1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_mc.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) 54 { 55 unsigned long l; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtoul(val, 0, &l); 62 if (ret) 63 return ret; 64 65 if (l < 1000) 66 return -EINVAL; 67 68 *((unsigned long *)kp->arg) = l; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(l); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const dev_types[] = { 95 [DEV_UNKNOWN] = "Unknown", 96 [DEV_X1] = "x1", 97 [DEV_X2] = "x2", 98 [DEV_X4] = "x4", 99 [DEV_X8] = "x8", 100 [DEV_X16] = "x16", 101 [DEV_X32] = "x32", 102 [DEV_X64] = "x64" 103 }; 104 105 static const char * const edac_caps[] = { 106 [EDAC_UNKNOWN] = "Unknown", 107 [EDAC_NONE] = "None", 108 [EDAC_RESERVED] = "Reserved", 109 [EDAC_PARITY] = "PARITY", 110 [EDAC_EC] = "EC", 111 [EDAC_SECDED] = "SECDED", 112 [EDAC_S2ECD2ED] = "S2ECD2ED", 113 [EDAC_S4ECD4ED] = "S4ECD4ED", 114 [EDAC_S8ECD8ED] = "S8ECD8ED", 115 [EDAC_S16ECD16ED] = "S16ECD16ED" 116 }; 117 118 #ifdef CONFIG_EDAC_LEGACY_SYSFS 119 /* 120 * EDAC sysfs CSROW data structures and methods 121 */ 122 123 #define to_csrow(k) container_of(k, struct csrow_info, dev) 124 125 /* 126 * We need it to avoid namespace conflicts between the legacy API 127 * and the per-dimm/per-rank one 128 */ 129 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 131 132 struct dev_ch_attribute { 133 struct device_attribute attr; 134 int channel; 135 }; 136 137 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 138 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 139 { __ATTR(_name, _mode, _show, _store), (_var) } 140 141 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 142 143 /* Set of more default csrow<id> attribute show/store functions */ 144 static ssize_t csrow_ue_count_show(struct device *dev, 145 struct device_attribute *mattr, char *data) 146 { 147 struct csrow_info *csrow = to_csrow(dev); 148 149 return sprintf(data, "%u\n", csrow->ue_count); 150 } 151 152 static ssize_t csrow_ce_count_show(struct device *dev, 153 struct device_attribute *mattr, char *data) 154 { 155 struct csrow_info *csrow = to_csrow(dev); 156 157 return sprintf(data, "%u\n", csrow->ce_count); 158 } 159 160 static ssize_t csrow_size_show(struct device *dev, 161 struct device_attribute *mattr, char *data) 162 { 163 struct csrow_info *csrow = to_csrow(dev); 164 int i; 165 u32 nr_pages = 0; 166 167 for (i = 0; i < csrow->nr_channels; i++) 168 nr_pages += csrow->channels[i]->dimm->nr_pages; 169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 170 } 171 172 static ssize_t csrow_mem_type_show(struct device *dev, 173 struct device_attribute *mattr, char *data) 174 { 175 struct csrow_info *csrow = to_csrow(dev); 176 177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); 178 } 179 180 static ssize_t csrow_dev_type_show(struct device *dev, 181 struct device_attribute *mattr, char *data) 182 { 183 struct csrow_info *csrow = to_csrow(dev); 184 185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 186 } 187 188 static ssize_t csrow_edac_mode_show(struct device *dev, 189 struct device_attribute *mattr, 190 char *data) 191 { 192 struct csrow_info *csrow = to_csrow(dev); 193 194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 195 } 196 197 /* show/store functions for DIMM Label attributes */ 198 static ssize_t channel_dimm_label_show(struct device *dev, 199 struct device_attribute *mattr, 200 char *data) 201 { 202 struct csrow_info *csrow = to_csrow(dev); 203 unsigned chan = to_channel(mattr); 204 struct rank_info *rank = csrow->channels[chan]; 205 206 /* if field has not been initialized, there is nothing to send */ 207 if (!rank->dimm->label[0]) 208 return 0; 209 210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", 211 rank->dimm->label); 212 } 213 214 static ssize_t channel_dimm_label_store(struct device *dev, 215 struct device_attribute *mattr, 216 const char *data, size_t count) 217 { 218 struct csrow_info *csrow = to_csrow(dev); 219 unsigned chan = to_channel(mattr); 220 struct rank_info *rank = csrow->channels[chan]; 221 