1 /* 2 * Intel 3000/3010 Memory Controller kernel module 3 * Copyright (C) 2007 Akamai Technologies, Inc. 4 * Shamelessly copied from: 5 * Intel D82875P Memory Controller kernel module 6 * (C) 2003 Linux Networx (http://lnxi.com) 7 * 8 * This file may be distributed under the terms of the 9 * GNU General Public License. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/pci.h> 15 #include <linux/pci_ids.h> 16 #include <linux/edac.h> 17 #include "edac_core.h" 18 19 #define I3000_REVISION "1.1" 20 21 #define EDAC_MOD_STR "i3000_edac" 22 23 #define I3000_RANKS 8 24 #define I3000_RANKS_PER_CHANNEL 4 25 #define I3000_CHANNELS 2 26 27 /* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */ 28 29 #define I3000_MCHBAR 0x44 /* MCH Memory Mapped Register BAR */ 30 #define I3000_MCHBAR_MASK 0xffffc000 31 #define I3000_MMR_WINDOW_SIZE 16384 32 33 #define I3000_EDEAP 0x70 /* Extended DRAM Error Address Pointer (8b) 34 * 35 * 7:1 reserved 36 * 0 bit 32 of address 37 */ 38 #define I3000_DEAP 0x58 /* DRAM Error Address Pointer (32b) 39 * 40 * 31:7 address 41 * 6:1 reserved 42 * 0 Error channel 0/1 43 */ 44 #define I3000_DEAP_GRAIN (1 << 7) 45 46 /* 47 * Helper functions to decode the DEAP/EDEAP hardware registers. 48 * 49 * The type promotion here is deliberate; we're deriving an 50 * unsigned long pfn and offset from hardware regs which are u8/u32. 51 */ 52 53 static inline unsigned long deap_pfn(u8 edeap, u32 deap) 54 { 55 deap >>= PAGE_SHIFT; 56 deap |= (edeap & 1) << (32 - PAGE_SHIFT); 57 return deap; 58 } 59 60 static inline unsigned long deap_offset(u32 deap) 61 { 62 return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK; 63 } 64 65 static inline int deap_channel(u32 deap) 66 { 67 return deap & 1; 68 } 69 70 #define I3000_DERRSYN 0x5c /* DRAM Error Syndrome (8b) 71 * 72 * 7:0 DRAM ECC Syndrome 73 */ 74 75 #define I3000_ERRSTS 0xc8 /* Error Status Register (16b) 76 * 77 * 15:12 reserved 78 * 11 MCH Thermal Sensor Event 79 * for SMI/SCI/SERR 80 * 10 reserved 81 * 9 LOCK to non-DRAM Memory Flag (LCKF) 82 * 8 Received Refresh Timeout Flag (RRTOF) 83 * 7:2 reserved 84 * 1 Multi-bit DRAM ECC Error Flag (DMERR) 85 * 0 Single-bit DRAM ECC Error Flag (DSERR) 86 */ 87 #define I3000_ERRSTS_BITS 0x0b03 /* bits which indicate errors */ 88 #define I3000_ERRSTS_UE 0x0002 89 #define I3000_ERRSTS_CE 0x0001 90 91 #define I3000_ERRCMD 0xca /* Error Command (16b) 92 * 93 * 15:12 reserved 94 * 11 SERR on MCH Thermal Sensor Event 95 * (TSESERR) 96 * 10 reserved 97 * 9 SERR on LOCK to non-DRAM Memory 98 * (LCKERR) 99 * 8 SERR on DRAM Refresh Timeout 100 * (DRTOERR) 101 * 7:2 reserved 102 * 1 SERR Multi-Bit DRAM ECC Error 103 * (DMERR) 104 * 0 SERR on Single-Bit ECC Error 105 * (DSERR) 106 */ 107 108 /* Intel MMIO register space - device 0 function 0 - MMR space */ 109 110 #define I3000_DRB_SHIFT 25 /* 32MiB grain */ 111 112 #define I3000_C0DRB 0x100 /* Channel 0 DRAM Rank Boundary (8b x 4) 113 * 114 * 7:0 Channel 0 DRAM Rank Boundary Address 115 */ 116 #define I3000_C1DRB 0x180 /* Channel 1 DRAM Rank Boundary (8b x 4) 117 * 118 * 7:0 Channel 1 DRAM Rank Boundary Address 119 */ 120 121 #define I3000_C0DRA 0x108 /* Channel 0 DRAM Rank Attribute (8b x 2) 122 * 123 * 7 reserved 124 * 6:4 DRAM odd Rank Attribute 125 * 3 reserved 126 * 2:0 DRAM even Rank Attribute 127 * 128 * Each attribute defines the page 129 * size of the corresponding rank: 130 * 000: unpopulated 131 * 001: reserved 132 * 010: 4 KB 133 * 011: 8 KB 134 * 100: 16 KB 135 * Others: reserved 136 */ 137 #define I3000_C1DRA 0x188 /* Channel 1 DRAM Rank Attribute (8b x 2) */ 138 139 static inline unsigned char odd_rank_attrib(unsigned char dra) 140 { 141 return (dra & 0x70) >> 4; 142 } 143 144 static inline unsigned char even_rank_attrib(unsigned char dra) 145 { 146 return