xref: /openbmc/linux/drivers/edac/fsl_ddr_edac.c (revision 12e24d8a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Freescale Memory Controller kernel module
4  *
5  * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
6  * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
7  * split out from mpc85xx_edac EDAC driver.
8  *
9  * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
10  *
11  * Author: Dave Jiang <djiang@mvista.com>
12  *
13  * 2006-2007 (c) MontaVista Software, Inc.
14  */
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/io.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/edac.h>
22 #include <linux/smp.h>
23 #include <linux/gfp.h>
24 
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include "edac_module.h"
28 #include "fsl_ddr_edac.h"
29 
30 #define EDAC_MOD_STR	"fsl_ddr_edac"
31 
32 static int edac_mc_idx;
33 
34 static u32 orig_ddr_err_disable;
35 static u32 orig_ddr_err_sbe;
36 static bool little_endian;
37 
38 static inline u32 ddr_in32(void __iomem *addr)
39 {
40 	return little_endian ? ioread32(addr) : ioread32be(addr);
41 }
42 
43 static inline void ddr_out32(void __iomem *addr, u32 value)
44 {
45 	if (little_endian)
46 		iowrite32(value, addr);
47 	else
48 		iowrite32be(value, addr);
49 }
50 
51 #ifdef CONFIG_EDAC_DEBUG
52 /************************ MC SYSFS parts ***********************************/
53 
54 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
55 
56 static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
57 					  struct device_attribute *mattr,
58 					  char *data)
59 {
60 	struct mem_ctl_info *mci = to_mci(dev);
61 	struct fsl_mc_pdata *pdata = mci->pvt_info;
62 	return sprintf(data, "0x%08x",
63 		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
64 }
65 
66 static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
67 					  struct device_attribute *mattr,
68 					      char *data)
69 {
70 	struct mem_ctl_info *mci = to_mci(dev);
71 	struct fsl_mc_pdata *pdata = mci->pvt_info;
72 	return sprintf(data, "0x%08x",
73 		       ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
74 }
75 
76 static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
77 				       struct device_attribute *mattr,
78 					   char *data)
79 {
80 	struct mem_ctl_info *mci = to_mci(dev);
81 	struct fsl_mc_pdata *pdata = mci->pvt_info;
82 	return sprintf(data, "0x%08x",
83 		       ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
84 }
85 
86 static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
87 					   struct device_attribute *mattr,
88 					       const char *data, size_t count)
89 {
90 	struct mem_ctl_info *mci = to_mci(dev);
91 	struct fsl_mc_pdata *pdata = mci->pvt_info;
92 	unsigned long val;
93 	int rc;
94 
95 	if (isdigit(*data)) {
96 		rc = kstrtoul(data, 0, &val);
97 		if (rc)
98 			return rc;
99 
100 		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
101 		return count;
102 	}
103 	return 0;
104 }
105 
106 static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
107 					   struct device_attribute *mattr,
108 					       const char *data, size_t count)
109 {
110 	struct mem_ctl_info *mci = to_mci(dev);
111 	struct fsl_mc_pdata *pdata = mci->pvt_info;
112 	unsigned long val;
113 	int rc;
114 
115 	if (isdigit(*data)) {
116 		rc = kstrtoul(data, 0, &val);
117 		if (rc)
118 			return rc;
119 
120 		ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
121 		return count;
122 	}
123 	return 0;
124 }
125 
126 static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
127 					struct device_attribute *mattr,
128 					       const char *data, size_t count)
129 {
130 	struct mem_ctl_info *mci = to_mci(dev);
131 	struct fsl_mc_pdata *pdata = mci->pvt_info;
132 	unsigned long val;
133 	int rc;
134 
135 	if (isdigit(*data)) {
136 		rc = kstrtoul(data, 0, &val);
137 		if (rc)
138 			return rc;
139 
140 		ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
141 		return count;
142 	}
143 	return 0;
144 }
145 
146 static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
147 		   fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
148 static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
149 		   fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
150 static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
151 		   fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
152 #endif /* CONFIG_EDAC_DEBUG */
153 
154 static struct attribute *fsl_ddr_dev_attrs[] = {
155 #ifdef CONFIG_EDAC_DEBUG
156 	&dev_attr_inject_data_hi.attr,
157 	&dev_attr_inject_data_lo.attr,
158 	&dev_attr_inject_ctrl.attr,
159 #endif
160 	NULL
161 };
162 
163 ATTRIBUTE_GROUPS(fsl_ddr_dev);
164 
165 /**************************** MC Err device ***************************/
166 
167 /*
168  * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
169  * MPC8572 User's Manual.  Each line represents a syndrome bit column as a
170  * 64-bit value, but split into an upper and lower 32-bit chunk.  The labels
171  * below correspond to Freescale's manuals.