size_t copy_count = count; 222 223 if (count == 0) 224 return -EINVAL; 225 226 if (data[count - 1] == '\0' || data[count - 1] == '\n') 227 copy_count -= 1; 228 229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 230 return -EINVAL; 231 232 strncpy(rank->dimm->label, data, copy_count); 233 rank->dimm->label[copy_count] = '\0'; 234 235 return count; 236 } 237 238 /* show function for dynamic chX_ce_count attribute */ 239 static ssize_t channel_ce_count_show(struct device *dev, 240 struct device_attribute *mattr, char *data) 241 { 242 struct csrow_info *csrow = to_csrow(dev); 243 unsigned chan = to_channel(mattr); 244 struct rank_info *rank = csrow->channels[chan]; 245 246 return sprintf(data, "%u\n", rank->ce_count); 247 } 248 249 /* cwrow<id>/attribute files */ 250 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 251 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 252 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 253 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 254 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 255 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 256 257 /* default attributes of the CSROW<id> object */ 258 static struct attribute *csrow_attrs[] = { 259 &dev_attr_legacy_dev_type.attr, 260 &dev_attr_legacy_mem_type.attr, 261 &dev_attr_legacy_edac_mode.attr, 262 &dev_attr_legacy_size_mb.attr, 263 &dev_attr_legacy_ue_count.attr, 264 &dev_attr_legacy_ce_count.attr, 265 NULL, 266 }; 267 268 static const struct attribute_group csrow_attr_grp = { 269 .attrs = csrow_attrs, 270 }; 271 272 static const struct attribute_group *csrow_attr_groups[] = { 273 &csrow_attr_grp, 274 NULL 275 }; 276 277 static void csrow_attr_release(struct device *dev) 278 { 279 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 280 281 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 282 kfree(csrow); 283 } 284 285 static const struct device_type csrow_attr_type = { 286 .groups = csrow_attr_groups, 287 .release = csrow_attr_release, 288 }; 289 290 /* 291 * possible dynamic channel DIMM Label attribute files 292 * 293 */ 294 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 295 channel_dimm_label_show, channel_dimm_label_store, 0); 296 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 297 channel_dimm_label_show, channel_dimm_label_store, 1); 298 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 299 channel_dimm_label_show, channel_dimm_label_store, 2); 300 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 301 channel_dimm_label_show, channel_dimm_label_store, 3); 302 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 303 channel_dimm_label_show, channel_dimm_label_store, 4); 304 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 305 channel_dimm_label_show, channel_dimm_label_store, 5); 306 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, 307 channel_dimm_label_show, channel_dimm_label_store, 6); 308 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, 309 channel_dimm_label_show, channel_dimm_label_store, 7); 310 311 /* Total possible dynamic DIMM Label attribute file table */ 312 static struct attribute *dynamic_csrow_dimm_attr[] = { 313 &dev_attr_legacy_ch0_dimm_label.attr.attr, 314 &dev_attr_legacy_ch1_dimm_label.attr.attr, 315 &dev_attr_legacy_ch2_dimm_label.attr.attr, 316 &dev_attr_legacy_ch3_dimm_label.attr.attr, 317 &dev_attr_legacy_ch4_dimm_label.attr.attr, 318 &dev_attr_legacy_ch5_dimm_label.attr.attr, 319 &dev_attr_legacy_ch6_dimm_label.attr.attr, 320 &dev_attr_legacy_ch7_dimm_label.attr.attr, 321 NULL 322 }; 323 324 /* possible dynamic channel ce_count attribute files */ 325 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 326 channel_ce_count_show, NULL, 0); 327 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 328 channel_ce_count_show, NULL, 1); 329 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 330 channel_ce_count_show, NULL, 2); 331 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 332 channel_ce_count_show, NULL, 3); 333 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 334 channel_ce_count_show, NULL, 