dra & 0x07; 147 } 148 149 #define I3000_C0DRC0 0x120 /* DRAM Controller Mode 0 (32b) 150 * 151 * 31:30 reserved 152 * 29 Initialization Complete (IC) 153 * 28:11 reserved 154 * 10:8 Refresh Mode Select (RMS) 155 * 7 reserved 156 * 6:4 Mode Select (SMS) 157 * 3:2 reserved 158 * 1:0 DRAM Type (DT) 159 */ 160 161 #define I3000_C0DRC1 0x124 /* DRAM Controller Mode 1 (32b) 162 * 163 * 31 Enhanced Addressing Enable (ENHADE) 164 * 30:0 reserved 165 */ 166 167 enum i3000p_chips { 168 I3000 = 0, 169 }; 170 171 struct i3000_dev_info { 172 const char *ctl_name; 173 }; 174 175 struct i3000_error_info { 176 u16 errsts; 177 u8 derrsyn; 178 u8 edeap; 179 u32 deap; 180 u16 errsts2; 181 }; 182 183 static const struct i3000_dev_info i3000_devs[] = { 184 [I3000] = { 185 .ctl_name = "i3000"}, 186 }; 187 188 static struct pci_dev *mci_pdev; 189 static int i3000_registered = 1; 190 static struct edac_pci_ctl_info *i3000_pci; 191 192 static void i3000_get_error_info(struct mem_ctl_info *mci, 193 struct i3000_error_info *info) 194 { 195 struct pci_dev *pdev; 196 197 pdev = to_pci_dev(mci->pdev); 198 199 /* 200 * This is a mess because there is no atomic way to read all the 201 * registers at once and the registers can transition from CE being 202 * overwritten by UE. 203 */ 204 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts); 205 if (!(info->errsts & I3000_ERRSTS_BITS)) 206 return; 207 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); 208 pci_read_config_dword(pdev, I3000_DEAP, &info->deap); 209 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); 210 pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2); 211 212 /* 213 * If the error is the same for both reads then the first set 214 * of reads is valid. If there is a change then there is a CE 215 * with no info and the second set of reads is valid and 216 * should be UE info. 217 */ 218 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { 219 pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap); 220 pci_read_config_dword(pdev, I3000_DEAP, &info->deap); 221 pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn); 222 } 223 224 /* 225 * Clear any error bits. 226 * (Yes, we really clear bits by writing 1 to them.) 227 */ 228 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, 229 I3000_ERRSTS_BITS); 230 } 231 232 static int i3000_process_error_info(struct mem_ctl_info *mci, 233 struct i3000_error_info *info, 234 int handle_errors) 235 { 236 int row, multi_chan, channel; 237 unsigned long pfn, offset; 238 239 multi_chan = mci->csrows[0]->nr_channels - 1; 240 241 if (!(info->errsts & I3000_ERRSTS_BITS)) 242 return 0; 243 244 if (!handle_errors) 245 return 1; 246 247 if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) { 248 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0, 249 -1, -1, -1, 250 "UE overwrote CE", ""); 251 info->errsts = info->errsts2; 252 } 253 254 pfn = deap_pfn(info->edeap, info->deap); 255 offset = deap_offset(info->deap); 256 channel = deap_channel(info->deap); 257 258 row = edac_mc_find_csrow_by_page(mci, pfn); 259 260 if (info->errsts & I3000_ERRSTS_UE) 261 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 262 pfn, offset, 0, 263 row, -1, -1, 264 "i3000 UE", ""); 265 else 266 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 267 pfn, offset, info->derrsyn, 268 row, multi_chan ? channel : 0, -1, 269 "i3000 CE", ""); 270 271 return 1; 272 } 273 274 static void i3000_check(struct mem_ctl_info *mci) 275 { 276 struct i3000_error_info info; 277 278 edac_dbg(1, "MC%d\n", mci->mc_idx); 279 i3000_get_error_info(mci, &info); 280 i3000_process_error_info(mci, &info, 1); 281 } 282 283 static int i3000_is_interleaved(const unsigned char *c0dra, 284 const unsigned char *c1dra, 285 const unsigned char *c0drb, 286 const unsigned char *c1drb) 287 { 288 int i; 289 290 /* 291 * If the channels aren't populated identically then 292 * we're not interleaved. 