xref: /openbmc/linux/drivers/edac/fsl_ddr_edac.c (revision 801543b2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Freescale Memory Controller kernel module
4  *
5  * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
6  * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
7  * split out from mpc85xx_edac EDAC driver.
8  *
9  * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
10  *
11  * Author: Dave Jiang <djiang@mvista.com>
12  *
13  * 2006-2007 (c) MontaVista Software, Inc.
14  */
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/io.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/edac.h>
22 #include <linux/smp.h>
23 #include <linux/gfp.h>
24 
25 #include <linux/of_platform.h>
26 #include <linux/of_device.h>
27 #include <linux/of_address.h>
28 #include "edac_module.h"
29 #include "fsl_ddr_edac.h"
30 
31 #define EDAC_MOD_STR	"fsl_ddr_edac"
32 
33 static int edac_mc_idx;
34 
35 static u32 orig_ddr_err_disable;
36 static u32 orig_ddr_err_sbe;
37 static bool little_endian;
38 
39 static inline u32 ddr_in32(void __iomem *addr)
40 {
41 	return little_endian ? ioread32(addr) : ioread32be(addr);
42 }
43 
44 static inline void ddr_out32(void __iomem *addr, u32 value)
45 {
46 	if (little_endian)
47 		iowrite32(value, addr);
48 	else
49 		iowrite32be(value, addr);
50 }
51 
52 #ifdef CONFIG_EDAC_DEBUG
53 /************************ MC SYSFS parts ***********************************/
54 
55 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
56 
57 static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
58 					  struct device_attribute *mattr,
59 					  char *data)
60 {
61 	struct mem_ctl_info *mci = to_mci(dev);
62 	struct fsl_mc_pdata *pdata = mci->pvt_info;
63 	return sprintf(data, "0x%08x",
64 		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
65 }
66 
67 static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
68 					  struct device_attribute *mattr,
69 					      char *data)
70 {
71 	struct mem_ctl_info *mci = to_mci(dev);
72 	struct fsl_mc_pdata *pdata = mci->pvt_info;
73 	return sprintf(data, "0x%08x",
74 		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
75 }
76 
77 static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
78 				       struct device_attribute *mattr,
79 					   char *data)
80 {
81 	struct mem_ctl_info *mci = to_mci(dev);
82 	struct fsl_mc_pdata *pdata = mci->pvt_info;
83 	return sprintf(data, "0x%08x",
84 		       ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
85 }
86 
87 static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
88 					   struct device_attribute *mattr,
89 					       const char *data, size_t count)
90 {
91 	struct mem_ctl_info *mci = to_mci(dev);
92 	struct fsl_mc_pdata *pdata = mci->pvt_info;
93 	unsigned long val;
94 	int rc;
95 
96 	if (isdigit(*data)) {
97 		rc = kstrtoul(data, 0, &val);
98 		if (rc)
99 			return rc;
100 
101 		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
102 		return count;
103 	}
104 	return 0;
105 }
106 
107 static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
108 					   struct device_attribute *mattr,
109 					       const char *data, size_t count)
110 {
111 	struct mem_ctl_info *mci = to_mci(dev);
112 	struct fsl_mc_pdata *pdata = mci->pvt_info;
113 	unsigned long val;
114 	int rc;
115 
116 	if (isdigit(*data)) {
117 		rc = kstrtoul(data, 0, &val);
118 		if (rc)
119 			return rc;
120 
121 		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
122 		return count;
123 	}
124 	return 0;
125 }
126 
127 static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
128 					struct device_attribute *mattr,
129 					       const char *data, size_t count)
130 {
131 	struct mem_ctl_info *mci = to_mci(dev);
132 	struct fsl_mc_pdata *pdata = mci->pvt_info;
133 	unsigned long val;
134 	int rc;
135 
136 	if (isdigit(*data)) {
137 		rc = kstrtoul(data, 0, &val);
138 		if (rc)
139 			return rc;
140 
141 		ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
142 		return count;
143 	}
144 	return 0;
145 }
146 
147 static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
148 		   fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
149 static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
150 		   fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
151 static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
152 		   fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
153 #endif /* CONFIG_EDAC_DEBUG */
154 
155 static struct attribute *fsl_ddr_dev_attrs[] = {
156 #ifdef CONFIG_EDAC_DEBUG
157 	&dev_attr_inject_data_hi.attr,
158 	&dev_attr_inject_data_lo.attr,
159 	&dev_attr_inject_ctrl.attr,
160 #endif
161 	NULL
162 };
163 
164 ATTRIBUTE_GROUPS(fsl_ddr_dev);
165 
166 /**************************** MC Err device ***************************/
167 
168 /*
169  * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
170  * MPC8572 User's Manual.  Each line represents a syndrome bit column as a
171  * 64-bit value, but split into an upper and lower 32-bit chunk.  The labels
172  * below correspond to Freescale's manuals.