4); 335 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 336 channel_ce_count_show, NULL, 5); 337 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, 338 channel_ce_count_show, NULL, 6); 339 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, 340 channel_ce_count_show, NULL, 7); 341 342 /* Total possible dynamic ce_count attribute file table */ 343 static struct attribute *dynamic_csrow_ce_count_attr[] = { 344 &dev_attr_legacy_ch0_ce_count.attr.attr, 345 &dev_attr_legacy_ch1_ce_count.attr.attr, 346 &dev_attr_legacy_ch2_ce_count.attr.attr, 347 &dev_attr_legacy_ch3_ce_count.attr.attr, 348 &dev_attr_legacy_ch4_ce_count.attr.attr, 349 &dev_attr_legacy_ch5_ce_count.attr.attr, 350 &dev_attr_legacy_ch6_ce_count.attr.attr, 351 &dev_attr_legacy_ch7_ce_count.attr.attr, 352 NULL 353 }; 354 355 static umode_t csrow_dev_is_visible(struct kobject *kobj, 356 struct attribute *attr, int idx) 357 { 358 struct device *dev = kobj_to_dev(kobj); 359 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 360 361 if (idx >= csrow->nr_channels) 362 return 0; 363 364 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { 365 WARN_ONCE(1, "idx: %d\n", idx); 366 return 0; 367 } 368 369 /* Only expose populated DIMMs */ 370 if (!csrow->channels[idx]->dimm->nr_pages) 371 return 0; 372 373 return attr->mode; 374 } 375 376 377 static const struct attribute_group csrow_dev_dimm_group = { 378 .attrs = dynamic_csrow_dimm_attr, 379 .is_visible = csrow_dev_is_visible, 380 }; 381 382 static const struct attribute_group csrow_dev_ce_count_group = { 383 .attrs = dynamic_csrow_ce_count_attr, 384 .is_visible = csrow_dev_is_visible, 385 }; 386 387 static const struct attribute_group *csrow_dev_groups[] = { 388 &csrow_dev_dimm_group, 389 &csrow_dev_ce_count_group, 390 NULL 391 }; 392 393 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 394 { 395 int chan, nr_pages = 0; 396 397 for (chan = 0; chan < csrow->nr_channels; chan++) 398 nr_pages += csrow->channels[chan]->dimm->nr_pages; 399 400 return nr_pages; 401 } 402 403 /* Create a CSROW object under specifed edac_mc_device */ 404 static int edac_create_csrow_object(struct mem_ctl_info *mci, 405 struct csrow_info *csrow, int index) 406 { 407 csrow->dev.type = &csrow_attr_type; 408 csrow->dev.bus = mci->bus; 409 csrow->dev.groups = csrow_dev_groups; 410 device_initialize(&csrow->dev); 411 csrow->dev.parent = &mci->dev; 412 csrow->mci = mci; 413 dev_set_name(&csrow->dev, "csrow%d", index); 414 dev_set_drvdata(&csrow->dev, csrow); 415 416 edac_dbg(0, "creating (virtual) csrow node %s\n", 417 dev_name(&csrow->dev)); 418 419 return device_add(&csrow->dev); 420 } 421 422 /* Create a CSROW object under specifed edac_mc_device */ 423 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 424 { 425 int err, i; 426 struct csrow_info *csrow; 427 428 for (i = 0; i < mci->nr_csrows; i++) { 429 csrow = mci->csrows[i]; 430 if (!nr_pages_per_csrow(csrow)) 431 continue; 432 err = edac_create_csrow_object(mci, mci->csrows[i], i); 433 if (err < 0) { 434 edac_dbg(1, 435 "failure: create csrow objects for csrow %d\n", 436 i); 437 goto error; 438 } 439 } 440 return 0; 441 442 error: 443 for (--i; i >= 0; i--) { 444 csrow = mci->csrows[i]; 445 if (!nr_pages_per_csrow(csrow)) 446 continue; 447 put_device(&mci->csrows[i]->dev); 448 } 449 450 return err; 451 } 452 453 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 454 { 455 int i; 456 struct csrow_info *csrow; 457 458 for (i = mci->nr_csrows - 1; i >= 0; i--) { 459 csrow = mci->csrows[i]; 460 if (!nr_pages_per_csrow(csrow)) 461 continue; 462 device_unregister(&mci->csrows[i]->dev); 463 } 464 } 465 #endif 466 467 /* 468 * Per-dimm (or per-rank) devices 469 */ 470 471 #define to_dimm(k) container_of(k, struct dimm_info, dev) 472 473 /* show/store functions for DIMM Label attributes */ 474 static ssize_t dimmdev_location_show(struct device *dev, 475 struct device_attribute *mattr, char *data) 476 { 477 struct dimm_info *dimm = to_dimm(dev); 478 479 return edac_dimm_info_location(dimm, data, PAGE_SIZE); 480 } 481 482 static ssize_t