	debugf3("MC: %s(): init mci\n", __func__);
356 
357 	mci->dev = &pdev->dev;
358 	mci->mtype_cap = MEM_FLAG_DDR2;
359 
360 	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
361 	mci->edac_cap = EDAC_FLAG_SECDED;
362 
363 	mci->mod_name = EDAC_MOD_STR;
364 	mci->mod_ver = I3000_REVISION;
365 	mci->ctl_name = i3000_devs[dev_idx].ctl_name;
366 	mci->dev_name = pci_name(pdev);
367 	mci->edac_check = i3000_check;
368 	mci->ctl_page_to_phys = NULL;
369 
370 	/*
371 	 * The dram rank boundary (DRB) reg values are boundary addresses
372 	 * for each DRAM rank with a granularity of 32MB.  DRB regs are
373 	 * cumulative; the last one will contain the total memory
374 	 * contained in all ranks.
375 	 *
376 	 * If we're in interleaved mode then we're only walking through
377 	 * the ranks of controller 0, so we double all the values we see.
378 	 */
379 	for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
380 		u8 value;
381 		u32 cumul_size;
382 		struct csrow_info *csrow = &mci->csrows[i];
383 
384 		value = drb[i];
385 		cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
386 		if (interleaved)
387 			cumul_size <<= 1;
388 		debugf3("MC: %s(): (%d) cumul_size 0x%x\n",
389 			__func__, i, cumul_size);
390 		if (cumul_size == last_cumul_size) {
391 			csrow->mtype = MEM_EMPTY;
392 			continue;
393 		}
394 
395 		csrow->first_page = last_cumul_size;
396 		csrow->last_page = cumul_size - 1;
397 		csrow->nr_pages = cumul_size - last_cumul_size;
398 		last_cumul_size = cumul_size;
399 		csrow->grain = I3000_DEAP_GRAIN;
400 		csrow->mtype = MEM_DDR2;
401 		csrow->dtype = DEV_UNKNOWN;
402 		csrow->edac_mode = EDAC_UNKNOWN;
403 	}
404 
405 	/*
406 	 * Clear any error bits.
407 	 * (Yes, we really clear bits by writing 1 to them.)
408 	 */
409 	pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
410 			 I3000_ERRSTS_BITS);
411 
412 	rc = -ENODEV;
413 	if (edac_mc_add_mc(mci)) {
414 		debugf3("MC: %s(): failed edac_mc_add_mc()\n", __func__);
415 		goto fail;
416 	}
417 
418 	/* allocating generic PCI control info */
419 	i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
420 	if (!i3000_pci) {
421 		printk(KERN_WARNING
422 			"%s(): Unable to create PCI control\n",
423 			__func__);
424 		printk(KERN_WARNING
425 			"%s(): PCI error report via EDAC not setup\n",
426 			__func__);
427 	}
428 
429 	/* get this far and it's successful */
430 	debugf3("MC: %s(): success\n", __func__);
431 	return 0;
432 
433 fail:
434 	if (mci)
435 		edac_mc_free(mci);
436 
437 	return rc;
438 }
439 
440 /* returns count (>= 0), or negative on error */
441 static int __devinit i3000_init_one(struct pci_dev *pdev,
442 				const struct pci_device_id *ent)
443 {
444 	int rc;
445 
446 	debugf0("MC: %s()\n", __func__);
447 
448 	if (pci_enable_device(pdev) < 0)
449 		return -EIO;
450 
451 	rc = i3000_probe1(pdev, ent->driver_data);
452 	if (!mci_pdev)
453 		mci_pdev = pci_dev_get(pdev);
454 
455 	return rc;
456 }
457 
458 static void __devexit i3000_remove_one(struct pci_dev *pdev)
459 {
460 	struct mem_ctl_info *mci;
461 
462 	debugf0("%s()\n", __func__);
463 
464 	if (i3000_pci)
465 		edac_pci_release_generic_ctl(i3000_pci);
466 
467 	mci = edac_mc_del_mc(&pdev->dev);
468 	if (!mci)
469 		return;
470 
471 	edac_mc_free(mci);
472 }
473 
474 static const struct pci_device_id i3000_pci_tbl[] __devinitdata = {
475 	{
476 	 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
477 	 I3000},
478 	{
479 	 0,
480 	 }			/* 0 terminated list. */
481 };
482 
483 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
484 
485 static struct pci_driver i3000_driver = {
486 	.name = EDAC_MOD_STR,
487 	.probe = i3000_init_one,
488 	.remove = __devexit_p(i3000_remove_one),
489 	.id_table = i3000_pci_tbl,
490 };
491 
492 static int __init i3000_init(void)
493 {
494 	int pci_rc;
495 
496 	debugf3("MC: %s()\n", __func__);
497 
498        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
499        opstate_init();
500 
501 	pci_rc = pci_register_driver(&i3000_driver);
502 	if (pci_rc < 0)
503 		goto fail0;
504 
505 	if (!mci_pdev) {
506 		i3000_registered = 0;
507 		mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
508 					PCI_DEVICE_ID_INTEL_3000_HB, NULL);
509 		if (!mci_pdev) {
510 			debugf0("i3000 pci_get_device fail\n");
511 			pci_rc = -ENODEV;
512 			goto fail1;
513 		}
514 
515 		pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
516 		if (pci_rc < 0) {
517 			debugf0("i3000 init fail\n");
518 			pci_rc = -ENODEV;
519 			goto fail1;
520 		}
521 	}
522 
523 	return 0;
524 
525 fail1:
526 	pci_unregister_driver(&i3000_driver);
527 
528 fail0:
529 	if (mci_pdev)
530 		pci_dev_put(mci_pdev);
531 
532 	return pci_rc;
533 }
534 
535 static void __exit i3000_exit(void)
536 {
537 	debugf3("MC: %s()\n", __func__);
538 
539 	pci_unregister_driver(&i3000_driver);
540 	if (!i3000_registered) {
541 		i3000_remove_one(mci_pdev);
542 		pci_dev_put(mci_pdev);
543 	}
544 }
545 
546 module_init(i3000_init);
547 module_exit(i3000_exit);
548 
549 MODULE_LICENSE("GPL");
550 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
551 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
552 
553 module_param(edac_op_state, int, 0444);
554 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
555