173  */
174 static unsigned int ecc_table[16] = {
175 	/* MSB           LSB */
176 	/* [0:31]    [32:63] */
177 	0xf00fe11e, 0xc33c0ff7,	/* Syndrome bit 7 */
178 	0x00ff00ff, 0x00fff0ff,
179 	0x0f0f0f0f, 0x0f0fff00,
180 	0x11113333, 0x7777000f,
181 	0x22224444, 0x8888222f,
182 	0x44448888, 0xffff4441,
183 	0x8888ffff, 0x11118882,
184 	0xffff1111, 0x22221114,	/* Syndrome bit 0 */
185 };
186 
187 /*
188  * Calculate the correct ECC value for a 64-bit value specified by high:low
189  */
190 static u8 calculate_ecc(u32 high, u32 low)
191 {
192 	u32 mask_low;
193 	u32 mask_high;
194 	int bit_cnt;
195 	u8 ecc = 0;
196 	int i;
197 	int j;
198 
199 	for (i = 0; i < 8; i++) {
200 		mask_high = ecc_table[i * 2];
201 		mask_low = ecc_table[i * 2 + 1];
202 		bit_cnt = 0;
203 
204 		for (j = 0; j < 32; j++) {
205 			if ((mask_high >> j) & 1)
206 				bit_cnt ^= (high >> j) & 1;
207 			if ((mask_low >> j) & 1)
208 				bit_cnt ^= (low >> j) & 1;
209 		}
210 
211 		ecc |= bit_cnt << i;
212 	}
213 
214 	return ecc;
215 }
216 
217 /*
218  * Create the syndrome code which is generated if the data line specified by
219  * 'bit' failed.  Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
220  * User's Manual and 9-61 in the MPC8572 User's Manual.
221  */
222 static u8 syndrome_from_bit(unsigned int bit) {
223 	int i;
224 	u8 syndrome = 0;
225 
226 	/*
227 	 * Cycle through the upper or lower 32-bit portion of each value in
228 	 * ecc_table depending on if 'bit' is in the upper or lower half of
229 	 * 64-bit data.
230 	 */
231 	for (i = bit < 32; i < 16; i += 2)
232 		syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
233 
234 	return syndrome;
235 }
236 
237 /*
238  * Decode data and ecc syndrome to determine what went wrong
239  * Note: This can only decode single-bit errors
240  */
241 static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
242 		       int *bad_data_bit, int *bad_ecc_bit)
243 {
244 	int i;
245 	u8 syndrome;
246 
247 	*bad_data_bit = -1;
248 	*bad_ecc_bit = -1;
249 
250 	/*
251 	 * Calculate the ECC of the captured data and XOR it with the captured
252 	 * ECC to find an ECC syndrome value we can search for
253 	 */
254 	syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
255 
256 	/* Check if a data line is stuck... */
257 	for (i = 0; i < 64; i++) {
258 		if (syndrome == syndrome_from_bit(i)) {
259 			*bad_data_bit = i;
260 			return;
261 		}
262 	}
263 
264 	/* If data is correct, check ECC bits for errors... */
265 	for (i = 0; i < 8; i++) {
266 		if ((syndrome >> i) & 0x1) {
267 			*bad_ecc_bit = i;
268 			return;
269 		}
270 	}
271 }
272 
273 #define make64(high, low) (((u64)(high) << 32) | (low))
274 
275 static void fsl_mc_check(struct mem_ctl_info *mci)
276 {
277 	struct fsl_mc_pdata *pdata = mci->pvt_info;
278 	struct csrow_info *csrow;
279 	u32 bus_width;
280 	u32 err_detect;
281 	u32 syndrome;
282 	u64 err_addr;
283 	u32 pfn;
284 	int row_index;
285 	u32 cap_high;
286 	u32 cap_low;
287 	int bad_data_bit;
288 	int bad_ecc_bit;
289 
290 	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
291 	if (!err_detect)
292 		return;
293 
294 	fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
295 		      err_detect);
296 
297 	/* no more processing if not ECC bit errors */
298 	if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
299 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
300 		return;
301 	}
302 
303 	syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
304 
305 	/* Mask off appropriate bits of syndrome based on bus width */
306 	bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
307 		     DSC_DBW_MASK) ? 32 : 64;
308 	if (bus_width == 64)
309 		syndrome &= 0xff;
310 	else
311 		syndrome &= 0xffff;
312 
313 	err_addr = make64(
314 		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
315 		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
316 	pfn = err_addr >> PAGE_SHIFT;
317 
318 	for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
319 		csrow = mci->csrows[row_index];
320 		if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
321 			break;
322 	}
323 
324 	cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
325 	cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
326 
327 	/*
328 	 * Analyze single-bit errors on 64-bit wide buses
329 	 * TODO: Add support for 32-bit wide buses
330 	 */
331 	if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
332 		sbe_ecc_decode(cap_high, cap_low, syndrome,
333 				&bad_data_bit, &bad_ecc_bit);
334 
335 		if (bad_data_bit != -1)
336 			fsl_mc_printk(mci, KERN_ERR,
337 				"Faulty Data bit: %d\n", bad_data_bit);
