xref: /openbmc/linux/drivers/edac/ghes_edac.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * GHES/EDAC Linux driver
3  *
4  * This file may be distributed under the terms of the GNU General Public
5  * License version 2.
6  *
7  * Copyright (c) 2013 by Mauro Carvalho Chehab
8  *
9  * Red Hat Inc. http://www.redhat.com
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <acpi/ghes.h>
15 #include <linux/edac.h>
16 #include <linux/dmi.h>
17 #include "edac_module.h"
18 #include <ras/ras_event.h>
19 
20 struct ghes_edac_pvt {
21 	struct list_head list;
22 	struct ghes *ghes;
23 	struct mem_ctl_info *mci;
24 
25 	/* Buffers for the error handling routine */
26 	char detail_location[240];
27 	char other_detail[160];
28 	char msg[80];
29 };
30 
31 static atomic_t ghes_init = ATOMIC_INIT(0);
32 static struct ghes_edac_pvt *ghes_pvt;
33 
34 /*
35  * Sync with other, potentially concurrent callers of
36  * ghes_edac_report_mem_error(). We don't know what the
37  * "inventive" firmware would do.
38  */
39 static DEFINE_SPINLOCK(ghes_lock);
40 
41 /* "ghes_edac.force_load=1" skips the platform check */
42 static bool __read_mostly force_load;
43 module_param(force_load, bool, 0);
44 
45 /* Memory Device - Type 17 of SMBIOS spec */
46 struct memdev_dmi_entry {
47 	u8 type;
48 	u8 length;
49 	u16 handle;
50 	u16 phys_mem_array_handle;
51 	u16 mem_err_info_handle;
52 	u16 total_width;
53 	u16 data_width;
54 	u16 size;
55 	u8 form_factor;
56 	u8 device_set;
57 	u8 device_locator;
58 	u8 bank_locator;
59 	u8 memory_type;
60 	u16 type_detail;
61 	u16 speed;
62 	u8 manufacturer;
63 	u8 serial_number;
64 	u8 asset_tag;
65 	u8 part_number;
66 	u8 attributes;
67 	u32 extended_size;
68 	u16 conf_mem_clk_speed;
69 } __attribute__((__packed__));
70 
71 struct ghes_edac_dimm_fill {
72 	struct mem_ctl_info *mci;
73 	unsigned count;
74 };
75 
76 static void ghes_edac_count_dimms(const struct dmi_header *dh, void *arg)
77 {
78 	int *num_dimm = arg;
79 
80 	if (dh->type == DMI_ENTRY_MEM_DEVICE)
81 		(*num_dimm)++;
82 }
83 
84 static int get_dimm_smbios_index(u16 handle)
85 {
86 	struct mem_ctl_info *mci = ghes_pvt->mci;
87 	int i;
88 
89 	for (i = 0; i < mci->tot_dimms; i++) {
90 		if (mci->dimms[i]->smbios_handle == handle)
91 			return i;
92 	}
93 	return -1;
94 }
95 
96 static void ghes_edac_dmidecode(const struct dmi_header *dh, void *arg)
97 {
98 	struct ghes_edac_dimm_fill *dimm_fill = arg;
99 	struct mem_ctl_info *mci = dimm_fill->mci;
100 
101 	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
102 		struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
103 		struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
104 						       mci->n_layers,
105 						       dimm_fill->count, 0, 0);
106 		u16 rdr_mask = BIT(7) | BIT(13);
107 
108 		if (entry->size == 0xffff) {
109 			pr_info("Can't get DIMM%i size\n",
110 				dimm_fill->count);
111 			dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
112 		} else if (entry->size == 0x7fff) {
113 			dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
114 		} else {
115 			if (entry->size & BIT(15))
116 				dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10);
117 			else
118 				dimm->nr_pages = MiB_TO_PAGES(entry->size);
119 		}
120 
121 		switch (entry->memory_type) {
122 		case 0x12:
123 			if (entry->type_detail & BIT(13))
124 				dimm->mtype = MEM_RDDR;
125 			else
126 				dimm->mtype = MEM_DDR;
127 			break;
128 		case 0x13:
129 			if (entry->type_detail & BIT(13))
130 				dimm->mtype = MEM_RDDR2;
131 			else
132 				dimm->mtype = MEM_DDR2;
133 			break;
134 		case 0x14:
135 			dimm->mtype = MEM_FB_DDR2;
136 			break;
137 		case 0x18:
138 			if (entry->type_detail & BIT(12))
139 				dimm->mtype = MEM_NVDIMM;
140 			else if (entry->type_detail & BIT(13))
141 				dimm->mtype = MEM_RDDR3;
142 			else
143 				dimm->mtype = MEM_DDR3;
144 			break;
145 		case 0x1a:
146 			if (entry->type_detail & BIT(12))
147 				dimm->mtype = MEM_NVDIMM;
148 			else if (entry->type_detail & BIT(13))
149 				dimm->mtype = MEM_RDDR4;
150 			else
151 				dimm->mtype = MEM_DDR4;
152 			break;
153 		default:
154 			if (entry->type_detail & BIT(6))
155 				dimm->mtype = MEM_RMBS;
156 			else if ((entry->type_detail & rdr_mask) == rdr_mask)
157 				dimm->mtype = MEM_RDR;
158 			else if (entry->type_detail & BIT(7))
159 				dimm->mtype = MEM_SDR;
160 			else if (entry->type_detail & BIT(9))
161 				dimm->mtype = MEM_EDO;
162 			else
163 				dimm->mtype = MEM_UNKNOWN;
