1 /* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15 #include <linux/ctype.h> 16 #include <linux/slab.h> 17 #include <linux/edac.h> 18 #include <linux/bug.h> 19 #include <linux/pm_runtime.h> 20 #include <linux/uaccess.h> 21 22 #include "edac_core.h" 23 #include "edac_module.h" 24 25 /* MC EDAC Controls, setable by module parameter, and sysfs */ 26 static int edac_mc_log_ue = 1; 27 static int edac_mc_log_ce = 1; 28 static int edac_mc_panic_on_ue; 29 static int edac_mc_poll_msec = 1000; 30 31 /* Getter functions for above */ 32 int edac_mc_get_log_ue(void) 33 { 34 return edac_mc_log_ue; 35 } 36 37 int edac_mc_get_log_ce(void) 38 { 39 return edac_mc_log_ce; 40 } 41 42 int edac_mc_get_panic_on_ue(void) 43 { 44 return edac_mc_panic_on_ue; 45 } 46 47 /* this is temporary */ 48 int edac_mc_get_poll_msec(void) 49 { 50 return edac_mc_poll_msec; 51 } 52 53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp) 54 { 55 unsigned long l; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtoul(val, 0, &l); 62 if (ret) 63 return ret; 64 65 if (l < 1000) 66 return -EINVAL; 67 68 *((unsigned long *)kp->arg) = l; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(l); 72 73 return 0; 74 } 75 76 /* Parameter declarations for above */ 77 module_param(edac_mc_panic_on_ue, int, 0644); 78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79 module_param(edac_mc_log_ue, int, 0644); 80 MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82 module_param(edac_mc_log_ce, int, 0644); 83 MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int, 86 &edac_mc_poll_msec, 0644); 87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89 static struct device *mci_pdev; 90 91 /* 92 * various constants for Memory Controllers 93 */ 94 static const char * const mem_types[] = { 95 [MEM_EMPTY] = "Empty", 96 [MEM_RESERVED] = "Reserved", 97 [MEM_UNKNOWN] = "Unknown", 98 [MEM_FPM] = "FPM", 99 [MEM_EDO] = "EDO", 100 [MEM_BEDO] = "BEDO", 101 [MEM_SDR] = "Unbuffered-SDR", 102 [MEM_RDR] = "Registered-SDR", 103 [MEM_DDR] = "Unbuffered-DDR", 104 [MEM_RDDR] = "Registered-DDR", 105 [MEM_RMBS] = "RMBS", 106 [MEM_DDR2] = "Unbuffered-DDR2", 107 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 108 [MEM_RDDR2] = "Registered-DDR2", 109 [MEM_XDR] = "XDR", 110 [MEM_DDR3] = "Unbuffered-DDR3", 111 [MEM_RDDR3] = "Registered-DDR3", 112 [MEM_DDR4] = "Unbuffered-DDR4", 113 [MEM_RDDR4] = "Registered-DDR4" 114 }; 115 116 static const char * const dev_types[] = { 117 [DEV_UNKNOWN] = "Unknown", 118 [DEV_X1] = "x1", 119 [DEV_X2] = "x2", 120 [DEV_X4] = "x4", 121 [DEV_X8] = "x8", 122 [DEV_X16] = "x16", 123 [DEV_X32] = "x32", 124 [DEV_X64] = "x64" 125 }; 126 127 static const char * const edac_caps[] = { 128 [EDAC_UNKNOWN] = "Unknown", 129 [EDAC_NONE] = "None", 130 [EDAC_RESERVED] = "Reserved", 131 [EDAC_PARITY] = "PARITY", 132 [EDAC_EC] = "EC", 133 [EDAC_SECDED] = "SECDED", 134 [EDAC_S2ECD2ED] = "S2ECD2ED", 135 [EDAC_S4ECD4ED] = "S4ECD4ED", 136 [EDAC_S8ECD8ED] = "S8ECD8ED", 137 [EDAC_S16ECD16ED] = "S16ECD16ED" 138 }; 139 140 #ifdef CONFIG_EDAC_LEGACY_SYSFS 141 /* 142 * EDAC sysfs CSROW data structures and methods 143 */ 144 145 #define to_csrow(k) container_of(k, struct csrow_info, dev) 146 147 /* 148 * We need it to avoid namespace conflicts between the legacy API 149 * and the per-dimm/per-rank one 150 */ 151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 152 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 153 154 struct dev_ch_attribute { 155 struct device_attribute attr; 156 int channel; 157 }; 158 159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 160 struct dev_ch_attribute dev_attr_legacy_##_name = \ 161 { __ATTR(_name, _mode, _show, _store), (_var) } 162 163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 164 165 /* Set of more default csrow<id> attribute show/store functions */ 166 static ssize_t csrow_ue_count_show(struct device *dev, 167 struct device_attribute *mattr, char *data) 168 { 169 struct csrow_info *csrow = to_csrow(dev); 