293 */ 294 for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++) 295 if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) || 296 even_rank_attrib(c0dra[i]) != 297 even_rank_attrib(c1dra[i])) 298 return 0; 299 300 /* 301 * If the rank boundaries for the two channels are different 302 * then we're not interleaved. 303 */ 304 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) 305 if (c0drb[i] != c1drb[i]) 306 return 0; 307 308 return 1; 309 } 310 311 static int i3000_probe1(struct pci_dev *pdev, int dev_idx) 312 { 313 int rc; 314 int i, j; 315 struct mem_ctl_info *mci = NULL; 316 struct edac_mc_layer layers[2]; 317 unsigned long last_cumul_size, nr_pages; 318 int interleaved, nr_channels; 319 unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS]; 320 unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2]; 321 unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL]; 322 unsigned long mchbar; 323 void __iomem *window; 324 325 edac_dbg(0, "MC:\n"); 326 327 pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar); 328 mchbar &= I3000_MCHBAR_MASK; 329 window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE); 330 if (!window) { 331 printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n", 332 mchbar); 333 return -ENODEV; 334 } 335 336 c0dra[0] = readb(window + I3000_C0DRA + 0); /* ranks 0,1 */ 337 c0dra[1] = readb(window + I3000_C0DRA + 1); /* ranks 2,3 */ 338 c1dra[0] = readb(window + I3000_C1DRA + 0); /* ranks 0,1 */ 339 c1dra[1] = readb(window + I3000_C1DRA + 1); /* ranks 2,3 */ 340 341 for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) { 342 c0drb[i] = readb(window + I3000_C0DRB + i); 343 c1drb[i] = readb(window + I3000_C1DRB + i); 344 } 345 346 iounmap(window); 347 348 /* 349 * Figure out how many channels we have. 350 * 351 * If we have what the datasheet calls "asymmetric channels" 352 * (essentially the same as what was called "virtual single 353 * channel mode" in the i82875) then it's a single channel as 354 * far as EDAC is concerned. 355 */ 356 interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb); 357 nr_channels = interleaved ? 2 : 1; 358 359 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT; 360 layers[0].size = I3000_RANKS / nr_channels; 361 layers[0].is_virt_csrow = true; 362 layers[1].type = EDAC_MC_LAYER_CHANNEL; 363 layers[1].size = nr_channels; 364 layers[1].is_virt_csrow = false; 365 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0); 366 if (!mci) 367 return -ENOMEM; 368 369 edac_dbg(3, "MC: init mci\n"); 370 371 mci->pdev = &pdev->dev; 372 mci->mtype_cap = MEM_FLAG_DDR2; 373 374 mci->edac_ctl_cap = EDAC_FLAG_SECDED; 375 mci->edac_cap = EDAC_FLAG_SECDED; 376 377 mci->mod_name = EDAC_MOD_STR; 378 mci->mod_ver = I3000_REVISION; 379 mci->ctl_name = i3000_devs[dev_idx].ctl_name; 380 mci->dev_name = pci_name(pdev); 381 mci->edac_check = i3000_check; 382 mci->ctl_page_to_phys = NULL; 383 384 /* 385 * The dram rank boundary (DRB) reg values are boundary addresses 386 * for each DRAM rank with a granularity of 32MB. DRB regs are 387 * cumulative; the last one will contain the total memory 388 * contained in all ranks. 