dimmdev_label_show(struct device *dev, 483 struct device_attribute *mattr, char *data) 484 { 485 struct dimm_info *dimm = to_dimm(dev); 486 487 /* if field has not been initialized, there is nothing to send */ 488 if (!dimm->label[0]) 489 return 0; 490 491 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); 492 } 493 494 static ssize_t dimmdev_label_store(struct device *dev, 495 struct device_attribute *mattr, 496 const char *data, 497 size_t count) 498 { 499 struct dimm_info *dimm = to_dimm(dev); 500 size_t copy_count = count; 501 502 if (count == 0) 503 return -EINVAL; 504 505 if (data[count - 1] == '\0' || data[count - 1] == '\n') 506 copy_count -= 1; 507 508 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 509 return -EINVAL; 510 511 strncpy(dimm->label, data, copy_count); 512 dimm->label[copy_count] = '\0'; 513 514 return count; 515 } 516 517 static ssize_t dimmdev_size_show(struct device *dev, 518 struct device_attribute *mattr, char *data) 519 { 520 struct dimm_info *dimm = to_dimm(dev); 521 522 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 523 } 524 525 static ssize_t dimmdev_mem_type_show(struct device *dev, 526 struct device_attribute *mattr, char *data) 527 { 528 struct dimm_info *dimm = to_dimm(dev); 529 530 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]); 531 } 532 533 static ssize_t dimmdev_dev_type_show(struct device *dev, 534 struct device_attribute *mattr, char *data) 535 { 536 struct dimm_info *dimm = to_dimm(dev); 537 538 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 539 } 540 541 static ssize_t dimmdev_edac_mode_show(struct device *dev, 542 struct device_attribute *mattr, 543 char *data) 544 { 545 struct dimm_info *dimm = to_dimm(dev); 546 547 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 548 } 549 550 static ssize_t dimmdev_ce_count_show(struct device *dev, 551 struct device_attribute *mattr, 552 char *data) 553 { 554 struct dimm_info *dimm = to_dimm(dev); 555 u32 count; 556 int off; 557 558 off = EDAC_DIMM_OFF(dimm->mci->layers, 559 dimm->mci->n_layers, 560 dimm->location[0], 561 dimm->location[1], 562 dimm->location[2]); 563 count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off]; 564 return sprintf(data, "%u\n", count); 565 } 566 567 static ssize_t dimmdev_ue_count_show(struct device *dev, 568 struct device_attribute *mattr, 569 char *data) 570 { 571 struct dimm_info *dimm = to_dimm(dev); 572 u32 count; 573 int off; 574 575 off = EDAC_DIMM_OFF(dimm->mci->layers, 576 dimm->mci->n_layers, 577 dimm->location[0], 578 dimm->location[1], 579 dimm->location[2]); 580 count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off]; 581 return sprintf(data, "%u\n", count); 582 } 583 584 /* dimm/rank attribute files */ 585 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 586 dimmdev_label_show, dimmdev_label_store); 587 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 588 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 589 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 590 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 591 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 592 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); 593 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); 594 595 /* attributes of the dimm<id>/rank<id> object */ 596 static struct attribute *dimm_attrs[] = { 597 &dev_attr_dimm_label.attr, 598 &dev_attr_dimm_location.attr, 599 &dev_attr_size.attr, 600 &dev_attr_dimm_mem_type.attr, 601 &dev_attr_dimm_dev_type.attr, 602 &dev_attr_dimm_edac_mode.attr, 603 &dev_attr_dimm_ce_count.attr, 604 &dev_attr_dimm_ue_count.attr, 605 NULL, 606 }; 607 608 static const struct attribute_group dimm_attr_grp = { 609 .attrs = dimm_attrs, 610 }; 611 612 static const struct attribute_group *dimm_attr_groups[] = { 613 &dimm_attr_grp, 614 NULL 615 }; 616 617 static void dimm_attr_release(struct device *dev) 618 { 619 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev); 620 621 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev)); 622 kfree(dimm); 623 } 624 625 static const struct device_type