170 171 return sprintf(data, "%u\n", csrow->ue_count); 172 } 173 174 static ssize_t csrow_ce_count_show(struct device *dev, 175 struct device_attribute *mattr, char *data) 176 { 177 struct csrow_info *csrow = to_csrow(dev); 178 179 return sprintf(data, "%u\n", csrow->ce_count); 180 } 181 182 static ssize_t csrow_size_show(struct device *dev, 183 struct device_attribute *mattr, char *data) 184 { 185 struct csrow_info *csrow = to_csrow(dev); 186 int i; 187 u32 nr_pages = 0; 188 189 for (i = 0; i < csrow->nr_channels; i++) 190 nr_pages += csrow->channels[i]->dimm->nr_pages; 191 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 192 } 193 194 static ssize_t csrow_mem_type_show(struct device *dev, 195 struct device_attribute *mattr, char *data) 196 { 197 struct csrow_info *csrow = to_csrow(dev); 198 199 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]); 200 } 201 202 static ssize_t csrow_dev_type_show(struct device *dev, 203 struct device_attribute *mattr, char *data) 204 { 205 struct csrow_info *csrow = to_csrow(dev); 206 207 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 208 } 209 210 static ssize_t csrow_edac_mode_show(struct device *dev, 211 struct device_attribute *mattr, 212 char *data) 213 { 214 struct csrow_info *csrow = to_csrow(dev); 215 216 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 217 } 218 219 /* show/store functions for DIMM Label attributes */ 220 static ssize_t channel_dimm_label_show(struct device *dev, 221 struct device_attribute *mattr, 222 char *data) 223 { 224 struct csrow_info *csrow = to_csrow(dev); 225 unsigned chan = to_channel(mattr); 226 struct rank_info *rank = csrow->channels[chan]; 227 228 /* if field has not been initialized, there is nothing to send */ 229 if (!rank->dimm->label[0]) 230 return 0; 231 232 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", 233 rank->dimm->label); 234 } 235 236 static ssize_t channel_dimm_label_store(struct device *dev, 237 struct device_attribute *mattr, 238 const char *data, size_t count) 239 { 240 struct csrow_info *csrow = to_csrow(dev); 241 unsigned chan = to_channel(mattr); 242 struct rank_info *rank = csrow->channels[chan]; 243 244 ssize_t max_size = 0; 245 246 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1); 247 strncpy(rank->dimm->label, data, max_size); 248 rank->dimm->label[max_size] = '\0'; 249 250 return max_size; 251 } 252 253 /* show function for dynamic chX_ce_count attribute */ 254 static ssize_t channel_ce_count_show(struct device *dev, 255 struct device_attribute *mattr, char *data) 256 { 257 struct csrow_info *csrow = to_csrow(dev); 258 unsigned chan = to_channel(mattr); 259 struct rank_info *rank = csrow->channels[chan]; 260 261 return sprintf(data, "%u\n", rank->ce_count); 262 } 263 264 /* cwrow<id>/attribute files */ 265 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 266 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 267 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 268 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 269 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 270 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 271 272 /* default attributes of the CSROW<id> object */ 273 static struct attribute *csrow_attrs[] = { 274 &dev_attr_legacy_dev_type.attr, 275 &dev_attr_legacy_mem_type.attr, 276 &dev_attr_legacy_edac_mode.attr, 277 &dev_attr_legacy_size_mb.attr, 278 &dev_attr_legacy_ue_count.attr, 279 &dev_attr_legacy_ce_count.attr, 280 NULL, 281 }; 282 283 static struct attribute_group csrow_attr_grp = { 284 .attrs = csrow_attrs, 285 }; 286 287 static const struct attribute_group *csrow_attr_groups[] = { 288 &csrow_attr_grp, 289 NULL 290 }; 291 292 static void csrow_attr_release(struct device *dev) 293 { 294 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 295 296 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 297 kfree(csrow); 298 } 299 300 static struct device_type csrow_attr_type = { 301 .groups = csrow_attr_groups, 302 .release = csrow_attr_release, 303 }; 304 305 /* 306 * possible dynamic channel DIMM Label attribute files 307 * 308 */ 309 310 #define EDAC_NR_CHANNELS 6 311 312 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 313 channel_dimm_label_show, channel_dimm_label_store, 0); 314 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 315 channel_dimm_label_show, channel_dimm_label_store, 1); 316 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 317 channel_dimm_label_show, channel_dimm_label_store, 2); 318 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 319 channel_dimm_label_show, channel_dimm_label_store, 3); 320 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 321 channel_dimm_label_show, channel_dimm_label_store, 4); 322 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 323 channel_dimm_label_show, channel_dimm_label_store, 5); 324 325 /* Total possible dynamic DIMM Label attribute file table */ 326 static struct device_attribute *dynamic_csrow_dimm_attr[] = { 327 &dev_attr_legacy_ch0_dimm_label.attr, 328 &dev_attr_legacy_ch1_dimm_label.attr, 329 &dev_attr_legacy_ch2_dimm_label.attr, 330 &dev_attr_legacy_ch3_dimm_label.attr, 331 &dev_attr_legacy_ch4_dimm_label.attr, 332 &dev_attr_legacy_ch5_dimm_label.attr 333 }; 334 335 /* possible dynamic channel ce_count attribute files */ 336 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 337 channel_ce_count_show, NULL, 0); 338 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 339 channel_ce_count_show, NULL, 1); 340 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 341 channel_ce_count_show, NULL, 2); 342 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 343 channel_ce_count_show, NULL, 3); 344 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 345 channel_ce_count_show, NULL, 4); 346 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 347 channel_ce_count_show, NULL, 5); 348 349 /* Total possible dynamic ce_count attribute file table */ 350 static struct device_attribute *dynamic_csrow_ce_count_attr[] = { 351 &dev_attr_legacy_ch0_ce_count.attr, 352 &dev_attr_legacy_ch1_ce_count.attr, 353 &dev_attr_legacy_ch2_ce_count.attr, 354 &dev_attr_legacy_ch3_ce_count.attr, 355 &dev_attr_legacy_ch4_ce_count.attr, 356 &dev_attr_legacy_ch5_ce_count.attr 357 }; 358 359 static inline int nr_pages_per_csrow(struct csrow_info *csrow) 360 { 361 int chan, nr_pages = 0; 362 363 for (chan = 0; chan < csrow->nr_channels; chan++) 364 nr_pages += csrow->channels[chan]->dimm->nr_pages; 365 366 return nr_pages; 367 } 368 369 /* Create a CSROW object under specifed edac_mc_device */ 370 static int edac_create_csrow_object(struct mem_ctl_info *mci, 371 struct csrow_info *csrow, int index) 372 { 373 int err, chan; 374 375 if (csrow->nr_channels > EDAC_NR_CHANNELS) 376 return -ENODEV; 377 378 csrow->dev.type = &csrow_attr_type; 379 csrow->dev.bus = mci->bus; 380 device_initialize(&csrow->dev); 381 csrow->dev.parent = &mci->dev; 382 csrow->mci = mci; 383 dev_set_name(&csrow->dev, "csrow%d", index); 384 dev_set_drvdata(&csrow->dev, csrow); 385 386 edac_dbg(0, "creating (virtual) csrow node %s\n", 387 dev_name(&csrow->dev)); 388 389 err = device_add(&csrow->dev); 390 if (err < 0) 391 return err; 392 393 for (chan = 0; chan < csrow->nr_channels; chan++) { 394 /* Only expose populated DIMMs */ 395 if (!csrow->channels[chan]->dimm->nr_pages) 396 continue; 397 err = device_create_file(&csrow->dev, 398 dynamic_csrow_dimm_attr[chan]); 399 if (err < 0) 400 goto error; 401 err = device_create_file(&csrow->dev, 402 dynamic_csrow_ce_count_attr[chan]); 403 if (err < 0) { 404 device_remove_file(&csrow->dev, 405 dynamic_csrow_dimm_attr[chan]); 406 goto error; 407 } 408 } 409 410 return 0; 411 412 error: 413 for (--chan; chan >= 0; chan--) { 414 device_remove_file(&csrow->dev, 415 dynamic_csrow_dimm_attr[chan]); 416 device_remove_file(&csrow->dev, 417 dynamic_csrow_ce_count_attr[chan]); 418 } 419 put_device(&csrow->dev); 420 421 return err; 422 } 423 424 /* Create a CSROW object under