164 		}
165 
166 		/*
167 		 * Actually, we can only detect if the memory has bits for
168 		 * checksum or not
169 		 */
170 		if (entry->total_width == entry->data_width)
171 			dimm->edac_mode = EDAC_NONE;
172 		else
173 			dimm->edac_mode = EDAC_SECDED;
174 
175 		dimm->dtype = DEV_UNKNOWN;
176 		dimm->grain = 128;		/* Likely, worse case */
177 
178 		/*
179 		 * FIXME: It shouldn't be hard to also fill the DIMM labels
180 		 */
181 
182 		if (dimm->nr_pages) {
183 			edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
184 				dimm_fill->count, edac_mem_types[dimm->mtype],
185 				PAGES_TO_MiB(dimm->nr_pages),
186 				(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
187 			edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
188 				entry->memory_type, entry->type_detail,
189 				entry->total_width, entry->data_width);
190 		}
191 
192 		dimm->smbios_handle = entry->handle;
193 
194 		dimm_fill->count++;
195 	}
196 }
197 
198 void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
199 {
200 	enum hw_event_mc_err_type type;
201 	struct edac_raw_error_desc *e;
202 	struct mem_ctl_info *mci;
203 	struct ghes_edac_pvt *pvt = ghes_pvt;
204 	unsigned long flags;
205 	char *p;
206 	u8 grain_bits;
207 
208 	if (!pvt)
209 		return;
210 
211 	/*
212 	 * We can do the locking below because GHES defers error processing
213 	 * from NMI to IRQ context. Whenever that changes, we'd at least
214 	 * know.
215 	 */
216 	if (WARN_ON_ONCE(in_nmi()))
217 		return;
218 
219 	spin_lock_irqsave(&ghes_lock, flags);
220 
221 	mci = pvt->mci;
222 	e = &mci->error_desc;
223 
224 	/* Cleans the error report buffer */
225 	memset(e, 0, sizeof (*e));
226 	e->error_count = 1;
227 	strcpy(e->label, "unknown label");
228 	e->msg = pvt->msg;
229 	e->other_detail = pvt->other_detail;
230 	e->top_layer = -1;
231 	e->mid_layer = -1;
232 	e->low_layer = -1;
233 	*pvt->other_detail = '\0';
234 	*pvt->msg = '\0';
235 
236 	switch (sev) {
237 	case GHES_SEV_CORRECTED:
238 		type = HW_EVENT_ERR_CORRECTED;
239 		break;
240 	case GHES_SEV_RECOVERABLE:
241 		type = HW_EVENT_ERR_UNCORRECTED;
242 		break;
243 	case GHES_SEV_PANIC:
244 		type = HW_EVENT_ERR_FATAL;
245 		break;
246 	default:
247 	case GHES_SEV_NO:
248 		type = HW_EVENT_ERR_INFO;
249 	}
250 
251 	edac_dbg(1, "error validation_bits: 0x%08llx\n",
252 		 (long long)mem_err->validation_bits);
253 
254 	/* Error type, mapped on e->msg */
255 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
256 		p = pvt->msg;
257 		switch (mem_err->error_type) {
258 		case 0:
259 			p += sprintf(p, "Unknown");
260 			break;
261 		case 1:
262 			p += sprintf(p, "No error");
263 			break;
264 		case 2:
265 			p += sprintf(p, "Single-bit ECC");
266 			break;
267 		case 3:
268 			p += sprintf(p, "Multi-bit ECC");
269 			break;
270 		case 4:
271 			p += sprintf(p, "Single-symbol ChipKill ECC");
272 			break;
273 		case 5:
274 			p += sprintf(p, "Multi-symbol ChipKill ECC");
275 			break;
276 		case 6:
277 			p += sprintf(p, "Master abort");
278 			break;
279 		case 7:
280 			p += sprintf(p, "Target abort");
281 			break;
282 		case 8:
283 			p += sprintf(p, "Parity Error");
284 			break;
285 		case 9:
286 			p += sprintf(p, "Watchdog timeout");
287 			break;
288 		case 10:
289 			p += sprintf(p, "Invalid address");
290 			break;
291 		case 11:
292 			p += sprintf(p, "Mirror Broken");
293 			break;
294 		case 12:
295 			p += sprintf(p, "Memory Sparing");
296 			break;
297 		case 13:
298 			p += sprintf(p, "Scrub corrected error");
299 			break;
300 		case 14:
301 			p += sprintf(p, "Scrub uncorrected error");
302 			break;
303 		case 15:
304 			p += sprintf(p, "Physical Memory Map-out event");
305 			break;
306 		default:
307 			p += sprintf(p, "reserved error (%d)",
308 				     mem_err->error_type);
309 		}
310 	} else {
311 		strcpy(pvt->msg, "unknown error");
312 	}
313 
314 	/* Error address */
315 	if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
316 		e->page_frame_number = mem_err->physical_addr >> PAGE_SHIFT;
317 		e->offset_in_page = mem_err->physical_addr & ~PAGE_MASK;
318 	}
319 
320 	/* Error grain */
321 	if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
322 		e->grain = ~(mem_err->physical_addr_mask & ~PAGE_MASK);
323 
324 	/* Memory error location, mapped on e->location */
325 	p = e->location;
326 	if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
327 		p += sprintf(p, "node:%d ", mem_err->node);