338 		if (bad_ecc_bit != -1)
339 			fsl_mc_printk(mci, KERN_ERR,
340 				"Faulty ECC bit: %d\n", bad_ecc_bit);
341 
342 		fsl_mc_printk(mci, KERN_ERR,
343 			"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
344 			cap_high ^ (1 << (bad_data_bit - 32)),
345 			cap_low ^ (1 << bad_data_bit),
346 			syndrome ^ (1 << bad_ecc_bit));
347 	}
348 
349 	fsl_mc_printk(mci, KERN_ERR,
350 			"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
351 			cap_high, cap_low, syndrome);
352 	fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
353 	fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
354 
355 	/* we are out of range */
356 	if (row_index == mci->nr_csrows)
357 		fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
358 
359 	if (err_detect & DDR_EDE_SBE)
360 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
361 				     pfn, err_addr & ~PAGE_MASK, syndrome,
362 				     row_index, 0, -1,
363 				     mci->ctl_name, "");
364 
365 	if (err_detect & DDR_EDE_MBE)
366 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
367 				     pfn, err_addr & ~PAGE_MASK, syndrome,
368 				     row_index, 0, -1,
369 				     mci->ctl_name, "");
370 
371 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
372 }
373 
374 static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
375 {
376 	struct mem_ctl_info *mci = dev_id;
377 	struct fsl_mc_pdata *pdata = mci->pvt_info;
378 	u32 err_detect;
379 
380 	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
381 	if (!err_detect)
382 		return IRQ_NONE;
383 
384 	fsl_mc_check(mci);
385 
386 	return IRQ_HANDLED;
387 }
388 
389 static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
390 {
391 	struct fsl_mc_pdata *pdata = mci->pvt_info;
392 	struct csrow_info *csrow;
393 	struct dimm_info *dimm;
394 	u32 sdram_ctl;
395 	u32 sdtype;
396 	enum mem_type mtype;
397 	u32 cs_bnds;
398 	int index;
399 
400 	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
401 
402 	sdtype = sdram_ctl & DSC_SDTYPE_MASK;
403 	if (sdram_ctl & DSC_RD_EN) {
404 		switch (sdtype) {
405 		case 0x02000000:
406 			mtype = MEM_RDDR;
407 			break;
408 		case 0x03000000:
409 			mtype = MEM_RDDR2;
410 			break;
411 		case 0x07000000:
412 			mtype = MEM_RDDR3;
413 			break;
414 		case 0x05000000:
415 			mtype = MEM_RDDR4;
416 			break;
417 		default:
418 			mtype = MEM_UNKNOWN;
419 			break;
420 		}
421 	} else {
422 		switch (sdtype) {
423 		case 0x02000000:
424 			mtype = MEM_DDR;
425 			break;
426 		case 0x03000000:
427 			mtype = MEM_DDR2;
428 			break;
429 		case 0x07000000:
430 			mtype = MEM_DDR3;
431 			break;
432 		case 0x05000000:
433 			mtype = MEM_DDR4;
434 			break;
435 		default:
436 			mtype = MEM_UNKNOWN;
437 			break;
438 		}
439 	}
440 
441 	for (index = 0; index < mci->nr_csrows; index++) {
442 		u32 start;
443 		u32 end;
444 
445 		csrow = mci->csrows[index];
446 		dimm = csrow->channels[0]->dimm;
447 
448 		cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
449 				   (index * FSL_MC_CS_BNDS_OFS));
450 
451 		start = (cs_bnds & 0xffff0000) >> 16;
452 		end   = (cs_bnds & 0x0000ffff);
453 
454 		if (start == end)
455 			continue;	/* not populated */
456 
457 		start <<= (24 - PAGE_SHIFT);
458 		end   <<= (24 - PAGE_SHIFT);
459 		end    |= (1 << (24 - PAGE_SHIFT)) - 1;
460 
461 		csrow->first_page = start;
462 		csrow->last_page = end;
463 
464 		dimm->nr_pages = end + 1 - start;
465 		dimm->grain = 8;
466 		dimm->mtype = mtype;
467 		dimm->dtype = DEV_UNKNOWN;
468 		if (sdram_ctl & DSC_X32_EN)
469 			dimm->dtype = DEV_X32;
470 		dimm->edac_mode = EDAC_SECDED;
471 	}
472 }
473 
474 int fsl_mc_err_probe(struct platform_device *op)
475 {
476 	struct mem_ctl_info *mci;
477 	struct edac_mc_layer layers[2];
478 	struct fsl_mc_pdata *pdata;
479 	struct resource r;
480 	u32 sdram_ctl;
481 	int res;
482 
483 	if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
484 		return -ENOMEM;
485 
486 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
487 	layers[0].size = 4;
488 	layers[0].is_virt_csrow = true;
489 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
490 	layers[1].size = 1;
491 	layers[1].is_virt_csrow = false;
492 	mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
493 			    sizeof(*pdata));
494 	if (!mci) {
495 		devres_release_group(&op->dev, fsl_mc_err_probe);
496 		return -ENOMEM;
497 	}
498 
499 	pdata = mci->pvt_info;
500 	pdata->name = "fsl_mc_err";
501 	mci->pdev = &op->dev;
502 	pdata->edac_idx = edac_mc_idx++;
503 	dev_set_drvdata(mci->pdev, mci);
504 	mci->ctl_name = pdata->name;
505 	mci->dev_name = pdata->name;
506 
507 	/*
508 	 * Get the endianness of DDR controller registers.