172  */
173 static unsigned int ecc_table[16] = {
174 	/* MSB           LSB */
175 	/* [0:31]    [32:63] */
176 	0xf00fe11e, 0xc33c0ff7,	/* Syndrome bit 7 */
177 	0x00ff00ff, 0x00fff0ff,
178 	0x0f0f0f0f, 0x0f0fff00,
179 	0x11113333, 0x7777000f,
180 	0x22224444, 0x8888222f,
181 	0x44448888, 0xffff4441,
182 	0x8888ffff, 0x11118882,
183 	0xffff1111, 0x22221114,	/* Syndrome bit 0 */
184 };
185 
186 /*
187  * Calculate the correct ECC value for a 64-bit value specified by high:low
188  */
189 static u8 calculate_ecc(u32 high, u32 low)
190 {
191 	u32 mask_low;
192 	u32 mask_high;
193 	int bit_cnt;
194 	u8 ecc = 0;
195 	int i;
196 	int j;
197 
198 	for (i = 0; i < 8; i++) {
199 		mask_high = ecc_table[i * 2];
200 		mask_low = ecc_table[i * 2 + 1];
201 		bit_cnt = 0;
202 
203 		for (j = 0; j < 32; j++) {
204 			if ((mask_high >> j) & 1)
205 				bit_cnt ^= (high >> j) & 1;
206 			if ((mask_low >> j) & 1)
207 				bit_cnt ^= (low >> j) & 1;
208 		}
209 
210 		ecc |= bit_cnt << i;
211 	}
212 
213 	return ecc;
214 }
215 
216 /*
217  * Create the syndrome code which is generated if the data line specified by
218  * 'bit' failed.  Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
219  * User's Manual and 9-61 in the MPC8572 User's Manual.
220  */
221 static u8 syndrome_from_bit(unsigned int bit) {
222 	int i;
223 	u8 syndrome = 0;
224 
225 	/*
226 	 * Cycle through the upper or lower 32-bit portion of each value in
227 	 * ecc_table depending on if 'bit' is in the upper or lower half of
228 	 * 64-bit data.
229 	 */
230 	for (i = bit < 32; i < 16; i += 2)
231 		syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
232 
233 	return syndrome;
234 }
235 
236 /*
237  * Decode data and ecc syndrome to determine what went wrong
238  * Note: This can only decode single-bit errors
239  */
240 static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
241 		       int *bad_data_bit, int *bad_ecc_bit)
242 {
243 	int i;
244 	u8 syndrome;
245 
246 	*bad_data_bit = -1;
247 	*bad_ecc_bit = -1;
248 
249 	/*
250 	 * Calculate the ECC of the captured data and XOR it with the captured
251 	 * ECC to find an ECC syndrome value we can search for
252 	 */
253 	syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
254 
255 	/* Check if a data line is stuck... */
256 	for (i = 0; i < 64; i++) {
257 		if (syndrome == syndrome_from_bit(i)) {
258 			*bad_data_bit = i;
259 			return;
260 		}
261 	}
262 
263 	/* If data is correct, check ECC bits for errors... */
264 	for (i = 0; i < 8; i++) {
265 		if ((syndrome >> i) & 0x1) {
266 			*bad_ecc_bit = i;
267 			return;
268 		}
269 	}
270 }
271 
272 #define make64(high, low) (((u64)(high) << 32) | (low))
273 
274 static void fsl_mc_check(struct mem_ctl_info *mci)
275 {
276 	struct fsl_mc_pdata *pdata = mci->pvt_info;
277 	struct csrow_info *csrow;
278 	u32 bus_width;
279 	u32 err_detect;
280 	u32 syndrome;
281 	u64 err_addr;
282 	u32 pfn;
283 	int row_index;
284 	u32 cap_high;
285 	u32 cap_low;
286 	int bad_data_bit;
287 	int bad_ecc_bit;
288 
289 	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
290 	if (!err_detect)
291 		return;
292 
293 	fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
294 		      err_detect);
295 
296 	/* no more processing if not ECC bit errors */
297 	if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
298 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
299 		return;
300 	}
301 
302 	syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
303 
304 	/* Mask off appropriate bits of syndrome based on bus width */
305 	bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
306 		     DSC_DBW_MASK) ? 32 : 64;
307 	if (bus_width == 64)
308 		syndrome &= 0xff;
309 	else
310 		syndrome &= 0xffff;
311 
312 	err_addr = make64(
313 		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
314 		ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
315 	pfn = err_addr >> PAGE_SHIFT;
316 
317 	for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
318 		csrow = mci->csrows[row_index];
319 		if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
320 			break;
321 	}
322 
323 	cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
324 	cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
325 
326 	/*
327 	 * Analyze single-bit errors on 64-bit wide buses
328 	 * TODO: Add support for 32-bit wide buses
329 	 */
330 	if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
331 		u64 cap = (u64)cap_high << 32 | cap_low;
332 		u32 s = syndrome;
333 
334 		sbe_ecc_decode(cap_high, cap_low, syndrome,
335 				&bad_data_bit, &bad_ecc_bit);
336 
337 		if (bad_data_bit >= 0) {
338 			fsl_mc_printk(mci, KERN_ERR, "Faulty Data bit: %d\n", bad_data_bit);