328 	if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
329 		p += sprintf(p, "card:%d ", mem_err->card);
330 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
331 		p += sprintf(p, "module:%d ", mem_err->module);
332 	if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
333 		p += sprintf(p, "rank:%d ", mem_err->rank);
334 	if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
335 		p += sprintf(p, "bank:%d ", mem_err->bank);
336 	if (mem_err->validation_bits & CPER_MEM_VALID_ROW)
337 		p += sprintf(p, "row:%d ", mem_err->row);
338 	if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
339 		p += sprintf(p, "col:%d ", mem_err->column);
340 	if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
341 		p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
342 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) {
343 		const char *bank = NULL, *device = NULL;
344 		int index = -1;
345 
346 		dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device);
347 		if (bank != NULL && device != NULL)
348 			p += sprintf(p, "DIMM location:%s %s ", bank, device);
349 		else
350 			p += sprintf(p, "DIMM DMI handle: 0x%.4x ",
351 				     mem_err->mem_dev_handle);
352 
353 		index = get_dimm_smbios_index(mem_err->mem_dev_handle);
354 		if (index >= 0) {
355 			e->top_layer = index;
356 			e->enable_per_layer_report = true;
357 		}
358 
359 	}
360 	if (p > e->location)
361 		*(p - 1) = '\0';
362 
363 	/* All other fields are mapped on e->other_detail */
364 	p = pvt->other_detail;
365 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
366 		u64 status = mem_err->error_status;
367 
368 		p += sprintf(p, "status(0x%016llx): ", (long long)status);
369 		switch ((status >> 8) & 0xff) {
370 		case 1:
371 			p += sprintf(p, "Error detected internal to the component ");
372 			break;
373 		case 16:
374 			p += sprintf(p, "Error detected in the bus ");
375 			break;
376 		case 4:
377 			p += sprintf(p, "Storage error in DRAM memory ");
378 			break;
379 		case 5:
380 			p += sprintf(p, "Storage error in TLB ");
381 			break;
382 		case 6:
383 			p += sprintf(p, "Storage error in cache ");
384 			break;
385 		case 7:
386 			p += sprintf(p, "Error in one or more functional units ");
387 			break;
388 		case 8:
389 			p += sprintf(p, "component failed self test ");
390 			break;
391 		case 9:
392 			p += sprintf(p, "Overflow or undervalue of internal queue ");
393 			break;
394 		case 17:
395 			p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
396 			break;
397 		case 18:
398 			p += sprintf(p, "Improper access error ");
399 			break;
400 		case 19:
401 			p += sprintf(p, "Access to a memory address which is not mapped to any component ");
402 			break;
403 		case 20:
404 			p += sprintf(p, "Loss of Lockstep ");
405 			break;
406 		case 21:
407 			p += sprintf(p, "Response not associated with a request ");
408 			break;
409 		case 22:
410 			p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
411 			break;
412 		case 23:
413 			p += sprintf(p, "Detection of a PATH_ERROR ");
414 			break;
415 		case 25:
416 			p += sprintf(p, "Bus operation timeout ");
417 			break;
418 		case 26:
419 			p += sprintf(p, "A read was issued to data that has been poisoned ");
420 			break;
421 		default:
422 			p += sprintf(p, "reserved ");
423 			break;
424 		}
425 	}
426 	if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
427 		p += sprintf(p, "requestorID: 0x%016llx ",
428 			     (long long)mem_err->requestor_id);
429 	if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
430 		p += sprintf(p, "responderID: 0x%016llx ",
431 			     (long long)mem_err->responder_id);
432 	if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
433 		p += sprintf(p, "targetID: 0x%016llx ",
434 			     (long long)mem_err->responder_id);
435 	if (p > pvt->other_detail)
436 		*(p - 1) = '\0';
437 
438 	/* Generate the trace event */
439 	grain_bits = fls_long(e->grain);
440 	snprintf(pvt->detail_location, sizeof(pvt->detail_location),
441 		 "APEI location: %s %s", e->location, e->other_detail);
442 	trace_mc_event(type, e->msg, e->label, e->error_count,
443 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
444 		       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
445 		       grain_bits, e->syndrome, pvt->detail_location);
446 
447 	edac_raw_mc_handle_error(type, mci, e);
448 	spin_unlock_irqrestore(&ghes_lock, flags);
449 }
450 
451 /*
452  * Known systems that are safe to enable this module.