509 	 * Default is big endian.
510 	 */
511 	little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
512 
513 	res = of_address_to_resource(op->dev.of_node, 0, &r);
514 	if (res) {
515 		pr_err("%s: Unable to get resource for MC err regs\n",
516 		       __func__);
517 		goto err;
518 	}
519 
520 	if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
521 				     pdata->name)) {
522 		pr_err("%s: Error while requesting mem region\n",
523 		       __func__);
524 		res = -EBUSY;
525 		goto err;
526 	}
527 
528 	pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
529 	if (!pdata->mc_vbase) {
530 		pr_err("%s: Unable to setup MC err regs\n", __func__);
531 		res = -ENOMEM;
532 		goto err;
533 	}
534 
535 	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
536 	if (!(sdram_ctl & DSC_ECC_EN)) {
537 		/* no ECC */
538 		pr_warn("%s: No ECC DIMMs discovered\n", __func__);
539 		res = -ENODEV;
540 		goto err;
541 	}
542 
543 	edac_dbg(3, "init mci\n");
544 	mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
545 			 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
546 			 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
547 			 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
548 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
549 	mci->edac_cap = EDAC_FLAG_SECDED;
550 	mci->mod_name = EDAC_MOD_STR;
551 
552 	if (edac_op_state == EDAC_OPSTATE_POLL)
553 		mci->edac_check = fsl_mc_check;
554 
555 	mci->ctl_page_to_phys = NULL;
556 
557 	mci->scrub_mode = SCRUB_SW_SRC;
558 
559 	fsl_ddr_init_csrows(mci);
560 
561 	/* store the original error disable bits */
562 	orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
563 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
564 
565 	/* clear all error bits */
566 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
567 
568 	res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
569 	if (res) {
570 		edac_dbg(3, "failed edac_mc_add_mc()\n");
571 		goto err;
572 	}
573 
574 	if (edac_op_state == EDAC_OPSTATE_INT) {
575 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
576 			  DDR_EIE_MBEE | DDR_EIE_SBEE);
577 
578 		/* store the original error management threshold */
579 		orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
580 					    FSL_MC_ERR_SBE) & 0xff0000;
581 
582 		/* set threshold to 1 error per interrupt */
583 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
584 
585 		/* register interrupts */
586 		pdata->irq = platform_get_irq(op, 0);
587 		res = devm_request_irq(&op->dev, pdata->irq,
588 				       fsl_mc_isr,
589 				       IRQF_SHARED,
590 				       "[EDAC] MC err", mci);
591 		if (res < 0) {
592 			pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
593 			       __func__, pdata->irq);
594 			res = -ENODEV;
595 			goto err2;
596 		}
597 
598 		pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
599 		       pdata->irq);
600 	}
601 
602 	devres_remove_group(&op->dev, fsl_mc_err_probe);
603 	edac_dbg(3, "success\n");
604 	pr_info(EDAC_MOD_STR " MC err registered\n");
605 
606 	return 0;
607 
608 err2:
609 	edac_mc_del_mc(&op->dev);
610 err:
611 	devres_release_group(&op->dev, fsl_mc_err_probe);
612 	edac_mc_free(mci);
613 	return res;
614 }
615 
616 int fsl_mc_err_remove(struct platform_device *op)
617 {
618 	struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
619 	struct fsl_mc_pdata *pdata = mci->pvt_info;
620 
621 	edac_dbg(0, "\n");
622 
623 	if (edac_op_state == EDAC_OPSTATE_INT) {
624 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
625 	}
626 
627 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
628 		  orig_ddr_err_disable);
629 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
630 
631 	edac_mc_del_mc(&op->dev);
632 	edac_mc_free(mci);
633 	return 0;
634 }
635