389 * 390 * If we're in interleaved mode then we're only walking through 391 * the ranks of controller 0, so we double all the values we see. 392 */ 393 for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) { 394 u8 value; 395 u32 cumul_size; 396 struct csrow_info *csrow = mci->csrows[i]; 397 398 value = drb[i]; 399 cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT); 400 if (interleaved) 401 cumul_size <<= 1; 402 edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size); 403 if (cumul_size == last_cumul_size) 404 continue; 405 406 csrow->first_page = last_cumul_size; 407 csrow->last_page = cumul_size - 1; 408 nr_pages = cumul_size - last_cumul_size; 409 last_cumul_size = cumul_size; 410 411 for (j = 0; j < nr_channels; j++) { 412 struct dimm_info *dimm = csrow->channels[j]->dimm; 413 414 dimm->nr_pages = nr_pages / nr_channels; 415 dimm->grain = I3000_DEAP_GRAIN; 416 dimm->mtype = MEM_DDR2; 417 dimm->dtype = DEV_UNKNOWN; 418 dimm->edac_mode = EDAC_UNKNOWN; 419 } 420 } 421 422 /* 423 * Clear any error bits. 424 * (Yes, we really clear bits by writing 1 to them.) 425 */ 426 pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS, 427 I3000_ERRSTS_BITS); 428 429 rc = -ENODEV; 430 if (edac_mc_add_mc(mci)) { 431 edac_dbg(3, "MC: failed edac_mc_add_mc()\n"); 432 goto fail; 433 } 434 435 /* allocating generic PCI control info */ 436 i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR); 437 if (!i3000_pci) { 438 printk(KERN_WARNING 439 "%s(): Unable to create PCI control\n", 440 __func__); 441 printk(KERN_WARNING 442 "%s(): PCI error report via EDAC not setup\n", 443 __func__); 444 } 445 446 /* get this far and it's successful */ 447 edac_dbg(3, "MC: success\n"); 448 return 0; 449 450 fail: 451 if (mci) 452 edac_mc_free(mci); 453 454 return rc; 455 } 456 457 /* returns count (>= 0), or negative on error */ 458 static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 459 { 460 int rc; 461 462 edac_dbg(0, "MC:\n"); 463 464 if (pci_enable_device(pdev) < 0) 465 return -EIO; 466 467 rc = i3000_probe1(pdev, ent->driver_data); 468 if (!mci_pdev) 469 mci_pdev = pci_dev_get(pdev); 470 471 return rc; 472 } 473 474 static void i3000_remove_one(struct pci_dev *pdev) 475 { 476 struct mem_ctl_info *mci; 477 478 edac_dbg(0, "\n"); 479 480 if (i3000_pci) 481 edac_pci_release_generic_ctl(i3000_pci); 482 483 mci = edac_mc_del_mc(&pdev->dev); 484 if (!mci) 485 return; 486 487 edac_mc_free(mci); 488 } 489 490 static const struct pci_device_id i3000_pci_tbl[] = { 491 { 492 PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0, 493 I3000}, 494 { 495 0, 496 } /* 0 terminated list. */ 497 }; 498 499 MODULE_DEVICE_TABLE(pci, i3000_pci_tbl); 500 501 static struct pci_driver i3000_driver = { 502 .name = EDAC_MOD_STR, 503 .probe = i3000_init_one, 504 .remove = i3000_remove_one, 505 .id_table = i3000_pci_tbl, 506 }; 507 508 static int __init i3000_init(void) 509 { 510 int pci_rc; 511 512 edac_dbg(3, "MC:\n"); 513 514 /* Ensure that the OPSTATE is set correctly for POLL or NMI */ 515 opstate_init(); 516 517 pci_rc = pci_register_driver(&i3000_driver); 518 if (pci_rc < 0) 519 goto fail0; 520 521 if (!mci_pdev) { 522 i3000_registered = 0; 523 mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 524 PCI_DEVICE_ID_INTEL_3000_HB, NULL); 525 if (!mci_pdev) { 526 edac_dbg(0, "i3000 pci_get_device fail\n"); 527 pci_rc = -ENODEV; 528 goto fail1; 529 } 530 531 pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl); 532 if (pci_rc < 0) { 533 edac_dbg(0, "i3000 init fail\n"); 534 pci_rc = -ENODEV; 535 goto fail1; 536 } 537 } 538 539 return 0; 540 541 fail1: 542 pci_unregister_driver(&i3000_driver); 543 544 fail0: 545 if (mci_pdev) 546 pci_dev_put(mci_pdev); 547 548 return pci_rc; 549 } 550 551 static void __exit i3000_exit(void) 552 { 553 edac_dbg(3, "MC:\n"); 554 555 pci_unregister_driver(&i3000_driver); 556 if (!i3000_registered) { 557 i3000_remove_one(mci_pdev); 558 pci_dev_put(mci_pdev); 559 } 560 } 561 562 module_init(i3000_init); 563 module_exit(i3000_exit); 564 565 MODULE_LICENSE("GPL"); 566 MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott"); 567 MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers"); 568 569 module_param(edac_op_state, int, 0444); 570 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); 571