dimm_attr_type = { 626 .groups = dimm_attr_groups, 627 .release = dimm_attr_release, 628 }; 629 630 /* Create a DIMM object under specifed memory controller device */ 631 static int edac_create_dimm_object(struct mem_ctl_info *mci, 632 struct dimm_info *dimm, 633 int index) 634 { 635 int err; 636 dimm->mci = mci; 637 638 dimm->dev.type = &dimm_attr_type; 639 dimm->dev.bus = mci->bus; 640 device_initialize(&dimm->dev); 641 642 dimm->dev.parent = &mci->dev; 643 if (mci->csbased) 644 dev_set_name(&dimm->dev, "rank%d", index); 645 else 646 dev_set_name(&dimm->dev, "dimm%d", index); 647 dev_set_drvdata(&dimm->dev, dimm); 648 pm_runtime_forbid(&mci->dev); 649 650 err = device_add(&dimm->dev); 651 652 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev)); 653 654 return err; 655 } 656 657 /* 658 * Memory controller device 659 */ 660 661 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 662 663 static ssize_t mci_reset_counters_store(struct device *dev, 664 struct device_attribute *mattr, 665 const char *data, size_t count) 666 { 667 struct mem_ctl_info *mci = to_mci(dev); 668 int cnt, row, chan, i; 669 mci->ue_mc = 0; 670 mci->ce_mc = 0; 671 mci->ue_noinfo_count = 0; 672 mci->ce_noinfo_count = 0; 673 674 for (row = 0; row < mci->nr_csrows; row++) { 675 struct csrow_info *ri = mci->csrows[row]; 676 677 ri->ue_count = 0; 678 ri->ce_count = 0; 679 680 for (chan = 0; chan < ri->nr_channels; chan++) 681 ri->channels[chan]->ce_count = 0; 682 } 683 684 cnt = 1; 685 for (i = 0; i < mci->n_layers; i++) { 686 cnt *= mci->layers[i].size; 687 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); 688 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); 689 } 690 691 mci->start_time = jiffies; 692 return count; 693 } 694 695 /* Memory scrubbing interface: 696 * 697 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 698 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 699 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 700 * 701 * Negative value still means that an error has occurred while setting 702 * the scrub rate. 703 */ 704 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 705 struct device_attribute *mattr, 706 const char *data, size_t count) 707 { 708 struct mem_ctl_info *mci = to_mci(dev); 709 unsigned long bandwidth = 0; 710 int new_bw = 0; 711 712 if (kstrtoul(data, 10, &bandwidth) < 0) 713 return -EINVAL; 714 715 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 716 if (new_bw < 0) { 717 edac_printk(KERN_WARNING, EDAC_MC, 718 "Error setting scrub rate to: %lu\n", bandwidth); 719 return -EINVAL; 720 } 721 722 return count; 723 } 724 725 /* 726 * ->get_sdram_scrub_rate() return value semantics same as above. 727 */ 728 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 729 struct device_attribute *mattr, 730 char *data) 731 { 732 struct mem_ctl_info *mci = to_mci(dev); 733 int bandwidth = 0; 734 735 bandwidth = mci->get_sdram_scrub_rate(mci); 736 if (bandwidth < 0) { 737 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 738 return bandwidth; 739 } 740 741 return sprintf(data, "%d\n", bandwidth); 742 } 743 744 /* default attribute files for the MCI object */ 745 static ssize_t mci_ue_count_show(struct device *dev, 746 struct device_attribute *mattr, 747 char *data) 748 { 749 struct mem_ctl_info *mci = to_mci(dev); 750 751 return sprintf(data, "%d\n", mci->ue_mc); 752 } 753 754 static ssize_t mci_ce_count_show(struct device *dev, 755 struct device_attribute *mattr, 756 char *data) 757 { 758 struct mem_ctl_info *mci = to_mci(dev); 759 760 return sprintf(data, "%d\n", mci->ce_mc); 761 } 762 763 static ssize_t mci_ce_noinfo_show(struct device *dev, 764 struct device_attribute *mattr, 765 char *data) 766 { 767 struct mem_ctl_info *mci = to_mci(dev); 768 769 return sprintf(data, "%d\n", mci->ce_noinfo_count); 770 } 771 772 static ssize_t mci_ue_noinfo_show(struct device *dev, 773 struct device_attribute *mattr, 774 char *data) 775 { 776 struct mem_ctl_info *mci = to_mci(dev); 777 778 return sprintf(data, "%d\n", mci->ue_noinfo_count); 779 } 780 781 static ssize_t