xref: /openbmc/linux/drivers/edac/ghes_edac.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 /*
2  * GHES/EDAC Linux driver
3  *
4  * This file may be distributed under the terms of the GNU General Public
5  * License version 2.
6  *
7  * Copyright (c) 2013 by Mauro Carvalho Chehab
8  *
9  * Red Hat Inc. http://www.redhat.com
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <acpi/ghes.h>
15 #include <linux/edac.h>
16 #include <linux/dmi.h>
17 #include "edac_module.h"
18 #include <ras/ras_event.h>
19 
20 struct ghes_edac_pvt {
21 	struct list_head list;
22 	struct ghes *ghes;
23 	struct mem_ctl_info *mci;
24 
25 	/* Buffers for the error handling routine */
26 	char detail_location[240];
27 	char other_detail[160];
28 	char msg[80];
29 };
30 
31 static atomic_t ghes_init = ATOMIC_INIT(0);
32 static struct ghes_edac_pvt *ghes_pvt;
33 
34 /*
35  * Sync with other, potentially concurrent callers of
36  * ghes_edac_report_mem_error(). We don't know what the
37  * "inventive" firmware would do.
38  */
39 static DEFINE_SPINLOCK(ghes_lock);
40 
41 /* "ghes_edac.force_load=1" skips the platform check */
42 static bool __read_mostly force_load;
43 module_param(force_load, bool, 0);
44 
45 /* Memory Device - Type 17 of SMBIOS spec */
46 struct memdev_dmi_entry {
47 	u8 type;
48 	u8 length;
49 	u16 handle;
50 	u16 phys_mem_array_handle;
51 	u16 mem_err_info_handle;
52 	u16 total_width;
53 	u16 data_width;
54 	u16 size;
55 	u8 form_factor;
56 	u8 device_set;
57 	u8 device_locator;
58 	u8 bank_locator;
59 	u8 memory_type;
60 	u16 type_detail;
61 	u16 speed;
62 	u8 manufacturer;
63 	u8 serial_number;
64 	u8 asset_tag;
65 	u8 part_number;
66 	u8 attributes;
67 	u32 extended_size;
68 	u16 conf_mem_clk_speed;
69 } __attribute__((__packed__));
70 
71 struct ghes_edac_dimm_fill {
72 	struct mem_ctl_info *mci;
73 	unsigned count;
74 };
75 
76 static void ghes_edac_count_dimms(const struct dmi_header *dh, void *arg)
77 {
78 	int *num_dimm = arg;
79 
80 	if (dh->type == DMI_ENTRY_MEM_DEVICE)
81 		(*num_dimm)++;
82 }
83 
84 static void ghes_edac_dmidecode(const struct dmi_header *dh, void *arg)
85 {
86 	struct ghes_edac_dimm_fill *dimm_fill = arg;
87 	struct mem_ctl_info *mci = dimm_fill->mci;
88 
89 	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
90 		struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
91 		struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
92 						       mci->n_layers,
93 						       dimm_fill->count, 0, 0);
94 		u16 rdr_mask = BIT(7) | BIT(13);
95 
96 		if (entry->size == 0xffff) {
97 			pr_info("Can't get DIMM%i size\n",
98 				dimm_fill->count);
99 			dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
100 		} else if (entry->size == 0x7fff) {
101 			dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
102 		} else {
103 			if (entry->size & BIT(15))
104 				dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10);
105 			else
106 				dimm->nr_pages = MiB_TO_PAGES(entry->size);
107 		}
108 
109 		switch (entry->memory_type) {
110 		case 0x12:
111 			if (entry->type_detail & BIT(13))
112 				dimm->mtype = MEM_RDDR;
113 			else
114 				dimm->mtype = MEM_DDR;
115 			break;
116 		case 0x13:
117 			if (entry->type_detail & BIT(13))
118 				dimm->mtype = MEM_RDDR2;
119 			else
120 				dimm->mtype = MEM_DDR2;
121 			break;
122 		case 0x14:
123 			dimm->mtype = MEM_FB_DDR2;
124 			break;
125 		case 0x18:
126 			if (entry->type_detail & BIT(12))
127 				dimm->mtype = MEM_NVDIMM;
128 			else if (entry->type_detail & BIT(13))
129 				dimm->mtype = MEM_RDDR3;
130 			else
131 				dimm->mtype = MEM_DDR3;
132 			break;
133 		case 0x1a:
134 			if (entry->type_detail & BIT(12))
135 				dimm->mtype = MEM_NVDIMM;
136 			else if (entry->type_detail & BIT(13))
137 				dimm->mtype = MEM_RDDR4;
138 			else
139 				dimm->mtype = MEM_DDR4;
140 			break;
141 		default:
142 			if (entry->type_detail & BIT(6))
143 				dimm->mtype = MEM_RMBS;
144 			else if ((entry->type_detail & rdr_mask) == rdr_mask)
145 				dimm->mtype = MEM_RDR;
146 			else if (entry->type_detail & BIT(7))
147 				dimm->mtype = MEM_SDR;
148 			else if (entry->type_detail & BIT(9))
149 				dimm->mtype = MEM_EDO;
150 			else
151 				dimm->mtype = MEM_UNKNOWN;
152 		}
153 
154 		/*
155 		 * Actually, we can only detect if the memory has bits for