453  */
454 static struct acpi_platform_list plat_list[] = {
455 	{"HPE   ", "Server  ", 0, ACPI_SIG_FADT, all_versions},
456 	{ } /* End */
457 };
458 
459 int ghes_edac_register(struct ghes *ghes, struct device *dev)
460 {
461 	bool fake = false;
462 	int rc, num_dimm = 0;
463 	struct mem_ctl_info *mci;
464 	struct edac_mc_layer layers[1];
465 	struct ghes_edac_dimm_fill dimm_fill;
466 	int idx = -1;
467 
468 	if (IS_ENABLED(CONFIG_X86)) {
469 		/* Check if safe to enable on this system */
470 		idx = acpi_match_platform_list(plat_list);
471 		if (!force_load && idx < 0)
472 			return -ENODEV;
473 	} else {
474 		idx = 0;
475 	}
476 
477 	/*
478 	 * We have only one logical memory controller to which all DIMMs belong.
479 	 */
480 	if (atomic_inc_return(&ghes_init) > 1)
481 		return 0;
482 
483 	/* Get the number of DIMMs */
484 	dmi_walk(ghes_edac_count_dimms, &num_dimm);
485 
486 	/* Check if we've got a bogus BIOS */
487 	if (num_dimm == 0) {
488 		fake = true;
489 		num_dimm = 1;
490 	}
491 
492 	layers[0].type = EDAC_MC_LAYER_ALL_MEM;
493 	layers[0].size = num_dimm;
494 	layers[0].is_virt_csrow = true;
495 
496 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_edac_pvt));
497 	if (!mci) {
498 		pr_info("Can't allocate memory for EDAC data\n");
499 		return -ENOMEM;
500 	}
501 
502 	ghes_pvt	= mci->pvt_info;
503 	ghes_pvt->ghes	= ghes;
504 	ghes_pvt->mci	= mci;
505 
506 	mci->pdev = dev;
507 	mci->mtype_cap = MEM_FLAG_EMPTY;
508 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
509 	mci->edac_cap = EDAC_FLAG_NONE;
510 	mci->mod_name = "ghes_edac.c";
511 	mci->ctl_name = "ghes_edac";
512 	mci->dev_name = "ghes";
513 
514 	if (fake) {
515 		pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
516 		pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
517 		pr_info("work on such system. Use this driver with caution\n");
518 	} else if (idx < 0) {
519 		pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
520 		pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
521 		pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
522 		pr_info("If you find incorrect reports, please contact your hardware vendor\n");
523 		pr_info("to correct its BIOS.\n");
524 		pr_info("This system has %d DIMM sockets.\n", num_dimm);
525 	}
526 
527 	if (!fake) {
528 		dimm_fill.count = 0;
529 		dimm_fill.mci = mci;
530 		dmi_walk(ghes_edac_dmidecode, &dimm_fill);
531 	} else {
532 		struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
533 						       mci->n_layers, 0, 0, 0);
534 
535 		dimm->nr_pages = 1;
536 		dimm->grain = 128;
537 		dimm->mtype = MEM_UNKNOWN;
538 		dimm->dtype = DEV_UNKNOWN;
539 		dimm->edac_mode = EDAC_SECDED;
540 	}
541 
542 	rc = edac_mc_add_mc(mci);
543 	if (rc < 0) {
544 		pr_info("Can't register at EDAC core\n");
545 		edac_mc_free(mci);
546 		return -ENODEV;
547 	}
548 	return 0;
549 }
550 
551 void ghes_edac_unregister(struct ghes *ghes)
552 {
553 	struct mem_ctl_info *mci;
554 
555 	if (!ghes_pvt)
556 		return;
557 
558 	mci = ghes_pvt->mci;
559 	edac_mc_del_mc(mci->pdev);
560 	edac_mc_free(mci);
561 }
562