mci_seconds_show(struct device *dev, 782 struct device_attribute *mattr, 783 char *data) 784 { 785 struct mem_ctl_info *mci = to_mci(dev); 786 787 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 788 } 789 790 static ssize_t mci_ctl_name_show(struct device *dev, 791 struct device_attribute *mattr, 792 char *data) 793 { 794 struct mem_ctl_info *mci = to_mci(dev); 795 796 return sprintf(data, "%s\n", mci->ctl_name); 797 } 798 799 static ssize_t mci_size_mb_show(struct device *dev, 800 struct device_attribute *mattr, 801 char *data) 802 { 803 struct mem_ctl_info *mci = to_mci(dev); 804 int total_pages = 0, csrow_idx, j; 805 806 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 807 struct csrow_info *csrow = mci->csrows[csrow_idx]; 808 809 for (j = 0; j < csrow->nr_channels; j++) { 810 struct dimm_info *dimm = csrow->channels[j]->dimm; 811 812 total_pages += dimm->nr_pages; 813 } 814 } 815 816 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 817 } 818 819 static ssize_t mci_max_location_show(struct device *dev, 820 struct device_attribute *mattr, 821 char *data) 822 { 823 struct mem_ctl_info *mci = to_mci(dev); 824 int i; 825 char *p = data; 826 827 for (i = 0; i < mci->n_layers; i++) { 828 p += sprintf(p, "%s %d ", 829 edac_layer_name[mci->layers[i].type], 830 mci->layers[i].size - 1); 831 } 832 833 return p - data; 834 } 835 836 /* default Control file */ 837 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 838 839 /* default Attribute files */ 840 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 841 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 842 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 843 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 844 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 845 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 846 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 847 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 848 849 /* memory scrubber attribute file */ 850 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 851 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 852 853 static struct attribute *mci_attrs[] = { 854 &dev_attr_reset_counters.attr, 855 &dev_attr_mc_name.attr, 856 &dev_attr_size_mb.attr, 857 &dev_attr_seconds_since_reset.attr, 858 &dev_attr_ue_noinfo_count.attr, 859 &dev_attr_ce_noinfo_count.attr, 860 &dev_attr_ue_count.attr, 861 &dev_attr_ce_count.attr, 862 &dev_attr_max_location.attr, 863 &dev_attr_sdram_scrub_rate.attr, 864 NULL 865 }; 866 867 static umode_t mci_attr_is_visible(struct kobject *kobj, 868 struct attribute *attr, int idx) 869 { 870 struct device *dev = kobj_to_dev(kobj); 871 struct mem_ctl_info *mci = to_mci(dev); 872 umode_t mode = 0; 873 874 if (attr != &dev_attr_sdram_scrub_rate.attr) 875 return attr->mode; 876 if (mci->get_sdram_scrub_rate) 877 mode |= S_IRUGO; 878 if (mci->set_sdram_scrub_rate) 879 mode |= S_IWUSR; 880 return mode; 881 } 882 883 static const struct attribute_group mci_attr_grp = { 884 .attrs = mci_attrs, 885 .is_visible = mci_attr_is_visible, 886 }; 887 888 static const struct attribute_group *mci_attr_groups[] = { 889 &mci_attr_grp, 890 NULL 891 }; 892 893 static void mci_attr_release(struct device *dev) 894 { 895 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 896 897 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 898 kfree(mci); 899 } 900 901 static const struct device_type mci_attr_type = { 902 .groups = mci_attr_groups, 903 .release = mci_attr_release, 904 }; 905 906 /* 907 * Create a new Memory Controller kobject instance, 908 * mc<id> under the 'mc' directory 909 * 910 * Return: 911 * 0 Success 912 * !0 Failure 913 */ 914 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 915 const struct attribute_group **groups) 916 { 917 char *name; 918 int i, err; 919 920 /* 921 * The memory controller needs its own bus, in order to avoid 922 * namespace conflicts at /sys/bus/edac. 923 */ 924 name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx); 925 if (!name) 926 return -ENOMEM; 927 928 mci->bus->name = name; 929 930 