156 		 * checksum or not
157 		 */
158 		if (entry->total_width == entry->data_width)
159 			dimm->edac_mode = EDAC_NONE;
160 		else
161 			dimm->edac_mode = EDAC_SECDED;
162 
163 		dimm->dtype = DEV_UNKNOWN;
164 		dimm->grain = 128;		/* Likely, worse case */
165 
166 		/*
167 		 * FIXME: It shouldn't be hard to also fill the DIMM labels
168 		 */
169 
170 		if (dimm->nr_pages) {
171 			edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
172 				dimm_fill->count, edac_mem_types[dimm->mtype],
173 				PAGES_TO_MiB(dimm->nr_pages),
174 				(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
175 			edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
176 				entry->memory_type, entry->type_detail,
177 				entry->total_width, entry->data_width);
178 		}
179 
180 		dimm_fill->count++;
181 	}
182 }
183 
184 void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
185 {
186 	enum hw_event_mc_err_type type;
187 	struct edac_raw_error_desc *e;
188 	struct mem_ctl_info *mci;
189 	struct ghes_edac_pvt *pvt = ghes_pvt;
190 	unsigned long flags;
191 	char *p;
192 	u8 grain_bits;
193 
194 	if (!pvt)
195 		return;
196 
197 	/*
198 	 * We can do the locking below because GHES defers error processing
199 	 * from NMI to IRQ context. Whenever that changes, we'd at least
200 	 * know.
201 	 */
202 	if (WARN_ON_ONCE(in_nmi()))
203 		return;
204 
205 	spin_lock_irqsave(&ghes_lock, flags);
206 
207 	mci = pvt->mci;
208 	e = &mci->error_desc;
209 
210 	/* Cleans the error report buffer */
211 	memset(e, 0, sizeof (*e));
212 	e->error_count = 1;
213 	strcpy(e->label, "unknown label");
214 	e->msg = pvt->msg;
215 	e->other_detail = pvt->other_detail;
216 	e->top_layer = -1;
217 	e->mid_layer = -1;
218 	e->low_layer = -1;
219 	*pvt->other_detail = '\0';
220 	*pvt->msg = '\0';
221 
222 	switch (sev) {
223 	case GHES_SEV_CORRECTED:
224 		type = HW_EVENT_ERR_CORRECTED;
225 		break;
226 	case GHES_SEV_RECOVERABLE:
227 		type = HW_EVENT_ERR_UNCORRECTED;
228 		break;
229 	case GHES_SEV_PANIC:
230 		type = HW_EVENT_ERR_FATAL;
231 		break;
232 	default:
233 	case GHES_SEV_NO:
234 		type = HW_EVENT_ERR_INFO;
235 	}
236 
237 	edac_dbg(1, "error validation_bits: 0x%08llx\n",
238 		 (long long)mem_err->validation_bits);
239 
240 	/* Error type, mapped on e->msg */
241 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
242 		p = pvt->msg;
243 		switch (mem_err->error_type) {
244 		case 0:
245 			p += sprintf(p, "Unknown");
246 			break;
247 		case 1:
248 			p += sprintf(p, "No error");
249 			break;
250 		case 2:
251 			p += sprintf(p, "Single-bit ECC");
252 			break;
253 		case 3:
254 			p += sprintf(p, "Multi-bit ECC");
255 			break;
256 		case 4:
257 			p += sprintf(p, "Single-symbol ChipKill ECC");
258 			break;
259 		case 5:
260 			p += sprintf(p, "Multi-symbol ChipKill ECC");
261 			break;
262 		case 6:
263 			p += sprintf(p, "Master abort");
264 			break;
265 		case 7:
266 			p += sprintf(p, "Target abort");
267 			break;
268 		case 8:
269 			p += sprintf(p, "Parity Error");
270 			break;
271 		case 9:
272 			p += sprintf(p, "Watchdog timeout");
273 			break;
274 		case 10:
275 			p += sprintf(p, "Invalid address");
276 			break;
277 		case 11:
278 			p += sprintf(p, "Mirror Broken");
279 			break;
280 		case 12:
281 			p += sprintf(p, "Memory Sparing");
282 			break;
283 		case 13:
284 			p += sprintf(p, "Scrub corrected error");
285 			break;
286 		case 14:
287 			p += sprintf(p, "Scrub uncorrected error");
288 			break;
289 		case 15:
290 			p += sprintf(p, "Physical Memory Map-out event");
291 			break;
292 		default:
293 			p += sprintf(p, "reserved error (%d)",
294 				     mem_err->error_type);
295 		}
296 	} else {
297 		strcpy(pvt->msg, "unknown error");
298 	}
299 
300 	/* Error address */
301 	if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
302 		e->page_frame_number = mem_err->physical_addr >> PAGE_SHIFT;
303 		e->offset_in_page = mem_err->physical_addr & ~PAGE_MASK;
304 	}
305 
306 	/* Error grain */
307 	if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
308 		e->grain = ~(mem_err->physical_addr_mask & ~PAGE_MASK);
309 
310 	/* Memory error location, mapped on e->location */
311 	p = e->location;
312 	if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
313 		p += sprintf(p, "node:%d ", mem_err->node);