specifed edac_mc_device */ 425 static int edac_create_csrow_objects(struct mem_ctl_info *mci) 426 { 427 int err, i, chan; 428 struct csrow_info *csrow; 429 430 for (i = 0; i < mci->nr_csrows; i++) { 431 csrow = mci->csrows[i]; 432 if (!nr_pages_per_csrow(csrow)) 433 continue; 434 err = edac_create_csrow_object(mci, mci->csrows[i], i); 435 if (err < 0) { 436 edac_dbg(1, 437 "failure: create csrow objects for csrow %d\n", 438 i); 439 goto error; 440 } 441 } 442 return 0; 443 444 error: 445 for (--i; i >= 0; i--) { 446 csrow = mci->csrows[i]; 447 if (!nr_pages_per_csrow(csrow)) 448 continue; 449 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) { 450 if (!csrow->channels[chan]->dimm->nr_pages) 451 continue; 452 device_remove_file(&csrow->dev, 453 dynamic_csrow_dimm_attr[chan]); 454 device_remove_file(&csrow->dev, 455 dynamic_csrow_ce_count_attr[chan]); 456 } 457 put_device(&mci->csrows[i]->dev); 458 } 459 460 return err; 461 } 462 463 static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 464 { 465 int i, chan; 466 struct csrow_info *csrow; 467 468 for (i = mci->nr_csrows - 1; i >= 0; i--) { 469 csrow = mci->csrows[i]; 470 if (!nr_pages_per_csrow(csrow)) 471 continue; 472 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) { 473 if (!csrow->channels[chan]->dimm->nr_pages) 474 continue; 475 edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n", 476 i, chan); 477 device_remove_file(&csrow->dev, 478 dynamic_csrow_dimm_attr[chan]); 479 device_remove_file(&csrow->dev, 480 dynamic_csrow_ce_count_attr[chan]); 481 } 482 device_unregister(&mci->csrows[i]->dev); 483 } 484 } 485 #endif 486 487 /* 488 * Per-dimm (or per-rank) devices 489 */ 490 491 #define to_dimm(k) container_of(k, struct dimm_info, dev) 492 493 /* show/store functions for DIMM Label attributes */ 494 static ssize_t dimmdev_location_show(struct device *dev, 495 struct device_attribute *mattr, char *data) 496 { 497 struct dimm_info *dimm = to_dimm(dev); 498 499 return edac_dimm_info_location(dimm, data, PAGE_SIZE); 500 } 501 502 static ssize_t dimmdev_label_show(struct device *dev, 503 struct device_attribute *mattr, char *data) 504 { 505 struct dimm_info *dimm = to_dimm(dev); 506 507 /* if field has not been initialized, there is nothing to send */ 508 if (!dimm->label[0]) 509 return 0; 510 511 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label); 512 } 513 514 static ssize_t dimmdev_label_store(struct device *dev, 515 struct device_attribute *mattr, 516 const char *data, 517 size_t count) 518 { 519 struct dimm_info *dimm = to_dimm(dev); 520 521 ssize_t max_size = 0; 522 523 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1); 524 strncpy(dimm->label, data, max_size); 525 dimm->label[max_size] = '\0'; 526 527 return max_size; 528 } 529 530 static ssize_t dimmdev_size_show(struct device *dev, 531 struct device_attribute *mattr, char *data) 532 { 533 struct dimm_info *dimm = to_dimm(dev); 534 535 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 536 } 537 538 static ssize_t dimmdev_mem_type_show(struct device *dev, 539 struct device_attribute *mattr, char *data) 540 { 541 struct dimm_info *dimm = to_dimm(dev); 542 543 return sprintf(data, "%s\n", mem_types[dimm->mtype]); 544 } 545 546 static ssize_t dimmdev_dev_type_show(struct device *dev, 547 struct device_attribute *mattr, char *data) 548 { 549 struct dimm_info *dimm = to_dimm(dev); 550 551 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 552 } 553 554 static ssize_t dimmdev_edac_mode_show(struct device *dev, 555 struct device_attribute *mattr, 556 char *data) 557 { 558 struct dimm_info *dimm = to_dimm(dev); 559 560 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 561 } 562 563 /* dimm/rank attribute files */ 564 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 565 dimmdev_label_show, dimmdev_label_store); 566 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 567 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 568 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 