edac_dbg(0, "creating bus %s\n", mci->bus->name); 931 932 err = bus_register(mci->bus); 933 if (err < 0) { 934 kfree(name); 935 return err; 936 } 937 938 /* get the /sys/devices/system/edac subsys reference */ 939 mci->dev.type = &mci_attr_type; 940 device_initialize(&mci->dev); 941 942 mci->dev.parent = mci_pdev; 943 mci->dev.bus = mci->bus; 944 mci->dev.groups = groups; 945 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 946 dev_set_drvdata(&mci->dev, mci); 947 pm_runtime_forbid(&mci->dev); 948 949 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev)); 950 err = device_add(&mci->dev); 951 if (err < 0) { 952 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 953 goto fail_unregister_bus; 954 } 955 956 /* 957 * Create the dimm/rank devices 958 */ 959 for (i = 0; i < mci->tot_dimms; i++) { 960 struct dimm_info *dimm = mci->dimms[i]; 961 /* Only expose populated DIMMs */ 962 if (!dimm->nr_pages) 963 continue; 964 965 #ifdef CONFIG_EDAC_DEBUG 966 edac_dbg(1, "creating dimm%d, located at ", i); 967 if (edac_debug_level >= 1) { 968 int lay; 969 for (lay = 0; lay < mci->n_layers; lay++) 970 printk(KERN_CONT "%s %d ", 971 edac_layer_name[mci->layers[lay].type], 972 dimm->location[lay]); 973 printk(KERN_CONT "\n"); 974 } 975 #endif 976 err = edac_create_dimm_object(mci, dimm, i); 977 if (err) { 978 edac_dbg(1, "failure: create dimm %d obj\n", i); 979 goto fail_unregister_dimm; 980 } 981 } 982 983 #ifdef CONFIG_EDAC_LEGACY_SYSFS 984 err = edac_create_csrow_objects(mci); 985 if (err < 0) 986 goto fail_unregister_dimm; 987 #endif 988 989 edac_create_debugfs_nodes(mci); 990 return 0; 991 992 fail_unregister_dimm: 993 for (i--; i >= 0; i--) { 994 struct dimm_info *dimm = mci->dimms[i]; 995 if (!dimm->nr_pages) 996 continue; 997 998 device_unregister(&dimm->dev); 999 } 1000 device_unregister(&mci->dev); 1001 fail_unregister_bus: 1002 bus_unregister(mci->bus); 1003 kfree(name); 1004 1005 return err; 1006 } 1007 1008 /* 1009 * remove a Memory Controller instance 1010 */ 1011 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 1012 { 1013 int i; 1014 1015 edac_dbg(0, "\n"); 1016 1017 #ifdef CONFIG_EDAC_DEBUG 1018 edac_debugfs_remove_recursive(mci->debugfs); 1019 #endif 1020 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1021 edac_delete_csrow_objects(mci); 1022 #endif 1023 1024 for (i = 0; i < mci->tot_dimms; i++) { 1025 struct dimm_info *dimm = mci->dimms[i]; 1026 if (dimm->nr_pages == 0) 1027 continue; 1028 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev)); 1029 device_unregister(&dimm->dev); 1030 } 1031 } 1032 1033 void edac_unregister_sysfs(struct mem_ctl_info *mci) 1034 { 1035 struct bus_type *bus = mci->bus; 1036 const char *name = mci->bus->name; 1037 1038 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev)); 1039 device_unregister(&mci->dev); 1040 bus_unregister(bus); 1041 kfree(name); 1042 } 1043 1044 static void mc_attr_release(struct device *dev) 1045 { 1046 /* 1047 * There's no container structure here, as this is just the mci 1048 * parent device, used to create the /sys/devices/mc sysfs node. 1049 * So, there are no attributes on it. 1050 */ 1051 edac_dbg(1, "Releasing device %s\n", dev_name(dev)); 1052 kfree(dev); 1053 } 1054 1055 static const struct device_type mc_attr_type = { 1056 .release = mc_attr_release, 1057 }; 1058 /* 1059 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1060 */ 1061 int __init edac_mc_sysfs_init(void) 1062 { 1063 int err; 1064 1065 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1066 if (!mci_pdev) { 1067 err = -ENOMEM; 1068 goto out; 1069 } 1070 1071 mci_pdev->bus = edac_get_sysfs_subsys(); 1072 mci_pdev->type = &mc_attr_type; 1073 device_initialize(mci_pdev); 1074 dev_set_name(mci_pdev, "mc"); 1075 1076 err = device_add(mci_pdev); 1077 if (err < 0) 1078 goto out_put_device; 1079 1080 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1081 1082 return 0; 1083 1084 out_put_device: 1085 put_device(mci_pdev); 1086 out: 1087 return err; 1088 } 1089 1090 void edac_mc_sysfs_exit(void) 1091 { 1092 device_unregister(mci_pdev); 1093 } 1094