339 			cap ^= 1ULL << bad_data_bit;
340 		}
341 
342 		if (bad_ecc_bit >= 0) {
343 			fsl_mc_printk(mci, KERN_ERR, "Faulty ECC bit: %d\n", bad_ecc_bit);
344 			s ^= 1 << bad_ecc_bit;
345 		}
346 
347 		fsl_mc_printk(mci, KERN_ERR,
348 			"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
349 			upper_32_bits(cap), lower_32_bits(cap), s);
350 	}
351 
352 	fsl_mc_printk(mci, KERN_ERR,
353 			"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
354 			cap_high, cap_low, syndrome);
355 	fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
356 	fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
357 
358 	/* we are out of range */
359 	if (row_index == mci->nr_csrows)
360 		fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
361 
362 	if (err_detect & DDR_EDE_SBE)
363 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
364 				     pfn, err_addr & ~PAGE_MASK, syndrome,
365 				     row_index, 0, -1,
366 				     mci->ctl_name, "");
367 
368 	if (err_detect & DDR_EDE_MBE)
369 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
370 				     pfn, err_addr & ~PAGE_MASK, syndrome,
371 				     row_index, 0, -1,
372 				     mci->ctl_name, "");
373 
374 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
375 }
376 
377 static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
378 {
379 	struct mem_ctl_info *mci = dev_id;
380 	struct fsl_mc_pdata *pdata = mci->pvt_info;
381 	u32 err_detect;
382 
383 	err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
384 	if (!err_detect)
385 		return IRQ_NONE;
386 
387 	fsl_mc_check(mci);
388 
389 	return IRQ_HANDLED;
390 }
391 
392 static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
393 {
394 	struct fsl_mc_pdata *pdata = mci->pvt_info;
395 	struct csrow_info *csrow;
396 	struct dimm_info *dimm;
397 	u32 sdram_ctl;
398 	u32 sdtype;
399 	enum mem_type mtype;
400 	u32 cs_bnds;
401 	int index;
402 
403 	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
404 
405 	sdtype = sdram_ctl & DSC_SDTYPE_MASK;
406 	if (sdram_ctl & DSC_RD_EN) {
407 		switch (sdtype) {
408 		case 0x02000000:
409 			mtype = MEM_RDDR;
410 			break;
411 		case 0x03000000:
412 			mtype = MEM_RDDR2;
413 			break;
414 		case 0x07000000:
415 			mtype = MEM_RDDR3;
416 			break;
417 		case 0x05000000:
418 			mtype = MEM_RDDR4;
419 			break;
420 		default:
421 			mtype = MEM_UNKNOWN;
422 			break;
423 		}
424 	} else {
425 		switch (sdtype) {
426 		case 0x02000000:
427 			mtype = MEM_DDR;
428 			break;
429 		case 0x03000000:
430 			mtype = MEM_DDR2;
431 			break;
432 		case 0x07000000:
433 			mtype = MEM_DDR3;
434 			break;
435 		case 0x05000000:
436 			mtype = MEM_DDR4;
437 			break;
438 		default:
439 			mtype = MEM_UNKNOWN;
440 			break;
441 		}
442 	}
443 
444 	for (index = 0; index < mci->nr_csrows; index++) {
445 		u32 start;
446 		u32 end;
447 
448 		csrow = mci->csrows[index];
449 		dimm = csrow->channels[0]->dimm;
450 
451 		cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
452 				   (index * FSL_MC_CS_BNDS_OFS));
453 
454 		start = (cs_bnds & 0xffff0000) >> 16;
455 		end   = (cs_bnds & 0x0000ffff);
456 
457 		if (start == end)
458 			continue;	/* not populated */
459 
460 		start <<= (24 - PAGE_SHIFT);
461 		end   <<= (24 - PAGE_SHIFT);
462 		end    |= (1 << (24 - PAGE_SHIFT)) - 1;
463 
464 		csrow->first_page = start;
465 		csrow->last_page = end;
466 
467 		dimm->nr_pages = end + 1 - start;
468 		dimm->grain = 8;
469 		dimm->mtype = mtype;
470 		dimm->dtype = DEV_UNKNOWN;
471 		if (sdram_ctl & DSC_X32_EN)
472 			dimm->dtype = DEV_X32;
473 		dimm->edac_mode = EDAC_SECDED;
474 	}
475 }
476 
477 int fsl_mc_err_probe(struct platform_device *op)
478 {
479 	struct mem_ctl_info *mci;
480 	struct edac_mc_layer layers[2];
481 	struct fsl_mc_pdata *pdata;
482 	struct resource r;
483 	u32 sdram_ctl;
484 	int res;
485 
486 	if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
487 		return -ENOMEM;
488 
489 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
490 	layers[0].size = 4;
491 	layers[0].is_virt_csrow = true;
492 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
493 	layers[1].size = 1;
494 	layers[1].is_virt_csrow = false;
495 	mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
496 			    sizeof(*pdata));
497 	if (!mci) {
498 		devres_release_group(&op->dev, fsl_mc_err_probe);
499 		return -ENOMEM;
500 	}
501 
502 	pdata = mci->pvt_info;
503 	pdata->name = "fsl_mc_err";
504 	mci->pdev = &op->dev;
505 	pdata->edac_idx = edac_mc_idx++;
506 	dev_set_drvdata(mci->pdev, mci);
507 	mci->ctl_name = pdata->name;
508 	mci->dev_name = pdata->name;
509 
510 	/*
511 	 * Get the endianness of DDR controller registers.