569 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 570 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 571 572 /* attributes of the dimm<id>/rank<id> object */ 573 static struct attribute *dimm_attrs[] = { 574 &dev_attr_dimm_label.attr, 575 &dev_attr_dimm_location.attr, 576 &dev_attr_size.attr, 577 &dev_attr_dimm_mem_type.attr, 578 &dev_attr_dimm_dev_type.attr, 579 &dev_attr_dimm_edac_mode.attr, 580 NULL, 581 }; 582 583 static struct attribute_group dimm_attr_grp = { 584 .attrs = dimm_attrs, 585 }; 586 587 static const struct attribute_group *dimm_attr_groups[] = { 588 &dimm_attr_grp, 589 NULL 590 }; 591 592 static void dimm_attr_release(struct device *dev) 593 { 594 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev); 595 596 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev)); 597 kfree(dimm); 598 } 599 600 static struct device_type dimm_attr_type = { 601 .groups = dimm_attr_groups, 602 .release = dimm_attr_release, 603 }; 604 605 /* Create a DIMM object under specifed memory controller device */ 606 static int edac_create_dimm_object(struct mem_ctl_info *mci, 607 struct dimm_info *dimm, 608 int index) 609 { 610 int err; 611 dimm->mci = mci; 612 613 dimm->dev.type = &dimm_attr_type; 614 dimm->dev.bus = mci->bus; 615 device_initialize(&dimm->dev); 616 617 dimm->dev.parent = &mci->dev; 618 if (mci->csbased) 619 dev_set_name(&dimm->dev, "rank%d", index); 620 else 621 dev_set_name(&dimm->dev, "dimm%d", index); 622 dev_set_drvdata(&dimm->dev, dimm); 623 pm_runtime_forbid(&mci->dev); 624 625 err = device_add(&dimm->dev); 626 627 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev)); 628 629 return err; 630 } 631 632 /* 633 * Memory controller device 634 */ 635 636 #define to_mci(k) container_of(k, struct mem_ctl_info, dev) 637 638 static ssize_t mci_reset_counters_store(struct device *dev, 639 struct device_attribute *mattr, 640 const char *data, size_t count) 641 { 642 struct mem_ctl_info *mci = to_mci(dev); 643 int cnt, row, chan, i; 644 mci->ue_mc = 0; 645 mci->ce_mc = 0; 646 mci->ue_noinfo_count = 0; 647 mci->ce_noinfo_count = 0; 648 649 for (row = 0; row < mci->nr_csrows; row++) { 650 struct csrow_info *ri = mci->csrows[row]; 651 652 ri->ue_count = 0; 653 ri->ce_count = 0; 654 655 for (chan = 0; chan < ri->nr_channels; chan++) 656 ri->channels[chan]->ce_count = 0; 657 } 658 659 cnt = 1; 660 for (i = 0; i < mci->n_layers; i++) { 661 cnt *= mci->layers[i].size; 662 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); 663 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); 664 } 665 666 mci->start_time = jiffies; 667 return count; 668 } 669 670 /* Memory scrubbing interface: 671 * 672 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 673 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 674 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 675 * 676 * Negative value still means that an error has occurred while setting 677 * the scrub rate. 678 */ 679 static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 680 struct device_attribute *mattr, 681 const char *data, size_t count) 682 { 683 struct mem_ctl_info *mci = to_mci(dev); 684 unsigned long bandwidth = 0; 685 int new_bw = 0; 686 687 if (kstrtoul(data, 10, &bandwidth) < 0) 688 return -EINVAL; 689 690 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 691 if (new_bw < 0) { 692 edac_printk(KERN_WARNING, EDAC_MC, 693 "Error setting scrub rate to: %lu\n", bandwidth); 694 return -EINVAL; 695 } 696 697 return count; 698 } 699 700 /* 701 * ->get_sdram_scrub_rate() return value semantics same as above. 