314 	if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
315 		p += sprintf(p, "card:%d ", mem_err->card);
316 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
317 		p += sprintf(p, "module:%d ", mem_err->module);
318 	if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
319 		p += sprintf(p, "rank:%d ", mem_err->rank);
320 	if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
321 		p += sprintf(p, "bank:%d ", mem_err->bank);
322 	if (mem_err->validation_bits & CPER_MEM_VALID_ROW)
323 		p += sprintf(p, "row:%d ", mem_err->row);
324 	if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
325 		p += sprintf(p, "col:%d ", mem_err->column);
326 	if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
327 		p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
328 	if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) {
329 		const char *bank = NULL, *device = NULL;
330 		dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device);
331 		if (bank != NULL && device != NULL)
332 			p += sprintf(p, "DIMM location:%s %s ", bank, device);
333 		else
334 			p += sprintf(p, "DIMM DMI handle: 0x%.4x ",
335 				     mem_err->mem_dev_handle);
336 	}
337 	if (p > e->location)
338 		*(p - 1) = '\0';
339 
340 	/* All other fields are mapped on e->other_detail */
341 	p = pvt->other_detail;
342 	if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
343 		u64 status = mem_err->error_status;
344 
345 		p += sprintf(p, "status(0x%016llx): ", (long long)status);
346 		switch ((status >> 8) & 0xff) {
347 		case 1:
348 			p += sprintf(p, "Error detected internal to the component ");
349 			break;
350 		case 16:
351 			p += sprintf(p, "Error detected in the bus ");
352 			break;
353 		case 4:
354 			p += sprintf(p, "Storage error in DRAM memory ");
355 			break;
356 		case 5:
357 			p += sprintf(p, "Storage error in TLB ");
358 			break;
359 		case 6:
360 			p += sprintf(p, "Storage error in cache ");
361 			break;
362 		case 7:
363 			p += sprintf(p, "Error in one or more functional units ");
364 			break;
365 		case 8:
366 			p += sprintf(p, "component failed self test ");
367 			break;
368 		case 9:
369 			p += sprintf(p, "Overflow or undervalue of internal queue ");
370 			break;
371 		case 17:
372 			p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
373 			break;
374 		case 18:
375 			p += sprintf(p, "Improper access error ");
376 			break;
377 		case 19:
378 			p += sprintf(p, "Access to a memory address which is not mapped to any component ");
379 			break;
380 		case 20:
381 			p += sprintf(p, "Loss of Lockstep ");
382 			break;
383 		case 21:
384 			p += sprintf(p, "Response not associated with a request ");
385 			break;
386 		case 22:
387 			p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
388 			break;
389 		case 23:
390 			p += sprintf(p, "Detection of a PATH_ERROR ");
391 			break;
392 		case 25:
393 			p += sprintf(p, "Bus operation timeout ");
394 			break;
395 		case 26:
396 			p += sprintf(p, "A read was issued to data that has been poisoned ");
397 			break;
398 		default:
399 			p += sprintf(p, "reserved ");
400 			break;
401 		}
402 	}
403 	if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
404 		p += sprintf(p, "requestorID: 0x%016llx ",
405 			     (long long)mem_err->requestor_id);
406 	if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
407 		p += sprintf(p, "responderID: 0x%016llx ",
408 			     (long long)mem_err->responder_id);
409 	if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
410 		p += sprintf(p, "targetID: 0x%016llx ",
411 			     (long long)mem_err->responder_id);
412 	if (p > pvt->other_detail)
413 		*(p - 1) = '\0';
414 
415 	/* Generate the trace event */
416 	grain_bits = fls_long(e->grain);
417 	snprintf(pvt->detail_location, sizeof(pvt->detail_location),
418 		 "APEI location: %s %s", e->location, e->other_detail);
419 	trace_mc_event(type, e->msg, e->label, e->error_count,
420 		       mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
421 		       (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
422 		       grain_bits, e->syndrome, pvt->detail_location);
423 
424 	edac_raw_mc_handle_error(type, mci, e);
425 	spin_unlock_irqrestore(&ghes_lock, flags);
426 }
427 
428 /*
429  * Known systems that are safe to enable this module.