512 	 * Default is big endian.
513 	 */
514 	little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
515 
516 	res = of_address_to_resource(op->dev.of_node, 0, &r);
517 	if (res) {
518 		pr_err("%s: Unable to get resource for MC err regs\n",
519 		       __func__);
520 		goto err;
521 	}
522 
523 	if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
524 				     pdata->name)) {
525 		pr_err("%s: Error while requesting mem region\n",
526 		       __func__);
527 		res = -EBUSY;
528 		goto err;
529 	}
530 
531 	pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
532 	if (!pdata->mc_vbase) {
533 		pr_err("%s: Unable to setup MC err regs\n", __func__);
534 		res = -ENOMEM;
535 		goto err;
536 	}
537 
538 	sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
539 	if (!(sdram_ctl & DSC_ECC_EN)) {
540 		/* no ECC */
541 		pr_warn("%s: No ECC DIMMs discovered\n", __func__);
542 		res = -ENODEV;
543 		goto err;
544 	}
545 
546 	edac_dbg(3, "init mci\n");
547 	mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
548 			 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
549 			 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
550 			 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
551 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
552 	mci->edac_cap = EDAC_FLAG_SECDED;
553 	mci->mod_name = EDAC_MOD_STR;
554 
555 	if (edac_op_state == EDAC_OPSTATE_POLL)
556 		mci->edac_check = fsl_mc_check;
557 
558 	mci->ctl_page_to_phys = NULL;
559 
560 	mci->scrub_mode = SCRUB_SW_SRC;
561 
562 	fsl_ddr_init_csrows(mci);
563 
564 	/* store the original error disable bits */
565 	orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
566 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
567 
568 	/* clear all error bits */
569 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
570 
571 	res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
572 	if (res) {
573 		edac_dbg(3, "failed edac_mc_add_mc()\n");
574 		goto err;
575 	}
576 
577 	if (edac_op_state == EDAC_OPSTATE_INT) {
578 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
579 			  DDR_EIE_MBEE | DDR_EIE_SBEE);
580 
581 		/* store the original error management threshold */
582 		orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
583 					    FSL_MC_ERR_SBE) & 0xff0000;
584 
585 		/* set threshold to 1 error per interrupt */
586 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
587 
588 		/* register interrupts */
589 		pdata->irq = platform_get_irq(op, 0);
590 		res = devm_request_irq(&op->dev, pdata->irq,
591 				       fsl_mc_isr,
592 				       IRQF_SHARED,
593 				       "[EDAC] MC err", mci);
594 		if (res < 0) {
595 			pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
596 			       __func__, pdata->irq);
597 			res = -ENODEV;
598 			goto err2;
599 		}
600 
601 		pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
602 		       pdata->irq);
603 	}
604 
605 	devres_remove_group(&op->dev, fsl_mc_err_probe);
606 	edac_dbg(3, "success\n");
607 	pr_info(EDAC_MOD_STR " MC err registered\n");
608 
609 	return 0;
610 
611 err2:
612 	edac_mc_del_mc(&op->dev);
613 err:
614 	devres_release_group(&op->dev, fsl_mc_err_probe);
615 	edac_mc_free(mci);
616 	return res;
617 }
618 
619 int fsl_mc_err_remove(struct platform_device *op)
620 {
621 	struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
622 	struct fsl_mc_pdata *pdata = mci->pvt_info;
623 
624 	edac_dbg(0, "\n");
625 
626 	if (edac_op_state == EDAC_OPSTATE_INT) {
627 		ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
628 	}
629 
630 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
631 		  orig_ddr_err_disable);
632 	ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
633 
634 	edac_mc_del_mc(&op->dev);
635 	edac_mc_free(mci);
636 	return 0;
637 }
638