702 */ 703 static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 704 struct device_attribute *mattr, 705 char *data) 706 { 707 struct mem_ctl_info *mci = to_mci(dev); 708 int bandwidth = 0; 709 710 bandwidth = mci->get_sdram_scrub_rate(mci); 711 if (bandwidth < 0) { 712 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 713 return bandwidth; 714 } 715 716 return sprintf(data, "%d\n", bandwidth); 717 } 718 719 /* default attribute files for the MCI object */ 720 static ssize_t mci_ue_count_show(struct device *dev, 721 struct device_attribute *mattr, 722 char *data) 723 { 724 struct mem_ctl_info *mci = to_mci(dev); 725 726 return sprintf(data, "%d\n", mci->ue_mc); 727 } 728 729 static ssize_t mci_ce_count_show(struct device *dev, 730 struct device_attribute *mattr, 731 char *data) 732 { 733 struct mem_ctl_info *mci = to_mci(dev); 734 735 return sprintf(data, "%d\n", mci->ce_mc); 736 } 737 738 static ssize_t mci_ce_noinfo_show(struct device *dev, 739 struct device_attribute *mattr, 740 char *data) 741 { 742 struct mem_ctl_info *mci = to_mci(dev); 743 744 return sprintf(data, "%d\n", mci->ce_noinfo_count); 745 } 746 747 static ssize_t mci_ue_noinfo_show(struct device *dev, 748 struct device_attribute *mattr, 749 char *data) 750 { 751 struct mem_ctl_info *mci = to_mci(dev); 752 753 return sprintf(data, "%d\n", mci->ue_noinfo_count); 754 } 755 756 static ssize_t mci_seconds_show(struct device *dev, 757 struct device_attribute *mattr, 758 char *data) 759 { 760 struct mem_ctl_info *mci = to_mci(dev); 761 762 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 763 } 764 765 static ssize_t mci_ctl_name_show(struct device *dev, 766 struct device_attribute *mattr, 767 char *data) 768 { 769 struct mem_ctl_info *mci = to_mci(dev); 770 771 return sprintf(data, "%s\n", mci->ctl_name); 772 } 773 774 static ssize_t mci_size_mb_show(struct device *dev, 775 struct device_attribute *mattr, 776 char *data) 777 { 778 struct mem_ctl_info *mci = to_mci(dev); 779 int total_pages = 0, csrow_idx, j; 780 781 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 782 struct csrow_info *csrow = mci->csrows[csrow_idx]; 783 784 for (j = 0; j < csrow->nr_channels; j++) { 785 struct dimm_info *dimm = csrow->channels[j]->dimm; 786 787 total_pages += dimm->nr_pages; 788 } 789 } 790 791 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 792 } 793 794 static ssize_t mci_max_location_show(struct device *dev, 795 struct device_attribute *mattr, 796 char *data) 797 { 798 struct mem_ctl_info *mci = to_mci(dev); 799 int i; 800 char *p = data; 801 802 for (i = 0; i < mci->n_layers; i++) { 803 p += sprintf(p, "%s %d ", 804 edac_layer_name[mci->layers[i].type], 805 mci->layers[i].size - 1); 806 } 807 808 return p - data; 809 } 810 811 #ifdef CONFIG_EDAC_DEBUG 812 static ssize_t edac_fake_inject_write(struct file *file, 813 const char __user *data, 814 size_t count, loff_t *ppos) 815 { 816 struct device *dev = file->private_data; 817 struct mem_ctl_info *mci = to_mci(dev); 818 static enum hw_event_mc_err_type type; 819 u16 errcount = mci->fake_inject_count; 820 821 if (!errcount) 822 errcount = 1; 823 824 type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED 825 : HW_EVENT_ERR_CORRECTED; 826 827 printk(KERN_DEBUG 828 "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n", 829 errcount, 830 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE", 831 errcount > 1 ? "s" : "", 832 mci->fake_inject_layer[0], 833 mci->fake_inject_layer[1], 834 mci->fake_inject_layer[2] 835 ); 836 edac_mc_handle_error(type, mci, errcount, 0, 0, 0, 837 mci->fake_inject_layer[0], 838 mci->fake_inject_layer[1], 839 mci->fake_inject_layer[2], 840 "FAKE ERROR", "for EDAC testing only"); 841 842 return count; 843 } 844 845 static const struct file_operations debug_fake_inject_fops = { 846 .open = simple_open, 847 .write = edac_fake_inject_write, 848 .llseek = generic_file_llseek, 849 }; 850 #endif 851 852 /* default Control file */ 853 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 854 855 /* default Attribute files */ 856 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 857 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 858 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 859 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 860 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 861 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 