430  */
431 static struct acpi_platform_list plat_list[] = {
432 	{"HPE   ", "Server  ", 0, ACPI_SIG_FADT, all_versions},
433 	{ } /* End */
434 };
435 
436 int ghes_edac_register(struct ghes *ghes, struct device *dev)
437 {
438 	bool fake = false;
439 	int rc, num_dimm = 0;
440 	struct mem_ctl_info *mci;
441 	struct edac_mc_layer layers[1];
442 	struct ghes_edac_dimm_fill dimm_fill;
443 	int idx = -1;
444 
445 	if (IS_ENABLED(CONFIG_X86)) {
446 		/* Check if safe to enable on this system */
447 		idx = acpi_match_platform_list(plat_list);
448 		if (!force_load && idx < 0)
449 			return -ENODEV;
450 	} else {
451 		idx = 0;
452 	}
453 
454 	/*
455 	 * We have only one logical memory controller to which all DIMMs belong.
456 	 */
457 	if (atomic_inc_return(&ghes_init) > 1)
458 		return 0;
459 
460 	/* Get the number of DIMMs */
461 	dmi_walk(ghes_edac_count_dimms, &num_dimm);
462 
463 	/* Check if we've got a bogus BIOS */
464 	if (num_dimm == 0) {
465 		fake = true;
466 		num_dimm = 1;
467 	}
468 
469 	layers[0].type = EDAC_MC_LAYER_ALL_MEM;
470 	layers[0].size = num_dimm;
471 	layers[0].is_virt_csrow = true;
472 
473 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_edac_pvt));
474 	if (!mci) {
475 		pr_info("Can't allocate memory for EDAC data\n");
476 		return -ENOMEM;
477 	}
478 
479 	ghes_pvt	= mci->pvt_info;
480 	ghes_pvt->ghes	= ghes;
481 	ghes_pvt->mci	= mci;
482 
483 	mci->pdev = dev;
484 	mci->mtype_cap = MEM_FLAG_EMPTY;
485 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
486 	mci->edac_cap = EDAC_FLAG_NONE;
487 	mci->mod_name = "ghes_edac.c";
488 	mci->ctl_name = "ghes_edac";
489 	mci->dev_name = "ghes";
490 
491 	if (fake) {
492 		pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
493 		pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
494 		pr_info("work on such system. Use this driver with caution\n");
495 	} else if (idx < 0) {
496 		pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
497 		pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
498 		pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
499 		pr_info("If you find incorrect reports, please contact your hardware vendor\n");
500 		pr_info("to correct its BIOS.\n");
501 		pr_info("This system has %d DIMM sockets.\n", num_dimm);
502 	}
503 
504 	if (!fake) {
505 		dimm_fill.count = 0;
506 		dimm_fill.mci = mci;
507 		dmi_walk(ghes_edac_dmidecode, &dimm_fill);
508 	} else {
509 		struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
510 						       mci->n_layers, 0, 0, 0);
511 
512 		dimm->nr_pages = 1;
513 		dimm->grain = 128;
514 		dimm->mtype = MEM_UNKNOWN;
515 		dimm->dtype = DEV_UNKNOWN;
516 		dimm->edac_mode = EDAC_SECDED;
517 	}
518 
519 	rc = edac_mc_add_mc(mci);
520 	if (rc < 0) {
521 		pr_info("Can't register at EDAC core\n");
522 		edac_mc_free(mci);
523 		return -ENODEV;
524 	}
525 	return 0;
526 }
527 
528 void ghes_edac_unregister(struct ghes *ghes)
529 {
530 	struct mem_ctl_info *mci;
531 
532 	if (!ghes_pvt)
533 		return;
534 
535 	mci = ghes_pvt->mci;
536 	edac_mc_del_mc(mci->pdev);
537 	edac_mc_free(mci);
538 }
539