862 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 863 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 864 865 /* memory scrubber attribute file */ 866 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL); 867 868 static struct attribute *mci_attrs[] = { 869 &dev_attr_reset_counters.attr, 870 &dev_attr_mc_name.attr, 871 &dev_attr_size_mb.attr, 872 &dev_attr_seconds_since_reset.attr, 873 &dev_attr_ue_noinfo_count.attr, 874 &dev_attr_ce_noinfo_count.attr, 875 &dev_attr_ue_count.attr, 876 &dev_attr_ce_count.attr, 877 &dev_attr_max_location.attr, 878 NULL 879 }; 880 881 static struct attribute_group mci_attr_grp = { 882 .attrs = mci_attrs, 883 }; 884 885 static const struct attribute_group *mci_attr_groups[] = { 886 &mci_attr_grp, 887 NULL 888 }; 889 890 static void mci_attr_release(struct device *dev) 891 { 892 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 893 894 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 895 kfree(mci); 896 } 897 898 static struct device_type mci_attr_type = { 899 .groups = mci_attr_groups, 900 .release = mci_attr_release, 901 }; 902 903 #ifdef CONFIG_EDAC_DEBUG 904 static struct dentry *edac_debugfs; 905 906 int __init edac_debugfs_init(void) 907 { 908 edac_debugfs = debugfs_create_dir("edac", NULL); 909 if (IS_ERR(edac_debugfs)) { 910 edac_debugfs = NULL; 911 return -ENOMEM; 912 } 913 return 0; 914 } 915 916 void __exit edac_debugfs_exit(void) 917 { 918 debugfs_remove(edac_debugfs); 919 } 920 921 static int edac_create_debug_nodes(struct mem_ctl_info *mci) 922 { 923 struct dentry *d, *parent; 924 char name[80]; 925 int i; 926 927 if (!edac_debugfs) 928 return -ENODEV; 929 930 d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs); 931 if (!d) 932 return -ENOMEM; 933 parent = d; 934 935 for (i = 0; i < mci->n_layers; i++) { 936 sprintf(name, "fake_inject_%s", 937 edac_layer_name[mci->layers[i].type]); 938 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent, 939 &mci->fake_inject_layer[i]); 940 if (!d) 941 goto nomem; 942 } 943 944 d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent, 945 &mci->fake_inject_ue); 946 if (!d) 947 goto nomem; 948 949 d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent, 950 &mci->fake_inject_count); 951 if (!d) 952 goto nomem; 953 954 d = debugfs_create_file("fake_inject", S_IWUSR, parent, 955 &mci->dev, 956 &debug_fake_inject_fops); 957 if (!d) 958 goto nomem; 959 960 mci->debugfs = parent; 961 return 0; 962 nomem: 963 debugfs_remove(mci->debugfs); 964 return -ENOMEM; 965 } 966 #endif 967 968 /* 969 * Create a new Memory Controller kobject instance, 970 * mc<id> under the 'mc' directory 971 * 972 * Return: 973 * 0 Success 974 * !0 Failure 975 */ 976 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci) 977 { 978 int i, err; 979 980 /* 981 * The memory controller needs its own bus, in order to avoid 982 * namespace conflicts at /sys/bus/edac. 983 */ 984 mci->bus->name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx); 985 if (!mci->bus->name) 986 return -ENOMEM; 987 988 edac_dbg(0, "creating bus %s\n", mci->bus->name); 989 990 err = bus_register(mci->bus); 991 if (err < 0) 992 return err; 993 994 /* get the /sys/devices/system/edac subsys reference */ 995 mci->dev.type = &mci_attr_type; 996 device_initialize(&mci->dev); 997 998 mci->dev.parent = mci_pdev; 999 mci->dev.bus = mci->bus; 1000 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 1001 dev_set_drvdata(&mci->dev, mci); 1002 pm_runtime_forbid(&mci->dev); 1003 1004 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev)); 1005 err = device_add(&mci->dev); 1006 if (err < 0) { 1007 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 1008 bus_unregister(mci->bus); 1009 kfree(mci->bus->name); 1010 return err; 1011 } 1012 1013 if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) { 1014 if (mci->get_sdram_scrub_rate) { 1015 dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO; 1016 dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show; 1017 } 1018 if (mci->set_sdram_scrub_rate) { 1019 dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR; 1020 dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store; 1021 } 1022 err = device_create_file(&mci->dev, 1023 &dev_attr_sdram_scrub_rate); 1024 if (err) { 1025 edac_dbg(1, "failure: create sdram_scrub_rate\n"); 1026 goto fail2; 1027 } 1028 } 1029 /* 1030 * Create the dimm/rank devices 1031 */ 1032 for (i = 0; i < mci->tot_dimms; i++) { 1033 struct dimm_info *dimm = mci->dimms[i]; 1034 /* Only expose populated DIMMs */ 1035 if (dimm->nr_pages == 0) 1036 continue; 1037 #ifdef CONFIG_EDAC_DEBUG 1038 edac_dbg(1, "creating dimm%d, located at ", i); 1039 if (edac_debug_level >= 1) { 1040 int lay; 1041 for (lay = 0; lay < mci->n_layers; lay++) 1042 printk(KERN_CONT "%s %d ", 1043 edac_layer_name[mci->layers[lay].type], 1044 dimm->location[lay]); 1045 printk(KERN_CONT "\n"); 1046 } 1047 #endif 1048 err = edac_create_dimm_object(mci, dimm, i); 1049 if (err) { 1050 edac_dbg(1, "failure: create dimm %d obj\n", i); 1051 goto fail; 1052 } 1053 } 1054 1055 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1056 err = edac_create_csrow_objects(mci); 1057 if (err < 0) 1058 goto fail; 1059 #endif 1060 1061 #ifdef CONFIG_EDAC_DEBUG 1062 edac_create_debug_nodes(mci); 1063 #endif 1064 return 0; 1065 1066 fail: 1067 for (i--; i >= 0; i--) { 1068 struct dimm_info *dimm = mci->dimms[i]; 1069 if (dimm->nr_pages == 0) 1070 continue; 1071 device_unregister(&dimm->dev); 1072 } 1073 fail2: 1074 device_unregister(&mci->dev); 1075 bus_unregister(mci->bus); 1076 kfree(mci->bus->name); 1077 return err; 1078 } 1079 1080 /* 1081 * remove a Memory Controller instance 1082 */ 1083 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 1084 { 1085 int i; 1086 1087 edac_dbg(0, "\n"); 1088 1089 #ifdef CONFIG_EDAC_DEBUG 1090 debugfs_remove(mci->debugfs); 1091 #endif 1092 #ifdef CONFIG_EDAC_LEGACY_SYSFS 1093 edac_delete_csrow_objects(mci); 1094 #endif 1095 1096 for (i = 0; i < mci->tot_dimms; i++) { 1097 struct dimm_info *dimm = mci->dimms[i]; 1098 if (dimm->nr_pages == 0) 1099 continue; 1100 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev)); 1101 device_unregister(&dimm->dev); 1102 } 1103 } 1104 1105 void edac_unregister_sysfs(struct mem_ctl_info *mci) 1106 { 1107 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev)); 1108 device_unregister(&mci->dev); 1109 bus_unregister(mci->bus); 1110 kfree(mci->bus->name); 1111 } 1112 1113 static void mc_attr_release(struct device *dev) 1114 { 1115 /* 1116 * There's no container structure here, as this is just the mci 1117 * parent device, used to create the /sys/devices/mc sysfs node. 1118 * So, there are no attributes on it. 1119 */ 1120 edac_dbg(1, "Releasing device %s\n", dev_name(dev)); 1121 kfree(dev); 1122 } 1123 1124 static struct device_type mc_attr_type = { 1125 .release = mc_attr_release, 1126 }; 1127 /* 1128 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1129 */ 1130 int __init edac_mc_sysfs_init(void) 1131 { 1132 struct bus_type *edac_subsys; 1133 int err; 1134 1135 /* get the /sys/devices/system/edac subsys reference */ 1136 edac_subsys = edac_get_sysfs_subsys(); 1137 if (edac_subsys == NULL) { 1138 edac_dbg(1, "no edac_subsys\n"); 1139 err = -EINVAL; 1140 goto out; 1141 } 1142 1143 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1144 if (!mci_pdev) { 1145 err = -ENOMEM; 1146 goto out_put_sysfs; 1147 } 1148 1149 mci_pdev->bus = edac_subsys; 1150 mci_pdev->type = &mc_attr_type; 1151 device_initialize(mci_pdev); 1152 dev_set_name(mci_pdev, "mc"); 1153 1154 err = device_add(mci_pdev); 1155 if (err < 0) 1156 goto out_dev_free; 1157 1158 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1159 1160 return 0; 1161 1162 out_dev_free: 1163 kfree(mci_pdev); 1164 out_put_sysfs: 1165 edac_put_sysfs_subsys(); 1166 out: 1167 return err; 1168 } 1169 1170 void __exit edac_mc_sysfs_exit(void) 1171 { 1172 device_unregister(mci_pdev); 1173 edac_put_sysfs_subsys(); 1174 } 1175